JP6892249B2 - Caret sorting device and cullet sorting method - Google Patents

Caret sorting device and cullet sorting method Download PDF

Info

Publication number
JP6892249B2
JP6892249B2 JP2016227413A JP2016227413A JP6892249B2 JP 6892249 B2 JP6892249 B2 JP 6892249B2 JP 2016227413 A JP2016227413 A JP 2016227413A JP 2016227413 A JP2016227413 A JP 2016227413A JP 6892249 B2 JP6892249 B2 JP 6892249B2
Authority
JP
Japan
Prior art keywords
cullet
crystallized glass
ultraviolet
transparent
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016227413A
Other languages
Japanese (ja)
Other versions
JP2018083153A (en
Inventor
康哲 小野澤
康哲 小野澤
友樹 丸山
友樹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Glass Co Ltd
Original Assignee
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Glass Co Ltd filed Critical Toyo Glass Co Ltd
Priority to JP2016227413A priority Critical patent/JP6892249B2/en
Priority to KR1020197008369A priority patent/KR20190044084A/en
Priority to PCT/JP2017/040521 priority patent/WO2018096943A1/en
Priority to CN201780057481.1A priority patent/CN109996612A/en
Publication of JP2018083153A publication Critical patent/JP2018083153A/en
Priority to PH12019500543A priority patent/PH12019500543A1/en
Application granted granted Critical
Publication of JP6892249B2 publication Critical patent/JP6892249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sorting Of Articles (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、透明の結晶化ガラスを含むカレットの中から透明の結晶化ガラスを分別するカレット分別装置およびカレット分別方法に関する。 The present invention relates to a cullet sorting apparatus and a cullet sorting method for separating transparent crystallized glass from cullet containing transparent crystallized glass.

従来から、ガラス製造工場等においては、ガラス材料としてカレット(リサイクル用ガラス片)を利用しているが、カレットには、有色または透明、非結晶化ガラスまたは結晶化ガラス等の様々な種類のガラスが含まれることから、これらカレットの分別を行う必要がある。 Conventionally, cullet (glass pieces for recycling) has been used as a glass material in glass manufacturing factories, etc., but cullet is a variety of types of glass such as colored or transparent, non-crystallized glass or crystallized glass. It is necessary to separate these cullet because it contains.

このようなカレット分別装置の一例としては、薄茶色或いは紫色の結晶化ガラス(耐熱ガラス)と多色の非結晶化ガラス(ソーダガラス)とを含むカレット中から、薄茶色或いは紫色の結晶化ガラスを分別するカレット分別装置であって、430nm以下の波長を有する光によって、無色透明および薄青色の非結晶化ガラスと、それ以外のガラスとを分別し、630nm〜700nmの波長を有する光によって、薄茶色或いは紫色の結晶化ガラスとそれ以外の色のガラスとを分別するカレット分別装置が知られている(例えば、特許文献1を参照)。 As an example of such a cullet sorting device, a light brown or purple crystallized glass from a cullet containing light brown or purple crystallized glass (heat resistant glass) and multicolored non-crystallized glass (soda glass). A cullet separator that separates colorless transparent and light blue non-crystallized glass with light having a wavelength of 430 nm or less and other glass, and by light having a wavelength of 630 nm to 700 nm. A cullet sorting device that separates light brown or purple crystallized glass and glass of other colors is known (see, for example, Patent Document 1).

この特許文献1のカレット分別装置では、薄茶色或いは紫色の結晶化ガラスを分別して排除することにより、通常のびん等を構成する非結晶化ガラスに、結晶化ガラスが混入することを回避している。 In the cullet sorting apparatus of Patent Document 1, by separating and eliminating the light brown or purple crystallized glass, it is possible to prevent the crystallized glass from being mixed with the non-crystallized glass constituting a normal bottle or the like. There is.

特許第3367935号公報Japanese Patent No. 3376935

ところが、近年、透明色のガラスを利用して成形されたリサイクル製品において、リサイクル製品への内容物の充填時やリサイクル製品の搬送時に、リサイクル製品が破損する事例が若干ではあるものの発生している。 However, in recent years, in recycled products molded using transparent glass, there have been some cases where the recycled products are damaged when the contents are filled in the recycled products or when the recycled products are transported. ..

そこで、本出願人が原因を調査したところ、リサイクル用に回収されたカレット内に、以前は含まれていなかった透明の結晶化ガラスが含まれており、このような透明の結晶化ガラスは、透明の非結晶化ガラスと膨張率が異なるため、リサイクル製品に破損が生じ易くなっていることを突き止めた。リサイクル用に回収されるカレットの中に透明の結晶化ガラスが含まれるようになってきたのは、近年、耐熱性を備えた透明色のガラスから形成された鍋等の調理器具や食器等が普及してきており、これら製品がリサイクル用に回収されるようになってきたためだと推測される。 Therefore, when the applicant investigated the cause, the cullet recovered for recycling contained transparent crystallized glass that was not previously contained, and such transparent crystallized glass was found. We found that recycled products are prone to damage due to their different expansion rates from clear non-glassed glass. In recent years, transparent crystallized glass has come to be included in the cullet collected for recycling in cooking utensils such as pots and tableware made of heat-resistant transparent glass. It is presumed that this is because these products have become widespread and are being collected for recycling.

そして、この場合、特許文献1に記載のカレット分別装置では、430nm以下の波長を有する光を照射した時に、透明の非結晶化ガラスおよび透明の結晶化ガラスの両方が、透明のガラスとして判別されてしまうため、透明の結晶化ガラスがリサイクル用のガラスとして取り扱われてしまう。 In this case, in the cullet sorting apparatus described in Patent Document 1, both the transparent non-crystallized glass and the transparent crystallized glass are discriminated as transparent glass when irradiated with light having a wavelength of 430 nm or less. Therefore, the transparent crystallized glass is treated as glass for recycling.

そこで、本発明の目的は、簡素かつ安価な構成で、透明の結晶化ガラスを分別することが可能なカレット分別装置およびカレット分別方法を提供することである。 Therefore, an object of the present invention is to provide a cullet sorting apparatus and a cullet sorting method capable of sorting transparent crystallized glass with a simple and inexpensive configuration.

本発明のカレット分別装置は、カレットを分別するカレット分別装置であって、ピーク波長330nm以上の紫外線をカレットに対して照射した場合の紫外線透過量により透明の結晶化ガラスを分別することにより、前記課題を解決するものである。
本発明のカレット分別方法は、カレットを分別するカレット分別方法であって、ピーク波長330nm以上の紫外線をカレットに対して照射した場合の紫外線透過量により透明の結晶化ガラスを分別することにより、前記課題を解決するものである。
The cullet sorting device of the present invention is a cullet sorting device that separates cullet, and the transparent crystallized glass is separated by the amount of ultraviolet light transmitted when the cullet is irradiated with ultraviolet rays having a peak wavelength of 330 nm or more. It solves the problem.
The cullet separation method of the present invention is a cullet separation method for separating cullet, and the transparent crystallized glass is separated by the amount of ultraviolet light transmitted when the cullet is irradiated with ultraviolet rays having a peak wavelength of 330 nm or more. It solves the problem.

本発明によれば、透明の結晶化ガラスを含む各種カレットに対して紫外線を照射した時の紫外線透過量(紫外線透過率)の違いを利用して、簡素かつ安価な構成で、透明の結晶化ガラスを分別することができる。 According to the present invention, transparent crystallization is performed with a simple and inexpensive configuration by utilizing the difference in the amount of ultraviolet ray transmittance (ultraviolet transmittance) when various cullets containing transparent crystallized glass are irradiated with ultraviolet rays. The glass can be separated.

本発明の一実施形態に係るカレット分別装置を概略的に示す説明図。The explanatory view which shows schematic the cullet sorting apparatus which concerns on one Embodiment of this invention. 各種カレットにおいて光の波長と透過率との関係を示すグラフ。A graph showing the relationship between the wavelength of light and the transmittance in various cullets. 実験例の構成を概略的に示す説明図。The explanatory view which shows the structure of the experimental example schematicly. 紫外線センサーで測定した受光電圧の変化を示すグラフ。The graph which shows the change of the received voltage measured by the ultraviolet sensor. 紫外線光源の電流値と光度との関係を示すグラフ。A graph showing the relationship between the current value of an ultraviolet light source and the luminosity.

以下に、本発明の一実施形態に係るカレット分別装置10について、図面に基づいて説明する。 Hereinafter, the cullet sorting apparatus 10 according to the embodiment of the present invention will be described with reference to the drawings.

まず、カレット分別装置10は、有色(黒色)の非結晶化ガラス、有色(茶色)の結晶化ガラス、透明の非結晶化ガラス、および、透明の結晶化ガラスを含むカレットWの中から、透明の結晶化ガラスを分別するものである。 First, the cullet sorting device 10 is transparent from among cullet W containing colored (black) non-crystallized glass, colored (brown) crystallized glass, transparent non-crystallized glass, and transparent crystallized glass. It separates the crystallized glass of.

なお、一般的には、有色の非結晶化ガラスや透明の非結晶化ガラスは、リサイクル用途で使用され、有色の結晶化ガラスや透明の結晶化ガラスは、廃棄されることになる。 In general, colored non-crystallized glass and transparent non-crystallized glass are used for recycling, and colored crystallized glass and transparent crystallized glass are discarded.

カレット分別装置10は、図1に示すように、振動フィーダ等から成るカレット供給部20と、カレット通過経路を挟んで配置される紫外線光源30および紫外線センサー40と、カレット通過経路を挟んで配置されるLED等から成る可視光源50およびカラーカメラ等から成る可視光センサー60と、エアーを噴出して特定のカレットWを吹き飛ばすエアーノズル70と、リサイクル用途のカレットWを収容する回収ボックス80と、排除するカレットWを収容する排除ボックス90と、紫外線センサー40や可視光センサー60やエアーノズル70等の各部を制御する制御部(図示しない)とを備えている。 As shown in FIG. 1, the cullet sorting device 10 is arranged with a cullet supply unit 20 composed of a vibration feeder or the like, an ultraviolet light source 30 and an ultraviolet sensor 40 arranged across the cullet passage path, and the cullet passage path. A visible light source 50 composed of an LED or the like, a visible light sensor 60 composed of a color camera or the like, an air nozzle 70 that ejects air to blow off a specific cullet W, and a collection box 80 that houses the cullet W for recycling are eliminated. It is provided with an exclusion box 90 for accommodating the cullet W to be used, and a control unit (not shown) for controlling each part such as the ultraviolet sensor 40, the visible light sensor 60, and the air nozzle 70.

本実施形態では、紫外線光源30が紫外線LEDとして構成され、紫外線センサー40が、シリコンUVセンサー(シリコンフォトダイオードを有した紫外線量を測定可能なセンサー)として構成されている。 In the present embodiment, the ultraviolet light source 30 is configured as an ultraviolet LED, and the ultraviolet sensor 40 is configured as a silicon UV sensor (a sensor having a silicon photodiode that can measure the amount of ultraviolet rays).

次に、カレット分別装置10を用いた透明の結晶化ガラスのカレット分別方法について、以下に説明する。 Next, a method for separating cullet of transparent crystallized glass using the cullet sorting device 10 will be described below.

まず、本実施形態のカレット分別方法は、各種カレットWに対して紫外線を照射した時の紫外線透過量(紫外線透過率)の違いを利用して、透明の結晶化ガラスとそれ以外のガラスとを分別するものである。 First, in the cullet sorting method of the present embodiment, transparent crystallized glass and other glass are separated by utilizing the difference in the amount of ultraviolet rays transmitted (ultraviolet transmittance) when various cullet Ws are irradiated with ultraviolet rays. It is for sorting.

具体的に説明すると、図2のグラフに示すように、ピーク波長330〜380nmの紫外線を各種カレットWに対して照射した場合、透明の非結晶化ガラスでは、ピーク波長330nmの紫外線では約20〜55%程度の透過率を計測し、ピーク波長380nmの紫外線では約80〜90%程度の透過率を計測する。
これに対して、透明の結晶化ガラスでは、ピーク波長330nmの紫外線では約0%の透過率を計測し、ピーク波長380nmの紫外線では約40〜60%程度の透過率を計測し、また、有色の非結晶化ガラスおよび有色の結晶化ガラスでは、ピーク波長330〜380nmの紫外線で、約0%の透過率となる。
Specifically, as shown in the graph of FIG. 2, when various cullet Ws are irradiated with ultraviolet rays having a peak wavelength of 330 to 380 nm, the transparent non-crystallized glass has about 20 to 20 to ultraviolet rays having a peak wavelength of 330 nm. A transmittance of about 55% is measured, and a transmittance of about 80 to 90% is measured for ultraviolet rays having a peak wavelength of 380 nm.
On the other hand, in transparent crystallized glass, the transmittance is measured at about 0% for ultraviolet rays having a peak wavelength of 330 nm, and about 40 to 60% is measured for ultraviolet rays having a peak wavelength of 380 nm, and the color is colored. In the non-crystallized glass and the colored crystallized glass, the transmission rate is about 0% at the peak wavelength of 330 to 380 nm.

このように、対象となるガラスの厚みに関わらず、ピーク波長330〜380nmの紫外線を照射することにより、少なくとも透明の非結晶化ガラスと透明の結晶化ガラスとを良好に判別することができる。なお、図2に示す3、5、6、8mmとは、カレットWの厚みのことを意味している。 In this way, at least transparent non-crystallized glass and transparent crystallized glass can be satisfactorily discriminated by irradiating ultraviolet rays having a peak wavelength of 330 to 380 nm regardless of the thickness of the target glass. In addition, 3, 5, 6, 8 mm shown in FIG. 2 means the thickness of the cullet W.

また、ピーク波長約330〜350nmの紫外線では、図2のグラフに示すように、透明の結晶化ガラスと有色の非結晶化ガラスと有色の結晶化ガラスとの間で、紫外線の透過率に殆ど差が見られないため、これらガラスを分別することは難しいが、特許文献1に記載されるように、これらガラスに可視光源50によって可視光を照射し、可視光センサー60によって可視光の透過率を測定することにより、これらガラスを分別することができる。なお、可視光を利用した分別の工程については、紫外線を利用した分別の工程の前後に任意に実施すればよい。 Further, in the case of ultraviolet rays having a peak wavelength of about 330 to 350 nm, as shown in the graph of FIG. 2, the transmittance of ultraviolet rays is almost the same between the transparent crystallized glass, the colored non-crystallized glass and the colored crystallized glass. It is difficult to separate these glasses because there is no difference, but as described in Patent Document 1, these glasses are irradiated with visible light by the visible light source 50, and the visible light transmission rate is increased by the visible light sensor 60. These glasses can be separated by measuring. The sorting step using visible light may be arbitrarily performed before and after the sorting step using ultraviolet rays.

次に、紫外線透過量の違いを利用して、透明の非結晶化ガラスと透明の結晶化ガラスとを判別可能であるかを確認するために行った実験について、図3および図4に基いて説明する。 Next, based on FIGS. 3 and 4, the experiment conducted to confirm whether the transparent non-crystallized glass and the transparent crystallized glass can be distinguished by using the difference in the amount of ultraviolet light transmitted. explain.

まず、本実験の条件については、以下の通りである。
紫外線光源30:ナイトライドセミコンダクタ社製の紫外線LED、品番:NS365L−5CFA(ピーク波長:365nm)
紫外線センサー40:京セミ社製のシリコンUVセンサー、品番:KPDU400W−2
ガラス:3×30×60mmの、透明の非結晶化ガラスおよび透明の結晶化ガラス
紫外線光源30と紫外線センサー40との間隔:約8mm
First, the conditions of this experiment are as follows.
Ultraviolet light source 30: Ultraviolet LED manufactured by Nitride Semiconductor, product number: NS365L-5CFA (peak wavelength: 365 nm)
Ultraviolet sensor 40: Silicon UV sensor manufactured by Kyosemi, product number: KDDU400W-2
Glass: 3 x 30 x 60 mm, transparent non-crystallized glass and transparent crystallized glass Distance between the UV light source 30 and the UV sensor 40: Approximately 8 mm

上記の実験では、図4のグラフに示すように、紫外線センサー40の計測値(紫外線透過量)が1.35Vであるところ、透明の結晶化ガラスの通過時には、紫外線センサー40の計測値(紫外線透過量)が約0.75Vに減少し、また、透明の非結晶化ガラスの通過時には、紫外線センサー40の計測値(紫外線透過量)が約1.46Vに増加した。
このことから、紫外線透過量によって、透明の非結晶化ガラスと透明の結晶化ガラスとが判別可能であることが分かった。
In the above experiment, as shown in the graph of FIG. 4, the measured value (ultraviolet ray transmission amount) of the ultraviolet sensor 40 is 1.35 V, but when passing through the transparent crystallized glass, the measured value (ultraviolet ray) of the ultraviolet sensor 40 (Transmission amount) decreased to about 0.75V, and the measured value (ultraviolet transmission amount) of the ultraviolet sensor 40 increased to about 1.46V when passing through the transparent non-crystallized glass.
From this, it was found that the transparent non-crystallized glass and the transparent crystallized glass can be distinguished from each other by the amount of ultraviolet light transmitted.

また、紫外線光源30としての紫外線LEDに、20mAの電流が流れた時に、紫外線LEDの出力が1.2〜1.8mWであり、紫外線LEDに1mAの電流が流れた時に、紫外線センサー40によって、透明の非結晶化ガラスと透明の結晶化ガラスとが分別可能であった。このことから、図5のグラフを基に、分別に必要とされる紫外線光源30の出力は、0.06mW以上であることが推測される。 Further, when a current of 20 mA flows through the ultraviolet LED as the ultraviolet light source 30, the output of the ultraviolet LED is 1.2 to 1.8 mW, and when a current of 1 mA flows through the ultraviolet LED, the ultraviolet sensor 40 causes the output of the ultraviolet LED to be 1.2 to 1.8 mW. It was possible to separate transparent non-crystallized glass and transparent crystallized glass. From this, it is estimated that the output of the ultraviolet light source 30 required for sorting is 0.06 mW or more based on the graph of FIG.

このようにして得られた本実施形態では、透明の結晶化ガラスを含む各種カレットWに対して紫外線を照射した時の紫外線透過量の違いを利用して、簡素かつ安価な構成で、透明の結晶化ガラスを分別することができる。
また、特許文献1に記載されるような、可視光の透過率の測定によってガラスを分別する装置との間で、カレット供給部20やエアーノズル70等の設備について共通化することができる。これにより、紫外線の透過率を利用して透明の結晶化ガラスを分別する機能を付加する場合に、追加で必要とされる設備が、紫外線光源30および紫外線センサー40で済むため、装置コストを低廉に抑えることができる。
In the present embodiment thus obtained, various cullet Ws containing transparent crystallized glass are transparent with a simple and inexpensive configuration by utilizing the difference in the amount of ultraviolet rays transmitted when the cullet W is irradiated with ultraviolet rays. Crystallized glass can be separated.
Further, equipment such as a cullet supply unit 20 and an air nozzle 70 can be shared with an apparatus for separating glass by measuring the transmittance of visible light as described in Patent Document 1. As a result, when adding a function of separating transparent crystallized glass using the transmittance of ultraviolet rays, the additional equipment required is an ultraviolet light source 30 and an ultraviolet sensor 40, so that the equipment cost is low. Can be suppressed to.

以上、本発明の実施形態を詳述したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行なうことが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various design changes can be made without departing from the present invention described in the claims. It is possible.

例えば、上述した実施形態では、紫外線光源30が紫外線LEDとして構成されているものとして説明したが、紫外線光源30の具体的態様については、ピーク波長330nm〜380nmの紫外線を照射可能なものであれば、ブラックライト等の如何なるものでもよい。
なお、紫外線光源30は、近年、半値幅が狭い光源についても安価に供給されていることから、紫外線光源30の半値幅は、±15nm以内であることが望ましい。この場合、外乱要因によって判別結果が乱れることを回避することができる。
For example, in the above-described embodiment, the ultraviolet light source 30 has been described as being configured as an ultraviolet LED, but the specific embodiment of the ultraviolet light source 30 is such that it can irradiate ultraviolet rays having a peak wavelength of 330 nm to 380 nm. , Black light, etc. may be used.
Since the ultraviolet light source 30 has been inexpensively supplied in recent years even for a light source having a narrow half-value width, it is desirable that the half-value width of the ultraviolet light source 30 is within ± 15 nm. In this case, it is possible to prevent the discrimination result from being disturbed by a disturbance factor.

上述した実施形態では、紫外線センサー40がシリコンUVセンサー(シリコンフォトダイオードを有した紫外線量を測定可能なセンサー)として構成されているものとして説明したが、紫外線センサー40の具体的態様については、紫外線量を計測可能なものであれば、CCDカメラ等の如何なるものでもよい。 In the above-described embodiment, the ultraviolet sensor 40 has been described as being configured as a silicon UV sensor (a sensor having a silicon photodiode that can measure the amount of ultraviolet rays). However, a specific embodiment of the ultraviolet sensor 40 is an ultraviolet ray. Any one such as a CCD camera may be used as long as the amount can be measured.

10 ・・・ カレット分別装置
20 ・・・ カレット供給部
30 ・・・ 紫外線光源
40 ・・・ 紫外線センサー
50 ・・・ 可視光源
60 ・・・ 可視光センサー
70 ・・・ エアーノズル
80 ・・・ 回収ボックス
90 ・・・ 排除ボックス
W ・・・ カレット
10 ・ ・ ・ Cullet sorting device 20 ・ ・ ・ Cullet supply unit 30 ・ ・ ・ Ultraviolet light source 40 ・ ・ ・ Ultraviolet sensor 50 ・ ・ ・ Visible light source 60 ・ ・ ・ Visible light sensor 70 ・ ・ ・ Air nozzle 80 ・ ・ ・ Recovery Box 90 ・ ・ ・ Exclusion Box W ・ ・ ・ Caret

Claims (5)

カレットを分別するカレット分別装置であって、ピーク波長330nm以上の紫外線をカレットに対して照射した場合の紫外線透過量により透明の結晶化ガラスを分別することを特徴とするカレット分別装置。 A cullet sorting device for separating cullet, which is characterized by separating transparent crystallized glass according to the amount of ultraviolet rays transmitted when the cullet is irradiated with ultraviolet rays having a peak wavelength of 330 nm or more. 前記紫外線の出力が0.06mW以上の紫外線光源であることを特徴とする請求項1に記載のカレット分別装置。 The cullet sorting apparatus according to claim 1, wherein the ultraviolet light source has an output of 0.06 mW or more. 前記紫外線のピーク波長が波長330nm〜380nmの紫外線光源であることを特徴とする請求項1または請求項2に記載のカレット分別装置。 The cullet sorting apparatus according to claim 1 or 2, wherein the peak wavelength of the ultraviolet rays is an ultraviolet light source having a wavelength of 330 nm to 380 nm. 前記紫外線の半値幅が、±15nm以内であることを特徴とする請求項1乃至請求項3のいずれかに記載のカレット分別装置。 The cullet sorting apparatus according to any one of claims 1 to 3, wherein the half width of the ultraviolet rays is within ± 15 nm. カレットを分別するカレット分別方法であって、ピーク波長330nm以上の紫外線をカレットに対して照射した場合の紫外線透過量により透明の結晶化ガラスを分別することを特徴とするカレット分別方法。
A cullet separation method for separating cullet, which comprises separating transparent crystallized glass according to the amount of ultraviolet rays transmitted when the cullet is irradiated with ultraviolet rays having a peak wavelength of 330 nm or more.
JP2016227413A 2016-11-24 2016-11-24 Caret sorting device and cullet sorting method Active JP6892249B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016227413A JP6892249B2 (en) 2016-11-24 2016-11-24 Caret sorting device and cullet sorting method
KR1020197008369A KR20190044084A (en) 2016-11-24 2017-11-10 Cullet fractionator and cullet fractionation method
PCT/JP2017/040521 WO2018096943A1 (en) 2016-11-24 2017-11-10 Cullet sorting device and cullet sorting method
CN201780057481.1A CN109996612A (en) 2016-11-24 2017-11-10 Chips of glass sorting equipment and chips of glass method for sorting
PH12019500543A PH12019500543A1 (en) 2016-11-24 2019-03-13 Cullet sorting apparatus and cullet sorting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227413A JP6892249B2 (en) 2016-11-24 2016-11-24 Caret sorting device and cullet sorting method

Publications (2)

Publication Number Publication Date
JP2018083153A JP2018083153A (en) 2018-05-31
JP6892249B2 true JP6892249B2 (en) 2021-06-23

Family

ID=62195609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227413A Active JP6892249B2 (en) 2016-11-24 2016-11-24 Caret sorting device and cullet sorting method

Country Status (5)

Country Link
JP (1) JP6892249B2 (en)
KR (1) KR20190044084A (en)
CN (1) CN109996612A (en)
PH (1) PH12019500543A1 (en)
WO (1) WO2018096943A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3095273B1 (en) * 2019-04-19 2021-05-07 Saint Gobain Isover Automated detection system for glass-ceramic materials
JP7439404B2 (en) * 2019-07-16 2024-02-28 東洋製罐グループホールディングス株式会社 Cullet separation device and cullet separation method
AU2020337752B2 (en) * 2019-08-26 2024-04-18 Pestroniks Innovations Pte Ltd Arthropod lure or repellent, arthropod trap, and lighting device
CN111468429A (en) * 2020-04-14 2020-07-31 安徽捷迅光电技术有限公司 Sorting equipment for mixed rice of white rice and red rice
CN112845138A (en) * 2021-01-29 2021-05-28 广东中翔环保建材有限公司 Glass sorting device and glass sorting method
FR3145297A1 (en) * 2023-01-27 2024-08-02 Saint-Gobain Glass France Method and system for determining the type of glass making up a glass element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272606B2 (en) * 1996-07-25 2002-04-08 三菱重工業株式会社 Glass cullet sorting device
JP2000338046A (en) * 1999-05-28 2000-12-08 Shimadzu Corp Foreign matter removing apparatus
JP3367935B2 (en) * 2000-03-28 2003-01-20 東洋ガラス株式会社 Cullet separation device and its separation method
US7351929B2 (en) * 2002-08-12 2008-04-01 Ecullet Method of and apparatus for high speed, high quality, contaminant removal and color sorting of glass cullet
JP2004219125A (en) * 2003-01-10 2004-08-05 National Institute Of Advanced Industrial & Technology Method for sorting glass cullet and sorting apparatus therefor
DE502004008634D1 (en) * 2003-01-10 2009-01-22 Schott Ag METHOD AND DEVICE FOR SELECTION OF RECYCLING GLASS
US7386997B2 (en) * 2004-11-12 2008-06-17 Culchrome, Llc System for and method of batch analysis and optimization for glass manufacturing
AT8647U1 (en) * 2005-08-08 2006-10-15 Binder Co Ag METHOD FOR DETECTING AND SORTING GLASS
AT11769U1 (en) * 2009-08-19 2011-04-15 Binder Co Ag METHOD AND DEVICE FOR DETECTING LEAD-RELATED GLASS PIECES
CN105136748B (en) * 2015-09-30 2018-06-19 合肥美亚光电技术股份有限公司 The identification screening installation and method for separating of a kind of vomitoxin

Also Published As

Publication number Publication date
WO2018096943A1 (en) 2018-05-31
PH12019500543A1 (en) 2019-10-28
KR20190044084A (en) 2019-04-29
JP2018083153A (en) 2018-05-31
CN109996612A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
JP6892249B2 (en) Caret sorting device and cullet sorting method
CN101578495B (en) In-line inspection system for vertically profiling plastic containers using multiple wavelength discrete spectral light sources
CN111133300B (en) Inspection apparatus with color illumination
US5419438A (en) Apparatus and method for sorting post-consumer articles according to PVC content
TWI652207B (en) Tamper-evident container, tamper-evident package and method of producing a tamper-evident package
EP1176417A1 (en) Method and device for imaging liquid-filled container
AU2010285188C1 (en) Method and device for detecting lead-containing glass pieces
CN201804337U (en) Product coding mark information acquisition device and information tracing system comprising same
US6967716B1 (en) Apparatus and method for inspecting multi-layer plastic containers
CN101193828A (en) Method of batch analysis and optimization for glass manufacturing
CN104011535A (en) Method and system for testing objects with a gas barrier coating
KR20140076648A (en) Inspection and recycling of containers
GB2587511A (en) Optical inspection and sorting machine, and corresponding method thereof
US20220317054A1 (en) Method and device for optically inspecting containers
JP2011122969A (en) Device and method for discriminating plastic
MX2019003146A (en) Device for optically inspecting glass receptacles as they leave a moulding machine.
JP2003024875A (en) Sorting device of material and sorting method thereof
JP2005087873A (en) Foreign substance removing method and its apparatus
EP1181526A1 (en) Apparatus and method for inspecting multi-layer plastic containers
JP2001269629A (en) Cullet classifying device and classifying method for the same
JP7439404B2 (en) Cullet separation device and cullet separation method
JP2018095263A (en) Cracked bottle detection device, beverage production device and method to detect cracked bottles
JP5870267B2 (en) Sorting device
KR102089571B1 (en) Lamp for Vehicle
Serranti et al. Spectral cullet classification in the mid-infrared field for ceramic glass contaminants detection

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190219

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20191017

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210527

R150 Certificate of patent or registration of utility model

Ref document number: 6892249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150