JP6891594B2 - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP6891594B2
JP6891594B2 JP2017066344A JP2017066344A JP6891594B2 JP 6891594 B2 JP6891594 B2 JP 6891594B2 JP 2017066344 A JP2017066344 A JP 2017066344A JP 2017066344 A JP2017066344 A JP 2017066344A JP 6891594 B2 JP6891594 B2 JP 6891594B2
Authority
JP
Japan
Prior art keywords
side wall
lead
electric tank
acid battery
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017066344A
Other languages
Japanese (ja)
Other versions
JP2018170151A (en
Inventor
彬人 辻中
彬人 辻中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2017066344A priority Critical patent/JP6891594B2/en
Publication of JP2018170151A publication Critical patent/JP2018170151A/en
Application granted granted Critical
Publication of JP6891594B2 publication Critical patent/JP6891594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.

鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、負極板と正極板とこれらの間に介在するセパレータとを備える極板群と、電解液とを含む。極板群は、電解液とともに電槽内に収容される。 Lead-acid batteries are used for various purposes such as in-vehicle use and industrial use. The lead-acid battery includes a electrode plate group including a negative electrode plate, a positive electrode plate, and a separator interposed therein, and an electrolytic solution. The electrode plate group is housed in the electric tank together with the electrolytic solution.

液式の鉛蓄電池において充放電を繰り返すと、電解液の濃度が、電槽の上部では薄く、下部では濃くなる成層化が起こる。 When charging and discharging are repeated in a liquid lead-acid battery, the concentration of the electrolytic solution becomes thin in the upper part of the battery case and becomes thicker in the lower part.

特許文献1では、電解液の対流を発生させて成層化を抑制する観点から、電槽内に極板群を収容する収容空間の凹部(上部)と下部とを連通する連通流路を設けることが提案されている。特許文献2では、電槽内を区分けする仕切り壁と区分けされた空間を互いに連通させる連通経路を設けることで、電解液を流動、撹拌させることが提案されている。 In Patent Document 1, from the viewpoint of generating convection of the electrolytic solution and suppressing stratification, a communication flow path for communicating the recess (upper part) and the lower part of the storage space for accommodating the electrode plate group is provided in the battery case. Has been proposed. Patent Document 2 proposes that the electrolytic solution is allowed to flow and be agitated by providing a communication path for communicating the partition wall that divides the inside of the electric tank and the divided space with each other.

特開2015−176659号公報Japanese Unexamined Patent Publication No. 2015-176659 特開2007−242333号公報JP-A-2007-242333

成層化が進行すると、充放電反応にばらつきが生じて、電池寿命が短くなる。また、電解液を対流させて成層化を抑制するには、特許文献1や特許文献2のように、電槽の構造が複雑になる傾向がある。 As stratification progresses, the charge / discharge reaction varies and the battery life is shortened. Further, in order to convect the electrolytic solution to suppress stratification, the structure of the battery case tends to be complicated as in Patent Document 1 and Patent Document 2.

本発明の一側面は、正極および負極を含む極板群と、
電解液と、
開口部を有し、前記極板群および前記電解液を収容する電槽と、
前記電槽の前記開口部を封口する蓋と、を備え、
前記電槽は、底部と、前記底部から立ち上がる側壁と、を備え、
前記側壁の前記底部からの高さをHとするとき、前記側壁の前記底部からの高さが0.5Hよりも上方の上部における平均的な断熱性は、前記側壁の前記底部からの高さが0.5Hまでの下部における平均的な断熱性よりも高い、鉛蓄電池に関する。
One aspect of the present invention is a group of electrode plates including a positive electrode and a negative electrode, and
With electrolyte
An electric tank having an opening and accommodating the electrode plate group and the electrolytic solution,
A lid for sealing the opening of the battery case is provided.
The battery case includes a bottom and a side wall rising from the bottom.
When the height of the side wall from the bottom is H, the average heat insulating property at the upper part where the height of the side wall from the bottom is higher than 0.5H is the height of the side wall from the bottom. With respect to lead-acid batteries, which is higher than the average thermal insulation at the bottom up to 0.5H.

鉛蓄電池の電槽内において、簡便な方法で電解液を対流させることができる。 The electrolytic solution can be convected in the battery case of the lead storage battery by a simple method.

本発明の一実施形態に係る鉛蓄電池の電槽の断面模式図である。It is sectional drawing of the electric tank of the lead storage battery which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る鉛蓄電池の電槽の側壁の状態を示す断面模式図である。It is sectional drawing which shows the state of the side wall of the electric tank of the lead storage battery which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る鉛蓄電池の電槽の側壁の状態を示す断面模式図である。It is sectional drawing which shows the state of the side wall of the electric tank of the lead storage battery which concerns on still another Embodiment of this invention. 本発明の別の実施形態に係る鉛蓄電池の電槽の側壁の状態を示す断面模式図である。It is sectional drawing which shows the state of the side wall of the electric tank of the lead storage battery which concerns on another embodiment of this invention. 本発明の一側面に係る鉛蓄電池のフタを外した状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which removed the lid of the lead storage battery which concerns on one aspect of this invention. 図5の鉛蓄電池の正面図である。It is a front view of the lead storage battery of FIG. 図6Aの鉛蓄電池のVIB−VIB線による矢示断面図である。FIG. 6 is a cross-sectional view taken along the line VIB-VIB of the lead storage battery of FIG. 6A.

本発明の一側面に係る鉛蓄電池は、正極および負極を含む極板群と、電解液と、開口部を有し、極板群および電解液を収容する電槽と、電槽の開口部を封口する蓋と、を備える。電槽は、底部と、底部から立ち上がる側壁と、を備える。側壁の底部からの高さをHとするとき、側壁の底部からの高さが0.5Hよりも上方の上部の平均的な断熱性は、側壁の底部からの高さが0.5Hまでの下部の平均的な断熱性よりも高い。 The lead-acid battery according to one aspect of the present invention has a electrode plate group including a positive electrode and a negative electrode, an electrolytic solution, and an opening, and has an electric tank for accommodating the electrode plate group and the electrolytic solution, and an opening of the electric tank. It is provided with a lid for sealing. The battery case includes a bottom and a side wall rising from the bottom. When the height from the bottom of the side wall is H, the average heat insulating property of the upper part where the height from the bottom of the side wall is above 0.5H is up to 0.5H from the bottom of the side wall. Higher than the average insulation at the bottom.

電槽の側壁の上部における断熱性を、側壁の下部における断熱性よりも高くすることで、電槽に熱が加わったときに、電槽の上部の電解液の温度よりも下部の電解液の温度を高めることができる。温度が高まった下部の電解液は電槽内を上昇し、温度が低いままの上部の電解液は下降する。これにより、電槽における断熱性を上部と下部とで変更するという簡便な方法により、電槽内で電解液を対流させることができる。電解液の対流により成層化が抑制されるため、電池寿命を向上できる。 By making the heat insulating property at the upper part of the side wall of the electric tank higher than the heat insulating property at the lower part of the side wall, when heat is applied to the electric tank, the temperature of the electrolytic solution lower than the temperature of the electrolytic solution at the upper part of the electric tank is increased. The temperature can be raised. The lower electrolyte, whose temperature has risen, rises in the battery case, and the upper electrolyte, which remains cold, falls. Thereby, the electrolytic solution can be convected in the electric tank by a simple method of changing the heat insulating property in the electric tank between the upper part and the lower part. Since stratification is suppressed by the convection of the electrolytic solution, the battery life can be improved.

電槽の上部の平均的な断熱性とは、電槽の側壁の上部において、鉛直方向に沿って複数箇所(例えば、3〜10箇所)について求められた断熱性の指標値の平均を意味する。電槽の下部の平均的な断熱性とは、電槽の側壁の下部について断熱性の指標値を求める以外は、上部の場合と同じである。断熱性の指標値とは、断熱性(または熱伝導性)の指標となるものであれば特に制限されない。例えば、側壁(または側壁を切り出したプレート)を一方の主面側から加熱したときの他方の主面における温度や温度変化を断熱性の指標値としてもよい。後述のように側壁をカバーで覆う場合には、カバーの外側から加熱したときの電槽の内側の表面における温度や温度変化を断熱性の指標値とすることができる。 The average heat insulating property of the upper part of the battery case means the average of the index values of the heat insulating property obtained at a plurality of places (for example, 3 to 10 places) along the vertical direction in the upper part of the side wall of the battery case. .. The average heat insulating property of the lower part of the electric tank is the same as that of the upper part except that the index value of the heat insulating property is obtained for the lower part of the side wall of the electric tank. The index value of heat insulating property is not particularly limited as long as it is an index of heat insulating property (or thermal conductivity). For example, the temperature or temperature change on the other main surface when the side wall (or the plate cut out from the side wall) is heated from one main surface side may be used as an index value of heat insulating property. When the side wall is covered with a cover as described later, the temperature or temperature change on the inner surface of the battery case when heated from the outside of the cover can be used as an index value of heat insulating property.

電槽の上部と下部とで断熱性を相違させる態様としては、電槽の側壁自体の断熱性を上部と下部とで相違させる態様などが挙げられる。側壁の上部の平均的な厚みを、側壁の下部の平均的な厚みよりも大きくしてもよい。また、側壁が、第1熱伝導率を有する第1材料と、第1熱伝導率よりも高い第2熱伝導率を有する第2材料とを含んでおり、側壁の上部に第1材料を第2材料よりも多く分布させ、側壁の下部に第2材料を第1材料よりも多く分布させるようにしてもよい。中空部を有する側壁において、側壁の上部に、側壁の下部よりも多くの中空部を分布させてもよい。いずれの場合にも、電槽の上部と下部とで電解液の温度差が生じやすくなり、電槽内において電解液を対流させることができる。 Examples of the mode in which the heat insulating property is different between the upper part and the lower part of the electric tank includes a mode in which the heat insulating property of the side wall of the electric tank itself is different between the upper part and the lower part. The average thickness of the upper part of the side wall may be larger than the average thickness of the lower part of the side wall. Further, the side wall contains a first material having a first thermal conductivity and a second material having a second thermal conductivity higher than the first thermal conductivity, and the first material is placed on the upper part of the side wall. The second material may be distributed more than the two materials, and the second material may be distributed more than the first material in the lower part of the side wall. In a side wall having a hollow portion, more hollow portions may be distributed in the upper part of the side wall than in the lower part of the side wall. In either case, the temperature difference between the upper part and the lower part of the electric tank is likely to occur, and the electrolytic solution can be convected in the electric tank.

電槽の上部と下部とで断熱性を相違させる態様には、電槽の側壁の上部を電槽の外側からカバーなどで覆う態様も含まれる。この場合、電槽の上部に比べて、下部の電解液の温度を選択的に高めることができ、対流が起こり易くなる。 The mode in which the heat insulating property is different between the upper part and the lower part of the electric tank includes a mode in which the upper part of the side wall of the electric tank is covered with a cover or the like from the outside of the electric tank. In this case, the temperature of the electrolytic solution in the lower part can be selectively increased as compared with the upper part of the electric tank, and convection is likely to occur.

なお、鉛蓄電池を自動車等の車両に設置する場合、エンジンルームに配置されることがある。エンジンルーム内に配置された鉛蓄電池は、エンジンから発生する熱により高温に晒される。このような熱で、電槽の下部の電解液を選択的に加温することで、上記のような電解液の対流をさらに簡便に行なうことができる。従って、本発明に係る鉛蓄電池は、特に車両のエンジンルームに配置するのに適している。しかし、このような場合に限らず、ヒーターなどを利用して、鉛蓄電池の電槽に熱を付与してもよい。 When the lead-acid battery is installed in a vehicle such as an automobile, it may be installed in the engine room. Lead-acid batteries placed in the engine room are exposed to high temperatures due to the heat generated by the engine. By selectively heating the electrolytic solution at the lower part of the electric tank with such heat, the convection of the electrolytic solution as described above can be performed more easily. Therefore, the lead-acid battery according to the present invention is particularly suitable for being placed in the engine room of a vehicle. However, not limited to such a case, heat may be applied to the battery case of the lead storage battery by using a heater or the like.

側壁は、高さ方向と交差する複数の膜の積層体を有してもよい。このような側壁を有する電槽は、3Dプリンタや多重インクジェットなどにより形成できる。3Dプリンタや多重インクジェットなどでは、側壁の上部と下部とで平均的な断熱性が異なる電槽の製造が容易である。 The side wall may have a laminate of a plurality of films intersecting the height direction. An electric tank having such a side wall can be formed by a 3D printer, multiple inkjet, or the like. In a 3D printer, multiple inkjet, or the like, it is easy to manufacture an electric tank having different average heat insulating properties between the upper part and the lower part of the side wall.

以下、本発明の実施形態に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
(電槽)
本発明では、電槽の側壁の上部の平均的な断熱性を、下部の平均的な断熱性よりも高くできればよく、その具体的な手段は特に限定されない。例えば、側壁の上部の平均的な厚みを下部の平均的な厚みよりも大きくしたり、側壁の下部に熱伝導率が高い材料が多く含まれるようにしたり、中空部を側壁の上部に分布させたり、外側から側壁の上部をカバーで覆ったりすることにより、上部の平均的な断熱性を下部よりも高めることができる。
Hereinafter, the lead-acid battery according to the embodiment of the present invention will be described for each of the main constituent requirements, but the present invention is not limited to the following embodiments.
(Electric tank)
In the present invention, it is sufficient that the average heat insulating property of the upper part of the side wall of the battery case can be made higher than the average heat insulating property of the lower part, and the specific means thereof is not particularly limited. For example, the average thickness of the upper part of the side wall may be larger than the average thickness of the lower part, the lower part of the side wall may contain a large amount of material having high thermal conductivity, or the hollow part may be distributed in the upper part of the side wall. Alternatively, by covering the upper part of the side wall from the outside with a cover, the average heat insulation of the upper part can be improved as compared with the lower part.

電槽の側壁において、断熱性が高い領域は、電槽の側壁の上部全体に形成されていてもよく、電槽の上部から電槽の下部(例えば、電槽の下部の上端部)にかけて形成されていてもよい。断熱性が高い領域は、電槽の側壁の上部の領域の一部に形成されていてもよい。少なくとも電槽の側壁の上部において電解液に対向する領域に側壁の断熱性が高い領域を形成することが好ましい。 In the side wall of the electric tank, a region having high heat insulation may be formed over the entire upper part of the side wall of the electric tank, and is formed from the upper part of the electric tank to the lower part of the electric tank (for example, the upper end of the lower part of the electric tank). It may have been. The region having high heat insulation may be formed in a part of the region above the side wall of the battery case. At least in the upper part of the side wall of the battery case, it is preferable to form a region having high heat insulating properties on the side wall in a region facing the electrolytic solution.

電槽の材質としては、例えば、ポリプロピレン(PP)、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリ塩化ビニル(PVC)、アクリロニトリルスチレン共重合体(AS)、エチレンプロピレン共重合体(EPP)などが挙げられる。 Examples of the material of the battery case include polypropylene (PP), acrylonitrile butadiene styrene copolymer (ABS), polyvinyl chloride (PVC), acrylonitrile styrene copolymer (AS), ethylene propylene copolymer (EPP), and the like. Can be mentioned.

電槽は、射出成形などの金型等を用いる公知の成形方法などで形成してもよく、3Dプリンタや多重インクジェットなどにより形成してもよい。3Dプリンタや多重インクジェットなどでは、電槽の材料で形成された複数の膜が、通常、高さ方向に積層されて電槽が形成される。このような電槽の側壁は、高さ方向と交差する複数の膜の積層体を有している。3Dプリンタや多重インクジェットなどでは、側壁の上部と下部とで厚みが異なる電槽や、側壁に中空部を有する電槽、上部と下部とで材質が異なる電槽なども製造が容易である。 The battery case may be formed by a known molding method using a mold such as injection molding, or may be formed by a 3D printer, multiple inkjet, or the like. In a 3D printer, multiple inkjet, or the like, a plurality of films formed of the material of the battery case are usually laminated in the height direction to form the battery case. The side wall of such an electric tank has a laminated body of a plurality of films intersecting with each other in the height direction. In 3D printers, multiple inkjets, and the like, it is easy to manufacture an electric tank having different thicknesses in the upper part and the lower part of the side wall, an electric tank having a hollow portion in the side wall, and an electric tank having different materials in the upper part and the lower part.

以下に具体的な実施形態についてより詳細に説明する。
(第1実施形態:側壁の厚みを上部と下部とで相違させる場合)
側壁の平均的な厚みを、下部よりも上部で大きくする。側壁の平均的な厚みが大きい領域では、側壁の断面(電槽の高さ方向に平行な断面)形状は、特に制限されず、テーパ形状であってもよく、矩形であってもよい。図1に、本発明の一実施形態に係る鉛蓄電池の電槽の断面模式図を示す。図2は、他の実施形態に係る電槽の側壁の状態を示す断面模式図である。これらの図では、極板群および蓋は省略している。
Specific embodiments will be described in more detail below.
(First embodiment: When the thickness of the side wall is different between the upper part and the lower part)
Increase the average thickness of the sidewalls at the top rather than at the bottom. In the region where the average thickness of the side wall is large, the cross section of the side wall (cross section parallel to the height direction of the battery case) is not particularly limited, and may be tapered or rectangular. FIG. 1 shows a schematic cross-sectional view of an electric tank of a lead storage battery according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing a state of a side wall of an electric tank according to another embodiment. In these figures, the electrode plate group and the lid are omitted.

図1に示すように、電槽110は、電槽110の高さをHとするとき、電槽110の側壁の底部110Bからの高さが0.5Hよりも上方の上部110Uと、底部110Bから高さ0.5Hまでの下部110Dとを備えている。図示例では、電槽110の側壁の上部110Uの高さ方向の断面において、電槽110の外壁は鉛直方向に対して平行であり、内壁が上方に内側に向かって広がることで、上部110Uの断面はテーパ形状となっている。上部110Uの平均的な厚みは、下部110Dの平均的な厚みよりも大きくなっており、これにより、下部110Dに比べて上部110Uの平均的な断熱性が高くなる。 As shown in FIG. 1, when the height of the electric tank 110 is H, the height of the electric tank 110 from the bottom 110B of the side wall of the electric tank 110 is higher than 0.5H at the upper 110U and the bottom 110B. It has a lower part 110D up to a height of 0.5H. In the illustrated example, in the cross section of the upper portion 110U of the side wall of the electric tank 110 in the height direction, the outer wall of the electric tank 110 is parallel to the vertical direction, and the inner wall expands upward and inward to form the upper 110U. The cross section has a tapered shape. The average thickness of the upper part 110U is larger than the average thickness of the lower part 110D, which makes the upper part 110U more average heat insulating than the lower part 110D.

図2には、電槽の側壁の高さ方向の断面の上部の平均的な厚みが下部の平均的な厚みよりも大きくなる場合の例を示す。図2(a)では、電槽210の側壁の高さ方向の断面において、側壁の上部210Uの内壁は鉛直方向に対して平行であり、外壁が上方に向かって外側に広がることで、上部210Uの断面はテーパ形状となっている。これらの実施形態では、上部の平均的な厚みが下部の平均的な厚みよりも大きければよく、テーパ形状に広がり始める始点の位置は特に制限されない。上部と下部とで断熱性の相違が生じ易い観点からは、テーパ形状の始点は、電槽の底部から0.5Hの高さ位置やその近傍であることが好ましい。 FIG. 2 shows an example in which the average thickness of the upper part of the cross section in the height direction of the side wall of the battery case becomes larger than the average thickness of the lower part. In FIG. 2A, in the cross section of the side wall of the electric tank 210 in the height direction, the inner wall of the upper 210U of the side wall is parallel to the vertical direction, and the outer wall expands outward toward the upper side, so that the upper 210U The cross section of is tapered. In these embodiments, the average thickness of the upper part may be larger than the average thickness of the lower part, and the position of the starting point where the taper shape starts to spread is not particularly limited. From the viewpoint that the heat insulating property is likely to be different between the upper part and the lower part, the starting point of the tapered shape is preferably a height position of 0.5H from the bottom of the battery case or its vicinity.

図2(b)および(c)では、電槽の側壁の上部の厚みが下部の厚みよりも大きく、厚みが大きな部分と小さな部分との間には、段差が形成されている例を示す。図2(b)では、上部310Uの外壁が電槽310の外側に張り出すように上部310Uの側壁の厚みが大きくなっている。図2(c)では、上部410Uの内壁が電槽410の内側に張り出すように上部410Uの側壁の厚みが大きくなっている。これらの実施形態では、段差の位置は特に制限されないが、上部と下部とで断熱性の相違が生じ易い観点からは、電槽の底部から0.5Hの高さ位置やその近傍であることが好ましい。図2(b)および図2(c)では、段差の上側と下側とにおいてそれぞれ側壁の厚みが同じである場合(段差の上側と下側とで断面の形状が矩形である場合)を示したが、このような場合に限らず、段差の上側および/または下側をテーパ形状としてもよい。 2 (b) and 2 (c) show an example in which the thickness of the upper portion of the side wall of the battery case is larger than the thickness of the lower portion, and a step is formed between the thick portion and the small portion. In FIG. 2B, the thickness of the side wall of the upper 310U is increased so that the outer wall of the upper 310U projects to the outside of the battery case 310. In FIG. 2C, the thickness of the side wall of the upper 410U is increased so that the inner wall of the upper 410U projects inside the electric tank 410. In these embodiments, the position of the step is not particularly limited, but from the viewpoint that the difference in heat insulating property is likely to occur between the upper part and the lower part, the position may be 0.5H from the bottom of the battery case or its vicinity. preferable. 2 (b) and 2 (c) show a case where the thickness of the side wall is the same on the upper side and the lower side of the step (when the cross-sectional shape is rectangular on the upper side and the lower side of the step). However, not limited to such a case, the upper side and / or the lower side of the step may be tapered.

(第2実施形態:側壁の上部をカバーで覆う場合)
本実施形態では、電槽の側壁の上部を、外側からカバーで覆う。これにより、電槽の上部では、下部に比べて、電槽内の電解液に外側からの熱が伝わり難くなり、下部の電解液の温度が選択的に高まって対流が起こり易くなる。
(Second embodiment: When the upper part of the side wall is covered with a cover)
In the present embodiment, the upper part of the side wall of the battery case is covered with a cover from the outside. As a result, in the upper part of the electric tank, heat from the outside is less likely to be transferred to the electrolytic solution in the electric tank than in the lower part, and the temperature of the electrolytic solution in the lower part is selectively increased to facilitate convection.

図3は、カバーを用いる場合の鉛蓄電池の電槽の断面模式図である。電槽10の底部10Bから0.5Hの高さより上方の上部の側壁は、カバー13に覆われている。電槽10の側壁の厚みは、底部10Bから0.5Hの高さより上方の上部と下部とでほぼ同じである。 FIG. 3 is a schematic cross-sectional view of the battery case of a lead storage battery when a cover is used. The upper side wall above the height of 0.5H from the bottom 10B of the battery case 10 is covered with the cover 13. The thickness of the side wall of the battery case 10 is substantially the same in the upper part and the lower part above the height of 0.5H from the bottom portion 10B.

カバーは、側壁の上部の一部を覆うように電槽に装着してもよい。電槽の上部の電解液に外からの熱ができるだけ伝わらないように、側壁の上部の大部分(例えば、側壁の上部の外壁の面積の8割以上の領域)をカバーで覆うことが好ましく、上部全体をカバーで覆うことがさらに好ましい。 The cover may be attached to the battery case so as to cover a part of the upper part of the side wall. It is preferable to cover most of the upper part of the side wall (for example, an area of 80% or more of the area of the outer wall above the side wall) with a cover so that heat from the outside is not transferred to the electrolyte solution in the upper part of the battery case as much as possible. It is more preferred to cover the entire top with a cover.

カバーは、電解液に接触しないため、電槽に比べて使用できる材質の選択肢が増えるとともに、カバーを用いると、電槽自体の形状は従来のものを採用することもできるため、汎用性が高い。 Since the cover does not come into contact with the electrolytic solution, there are more choices of materials that can be used compared to the battery case, and if the cover is used, the shape of the battery case itself can be the same as the conventional one, so it is highly versatile. ..

カバーの材質は、特に制限されないが、例えば、樹脂が使用される。カバーは、発泡樹脂などの樹脂多孔質体で構成してもよい。カバーの材質は、電槽の材質と同じであってもよいが、電槽に比べて熱伝導率が低い材料で形成すれば、高い断熱効果が得られ易い。 The material of the cover is not particularly limited, but for example, resin is used. The cover may be made of a resin porous body such as foamed resin. The material of the cover may be the same as that of the electric tank, but if it is formed of a material having a lower thermal conductivity than that of the electric tank, a high heat insulating effect can be easily obtained.

(第3実施形態:側壁の上部に中空部を分布させる場合)
本実施形態では、電槽の側壁が中空部を有する。中空部を、側壁の下部よりも上部に多く分布させることで、下部に比べて上部の熱の伝わり方を遅くして、電解液の対流を促進させることができる。
(Third embodiment: When a hollow portion is distributed in the upper part of the side wall)
In this embodiment, the side wall of the battery case has a hollow portion. By distributing more hollow portions in the upper part than in the lower part of the side wall, it is possible to slow down the heat transfer in the upper part as compared with the lower part and promote the convection of the electrolytic solution.

電槽の側壁の上部における中空部の合計容積は、側壁の下部における中空部の合計容積よりも大きければよいが、側壁の下部にはできるだけ中空部が形成されていないことが好ましい。また、側壁が複数の中空部を含む場合、側壁の上部に分布する中空部の平均容積を、下部に分布する中空部の平均容積よりも大きくしてもよい。側壁の上部と下部とで断熱性の差異を大きくする観点からは、上部に容積が大きな中空部を形成し、下部に中空部を形成しないことが好ましい。中空部の位置や容積などは、電解液を効率よく対流させる観点から調節すればよい。 The total volume of the hollow portion in the upper part of the side wall of the battery case may be larger than the total volume of the hollow portion in the lower part of the side wall, but it is preferable that the hollow portion is not formed in the lower part of the side wall as much as possible. When the side wall includes a plurality of hollow portions, the average volume of the hollow portions distributed in the upper part of the side wall may be larger than the average volume of the hollow portions distributed in the lower part. From the viewpoint of increasing the difference in heat insulating properties between the upper portion and the lower portion of the side wall, it is preferable to form a hollow portion having a large volume in the upper portion and not to form a hollow portion in the lower portion. The position and volume of the hollow portion may be adjusted from the viewpoint of efficiently convection of the electrolytic solution.

電槽の側壁の上部に中空部を形成する場合の断面模式図を図4に示す。電槽510の側壁には、底部510Bから高さ0.5Hよりも上側の上部510Uに中空部514が形成されている。なお、側壁の下部510Dには、中空部は形成されていない。中空部514が上部510Uに存在することで、下部510Dに比べて上部510Uにおける側壁の断熱性が高まり、電槽510の下部の電解液に選択的に熱が加わり易くなるため、電解液の対流を促進することができる。中空部は、特に、側壁の上部の電解液と対向する部分に配置されていることが好ましい。 FIG. 4 shows a schematic cross-sectional view when a hollow portion is formed on the upper portion of the side wall of the battery case. On the side wall of the electric tank 510, a hollow portion 514 is formed in the upper portion 510U above the height 0.5H from the bottom portion 510B. A hollow portion is not formed in the lower portion 510D of the side wall. Since the hollow portion 514 is present in the upper 510U, the heat insulating property of the side wall in the upper 510U is higher than that in the lower 510D, and heat is easily applied to the electrolytic solution in the lower part of the electric tank 510, so that the convection of the electrolytic solution is performed. Can be promoted. The hollow portion is particularly preferably arranged at a portion facing the electrolytic solution at the upper part of the side wall.

(第4実施形態:材料の熱伝導率を変化させる場合)
電槽の側壁の上部の熱伝導性を低くする観点から、熱伝導性の低い材料(第1材料)を、側壁の上部に含有させてもよい。側壁の下部は、第1材料を含まないか、含む場合には、上部よりも含有量を少なくすることが好ましい。
(Fourth embodiment: When changing the thermal conductivity of the material)
From the viewpoint of lowering the thermal conductivity of the upper part of the side wall of the electric tank, a material having low thermal conductivity (first material) may be contained in the upper part of the side wall. The lower part of the side wall preferably does not contain, or if it does, contain less of the first material than the upper part.

側壁の下部の熱伝導性を高める観点から、側壁の下部に熱伝導率が高い材料(第2材料)を含有させてもよい。側壁の上部は、第2材料を含まないか、含む場合には、下部よりも含有量を少なくすることが好ましい。 From the viewpoint of increasing the thermal conductivity of the lower part of the side wall, a material having high thermal conductivity (second material) may be contained in the lower part of the side wall. The upper part of the side wall preferably does not contain, or if it does, contain less of the second material than the lower part.

側壁が第1材料と、第1材料の熱伝導率(第1熱伝導率)よりも低い熱伝導率(第2熱伝導率)を有する第2材料とを含む場合には、側壁の上部に第1材料を第2材料よりも多く分布させ、下部に第2材料を第1材料よりも多く分布させることが好ましい。 When the side wall contains a first material and a second material having a thermal conductivity (second thermal conductivity) lower than the thermal conductivity (first thermal conductivity) of the first material, the upper part of the side wall It is preferable that the first material is distributed more than the second material and the second material is distributed more than the first material at the bottom.

第1材料や第2材料は、電槽を形作るベースとなる材料(ベース材料)として用いてもよく、一方をベース材料として用い、他方を添加剤として用いてもよい。第1材料としては、例えば、ポリフェニレンスルフィド、高密度PP、ポリアミド(ポリアミド6、ポリアミド46、ポリアミドMDX6など)、ポリアセタール、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)などの樹脂、ガラス粉、アルミナなどの金属酸化物粉末、金属粉(金や銅などの粉末など)、ガラス繊維、金属繊維などが挙げられる。第2材料としては、PP、ABS、PVC、AS、ポリフェニレンエーテル樹脂(PPE)などの樹脂、ガラスバルーン、ガラスビーズなどの内部に空孔を有する材料などが挙げられる。第1材料または第2材料はそれぞれ一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。樹脂以外の粉末や繊維は、通常、樹脂と組み合わせて使用される。 The first material and the second material may be used as a base material (base material) for forming an electric tank, one may be used as a base material, and the other may be used as an additive. Examples of the first material include polyphenylene sulfide, high-density PP, polyamide (polyamide 6, polyamide 46, polyamide MDX6, etc.), polyacetal, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.) and other resins, glass powder, alumina and the like. Examples thereof include metal oxide powder, metal powder (powder such as gold and copper), glass fiber, and metal fiber. Examples of the second material include resins such as PP, ABS, PVC, AS, and polyphenylene ether resin (PPE), and materials having holes inside such as glass balloons and glass beads. One type of the first material or the second material may be used alone, or two or more types may be used in combination. Powders and fibers other than resin are usually used in combination with resin.

側壁の上部または下部における第1材料および第2材料のそれぞれの含有量は、電解液の対流を促進できるように各材料の種類などに応じて決定される。 The respective contents of the first material and the second material in the upper part or the lower part of the side wall are determined according to the type of each material and the like so as to promote the convection of the electrolytic solution.

第1実施形態〜第4実施形態のうちのいくつかの実施形態を組み合わせてもよい。例えば、上部の側壁の平均的な厚みを、下部より大きくした上で、側壁の上部に中空部を形成したり、上部をカバーで覆ってもよい。また、上部に第2材料を多く分布させた状態で、上部をカバーで覆ってもよい。 Some embodiments of the first to fourth embodiments may be combined. For example, the average thickness of the upper side wall may be made larger than that of the lower part, and then a hollow portion may be formed in the upper part of the side wall, or the upper part may be covered with a cover. Further, the upper part may be covered with a cover in a state where a large amount of the second material is distributed on the upper part.

電槽以外の構成要素としては、公知のものが使用できる。以下に、電槽以外の構成要素についてより具体的に説明する。
(正極板)
鉛蓄電池の正極板には、ペースト式とクラッド式がある。
ペースト式正極板は、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。正極電極材料は、正極板から正極集電体を除いたものである。正極集電体は、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。加工方法としては、例えば、エキスパンド加工や打ち抜き(パンチング)加工が挙げられる。
Known components other than the battery case can be used. The components other than the battery case will be described in more detail below.
(Positive plate)
There are two types of positive electrode plates for lead-acid batteries: paste type and clad type.
The paste-type positive electrode plate includes a positive electrode current collector and a positive electrode material. The positive electrode material is held in the positive electrode current collector. The positive electrode electrode material is a positive electrode plate obtained by removing a positive electrode current collector. The positive electrode current collector can be formed by casting lead or a lead alloy or processing a lead or lead alloy sheet. Examples of the processing method include expanding processing and punching processing.

クラッド式正極板は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。 The clad type positive electrode plate includes a plurality of porous tubes, a core metal inserted in each tube, a positive electrode material filled in the tube into which the core metal is inserted, and a collective punishment for connecting the plurality of tubes. Equipped with.

正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb−Sb系合金、Pb−Ca系合金、Pb−Ca−Sn系合金などが好ましい。正極集電体に用いる鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。芯金には、Pb−Sb系合金を用いることが好ましい。
正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、他の添加剤を含んでもよい。
As the lead alloy used for the positive electrode current collector, Pb-Sb-based alloys, Pb-Ca-based alloys, Pb-Ca-Sn-based alloys and the like are preferable in terms of corrosion resistance and mechanical strength. The lead or lead alloy used in the positive electrode current collector may further contain at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as additive elements. It is preferable to use a Pb-Sb-based alloy for the core metal.
The positive electrode material contains a positive electrode active material (lead dioxide or lead sulfate) whose capacity is developed by a redox reaction. The positive electrode material may contain other additives, if necessary.

未化成のペースト式正極板は、正極集電体に、正極ペーストを充填し、熟成、乾燥することにより得られる。その後、未化成の正極板を化成する。正極ペーストは、鉛粉、添加剤、水、硫酸を練合することで調製される。
クラッド式正極板は、芯金が挿入されたチューブに鉛粉または、スラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。
The unchemical paste type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying. After that, an unchemical positive electrode plate is formed. The positive electrode paste is prepared by kneading lead powder, additives, water, and sulfuric acid.
The clad type positive electrode plate is formed by filling a tube into which a core metal is inserted with lead powder or slurry-like lead powder, and connecting a plurality of tubes in a collective punishment.

(負極板)
鉛蓄電池の負極板は、負極集電体と、負極電極材料とで構成されている。負極電極材料は、負極板から負極集電体を除いたものである。負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、エキスパンド加工や打ち抜き(パンチング)加工が挙げられる。
(Negative electrode plate)
The negative electrode plate of a lead storage battery is composed of a negative electrode current collector and a negative electrode material. The negative electrode electrode material is a negative electrode plate obtained by removing the negative electrode current collector. The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include expanding processing and punching processing.

集電体に用いる鉛合金としては、Pb−Sb系合金、Pb−Ca系合金、Pb−Ca−Sn系合金などが好ましい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。 As the lead alloy used for the current collector, Pb-Sb-based alloys, Pb-Ca-based alloys, Pb-Ca-Sn-based alloys and the like are preferable. These leads or lead alloys may further contain, as an additive element, at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like.

負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)を含んでおり、防縮剤、カーボンブラックのような炭素質材料、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。 The negative electrode material contains a negative electrode active material (lead or lead sulfate) whose capacity is developed by a redox reaction, and may contain a depolarizer, a carbonaceous material such as carbon black, barium sulfate, etc., if necessary. Other additives may be included.

充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。 The negative electrode active material in the charged state is spongy lead, but the unchemicald negative electrode plate is usually produced using lead powder.

負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と有機防縮剤および必要に応じて各種添加剤に、水と硫酸を加えて混練することで作製する。熟成工程では、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。 The negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to produce an unchemicald negative electrode plate, and then forming an unchemicald negative electrode plate. The negative electrode paste is prepared by adding water and sulfuric acid to lead powder, an organic shrink-proofing agent, and various additives as necessary, and kneading them. In the aging step, it is preferable to ripen the unchemicald negative electrode plate at a temperature higher than room temperature and high humidity.

化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 The chemical conversion can be carried out by charging the electrode plate group in a state where the electrode plate group including the unchemical negative electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, chemical conversion may be performed before assembling the lead-acid battery or the electrode plate group. The chemical formation produces spongy lead.

(セパレータ)
負極板と正極板との間には、通常、セパレータが配置される。セパレータには、不織布、微多孔膜などが用いられる。不織布は、繊維を織らずに絡み合わせたマットであり、繊維を主体とする(例えば、60質量%以上が繊維で形成されている)。繊維としては、ガラス繊維、ポリマー繊維(ポリオレフィン繊維、アクリル繊維、ポリエチレンテレフタレート繊維などのポリエステル繊維など)、パルプ繊維などを用いることができる。中でも、ガラス繊維が好ましい。不織布は、繊維以外の成分、例えば耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよい。
(Separator)
A separator is usually arranged between the negative electrode plate and the positive electrode plate. A non-woven fabric, a microporous membrane, or the like is used as the separator. The non-woven fabric is a mat that is entwined without weaving fibers, and is mainly composed of fibers (for example, 60% by mass or more is formed of fibers). As the fiber, glass fiber, polymer fiber (polyester fiber such as polyolefin fiber, acrylic fiber, polyethylene terephthalate fiber, etc.), pulp fiber and the like can be used. Of these, glass fiber is preferable. The non-woven fabric may contain components other than fibers, for example, an acid-resistant inorganic powder, a polymer as a binder, and the like.

一方、微多孔膜は、繊維成分以外を主体とする多孔性のシートであり、例えば、造孔剤(ポリマー粉末および/またはオイルなど)を含む組成物をシート状に押し出し成形した後、造孔剤を除去して細孔を形成することにより得られる。セパレータを構成する材料は、耐酸性を有するものが好ましく、ポリマー成分としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。 On the other hand, the microporous film is a porous sheet mainly composed of components other than fiber components. For example, a composition containing a pore-forming agent (polymer powder and / or oil, etc.) is extruded into a sheet and then pore-formed. It is obtained by removing the agent to form pores. The material constituting the separator is preferably one having acid resistance, and the polymer component is preferably polyolefin such as polyethylene or polypropylene.

セパレータは、例えば、不織布のみで構成してもよく、微多孔膜のみで構成してもよい。また、セパレータは、必要に応じて、不織布と微多孔膜との積層物、異種または同種の素材を貼り合わせた物、または異種または同種の素材において凹凸をかみ合わせた物などであってもよい。 The separator may be composed of, for example, only a non-woven fabric or only a microporous membrane. Further, the separator may be, if necessary, a laminate of a non-woven fabric and a microporous film, a material obtained by laminating different or similar materials, or a material in which irregularities are engaged with different or similar materials.

(電解液)
電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。化成後で満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.10〜1.35g/cm3であり、1.20〜1.35g/cm3であることが好ましい。
(Electrolytic solution)
The electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled if necessary. A specific gravity at 20 ° C. of the electrolytic solution in lead-acid battery in a fully charged state after the conversion is, for example, 1.10~1.35g / cm 3, it is preferable that 1.20~1.35g / cm 3.

図5は、本発明の実施形態に係る鉛蓄電池のフタを外した一例を模式的に示す斜視図である。図6Aは、図5の鉛蓄電池の正面図であり、図6Bは、図6AのVIB−VIB線による矢示断面図である。これらの図では、図3のように、電槽の側壁の上部をカバーで覆った例を示す。 FIG. 5 is a perspective view schematically showing an example in which the lid of the lead storage battery according to the embodiment of the present invention is removed. 6A is a front view of the lead-acid battery of FIG. 5, and FIG. 6B is a cross-sectional view taken along the line VIB-VIB of FIG. 6A. In these figures, as shown in FIG. 3, an example in which the upper part of the side wall of the battery case is covered with a cover is shown.

鉛蓄電池1は、極板群11と電解液12とを収容する電槽10を具備する。電槽10の高さをHとするとき、電槽10の底部から0.5Hよりも上側の上部の側壁は、カバー13で覆われている。極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2が、袋状のセパレータ4で包まれている状態を示すが、セパレータの形態は特に限定されない。 The lead-acid battery 1 includes an electric tank 10 that houses the electrode plate group 11 and the electrolytic solution 12. When the height of the electric tank 10 is H, the upper side wall above 0.5H from the bottom of the electric tank 10 is covered with the cover 13. The electrode plate group 11 is formed by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 via a separator 4, respectively. Here, the negative electrode plate 2 is wrapped in the bag-shaped separator 4, but the form of the separator is not particularly limited.

複数の負極板2のそれぞれの上部には、上方に突出する集電用の耳部(図示せず)が設けられている。複数の正極板3のそれぞれの上部にも、上方に突出する集電用の耳部(図示せず)が設けられている。そして、負極板2の耳部同士は負極用ストラップ5aにより連結され一体化されている。同様に、正極板3の耳部同士も正極用ストラップ5bにより連結されて一体化されている。負極用ストラップ5aの上部には負極柱6aの下端部が固定され、正極用ストラップ5bの上部には正極柱6bの下端部が固定されている。 An ear portion (not shown) for collecting electricity is provided above each of the plurality of negative electrode plates 2 so as to project upward. Ears (not shown) for collecting electricity are also provided on the upper portions of the plurality of positive electrode plates 3 so as to project upward. The ears of the negative electrode plate 2 are connected and integrated by the negative electrode strap 5a. Similarly, the ears of the positive electrode plates 3 are also connected and integrated by the positive electrode strap 5b. The lower end of the negative electrode column 6a is fixed to the upper part of the negative electrode strap 5a, and the lower end of the positive electrode column 6b is fixed to the upper part of the positive electrode strap 5b.

[試験例]
以下、本発明を試験例に基づいて具体的に説明するが、本発明は以下の試験例に限定されるものではない。
[Test example]
Hereinafter, the present invention will be specifically described based on Test Examples, but the present invention is not limited to the following Test Examples.

試験例1
電槽の側壁を模した厚みの異なる樹脂製のプレートを作製し、一方の表面側を加熱したときの他方の表面における温度変化を測定した。
具体的には、表1に示す厚みを有し、表1に示す樹脂で形成したプレートを、ホットプレートの上に載置し、ホットプレートによりホットプレート側の表面(一方の表面)を加熱して、他方の表面側の温度の経時変化を調べた。温度は、プレートの他方の表面において、プレートの一辺に平行な任意の直線上の3箇所について測定し、平均値を算出した。このときの気温は、22℃であり、加熱時の一方の表面の温度は、72℃であった。なお、使用した樹脂の熱伝導率は、PVCが0.15〜0.21W/m・Kであり、ABSが0.17〜0.21W/m・Kであった。結果を表1に示す。
Test Example 1
Resin plates with different thicknesses imitating the side walls of the battery case were prepared, and the temperature change on one surface side was measured when the other surface side was heated.
Specifically, a plate having the thickness shown in Table 1 and formed of the resin shown in Table 1 is placed on a hot plate, and the surface on the hot plate side (one surface) is heated by the hot plate. Then, the change over time in the temperature on the other surface side was investigated. The temperature was measured at three points on an arbitrary straight line parallel to one side of the plate on the other surface of the plate, and an average value was calculated. The air temperature at this time was 22 ° C., and the temperature of one surface during heating was 72 ° C. The thermal conductivity of the resin used was 0.15 to 0.21 W / m · K for PVC and 0.17 to 0.21 W / m · K for ABS. The results are shown in Table 1.

試験例2
次に、上部と下部とで液体の温度が異なる場合に、対流が起こるか否かを調べた。
具体的には、ビーカーに、液体として約300mLの水または硫酸(20℃における比重1.30)を入れ、ビーカーの下部をヒーターで加温しながら、液体の下部と上部における温度をモニターした。上部と下部とで温度を測定する位置間の距離は10cmとした。対流の有無を目視で観察した。なお、測定時の気温は22℃であった。結果を表2に示す。
Test Example 2
Next, it was investigated whether convection occurred when the temperature of the liquid was different between the upper part and the lower part.
Specifically, about 300 mL of water or sulfuric acid (specific gravity 1.30 at 20 ° C.) was placed in the beaker as a liquid, and the temperature at the lower part and the upper part of the liquid was monitored while heating the lower part of the beaker with a heater. The distance between the upper and lower positions where the temperature was measured was 10 cm. The presence or absence of convection was visually observed. The temperature at the time of measurement was 22 ° C. The results are shown in Table 2.

Figure 0006891594
Figure 0006891594

Figure 0006891594
Figure 0006891594

表1に示すように、PVCを用いた場合には、加熱から1分後の他方の表面の平均温度は、プレートの厚みが2mmの場合に比べて、プレートの厚みが5mmの場合には約20℃低くなり、厚みが10mmの場合には約30℃も低くなった。15分経過した後でも、他方の表面の平均温度は、プレートの厚みが2mmの場合に比べて、プレートの厚みが5mmの場合には、約8℃低くなり、厚みが10mmの場合には、約18℃も低くなった。同様の傾向がABSを用いた場合にも見られる。
表2に示すように、表2に示す温度範囲内においては、下部の液体の温度と上部の液体の温度との差が3℃程度であっても、対流が確認された。対流の程度は、上部と下部とで液体の温度差が大きいほど、顕著になり、成層化抑制に有利である。
As shown in Table 1, when PVC is used, the average temperature of the other surface 1 minute after heating is about 5 mm when the plate thickness is 5 mm, as compared with the case where the plate thickness is 2 mm. The temperature was lowered by 20 ° C., and when the thickness was 10 mm, the temperature was lowered by about 30 ° C. Even after 15 minutes, the average temperature of the other surface is about 8 ° C lower when the plate thickness is 5 mm and about 8 ° C lower when the plate thickness is 10 mm than when the plate thickness is 2 mm. It dropped by about 18 ° C. A similar tendency can be seen when ABS is used.
As shown in Table 2, convection was confirmed within the temperature range shown in Table 2 even when the difference between the temperature of the lower liquid and the temperature of the upper liquid was about 3 ° C. The degree of convection becomes more remarkable as the temperature difference between the upper part and the lower part of the liquid increases, which is advantageous for suppressing stratification.

一般に、自動車のエンジンを始動させた段階で、エンジンルームの温度は、外気温より約10℃高くなり、60〜70km/hの速度で30分ほど走行すると、平衡点に達し、約70℃になる(外気温より約45℃高くなる)。そのため、車両のエンジンルーム内に本発明に係る鉛蓄電池を設置すると、エンジンルーム内にこもる熱を電解液の対流に利用することができ、成層化抑制に有利である。 Generally, when the engine of an automobile is started, the temperature of the engine room becomes about 10 ° C higher than the outside air temperature, and after traveling at a speed of 60 to 70 km / h for about 30 minutes, the equilibrium point is reached and the temperature reaches about 70 ° C. (Approximately 45 ° C higher than the outside temperature). Therefore, if the lead-acid battery according to the present invention is installed in the engine room of the vehicle, the heat trapped in the engine room can be used for convection of the electrolytic solution, which is advantageous in suppressing stratification.

本発明の一側面に係る鉛蓄電池は、液式鉛蓄電池に適用可能であり、自動車などの車両用もしくはバイク用などの蓄電装置、始動用、補機用の電源としても利用できる。また、鉛蓄電池は、据置用などの産業用蓄電装置などの電源として用いてもよい。 The lead-acid battery according to one aspect of the present invention can be applied to a liquid-type lead-acid battery, and can also be used as a power storage device for vehicles such as automobiles or motorcycles, and as a power source for starting and auxiliary equipment. Further, the lead storage battery may be used as a power source for an industrial power storage device for stationary use or the like.

1:鉛蓄電池
2:負極板
3:正極板
4:セパレータ
5a:負極用ストラップ
5b:正極用ストラップ
6a:負極柱
6b:正極柱
10:電槽
10B:電槽の底部
11:極板群
12:電解液
13:カバー
110、210、310、410、510:電槽
110B、510B:底部
110U、210U、310U、410U、510U:側壁の上部
110D、210D、310D、410D、510D:側壁の下部
514:中空部
1: Lead-acid battery 2: Negative electrode plate 3: Positive electrode plate 4: Separator 5a: Negative electrode strap 5b: Positive electrode strap 6a: Negative electrode pillar 6b: Positive electrode pillar 10: Battery 10B: Bottom of battery plate 11: Electrode plate group 12: Electrolyte 13: Cover 110, 210, 310, 410, 510: Battery 110B, 510B: Bottom 110U, 210U, 310U, 410U, 510U: Upper side wall 110D, 210D, 310D, 410D, 510D: Lower side wall 514: Hollow part

Claims (7)

正極および負極を含む極板群と、
電解液と、
開口部を有し、前記極板群および前記電解液を収容する電槽と、
前記電槽の前記開口部を封口する蓋と、を備え、
前記電槽は、底部と、前記底部から立ち上がる側壁と、を備え、
前記側壁の前記底部からの高さをHとするとき、前記側壁の前記底部からの高さが0.5Hよりも上方の上部における平均的な断熱性は、前記側壁の前記底部からの高さが0.5Hまでの下部における平均的な断熱性よりも高く、
前記側壁の断熱性が高い領域の少なくとも一部は、電解液に対向する領域に形成されている、鉛蓄電池。
A group of electrodes including a positive electrode and a negative electrode,
With electrolyte
An electric tank having an opening and accommodating the electrode plate group and the electrolytic solution,
A lid for sealing the opening of the battery case is provided.
The battery case includes a bottom and a side wall rising from the bottom.
When the height of the side wall from the bottom is H, the average heat insulating property in the upper part where the height of the side wall from the bottom is higher than 0.5H is the height of the side wall from the bottom. There rather higher than the average thermal insulation in the lower to 0.5H,
A lead-acid battery in which at least a part of the side wall having a high heat insulating property is formed in a region facing the electrolytic solution.
前記側壁の上部の平均的な厚みが、前記側壁の下部の平均的な厚みよりも大きい、請求項1に記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein the average thickness of the upper part of the side wall is larger than the average thickness of the lower part of the side wall. 前記側壁が、第1熱伝導率を有する第1材料と、前記第1熱伝導率よりも高い第2熱伝導率を有する第2材料とを含み、
前記側壁の上部に前記第1材料が前記第2材料よりも多く分布し、
前記側壁の下部に前記第2材料が前記第1材料よりも多く分布する、請求項1または2に記載の鉛蓄電池。
The side wall contains a first material having a first thermal conductivity and a second material having a second thermal conductivity higher than the first thermal conductivity.
The first material is distributed more than the second material on the upper part of the side wall.
The lead-acid battery according to claim 1 or 2, wherein the second material is distributed in a lower portion of the side wall in a larger amount than the first material.
前記側壁が中空部を有し、
前記中空部が、前記側壁の上部に、前記側壁の下部よりも多く分布する、請求項1〜3のいずれか1項に記載の鉛蓄電池。
The side wall has a hollow portion
The lead-acid battery according to any one of claims 1 to 3, wherein the hollow portion is distributed more in the upper part of the side wall than in the lower part of the side wall.
前記側壁の上部を前記電槽の外側から覆うカバーを備える、請求項1〜4のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 4, further comprising a cover that covers the upper portion of the side wall from the outside of the battery case. 車両のエンジンルーム内に配置される、請求項1〜5のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 5, which is arranged in the engine room of a vehicle. 前記側壁が、高さ方向と交差する複数の膜の積層体を有する、請求項1〜6のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 6, wherein the side wall has a laminated body of a plurality of films intersecting with each other in the height direction.
JP2017066344A 2017-03-29 2017-03-29 Lead-acid battery Active JP6891594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066344A JP6891594B2 (en) 2017-03-29 2017-03-29 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066344A JP6891594B2 (en) 2017-03-29 2017-03-29 Lead-acid battery

Publications (2)

Publication Number Publication Date
JP2018170151A JP2018170151A (en) 2018-11-01
JP6891594B2 true JP6891594B2 (en) 2021-06-18

Family

ID=64020579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066344A Active JP6891594B2 (en) 2017-03-29 2017-03-29 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP6891594B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242333A (en) * 2006-03-07 2007-09-20 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP4917381B2 (en) * 2006-08-09 2012-04-18 株式会社アスペクト Powder sintering additive manufacturing apparatus and powder sintering additive manufacturing method
WO2011048782A1 (en) * 2009-10-19 2011-04-28 パナソニック株式会社 Secondary battery
JP2013240184A (en) * 2012-05-15 2013-11-28 Sumitomo Heavy Ind Ltd Battery driven forklift
JP2015176659A (en) * 2014-03-13 2015-10-05 株式会社Gsユアサ Lead acid battery
JP6506942B2 (en) * 2014-10-23 2019-04-24 日東電工株式会社 Insulation and battery cover

Also Published As

Publication number Publication date
JP2018170151A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
KR101799816B1 (en) Improved lead acid battery separators, batteries and related methods
JP5185116B2 (en) Battery case and battery having improved thermal conductivity
CN108711606B (en) Secondary battery with improved acid stratification
KR101831423B1 (en) Battery, battery plate assembly, and method of assembly
JP7380580B2 (en) lead acid battery
US11824204B2 (en) Battery and battery plate assembly with absorbent separator
JP2019029068A (en) Lead storage battery
JP6891594B2 (en) Lead-acid battery
CN104246941A (en) Electrode material, and capacitor and secondary battery using said electrode material
JP2018018803A (en) Lead-acid battery
JP6855970B2 (en) Lead-acid battery
JP5994545B2 (en) Lead acid battery
CN102593534B (en) Ni-metal hydride accumulator
JPWO2020105484A1 (en) Lead-acid battery
JP6953821B2 (en) Liquid lead-acid battery
JP6647803B2 (en) Air battery system and parts for liquid injection
JP7152831B2 (en) lead acid battery
JPWO2019087679A1 (en) Lead-acid battery
EP0117238B1 (en) Sandwich electrode and a battery comprising the same
CN109546232B (en) Solid-state silica gel traction storage battery
WO2022224884A1 (en) Lead storage battery
JP2018097937A (en) Secondary battery
JP2018041596A (en) Secondary battery
JP2005005007A (en) Sodium sulfur battery
CN113316862A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6891594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150