JP6891461B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP6891461B2
JP6891461B2 JP2016224647A JP2016224647A JP6891461B2 JP 6891461 B2 JP6891461 B2 JP 6891461B2 JP 2016224647 A JP2016224647 A JP 2016224647A JP 2016224647 A JP2016224647 A JP 2016224647A JP 6891461 B2 JP6891461 B2 JP 6891461B2
Authority
JP
Japan
Prior art keywords
particles
resin composition
mass
inorganic particles
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016224647A
Other languages
Japanese (ja)
Other versions
JP2018080292A (en
Inventor
高橋 淳
淳 高橋
誠 柳澤
誠 柳澤
友浩 渡邊
友浩 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62197945&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6891461(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyo Ink SC Holdings Co Ltd, Toyocolor Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2016224647A priority Critical patent/JP6891461B2/en
Publication of JP2018080292A publication Critical patent/JP2018080292A/en
Application granted granted Critical
Publication of JP6891461B2 publication Critical patent/JP6891461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、成形体の製造に使用する樹脂組成物に関する。 The present invention relates to a resin composition used for producing a molded product.

従来、樹脂成形体は、成形が容易なポリエチレンやポリエチレンテレフタレート等のエンジニアリングプラスチックが使用されていた。一方、耐熱性や機械物性が必要な用途の成形体の素材には金属が使用されていたが、軽量化のため樹脂に代替する検討がされている。しかし、エンジニアリングプラスチックでは必要な特性を満たせない。そこでナイロン9Tやポリサルフォン、ポリエーテルエーテルケトン等のスーパーエンジニアリングプラスチック(以下、スーパーエンプラという)を使用することで所望の特性を満たす成形体が使用されている。 Conventionally, engineering plastics such as polyethylene and polyethylene terephthalate, which are easy to mold, have been used as the resin molded product. On the other hand, metal has been used as a material for molded articles that require heat resistance and mechanical properties, but studies are being conducted to replace it with resin in order to reduce weight. However, engineering plastics cannot meet the required properties. Therefore, a molded product satisfying desired properties is used by using super engineering plastics (hereinafter referred to as super engineering plastics) such as nylon 9T, polysulfone, and polyetheretherketone.

スーパーエンプラを使用した成形体に着色、導電性、または熱伝導性といった機能性を付加させる要望が出ているため、スーパーエンプラに顔料や機能性フィラー(例えば無機フィラー)を配合することで前記機能性を付加させることが検討されている。
しかし、スーパーエンプラは剛直なポリマー骨格を有するため無機フィラーと混練した際に分散が上手くいかず、異物として目ヤニの発生や成形体の機械物性が大幅に低下する問題が生じていた。なお、目ヤニとは、樹脂と無機フィラーの分散不良から生じる、樹脂塊、無機フィラー塊、その他凝集物を総称したものである。
Since there is a demand to add functionality such as coloring, conductivity, or thermal conductivity to a molded product using super engineering plastics, the above functions can be obtained by adding a pigment or a functional filler (for example, an inorganic filler) to the super engineering plastics. It is being considered to add sex.
However, since super engineering plastics have a rigid polymer skeleton, they do not disperse well when kneaded with an inorganic filler, and there are problems that rheumatism is generated as foreign matter and the mechanical properties of the molded product are significantly deteriorated. The rheumatism is a general term for resin lumps, inorganic filler lumps, and other agglomerates caused by poor dispersion of the resin and the inorganic filler.

特許文献1では、目ヤニ防止剤として親水性シリカを使用した樹脂組成物が開示されている。 Patent Document 1 discloses a resin composition using hydrophilic silica as an anti-rheumatic agent.

特願2015−905号公報Japanese Patent Application No. 2015-905

しかし、従来は、親水性シリカが水分を含みやすいため、溶融中に加水分解しやすいスーパーエンプラに使用すると、加工中の分解を促進してしまう。そのため、スーパーエンプラを使用した成形体は、所望の物性が得られないこと、および加水分解した樹脂塊が新たに目ヤニの原因となる問題があった。 However, conventionally, since hydrophilic silica tends to contain water, when it is used for super engineering plastics which are easily hydrolyzed during melting, decomposition during processing is promoted. Therefore, the molded product using the super engineering plastic has a problem that the desired physical properties cannot be obtained and that the hydrolyzed resin lump causes new rheumatism.

本発明は、製造時の目ヤニを抑制し、成形体の機械強度の低下を抑制する成形体を製造可能な、スーパーエンプラを含む樹脂組成物の提供を目的とする。 An object of the present invention is to provide a resin composition containing a super engineering plastic capable of producing a molded product that suppresses rheumatism during production and suppresses a decrease in mechanical strength of the molded product.

本発明の樹脂組成物は、融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂、四フッ化ポリエチレン焼結物粒子、および無機粒子を含む。 The resin composition of the present invention contains a thermoplastic resin having a melting point of 275 ° C. or higher or a deflection temperature under load of 150 ° C. or higher, polyethylene tetrafluoride sintered particles, and inorganic particles.

上記の本発明によれば、スーパーエンプラと相溶しない四フッ化ポリエチレン焼結物粒子を配合することで、樹脂組成物を製造する際の目ヤニの発生を抑制し、成形体の機械強度低下を抑制できる。 According to the present invention described above, by blending polyethylene tetrafluoride sintered particles that are incompatible with super engineering plastics, the generation of rheumatism during the production of the resin composition is suppressed, and the mechanical strength of the molded product is reduced. Can be suppressed.

本発明により製造時の目ヤニを抑制し、成形体の機械強度低下抑制することが可能な、スーパーエンプラを含む樹脂組成物を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a resin composition containing a super engineering plastic, which can suppress rheumatism during production and suppress a decrease in mechanical strength of a molded product.

本発明の樹脂組成物は、融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂、四フッ化ポリエチレン焼結物粒子、および無機粒子を含む。 The resin composition of the present invention contains a thermoplastic resin having a melting point of 275 ° C. or higher or a deflection temperature under load of 150 ° C. or higher, polyethylene tetrafluoride sintered particles, and inorganic particles.

本発明の樹脂組成物は、熱可塑性樹脂と相溶しない四フッ化ポリエチレン焼結物粒子をあえて配合することで、熱可塑性樹脂と無機粒子との分散を助け、熱可塑性樹脂と無機粒子の混練装置への付着を抑制できたことで、例えば溶融混練を行う際に生じていた目ヤニの発生を抑制できた。この樹脂組成物を用いた成形体は、機械強度低下と導電性等の表面物性の低下を抑制できている。 The resin composition of the present invention intentionally blends polyethylene tetrafluoride sintered particles that are incompatible with the thermoplastic resin to help disperse the thermoplastic resin and the inorganic particles, and knead the thermoplastic resin and the inorganic particles. By suppressing the adhesion to the apparatus, it was possible to suppress the generation of eye tar, which was generated during melt-kneading, for example. A molded product using this resin composition can suppress a decrease in mechanical strength and a decrease in surface physical properties such as conductivity.

本発明の樹脂組成物は、他の実施態様として、導電性無機粒子を含む成形用導電性樹脂組成物、または熱伝導性無機粒子を含む成形用熱伝導性樹脂組成物として使用することができる。 As another embodiment, the resin composition of the present invention can be used as a conductive resin composition for molding containing conductive inorganic particles or a heat conductive resin composition for molding containing heat conductive inorganic particles. ..

<熱可塑性樹脂>
本発明で用いる熱可塑性樹脂は、スーパーエンプラである。スーパーエンプラは、明確な基準は無いが、主に150℃以上の環境で連続使用できる耐熱性をもつ樹脂である。熱可塑性樹脂は、融点が275℃以上、または荷重たわみ温度が150℃以上である。なお、融点の上限は、特にないが、現在の技術では380℃程度である。また荷重たわみ温度の上限は、特にないが現在の技術では、300℃程度である。なお、荷重たわみ温度はJIS K7191に準拠し、1.82MPaの荷重をかけて測定した数値である。
熱可塑性樹脂は、所定の融点および所定の荷重たわみ温度を同時に満たしていても良い。
<Thermoplastic resin>
The thermoplastic resin used in the present invention is a super engineering plastic. Super engineering plastics are heat-resistant resins that can be used continuously in an environment of 150 ° C or higher, although there is no clear standard. The thermoplastic resin has a melting point of 275 ° C. or higher, or a deflection temperature under load of 150 ° C. or higher. The upper limit of the melting point is not particularly limited, but it is about 380 ° C. in the current technology. Further, there is no particular upper limit of the deflection temperature under load, but with the current technology, it is about 300 ° C. The deflection temperature under load is a numerical value measured by applying a load of 1.82 MPa in accordance with JIS K7191.
The thermoplastic resin may simultaneously satisfy a predetermined melting point and a predetermined deflection temperature under load.

融点275℃以上の熱可塑性樹脂は、例えばナイロン9T(PA9T)、ポリフェニレンサルファイド(PPS)、ポリフェニレンエーテル(PPE)、ポリサルフォン(PSF)、ポリエーテルサルファイド(PES)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)等の結晶質の樹脂が挙げられる。 Thermoplastic resins having a melting point of 275 ° C. or higher include, for example, nylon 9T (PA9T), polyphenylene sulfide (PPS), polyphenylene ether (PPE), polysulfone (PSF), polyether sulfide (PES), polyetherimide (PEI), and polyamide-imide. (PAI), polyetheretherketone (PEEK) and other crystalline resins can be mentioned.

荷重たわみ温度が150℃以上の熱可塑性樹脂は、例えばポリアリレート(PAR)、液晶ポリマー(LCP)、ポリフッ化ビニリデン(PVDF)の半結晶質または非結晶質の樹脂が挙げられる。これらの中でも弾性や伸び物性に富み、無機粒子と相溶し易いポリフェニレンサルファイド、ナイロン9T、ポリエーテルエーテルケトンが好ましい。熱可塑性樹脂は、単独または2種類以上を併用できる。なお、融点275℃以上の熱可塑性樹脂は、荷重たわみ温度が150℃以上である場合が多い。 Examples of the thermoplastic resin having a deflection temperature under load of 150 ° C. or higher include semi-crystalline or non-crystalline resins such as polyarylate (PAR), liquid crystal polymer (LCP), and polyvinylidene fluoride (PVDF). Among these, polyphenylene sulfide, nylon 9T, and polyetheretherketone, which are rich in elasticity and extensibility and easily compatible with inorganic particles, are preferable. The thermoplastic resin may be used alone or in combination of two or more. In many cases, a thermoplastic resin having a melting point of 275 ° C. or higher has a deflection temperature under load of 150 ° C. or higher.

融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂に含まれない他の熱可塑性樹脂も、課題を解決できる範囲内であれば併用できる。
他の熱可塑性樹脂は、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリアミド、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ポリシリコーン等が挙げられる。
Other thermoplastic resins not included in the thermoplastic resin having a melting point of 275 ° C. or higher or a deflection temperature under load of 150 ° C. or higher can be used in combination as long as the problem can be solved.
Examples of other thermoplastic resins include polyethylene terephthalate, polycarbonate, polyamide, high-density polyethylene, low-density polyethylene, polypropylene, polystyrene, polyacrylonitrile, and polysilicone.

<無機粒子>
本発明で用いる無機粒子は、無機物を核とする粒子である。そのため、無機物単独のみならず、無機物の核を覆う被覆層が有機物であるコアシェル型粒子であっても無機粒子である。また、核のみの粒子であっても良い。
<Inorganic particles>
The inorganic particles used in the present invention are particles having an inorganic substance as a core. Therefore, not only the inorganic substance alone, but also the core-shell type particles in which the coating layer covering the nucleus of the inorganic substance is an organic substance are inorganic particles. Further, it may be a particle having only a nucleus.

無機粒子は、例えばセラミックス、炭素材料、無機顔料が好ましい。また、無機粒子を機能面で例示すると導電性無機粒子、熱伝導性無機粒子が好ましい。
セラミックスは、絶縁性無機物であり、例えばその熱伝導率は15W/mK以上である。
炭素材料は、炭素の同素体である。
無機顔料は、セラミックスと炭素材料を除いた、例えばその熱伝導率が、およそ10W/mK未満の無機物を核とした粒子である。
セラミックスは、例えば酸化カルシウム、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、酸化アルミニウム、窒化ホウ素、窒化アルミニウム、カオリンクレー、リン酸アルミニウム、リン酸マグネシウム等の金属酸化物や窒化物やホウ化物、炭酸塩、リン酸塩が挙げられる。
炭素材料は、例えばグラファイト、グラフェン、カーボンナノチューブ、カーボンナノホーン、カーボンナノファイバー、カーボンファイバー、フラーレン等が挙げられる。
無機顔料は、例えば硫酸バリウム、二酸化チタン、天然酸化鉄、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、クロム酸鉛、アルミ酸コバルト、タルク、マイカ、ハイドロタルサイト、合成ウルトラマリン青等のアルミニウム、亜鉛、鉛、チタン、カドミウム、鉄、コバルト等の酸化物、複合金属酸化物、硫化物、硫酸塩等が挙げられる。
As the inorganic particles, for example, ceramics, carbon materials, and inorganic pigments are preferable. Further, when the inorganic particles are exemplified in terms of function, conductive inorganic particles and thermally conductive inorganic particles are preferable.
Ceramics are insulating inorganic substances, and for example, their thermal conductivity is 15 W / mK or more.
The carbon material is an allotrope of carbon.
Inorganic pigments are particles excluding ceramics and carbon materials, for example, particles having an inorganic substance having a thermal conductivity of less than about 10 W / mK as a nucleus.
Ceramics include, for example, metal oxides such as calcium oxide, calcium carbonate, magnesium oxide, magnesium carbonate, aluminum oxide, boron nitride, aluminum nitride, kaolin clay, aluminum phosphate, magnesium phosphate, nitrides, boroides, carbonates, etc. Phosphate can be mentioned.
Examples of the carbon material include graphite, graphene, carbon nanotubes, carbon nanohorns, carbon nanofibers, carbon fibers, fullerenes and the like.
Inorganic pigments include, for example, barium sulfate, titanium dioxide, natural iron oxide, cadmium yellow, nickel titanium yellow, strontium yellow, chromium hydroxide-containing, chromium oxide, lead chromate, cobalt aluminate, talc, mica, hydrotalcite, synthetic ultra. Examples thereof include aluminum such as marine blue, oxides such as zinc, lead, titanium, cadmium, iron and cobalt, composite metal oxides, sulfides and sulfates.

導電性無機粒子は、例えばグラファイト、グラフェン、カーボンナノチューブ、カーボンナノホーン、カーボンナノファイバー、カーボンファイバーが挙げられる。 Examples of the conductive inorganic particles include graphite, graphene, carbon nanotubes, carbon nanohorns, carbon nanofibers, and carbon fibers.

熱伝導性無機粒子は、例えば酸化マグネシウム、炭酸マグネシウム、酸化アルミニウム、窒化ホウ素、窒化アルミニウム、リン酸マグネシウム、リン酸アルミニウム、グラファイト、グラフェン、カーボンナノチューブ、カーボンナノホーン、カーボンナノファイバー、カーボンファイバーが挙げられる。 Examples of the heat conductive inorganic particles include magnesium oxide, magnesium carbonate, aluminum oxide, boron nitride, aluminum nitride, magnesium phosphate, aluminum phosphate, graphite, graphene, carbon nanotubes, carbon nanohorns, carbon nanofibers, and carbon fibers. ..

無機粒子は、分散性向上等のために粒子の表面に被覆層を形成することができる。被覆層を形成する表面処理方法は、例えばリン酸エステル、シランカップリング剤等の有機物で被覆する有機処理、例えば酸化アルミや酸化ケイ素等で被覆する無機処理が挙げられる。有機処理および無機処理は、単独または併用できる。 Inorganic particles can form a coating layer on the surface of the particles in order to improve dispersibility and the like. Examples of the surface treatment method for forming the coating layer include an organic treatment of coating with an organic substance such as a phosphoric acid ester and a silane coupling agent, and an inorganic treatment of coating with an aluminum oxide, silicon oxide or the like. The organic treatment and the inorganic treatment can be used alone or in combination.

無機粒子の平均粒子径は、0.001〜200μmが好ましい。
セラミックスの場合、0.01〜200μmが好ましく、1〜80μmがより好ましい。また、炭素材料の場合、0.01〜100μmが好ましく、0.05〜50μmがより好ましい。炭素材料の内、カーボンナノチューブのようなアスペクト比が100以上ある繊維状物質は、平均繊維径が0.001μm〜0.1μmが好ましく、0.005μm〜0.05μmがより好ましく、長さは特に限定しない。
無機顔料の平均粒子径は、0.01〜100μmが好ましく、0.1〜50μmがより好ましい。
The average particle size of the inorganic particles is preferably 0.001 to 200 μm.
In the case of ceramics, 0.01 to 200 μm is preferable, and 1 to 80 μm is more preferable. Further, in the case of a carbon material, 0.01 to 100 μm is preferable, and 0.05 to 50 μm is more preferable. Among the carbon materials, fibrous materials having an aspect ratio of 100 or more, such as carbon nanotubes, preferably have an average fiber diameter of 0.001 μm to 0.1 μm, more preferably 0.005 μm to 0.05 μm, and particularly have a length. Not limited.
The average particle size of the inorganic pigment is preferably 0.01 to 100 μm, more preferably 0.1 to 50 μm.

無機粒子は、樹脂組成物100質量%中に0.1〜80質量%含むことが好ましい。
セラミックスまたは無機顔料を使用する場合、樹脂組成物100質量%中に0.1〜80質量%含むことが好ましく、10〜80質量%含むことがより好ましい。
炭素材料を使用する場合、樹脂組成物100質量%中に0.1〜40質量%含むことが好ましく、0.1〜25質量%含むことがより好ましい。
The inorganic particles are preferably contained in an amount of 0.1 to 80% by mass in 100% by mass of the resin composition.
When ceramics or inorganic pigments are used, it is preferably contained in an amount of 0.1 to 80% by mass, more preferably 10 to 80% by mass, in 100% by mass of the resin composition.
When a carbon material is used, it is preferably contained in an amount of 0.1 to 40% by mass, more preferably 0.1 to 25% by mass, in 100% by mass of the resin composition.

導電性無機粒子は、樹脂組成物100質量%中に0.1〜40質量%含むことが好ましく、1〜25質量%含むことがより好ましい。 The conductive inorganic particles are preferably contained in an amount of 0.1 to 40% by mass, more preferably 1 to 25% by mass, in 100% by mass of the resin composition.

熱伝導性無機粒子は、樹脂組成物100質量%中に10〜80質量%含むことが好ましく、50〜80質量%含むことがより好ましい。 The thermally conductive inorganic particles are preferably contained in an amount of 10 to 80% by mass, more preferably 50 to 80% by mass, in 100% by mass of the resin composition.

無機粒子の配合量が0.1質量%以上になると無機粒子に期待される効果が得易くなる。また、配合量が80質量%以下になると無機粒子の分散性がより向上し、目ヤニを効果的に抑制でできる。 When the blending amount of the inorganic particles is 0.1% by mass or more, the expected effect of the inorganic particles can be easily obtained. Further, when the blending amount is 80% by mass or less, the dispersibility of the inorganic particles is further improved, and the rheumatism can be effectively suppressed.

<四フッ化ポリエチレン焼結物粒子>
本発明で用いる四フッ化ポリエチレン焼結物粒子は、熱可塑性樹脂および無機粒子と相溶せずに、両者の分散性を向上させた上、熱可塑性樹脂および無機粒子を混練装置内部に付着し難くする効果を有する。四フッ化ポリエチレン焼結物粒子は、300℃以上の高温域で変形せず溶融混練の際に粒子形状を保持できるため、効率の良い溶融混練ができる。四フッ化ポリエチレン焼結物粒子は、公知の化合物である四フッ化ポリエチレン(PTFE)を加熱後、冷却して結晶化した粒子である。なお、四フッ化ポリエチレン焼結物粒子以外の四フッ化ポリエチレンは、通常150〜200℃付近で溶融または変形するため、300℃以上の温度域で粒子形状を保てず前記分散性向上等の効果が得られない。
<Polyethylene sintered particles of tetrafluorine>
The polyethylene tetrafluoride sintered particles used in the present invention do not dissolve with the thermoplastic resin and the inorganic particles, improve the dispersibility of both, and adhere the thermoplastic resin and the inorganic particles to the inside of the kneading device. It has the effect of making it difficult. Since the polyethylene tetrafluoride sintered particles do not deform in a high temperature range of 300 ° C. or higher and can retain the particle shape during melt-kneading, efficient melt-kneading can be performed. Polyethylene tetrafluoride sintered particles are particles obtained by heating and then cooling a known compound, polyethylene tetrafluoride (PTFE), to crystallize it. Since polyethylene tetrafluoride other than the sintered tetrafluoride particles usually melts or deforms at around 150 to 200 ° C., the particle shape cannot be maintained in the temperature range of 300 ° C. or higher, and the dispersibility is improved. No effect.

四フッ化ポリエチレン焼結物粒子の平均粒子径は、0.1μm〜100μmが好ましく、10〜30μmがより好ましい。平均粒子径を0.1μm〜100μmにすることで目ヤニをより効果的に抑制できる。四フッ化ポリエチレン焼結物粒子の平均粒子径は、走査型電子顕微鏡(日本電子(JEOL)社製、JSM−6700M))を用いて観察し、撮影した。次いで、撮影された画像にて任意の四フッ化ポリエチレン焼結物粒子20個程度の粒子径の平均値である。 The average particle size of the polyethylene tetrafluoride sintered particles is preferably 0.1 μm to 100 μm, more preferably 10 to 30 μm. By setting the average particle size to 0.1 μm to 100 μm, rheumatism can be suppressed more effectively. The average particle size of the polyethylene tetrafluoride sintered particles was observed and photographed using a scanning electron microscope (JSM-6700M, manufactured by JEOL Ltd.). Next, it is an average value of the particle diameters of about 20 arbitrary polyethylene tetrafluoride sintered particles in the captured image.

四フッ化ポリエチレン焼結物粒子の製造は、例えば四フッ化ポリエチレン(PTFE)を窒素雰囲気下、350℃以上で加熱後、冷却して、結晶化させる方法が挙げられる Examples of the production of polyethylene tetrafluoride sintered particles include a method in which polyethylene tetrafluoride (PTFE) is heated at 350 ° C. or higher in a nitrogen atmosphere, cooled, and crystallized.

四フッ化ポリエチレン焼結物粒子は、所望の分散効果が得られれば良いためその形状は限定されない。四フッ化ポリエチレン焼結物粒子は、例えば薄片状、球状、葉状、樹枝状、鱗片状、繊維状、棒状が挙げられる。これらに中でも四フッ化ポリエチレン焼結物粒子自体が異物になり難く、樹脂組成物を製造する加工機内で熱可塑性樹脂および無機粒子の混練物が摺動し易い面で球状、鱗片状が好ましく、球状がより好ましい。 The shape of the polyethylene tetrafluoride sintered particles is not limited as long as the desired dispersion effect can be obtained. Examples of the tetrafluorinated polyethylene sintered particles include flaky, spherical, foliate, dendritic, scaly, fibrous, and rod-shaped particles. Among these, the tetrafluoropolyethylene sintered particles themselves are less likely to become foreign substances, and the kneaded product of the thermoplastic resin and the inorganic particles is likely to slide in the processing machine for producing the resin composition, and is preferably spherical or scaly. Spherical is more preferable.

四フッ化ポリエチレン焼結物粒子の形状を、球状にする手法は、公知の方法を使用できる。例えば、粉砕と分級を繰り返す方法、または液体窒素で凍結させてから粉砕する方法が挙げられる。または四フッ化ポリエチレン焼結物の粗大粒子に放射線を適宜照射し表面を劣化させた上で粉砕すると球状粒子に形状に加工し易くなる。四フッ化ポリエチレン焼結物粒子の市販品は、例えば、喜多村社製のKT/KTLシリーズが挙げられる。 As a method for making the shape of the polyethylene tetrafluoride sintered particles spherical, a known method can be used. For example, a method of repeating pulverization and classification, or a method of freezing with liquid nitrogen and then pulverizing can be mentioned. Alternatively, if the coarse particles of the polyethylene tetrafluoride sintered product are appropriately irradiated with radiation to deteriorate the surface and then pulverized, it becomes easy to process the coarse particles into spherical particles. Examples of commercially available products of polyethylene tetrafluoride sintered particles include the KT / KTL series manufactured by Kitamura Co., Ltd.

四フッ化ポリエチレン焼結物粒子は、樹脂組成物100質量%中に0.1〜20質量%含むことが好ましく、1〜10質量%含むことがより好ましい。0.1〜20質量%の範囲内で使用すると四フッ化ポリエチレン焼結物粒子が分散しやすく、目ヤニ抑制効果がより向上する。 The polyethylene tetrafluoride sintered particles preferably contain 0.1 to 20% by mass, more preferably 1 to 10% by mass, in 100% by mass of the resin composition. When used in the range of 0.1 to 20% by mass, the polyethylene tetrafluoride sintered particles are easily dispersed, and the effect of suppressing rheumatism is further improved.

四フッ化ポリエチレン焼結物粒子は、TG―DTA測定(示差熱・熱重量同時測定)において、窒素雰囲気下10℃/1minで昇温させ、420℃の状態で25分間保持した場合の質量減少が5%以下であることが好ましく、350℃まで昇温時の質量減少が2%以下であることがより好ましい。これにより本発明の課題をより解決し易くできる。 In TG-DTA measurement (simultaneous measurement of differential heat and thermogravimetric analysis), the weight of the polyethylene tetrafluoride sintered particles is reduced when the temperature is raised at 10 ° C./1 min under a nitrogen atmosphere and held at 420 ° C. for 25 minutes. Is preferably 5% or less, and the mass reduction when the temperature is raised to 350 ° C. is more preferably 2% or less. This makes it easier to solve the problems of the present invention.

<酸化防止剤>
本発明に用いる酸化防止剤は、樹脂組成物及び成形体製造時に熱可塑性樹脂の熱劣化を抑制できる。
酸化防止剤は、公知の化合物を使用できる。酸化防止剤は、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ラクトン系酸化防止剤、アミン系酸化防止剤、アミド系酸化防止剤が挙げられる。
酸化防止剤は、単独または2種類以上を併用できる。
<Antioxidant>
The antioxidant used in the present invention can suppress thermal deterioration of the thermoplastic resin during the production of the resin composition and the molded product.
As the antioxidant, known compounds can be used. Examples of the antioxidant include a phenol-based antioxidant, a phosphorus-based antioxidant, a sulfur-based antioxidant, a lactone-based antioxidant, an amine-based antioxidant, and an amide-based antioxidant.
The antioxidant may be used alone or in combination of two or more.

酸化防止剤は、分散不良が生じない限度で使用すれば良く、例えば樹脂組成物100質量%中に0.01〜5質量%含むことが好ましく、0.1〜3質量%含むことがより好ましい。 The antioxidant may be used as long as it does not cause poor dispersion. For example, it is preferably contained in an amount of 0.01 to 5% by mass, more preferably 0.1 to 3% by mass in 100% by mass of the resin composition. ..

<他の任意成分>
本発明の樹脂組成物は、必要に応じて他の任意成分を配合できる。
他の任意成分は、例えば帯電防止剤、可塑剤、滑剤、消泡剤、離型剤、難燃剤が挙げられる。他の任意成分の選択およびその使用量は、本発明の課題を解決できる範囲内であれば特に限定されず使用できる。
<Other optional ingredients>
The resin composition of the present invention may contain other arbitrary components, if necessary.
Other optional components include, for example, antistatic agents, plasticizers, lubricants, defoamers, mold release agents, flame retardants. The selection of other arbitrary components and the amount used thereof are not particularly limited as long as the problems of the present invention can be solved.

<樹脂組成物の製造方法>
本発明の樹脂組成物は、例えば熱可塑性樹脂、四フッ化ポリエチレン焼結物粒子、および無機粒子を加工機に投入し、溶融混練を行うことで製造できる。溶融混練温度は、300〜450℃が好ましい。加工機は、例えばニーダー,ロールミル,スーパーミキサー,ヘンシェルミキサー,シュギミキサー,バーティカルグラニュレーター,ハイスピードミキサー,ファーマトリックス,ボールミル,スチールミル,サンドミル,振動ミル,アトライター,バンバリーミキサー等に回分式混練機;二軸押出機、単軸押出機、ローター型二軸混練機等が挙げられる。
樹脂組成物の形状は、例えば、ペレット状、粉末状、顆粒状の形状が好ましく、ペレット状が好ましい。
<Manufacturing method of resin composition>
The resin composition of the present invention can be produced, for example, by putting thermoplastic resin, polyethylene tetrafluoride sintered particles, and inorganic particles into a processing machine and performing melt kneading. The melt-kneading temperature is preferably 300 to 450 ° C. Processing machines include, for example, kneaders, roll mills, super mixers, henschel mixers, sugar mixers, vertical granulators, high speed mixers, fur matrices, ball mills, steel mills, sand mills, vibration mills, attritors, Banbury mixers, etc. Examples include a twin-screw extruder, a single-screw extruder, and a rotor-type twin-screw kneader.
The shape of the resin composition is preferably, for example, a pellet shape, a powder shape, or a granule shape, and a pellet shape is preferable.

本発明の樹脂組成物の他の製造方法は、例えば、あらかじめ四フッ化ポリエチレン焼結物粒子を熱可塑性樹脂中に高濃度に分散させたマスターバッチを作製した後に、熱可塑性樹脂、ならびに無機粒子に前記マスターバッチを配合し混練することで樹脂組成物を作製できる。
マスターバッチは、熱可塑性樹脂と四フッ化ポリエチレン焼結物粒子の合計100質量%中に四フッ化ポリエチレン焼結物粒子を1〜50質量%配合することが好ましく、10〜30質量部がより好ましい。マスターバッチは、熱可塑性樹脂で希釈して樹脂組成物を得ることを前提とした組成物であるため、四フッ化ポリエチレン焼結物粒子の他に、無機粒子、酸化防止剤やその他任意成分をさらに含んでも良い。また、無機粒子をマスターバッチに加工してから、他の成分と配合することもできる。
In another method for producing the resin composition of the present invention, for example, a masterbatch in which polyethylene tetrafluoride sintered particles are dispersed in a thermoplastic resin at a high concentration is prepared in advance, and then the thermoplastic resin and the inorganic particles are prepared. A resin composition can be prepared by blending the masterbatch with and kneading the masterbatch.
In the masterbatch, it is preferable to mix 1 to 50% by mass of the polyethylene tetrafluoride particles in a total of 100% by mass of the thermoplastic resin and the polyethylene tetrafluoride sintered particles, and 10 to 30 parts by mass is more. preferable. Since the masterbatch is a composition premised on diluting with a thermoplastic resin to obtain a resin composition, in addition to the tetrafluorinated polyethylene sintered particles, inorganic particles, antioxidants and other optional components are added. Further may be included. It is also possible to process the inorganic particles into a masterbatch and then mix them with other components.

<導電性樹脂組成物>
本発明の導電性樹脂組成物は、融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂、四フッ化ポリエチレン焼結物粒子、および導電性無機粒子を含む。
導電性樹脂組成物に配合する成分およその配合量等は、既に説明した通りである。
導電性樹脂組成物を溶融混練し、成形加工して作製した成形体は、導電性とスーパーエンプラ由来の強度を合わせ持つ。その用途は、例えば電子搬送用筐体、OA機器用ベルト部材、電子機器の導通スイッチが挙げられる。
<Conductive resin composition>
The conductive resin composition of the present invention contains a thermoplastic resin having a melting point of 275 ° C. or higher or a deflection temperature under load of 150 ° C. or higher, polyethylene tetrafluoride sintered particles, and conductive inorganic particles.
The approximate blending amount and the like of the components to be blended in the conductive resin composition are as described above.
A molded product produced by melt-kneading a conductive resin composition and molding it has both conductivity and strength derived from super engineering plastics. Applications include, for example, electronic transport housings, belt members for OA equipment, and continuity switches for electronic equipment.

<熱伝導性樹脂組成物>
本発明の熱伝導性樹脂組成物は、融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂、四フッ化ポリエチレン焼結物粒子、および熱伝導性無機粒子を含む。
熱伝導性樹脂組成物に配合する成分およその配合量等は、既に説明した通りである。
熱伝導性樹脂組成物を溶融混練し、成形加工して作製した成形体は、熱伝導性とスーパーエンプラ由来の強度と耐熱性を合わせ持つ。その用途は、例えばLED反射板、電子機器の筐体、モーター等の発熱体の外装部材、ICチップ保護部材、回転体の軸部材が挙げられる。
<Thermal conductive resin composition>
The thermally conductive resin composition of the present invention includes a thermoplastic resin having a melting point of 275 ° C. or higher or a deflection temperature under load of 150 ° C. or higher, polyethylene tetrafluoride sintered particles, and thermally conductive inorganic particles.
The approximate blending amount and the like of the components to be blended in the heat conductive resin composition are as described above.
The molded product produced by melt-kneading the thermally conductive resin composition and molding it has both thermal conductivity and strength and heat resistance derived from super engineering plastics. Applications include, for example, LED reflectors, housings for electronic devices, exterior members of heating elements such as motors, IC chip protection members, and shaft members of rotating bodies.

<成形体の製造方法>
本発明の成形体の製造方法は、融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂、四フッ化ポリエチレン焼結物粒子、および無機粒子を溶融混練し、成形加工を行う。
成形体の製造は、例えば、樹脂組成物をそのまま溶融混練して成形する方法、樹脂組成物に希釈樹脂を追加して成形する方法が挙げられる。希釈樹脂は、スーパーエンプラが好ましい。
溶融混練温度は、250〜450℃が好ましい。
<Manufacturing method of molded product>
In the method for producing a molded product of the present invention, a thermoplastic resin having a melting point of 275 ° C. or higher or a deflection temperature under load of 150 ° C. or higher, polyethylene tetrafluoride sintered particles, and inorganic particles are melt-kneaded and molded.
Examples of the production of the molded product include a method of melting and kneading the resin composition as it is and molding the molded product, and a method of adding a diluted resin to the resin composition and molding the molded product. The diluted resin is preferably super engineering plastic.
The melt-kneading temperature is preferably 250 to 450 ° C.

成形加工は、例えば射出成形、フィルム、シート成形、ブロー成形、押出成形、紡糸等が挙げられる。成形体の形状は、板状、棒状、繊維、チューブ、パイプ、ボトル、フィルム形状が挙げられる。また、シート成形した成形体に対し、真空成形機を使用して後加工するとも好ましい。これらの中でも成形する際の目ヤニを効果的に抑制できる面でフィルム、シート成形、異形押出し成形が好ましい。
成形機は、成形方法に応じた公知の成形機を使用できる。例えば射出成形機、ブロー成形機、圧縮成形機、Tダイシート成形機、インフレーション成形機、コンプレッション成形機、カレンダー成形機、紡糸成形機が挙げられる。
Examples of the molding process include injection molding, film, sheet molding, blow molding, extrusion molding, spinning and the like. Examples of the shape of the molded product include plate shape, rod shape, fiber, tube, pipe, bottle, and film shape. It is also preferable that the sheet-molded molded product is post-processed using a vacuum forming machine. Among these, film, sheet molding, and deformed extrusion molding are preferable in terms of effectively suppressing rheumatism during molding.
As the molding machine, a known molding machine according to the molding method can be used. Examples thereof include injection molding machines, blow molding machines, compression molding machines, T-die sheet molding machines, inflation molding machines, compression molding machines, calendar molding machines, and spinning molding machines.

得られた成形体は、既に説明した導電性用途および熱伝導性用途に加え、例えば遮光用途、ガス透過用途、ガス吸着用途にも使用することが好ましい。 The obtained molded product is preferably used for, for example, a light-shielding application, a gas permeation application, and a gas adsorption application, in addition to the conductive application and the heat conductive application described above.

以下の実施例により、本発明をさらに詳細に説明するが、以下の実施例は、本発明を何ら制限するものではない。なお、実施例中、「部」は「質量部」を示し、「%」は「質量%」を示す。表中の配合量は、質量%である。 The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention in any way. In the examples, "parts" indicates "parts by mass" and "%" indicates "% by mass". The blending amount in the table is mass%.

[実施例1]
(樹脂組成物の製造)
熱可塑性樹脂(A1)48.9%および無機フィラー(B1)50%、四フッ化ポリエチレン焼結物粒子(C1)1%、添加剤(D4)0.1%をスーパーミキサー(カワタ社製)に投入し、25℃にて3分間撹拌して混合物を得た。次いで前記混合物を二軸押出し機(日本プラコン社製)に投入し、320℃で混錬し、吐出物をペレタイザーでカットすることでペレット状の樹脂組成物E1を得た。
[Example 1]
(Manufacturing of resin composition)
Supermixer (manufactured by Kawata) containing 48.9% of thermoplastic resin (A1), 50% of inorganic filler (B1), 1% of sintered tetrafluoride particles (C1), and 0.1% of additive (D4). And stirred at 25 ° C. for 3 minutes to obtain a mixture. Next, the mixture was put into a twin-screw extruder (manufactured by Nippon Placon Co., Ltd.), kneaded at 320 ° C., and the discharged product was cut with a pelletizer to obtain a pellet-shaped resin composition E1.

(成形体F1の作製)
樹脂組成物E1を、150mm幅のT型フィッシュテールダイスを装着したラボプラストミル(東洋精機製作所社製)を表1に示す混練温度300℃に設定し、幅15cm×長さ1m×厚み0.2mmのシート形状の成形体F1を作製した。
(Preparation of molded product F1)
The resin composition E1 was set at a kneading temperature of 300 ° C. shown in Table 1 on a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a 150 mm wide T-shaped fishtail die, and the width was 15 cm, the length was 1 m, and the thickness was 0. A 2 mm sheet-shaped molded body F1 was produced.

[実施例2〜15]および[比較例1〜6]
実施例1の熱可塑性樹脂(A)、無機粒子(B)、四フッ化ポリエチレン焼結物粒子(C)、添加剤(D)を表1および表2に記載された原料および配合量に変更した以外は、実施例1と同様に行うことでそれぞれ樹脂組成物(E2)〜(E26)を作製した。
ただし、実施例1〜3、5、7〜16は参考例である。
[Examples 2 to 15] and [Comparative Examples 1 to 6]
The thermoplastic resin (A), inorganic particles (B), polyethylene tetrafluoride sintered particles (C), and additive (D) of Example 1 were changed to the raw materials and blending amounts shown in Tables 1 and 2. Resin compositions (E2) to (E26) were prepared in the same manner as in Example 1 except for the above.
However, Examples 1, 3, 5, 7 to 16 are reference examples.

得られた樹脂組成物(E2)〜(E26)を使用して、実施例1と同様に表1または表2に示す混練温度に設定し、幅15cm×長さ1m×厚み0.2mmのシート形状の成形体(F2)〜(F26)を作製した。 Using the obtained resin compositions (E2) to (E26), the kneading temperature shown in Table 1 or Table 2 was set in the same manner as in Example 1, and a sheet having a width of 15 cm, a length of 1 m, and a thickness of 0.2 mm was set. Molded bodies (F2) to (F26) having a shape were produced.

実施例で使用した原料は、以下の通りである。
<熱可塑性樹脂(A)>
(A1)ナイロン9T(製品名:N1001A、密度1.11g/cm3、融点:300℃ クラレ社製)
(A2)ポリアリレート(製品名:U−100、荷重たわみ温度:177℃、密度:1.21g/cm3 ユニチカ社製)
(A3)ポリフェニレンサルファイド(製品名:FZ−2100、密度:1.35、融点:280℃、荷重たわみ温度:110℃、DIC社製)
(A4)ポリエーテルサルホン(製品名:E1010、密度:1.37、荷重たわみ温度:200℃、BASF社製)
(A5)ポリエーテルエーテルケトン(製品名:1000P、密度:1.30、融点:340℃、荷重たわみ温度:155℃、エボニック・インダストリー社製)
The raw materials used in the examples are as follows.
<Thermoplastic resin (A)>
(A1) Nylon 9T (Product name: N1001A, Density 1.11 g / cm 3 , Melting point: 300 ° C, manufactured by Kuraray)
(A2) Polyarylate (Product name: U-100, Deflection temperature under load: 177 ° C, Density: 1.21 g / cm 3 manufactured by Unitika Ltd.)
(A3) Polyphenylene sulfide (Product name: FZ-2100, Density: 1.35, Melting point: 280 ° C, Deflection temperature under load: 110 ° C, manufactured by DIC Corporation)
(A4) Polyester salphon (Product name: E1010, Density: 1.37, Deflection temperature under load: 200 ° C, manufactured by BASF)
(A5) Polyetheretherketone (Product name: 1000P, Density: 1.30, Melting point: 340 ° C, Deflection temperature under load: 155 ° C, manufactured by Evonik Industries, Ltd.)

<無機粒子(B)>
(B1)二酸化チタン(JR1000、平均粒子径 1μm、テイカ社製)
(B2)酸化マグネシウム(CX−150、平均粒子径 3.5μm、神島化学工業製)
(B3)カーボンブラック(ensaco250G、平均粒子径 0.3μm、イメリス・ジーシー・ジャパン社製、)
(B4)Pigment blue #29(青色顔料、平均粒子径 2μm)
<Inorganic particles (B)>
(B1) Titanium dioxide (JR1000, average particle size 1 μm, manufactured by TAYCA)
(B2) Magnesium oxide (CX-150, average particle size 3.5 μm, manufactured by Konoshima Chemical Co., Ltd.)
(B3) Carbon black (ensaco250G, average particle size 0.3 μm, manufactured by Imerys GC Japan Co., Ltd.)
(B4) Pigment blue # 29 (blue pigment, average particle size 2 μm)

<四フッ化ポリエチレン焼結物粒子(C)>
(C1)四フッ化ポリエチレン焼結物粒子(KT−600M、喜多村社製)平均粒子径:14μm、平板状粒子
(C2)四フッ化ポリエチレン焼結物粒子(KTL−610A、喜多村社製)平均粒子径:12μm、球状粒子
(C3)四フッ化ポリエチレン焼結物粒子(KT−300M、喜多村社製)平均粒子径:40μm、鱗片状粒子
(C4)四フッ化ポリエチレン焼結物粒子(KTL−4N、喜多村社製)平均粒子径:3μm、球状粒子
<Polyethylene tetrafluoride sintered particles (C)>
(C1) Polyethylene tetrafluoride sintered particles (KT-600M, manufactured by Kitamura) Average particle size: 14 μm, flat particles (C2) Polyethylene tetrafluoride sintered particles (KTL-610A, manufactured by Kitamura) average Particle size: 12 μm, spherical particles (C3) tetrafluoride polyethylene sintered particles (KT-300M, manufactured by Kitamura) Average particle size: 40 μm, scaly particles (C4) tetrafluoride polyethylene sintered particles (KTL-) 4N, manufactured by Kitamura Co., Ltd.) Average particle size: 3 μm, spherical particles

<添加剤(D)>
(D1)ステアリン酸マグネシウム(太平化学産業社製)
(D2)四フッ化ポリエチレン(FX5910A、3M社製)
(D3)シリコーンオイル(TSF451−10000ST、東芝シリコーン社製)
(D4)酸化防止剤(IRGANOX B225、BASF社製)
<Additive (D)>
(D1) Magnesium stearate (manufactured by Taihei Kagaku Sangyo Co., Ltd.)
(D2) Polyethylene tetrafluoride (FX5910A, manufactured by 3M)
(D3) Silicone oil (TSF451-10000ST, manufactured by Toshiba Silicone Co., Ltd.)
(D4) Antioxidant (IRGANOX B225, manufactured by BASF)

得られた樹脂組成物および成形体を下記項目で評価した。 The obtained resin composition and molded product were evaluated by the following items.

<目ヤニ試験>
150mm幅のT型フィッシュテールダイスを装着したラボプラストミル(東洋精機製作所社製)を表1または表2に示す混練温度に設定し、フルフライトスクリュー回転数80rpmで得られた樹脂組成物300gを投入し、厚さ0.2mmのシート成形物に押出した後、ダイリップへの異物(目ヤニ)付着の有無を観察した。
○:目ヤニが無い
×:目ヤニが付着した
<Rheum test>
A lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a 150 mm wide T-shaped fishtail die was set to the kneading temperature shown in Table 1 or Table 2, and 300 g of the resin composition obtained at a full flight screw rotation speed of 80 rpm was applied. After being charged and extruded into a sheet molded product having a thickness of 0.2 mm, the presence or absence of foreign matter (eye tar) adhering to the die lip was observed.
○: No rheumatism ×: Rheum adhered

<堆積試験>
150mm幅のT型フィッシュテールダイスを装着したラボプラストミル(東洋精機製作所社製)を表1または表2に示す混練温度に設定し、フルフライトスクリュー回転数80rpmの条件下、得られた樹脂組成物300gを投入し、厚さ0.2mmのシート成形物に押出した。次に、樹脂組成物で使用した熱可塑性樹脂のみ3000gを同条件で押出し、ダイスを分解し、内部のフィッシュテール部を観察した。なお、T型フィッシュテールダイス内部に残存している樹脂組成物が堆積物である。
○:内部に堆積物の付着が無い
×:内部に堆積物の付着が有る
<Sedimentation test>
A lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a 150 mm wide T-shaped fishtail die was set to the kneading temperature shown in Table 1 or Table 2, and the obtained resin composition was obtained under the condition of a full flight screw rotation speed of 80 rpm. 300 g of the product was charged and extruded into a sheet molded product having a thickness of 0.2 mm. Next, 3000 g of only the thermoplastic resin used in the resin composition was extruded under the same conditions, the die was decomposed, and the fish tail portion inside was observed. The resin composition remaining inside the T-shaped fishtail die is a deposit.
◯: No deposits inside ×: Deposits inside

<測色値>
二酸化チタンを使用した成形体Fについて、色差計(NIPPONDENSHOKU社製、SpectroColorMeterSE2000)を用いてJIS Z8729で規定されるL***表色系における明度(L*)を測定した。L値とは、国際照明委員会の定めたCIE1976L***(CIELAB)の色空間で示される明度を表し、L*=0は黒を表し、L*=100は白を示す。なお、有機物は熱劣化により茶色または黒色へと変色し、L*値が低下する。つまり、成形体FがL*値がより高い値を示す場合は熱劣化の抑制を指し、L*値が低くなった場合は、有機物の熱劣化を指す。
<Color measurement value>
For the molded product F using titanium dioxide, the lightness (L * ) in the L * a * b * color system defined by JIS Z8729 was measured using a color difference meter (SpectroColorMeterSE2000, manufactured by NIPPONDENSHOKU). The L value represents the brightness indicated in the color space of CIE1976L * a * b * (CIELAB) defined by the International Commission on Illumination , L * = 0 represents black, and L * = 100 represents white. The organic matter turns brown or black due to thermal deterioration, and the L * value decreases. That is, when the molded product F shows a higher L * value, it means suppression of thermal deterioration, and when the L * value is lower, it means thermal deterioration of an organic substance.

<引張破壊点伸び率および引張り破壊点強度測定>
得られた成形体Fについて、JIS K−6251に規定されている2号ダンベル型に打抜いて厚さ0.2mmの試験片を準備した。次いで、得られた試験片を使用してJIS K−7127に準じて、引張り速度100mm/分の条件で、引張破壊点伸び率および引張破壊点強度を測定した。引張破壊点伸び率は、試験前の試験片の長さを100%とし、その状態から120%の長さになった場合、伸び率20%と表記した。引張破壊点伸び率および引張破壊点強度の数値が低いほど試験片の機械強度が不足している。樹脂組成物を製造する際、熱可塑性樹脂が加水分解することによる劣化、堆積物または目ヤニの発生による異物多く含まれることが理由である。
<Measurement of tensile fracture point elongation and tensile fracture point strength>
The obtained molded product F was punched into a No. 2 dumbbell mold specified in JIS K-6251 to prepare a test piece having a thickness of 0.2 mm. Then, using the obtained test piece, the tensile fracture point elongation rate and the tensile fracture point strength were measured under the condition of a tensile speed of 100 mm / min according to JIS K-7127. The tensile fracture point elongation rate was expressed as an elongation rate of 20% when the length of the test piece before the test was 100% and the length was 120% from that state. The lower the values of tensile fracture point elongation and tensile fracture point strength, the insufficient the mechanical strength of the test piece. The reason is that when the resin composition is produced, a large amount of foreign matter is contained due to deterioration due to hydrolysis of the thermoplastic resin and generation of deposits or rheumatism.

Figure 0006891461
Figure 0006891461

Figure 0006891461
Figure 0006891461

<熱伝導率>
熱伝導性無機粒子を使用した成形体F10、F24について、ホットディスク法熱物性測定装置(TPS−500 京都電子工業製)を使用して、成形体の熱伝導率(W/mK)を測定した。なお、測定には直径7mmφのセンサーを用いた。
<Thermal conductivity>
For the molded bodies F10 and F24 using the heat conductive inorganic particles, the thermal conductivity (W / mK) of the molded body was measured using a hot disk method thermophysical property measuring device (TPS-500 manufactured by Kyoto Denshi Kogyo). .. A sensor having a diameter of 7 mmφ was used for the measurement.

<表面抵抗率>
導電性無機粒子を使用した成形体F11およびF25について、抵抗率計「ロレスタGP」(0.5cm間隔の4端子プローブ)を用い、成形体の表面抵抗率(Ω/□)を測定した。
<Surface resistivity>
The surface resistivity (Ω / □) of the molded products F11 and F25 using the conductive inorganic particles was measured using a resistivity meter “Loresta GP” (4-terminal probe at 0.5 cm intervals).

Figure 0006891461
Figure 0006891461

表1および表2の結果から、実施例1〜16は、特定の割合で無機粒子及び四フッ化ポリエチレン焼結物粒子を使用することにより目ヤニ及び堆積物を抑制されていることがわかる。熱可塑性樹脂の結晶性を問わず、種々のスーパーエンプラに対し目ヤニを抑制する効果があることがわかる。特に、球状の四フッ化ポリエチレン焼結物粒子を使用した実施例4と実施例6では、引張試験での物性向上を確認できた。
一方、比較例1〜5の樹脂組成物を使用した成形品は、目ヤニ試験、堆積物試験を満たすもの無く、さらに機械強度も実施例と比較して低い値をとった。
また表3の結果から実施例10,11は、比較例4,5と比較して熱伝導性または導電性に優れた成形体を得られることがわかる。
From the results of Tables 1 and 2, it can be seen that in Examples 1 to 16, rheumatism and deposits were suppressed by using the inorganic particles and the polyethylene tetrafluoride sintered particles in a specific ratio. It can be seen that regardless of the crystallinity of the thermoplastic resin, it has an effect of suppressing rheumatism on various super engineering plastics. In particular, in Examples 4 and 6 in which spherical polyethylene tetrafluoride sintered particles were used, it was confirmed that the physical properties were improved in the tensile test.
On the other hand, the molded products using the resin compositions of Comparative Examples 1 to 5 did not satisfy the rheumatism test and the deposit test, and the mechanical strength was lower than that of the examples.
Further, from the results in Table 3, it can be seen that Examples 10 and 11 can obtain molded articles having excellent thermal conductivity or conductivity as compared with Comparative Examples 4 and 5.

Claims (5)

融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂、四フッ化ポリエチレン焼結物粒子、および導電性無機粒子を含み、
前記四フッ化ポリエチレン焼結物粒子は、球状粒子であり、
前記導電性無機粒子は、平均粒子径が0.001〜200μmであり、
熱可塑性樹脂は、ナイロン9T、ポリフェニレンサルファイド、ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルファイド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリアリレート、液晶ポリマー、およびポリフッ化ビニリデンからなる群より選ばれる少なくともいずれかであり、
樹脂組成物100質量%中の、前記前記四フッ化ポリエチレン焼結物粒子の含有率は、0.1〜10質量%である、導電性樹脂組成物。
Contains thermoplastic resins with a melting point of 275 ° C or higher or a deflection temperature under load of 150 ° C or higher, polyethylene tetrafluoride sintered particles, and conductive inorganic particles.
The polyethylene tetrafluoride sintered particles are spherical particles and are spherical particles.
The conductive inorganic particles have an average particle diameter of 0.001 to 200 μm and have an average particle diameter of 0.001 to 200 μm.
The thermoplastic resin is at least one selected from the group consisting of nylon 9T, polyphenylene sulfide, polyphenylene ether, polysulfone, polyethersulfide, polyetherimide, polyamideimide, polyetheretherketone, polyarylate, liquid crystal polymer, and polyvinylidene fluoride. It is
The conductive resin composition in which the content of the tetrafluorinated polyethylene sintered particles in 100% by mass of the resin composition is 0.1 to 10% by mass.
融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂、四フッ化ポリエチレン焼結物粒子、および熱伝導性無機粒子を含み、
前記四フッ化ポリエチレン焼結物粒子は、球状粒子であり、
前記熱伝導性無機粒子は、平均粒子径が0.001〜200μmであり、
熱可塑性樹脂は、ナイロン9T、ポリフェニレンサルファイド、ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルファイド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリアリレート、液晶ポリマー、およびポリフッ化ビニリデンからなる群より選ばれる少なくともいずれかであり、
樹脂組成物100質量%中の、前記前記四フッ化ポリエチレン焼結物粒子の含有率は、0.1〜10質量%である、熱伝導性樹脂組成物。
Contains thermoplastic resins with a melting point of 275 ° C or higher or a deflection temperature under load of 150 ° C or higher, polyethylene tetrafluoride sintered particles, and thermally conductive inorganic particles.
The polyethylene tetrafluoride sintered particles are spherical particles and are spherical particles.
The thermally conductive inorganic particles have an average particle diameter of 0.001 to 200 μm and have an average particle diameter of 0.001 to 200 μm.
The thermoplastic resin is at least one selected from the group consisting of nylon 9T, polyphenylene sulfide, polyphenylene ether, polysulfone, polyethersulfide, polyetherimide, polyamideimide, polyetheretherketone, polyarylate, liquid crystal polymer, and polyvinylidene fluoride. It is
The heat conductive resin composition in which the content of the tetrafluoropolyethylene sintered particles in 100% by mass of the resin composition is 0.1 to 10% by mass.
前記四フッ化ポリエチレン焼結物粒子の平均粒子径が0.1〜100μmである、請求項1または2記載の樹脂組成物。The resin composition according to claim 1 or 2, wherein the average particle size of the polyethylene tetrafluoride sintered particles is 0.1 to 100 μm. 前記融点275℃以上または荷重たわみ温度が150℃以上の熱可塑性樹脂、前記無機粒子および四フッ化ポリエチレン焼結物粒子の合計100質量%中に前記無機粒子を0.1〜80質量%含む、請求項1〜3いずれか1項に記載の樹脂組成物。The inorganic particles are contained in an amount of 0.1 to 80% by mass in a total of 100% by mass of the thermoplastic resin having a melting point of 275 ° C. or higher or a deflection temperature under load of 150 ° C. or higher, the inorganic particles, and the polyethylene tetrafluoride sintered particles. The resin composition according to any one of claims 1 to 3. さらに酸化防止剤を含む、請求項1〜4いずれか1項に記載の樹脂組成物。The resin composition according to any one of claims 1 to 4, further comprising an antioxidant.
JP2016224647A 2016-11-18 2016-11-18 Resin composition Active JP6891461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016224647A JP6891461B2 (en) 2016-11-18 2016-11-18 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016224647A JP6891461B2 (en) 2016-11-18 2016-11-18 Resin composition

Publications (2)

Publication Number Publication Date
JP2018080292A JP2018080292A (en) 2018-05-24
JP6891461B2 true JP6891461B2 (en) 2021-06-18

Family

ID=62197945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016224647A Active JP6891461B2 (en) 2016-11-18 2016-11-18 Resin composition

Country Status (1)

Country Link
JP (1) JP6891461B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950328A4 (en) * 2019-03-26 2022-06-01 Mitsubishi Chemical Corporation Thermally conductive resin sheet, layered thermal radiation sheet, heat-dissipating circuit base board, and power semiconductor device
JP6879438B1 (en) * 2019-08-08 2021-06-02 三菱瓦斯化学株式会社 Polyimide resin composition and molded product

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214067A (en) * 2000-02-01 2001-08-07 Daicel Chem Ind Ltd Transparent thermoplastic resin composition with excellent mechanical properties
JP4655435B2 (en) * 2001-08-31 2011-03-23 東ソー株式会社 Polyphenylene sulfide resin composition
JP2006046430A (en) * 2004-08-03 2006-02-16 Ntn Corp Dynamic pressure bearing device
WO2006013817A1 (en) * 2004-08-03 2006-02-09 Ntn Corporation Dynamic pressure bearing device
JP4747634B2 (en) * 2005-03-29 2011-08-17 東レ株式会社 Polyarylene sulfide resin composition
JP5014610B2 (en) * 2005-10-14 2012-08-29 株式会社クラレ Polyamide resin composition and molded product thereof
JP2008050488A (en) * 2006-08-25 2008-03-06 Unitika Ltd Resin composition and molded product obtained by molding the same
JP5759239B2 (en) * 2010-04-27 2015-08-05 ミネベア株式会社 Non-lubricated plain bearing with self-lubricating liner
JP5780370B2 (en) * 2013-08-06 2015-09-16 三菱瓦斯化学株式会社 Polyimide resin composition and polyimide resin-fiber composite
JP2015081331A (en) * 2013-10-24 2015-04-27 ポリプラスチックス株式会社 Resin composition and coating material prepared using the same

Also Published As

Publication number Publication date
JP2018080292A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6860774B2 (en) Fused Deposition Modeling Filament Manufacturing Method for 3D Printers
US8808580B2 (en) Thermoplastic and/or elastomeric composite based on carbon nanotubes and graphenes
EP2627700B1 (en) Polymer compositions comprising poly(arylether ketone)s and graphene materials
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
Mahmoud et al. Design and testing of high‐density polyethylene nanocomposites filled with lead oxide micro‐and nano‐particles: Mechanical, thermal, and morphological properties
CN104981503A (en) Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
Inuwa et al. Characterization and mechanical properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites
WO2013105757A1 (en) Resin composition for emi shielding, comprising carbon hydride composite
JP2006274073A (en) Resin composition, resin molded product of the same and manufacturing method
US9576706B2 (en) Method for preparing carbon nano material/polymer composites
KR20170127528A (en) Process for the preparation of composite articles having enhanced electrical properties
Almuallim et al. Thermally conductive polymer nanocomposites for filament-based additive manufacturing
TW201339221A (en) Production method for conductive resin composition, and conductive resin composition
JP6891461B2 (en) Resin composition
JP2016108524A (en) Conductive resin composition, conductive master batch, molded body, and production method of the same
KR101154502B1 (en) Thermoplastic polymer composite having improved barrier properties and electrical conductivity and the product made therefrom
CA3015359A1 (en) Highly filled polymeric concentrates
CN114729171B (en) Dispersion, method for producing dispersion, and molded article
US20230212395A1 (en) Compatibilized polymer compositions
EP2986667A1 (en) Fluororesin and mesoporous silica composition and molded product thereof
EP3272533B1 (en) Method of making a polymer composite
CN109071937B (en) Compatibilized polymer composition
US11214658B2 (en) Additive coated particles for low cost high performance materials
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
JP2016188359A (en) Polyether aromatic ketone resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R151 Written notification of patent or utility model registration

Ref document number: 6891461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350