JP6889575B2 - Cerium oxide nanoparticles, their production methods, dispersions and resin complexes - Google Patents

Cerium oxide nanoparticles, their production methods, dispersions and resin complexes Download PDF

Info

Publication number
JP6889575B2
JP6889575B2 JP2017042448A JP2017042448A JP6889575B2 JP 6889575 B2 JP6889575 B2 JP 6889575B2 JP 2017042448 A JP2017042448 A JP 2017042448A JP 2017042448 A JP2017042448 A JP 2017042448A JP 6889575 B2 JP6889575 B2 JP 6889575B2
Authority
JP
Japan
Prior art keywords
cerium oxide
acid
oxide nanoparticles
hydroxyl group
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017042448A
Other languages
Japanese (ja)
Other versions
JP2018145057A (en
Inventor
明宏 戸田
明宏 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Printing Ink Mfg Co Ltd
Original Assignee
Tokyo Printing Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Printing Ink Mfg Co Ltd filed Critical Tokyo Printing Ink Mfg Co Ltd
Priority to JP2017042448A priority Critical patent/JP6889575B2/en
Publication of JP2018145057A publication Critical patent/JP2018145057A/en
Application granted granted Critical
Publication of JP6889575B2 publication Critical patent/JP6889575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、酸化セリウムナノ粒子、その製造方法、酸化セリウムナノ粒子の分散体および樹脂複合体に関する。 The present invention relates to cerium oxide nanoparticles, a method for producing the same, a dispersion of cerium oxide nanoparticles, and a resin complex.

近年、金属酸化物のナノ粒子は、光学材料、電子部品材料、磁気記録材料、触媒材料、紫外線や近赤外吸収材料など様々な材料の高機能化や高性能化に寄与するものとして非常に注目されている。 In recent years, nanoparticles of metal oxides have greatly contributed to higher functionality and higher performance of various materials such as optical materials, electronic component materials, magnetic recording materials, catalyst materials, and ultraviolet and near-infrared absorbing materials. Attention has been paid.

これらの金属酸化物の中で酸化セリウムは、ガラス基板、アルミナ基板等の研磨材、紫外線吸収剤、酸化触媒等として有用で、そのナノ粒子についても種々検討されている。 Among these metal oxides, cerium oxide is useful as an abrasive for glass substrates, alumina substrates, etc., an ultraviolet absorber, an oxidation catalyst, and the like, and its nanoparticles have also been studied in various ways.

例えば、特許文献1には、粒子成長調整剤の存在下でセリウム水酸化物ゲルの分散液を調製する工程を含む酸化セリウムゾルの製造方法が提案されているが、その実施例によると得られた酸化セリウムナノ粒子は、実施例1で平均粒子径22nm 、結晶子径18.5nm、実施例2では平均粒子径50nm、結晶子径33nmと、ナノ粒子としては比較的大きな粒径のものしか得られていないうえ、そのゾルは水中におけるもので有機溶媒、モノマー等における分散性については一切記載がない。 なお、特許文献1では、粒子成長調整剤としてカルボン酸またはカルボン酸塩、ヒドロキシカルボン酸、ヒドロキシカルボン酸塩が用いられ、具体的には、蟻酸、酢酸、蓚酸、アクリル酸(不飽和カルボン酸)、グルコン酸等のモノカルボン酸およびモノカルボン酸塩、リンゴ酸、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、などの多価カルボン酸および多価カルボン酸塩等、α−乳酸、β−乳酸、γ−ヒドロキシ吉草酸、グリセリン酸、酒石酸、クエン酸、トロパ酸、ベンジル酸のヒドロキシカルボン酸およびヒドロキシカルボン酸塩が例示されている。 For example, Patent Document 1 proposes a method for producing a cerium oxide sol, which comprises a step of preparing a dispersion liquid of a cerium hydroxide gel in the presence of a particle growth modifier, and the method was obtained according to the examples. The cerium oxide nanoparticles had an average particle diameter of 22 nm and a crystallite diameter of 18.5 nm in Example 1, and an average particle diameter of 50 nm and a crystallite diameter of 33 nm in Example 2, so that only nanoparticles having a relatively large particle size could be obtained. In addition, the sol is in water and there is no description about its dispersibility in organic solvents, monomers, etc. In Patent Document 1, a carboxylic acid or a carboxylic acid salt, a hydroxycarboxylic acid, or a hydroxycarboxylic acid salt is used as a particle growth modifier, and specifically, formic acid, acetic acid, oxalic acid, and acrylic acid (unsaturated carboxylic acid). , Monocarboxylic acids such as gluconic acid and monocarboxylic acids, polycarboxylic acids such as malic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, etc. And, such as polyvalent carboxylic acid salt, α-lactic acid, β-lactic acid, γ-hydroxyvaleric acid, glyceric acid, tartrate acid, citric acid, tropic acid, hydroxycarboxylic acid of benzylic acid and hydroxycarboxylic acid salt are exemplified.

そこで、特許文献2には、有機溶媒にも分散する酸化セリウムナノ粒子の製造方法として、セリウム−界面活性剤錯化合物を生成する工程を含む製造方法が提案され、その界面活性剤として「オレイン酸、カプリル酸、デカン酸、ステアリン酸、トリオクチルホスフィンオキシド(TOPO)、トリフェニルホスフィン(TPP)、トリオクチルホスフィン(TOP)、及びオレイルアミン、オクチルアミン、ヘキサデシルアミン、トリアルキルアミンのようなアルキルアミン(RNH2)(式中、Rは3乃至18個の炭素からなるアルキル基)の群から選択されるいずれか一つまたはそれらの混合物」が挙げられている。 しかしながら、実施例によるとこの方法で得られた酸化セリウムナノ粒子をトルエン、ヘキサンおよびオクタンなどの有機溶媒に分散させたと記載されているのみで、これら以外の極性の高い溶媒やモノマー中での分散性については記載がない。 Therefore, Patent Document 2 proposes a production method including a step of producing a cerium-surfactant complex compound as a method for producing cerium oxide nanoparticles that are also dispersed in an organic solvent, and as the surfactant, "oleic acid, Capricic acid, decanoic acid, stearic acid, trioctylphosphine oxide (TOPO), triphenylphosphine (TPP), trioctylphosphine (TOP), and alkylamines such as oleylamine, octylamine, hexadecylamine, trialkylamine ( RNH2) (in the formula, R is an alkyl group consisting of 3 to 18 carbons), any one selected from the group, or a mixture thereof. However, according to the examples, it is only described that the cerium oxide nanoparticles obtained by this method are dispersed in an organic solvent such as toluene, hexane and octane, and the dispersibility in a highly polar solvent or monomer other than these is described. There is no description about.

また、特許文献3には、「約20℃以下の初期温度で、第一セリウムイオン源、水酸化物イオン源、ナノ粒子安定剤の少なくとも1つ、及び酸化剤を含む水性反応混合物を提供する工程」を含む二酸化セリウムナノ粒子の製造方法が提案され、ナノ粒子安定剤として、アルコキシ置換カルボン酸、またはα−ヒドロキシカルボン酸、α−ケトカルボン酸、ポリカルボン酸及びその混合物からなる群から選択されるもの、またはエチレンジアミン四酢酸、グルコン酸、乳酸、酒石酸、ピルビン酸、クエン酸、及びその混合物からなる群から選択されるもの、が挙げられている。 しかしながら、その用途が主としてディーゼル燃料添加剤であるため、ディーゼル燃料を含む非極性溶媒には分散すると考えられるが、極性の高い溶媒等への分散性については記載がない。 Further, Patent Document 3 provides an aqueous reaction mixture containing a first cerium ion source, a hydroxide ion source, at least one of a nanoparticle stabilizer, and an oxidizing agent at an initial temperature of about 20 ° C. or lower. A method for producing cerium dioxide nanoparticles including the "step" is proposed, and the nanoparticle stabilizer is selected from the group consisting of an alkoxy-substituted carboxylic acid or an α-hydroxycarboxylic acid, an α-ketocarboxylic acid, a polycarboxylic acid and a mixture thereof. , Or those selected from the group consisting of ethylenediamine tetraacetic acid, gluconic acid, lactic acid, tartaric acid, pyruvate, citric acid, and mixtures thereof. However, since its use is mainly as a diesel fuel additive, it is considered that it is dispersed in a non-polar solvent containing diesel fuel, but there is no description about its dispersibility in a highly polar solvent or the like.

さらに、非特許文献1には、アンモニア水中でのセリウム−オレイン酸コンプレックスのhydrolytic condensationによる酸化セリウムナノ粒子の製造方法が提案され、得られた酸化セリウムナノ粒子は、surface oleate ligand(表面配位したオレイン酸残基)の疎水性により非極性溶媒に分散するとされている。 Further, Non-Patent Document 1 proposes a method for producing cerium oxide nanoparticles by a hydroxy condensation of a cerium-oleic acid complex in aqueous ammonia, and the obtained cerium oxide nanoparticles are obtained from a solvent oleate ligand (surface-coordinated oleic acid). It is said that it is dispersed in a non-polar solvent due to the hydrophobicity of the residue).

特開2006−182604号公報Japanese Unexamined Patent Publication No. 2006-182604 特開2009−511403号公報Japanese Unexamined Patent Publication No. 2009-511403 特表2010−502559号公報Special Table 2010-502559

Crystal Growth & Design 2008, Vol.8, No.10, 3725−3730Crystal Growth & Design 2008, Vol. 8, No. 10, 3725-3730

以上の従来技術では、これらの酸化セリウムナノ粒子は、水または非極性溶媒には分散するがエステル系、アルコール系といった極性溶媒に分散するとはされていないことから、トルエン等の非極性溶媒から、酢酸エチル、2−プロパノール等の極性溶媒まで幅広く分散する酸化セリウムナノ粒子が求められている。 In the above prior art, these cerium oxide nanoparticles are dispersed in water or a non-polar solvent, but are not dispersed in a polar solvent such as an ester-based or alcohol-based solvent. Therefore, acetic acid is used from a non-polar solvent such as toluene. There is a demand for cerium oxide nanoparticles that are widely dispersed in polar solvents such as ethyl and 2-propanol.

従って、本発明は、極性から非極性まで幅広い範囲の溶媒、モノマー等への分散性に優れた酸化セリウムナノ粒子、その製造方法、その分散体および樹脂複合体を提供することを課題とする。 Therefore, it is an object of the present invention to provide cerium oxide nanoparticles having excellent dispersibility in a wide range of solvents, monomers and the like from polar to non-polar, a method for producing the same, a dispersion thereof and a resin composite.

本発明者は、鋭意検討した結果、水酸基不含有カルボン酸および水酸基含有カルボン酸で表面処理した酸化セリウムナノ粒子が、極性から非極性まで幅広い範囲の溶媒、モノマー等に優れた分散性を示すことを見出し、本発明を完成した。 As a result of diligent studies, the present inventor has found that cerium oxide nanoparticles surface-treated with a hydroxyl group-free carboxylic acid and a hydroxyl group-containing carboxylic acid exhibit excellent dispersibility in a wide range of solvents, monomers, etc. from polar to non-polar. The heading, the present invention was completed.

すなわち、本発明は、
(1)水酸基不含有カルボン酸の金属塩および水酸基含有カルボン酸の金属塩をアンモニア水に溶解する工程と、
その得られた溶液に硝酸二アンモニウムセリウムの水溶液を添加する工程と、
その得られた混合物を水熱反応に供する工程と、
を含むことを特徴とする酸化セリウムナノ粒子の製造方法
(2)前記水酸基不含有カルボン酸が脂肪族モノカルボン酸または芳香族モノカルボン酸であることを特徴とする(1)記載の酸化セリウムナノ粒子の製造方法
(3)前記水酸基不含有カルボン酸の炭素数が3以上22以下であることを特徴とする(1)または(2)記載の酸化セリウムナノ粒子の製造方法
(4)前記水酸基含有カルボン酸が水酸基含有脂肪族モノカルボン酸であることを特徴とする(1)から(3)のいずれかに記載の酸化セリウムナノ粒子の製造方法
(5)前記水酸基含有カルボン酸の炭素数が6以上22以下であることを特徴とする(1)から(4)のいずれかに記載の酸化セリウムナノ粒子の製造方法
(6)(1)から(5)のいずれかの製造方法で得られた酸化セリウムナノ粒子を、有機溶媒、モノマーおよび重合性オリゴマーから選ばれた少なくとも一つを含有する分散媒中に分散させることを特徴とする酸化セリウムナノ粒子分散体の製造方法
(7)(1)から(5)のいずれかの製造方法で得られた酸化セリウムナノ粒子を、モノマーおよび重合性オリゴマーから選ばれた少なくとも一つを含有する分散媒中に分散させる工程と、
得られた分散体を重合させる工程と、
を含むことを特徴とする酸化セリウムナノ粒子分散樹脂複合体の製造方法
である。
That is, the present invention
(1) A step of dissolving a metal salt of a hydroxyl group-free carboxylic acid and a metal salt of a hydroxyl group-containing carboxylic acid in aqueous ammonia,
The step of adding an aqueous solution of diammonium cerium nitrate to the obtained solution, and
The step of subjecting the obtained mixture to a hydrothermal reaction and
A method for producing cerium oxide nanoparticles, which comprises
(2) The method for producing cerium oxide nanoparticles according to (1), wherein the hydroxyl group-free carboxylic acid is an aliphatic monocarboxylic acid or an aromatic monocarboxylic acid.
(3) The method for producing cerium oxide nanoparticles according to (1) or (2), wherein the hydroxyl group-free carboxylic acid has 3 or more and 22 or less carbon atoms.
(4) The method for producing cerium oxide nanoparticles according to any one of (1) to (3), wherein the hydroxyl group-containing carboxylic acid is a hydroxyl group-containing aliphatic monocarboxylic acid.
(5) The method for producing cerium oxide nanoparticles according to any one of (1) to (4), wherein the hydroxyl group-containing carboxylic acid has 6 or more and 22 or less carbon atoms.
(6) (1) the cerium oxide particles obtained in any of the manufacturing method of (5), Ru dispersed in a dispersion medium containing at least one selected from organic solvents, monomers and polymerizable oligomers A method for producing a cerium oxide nanoparticles dispersion, which is characterized by the above.
(7) A step of dispersing the cerium oxide nanoparticles obtained by any of the production methods (1) to (5) in a dispersion medium containing at least one selected from a monomer and a polymerizable oligomer.
The step of polymerizing the obtained dispersion and
A method for producing a cerium oxide nanoparticles-dispersed resin complex, which comprises.
Is.

本発明の酸化セリウムナノ粒子は、分散剤を用いなくても、非極性溶媒から極性溶媒にまで広範囲の有機溶媒、モノマーおよび重合性オリゴマー、更には樹脂への分散性に優れる。 従って、この酸化セリウムナノ粒子をモノマーや重合性オリゴマーに分散させて重合させたり、樹脂中に直接分散させることによって、紫外線吸収力を有し、かつ高屈折率で透明な材料を得ることができる。 また、環境汚染物質を減少させたり、燃焼性を改良するといった燃料添加剤にも適用できる。 The cerium oxide nanoparticles of the present invention are excellent in dispersibility in a wide range of organic solvents, monomers, polymerizable oligomers, and resins from non-polar solvents to polar solvents without using a dispersant. Therefore, by dispersing and polymerizing the cerium oxide nanoparticles in a monomer or a polymerizable oligomer, or by directly dispersing them in a resin, it is possible to obtain a transparent material having an ultraviolet absorbing power and a high refractive index. It can also be applied to fuel additives that reduce environmental pollutants and improve flammability.

本発明の酸化セリウムナノ粒子の透過型電子顕微鏡による観察結果である。It is the observation result by the transmission electron microscope of the cerium oxide nanoparticles of this invention. 本発明の酸化セリウムナノ粒子トルエン分散液の紫外−可視光吸収スペクトルである。It is an ultraviolet-visible light absorption spectrum of the cerium oxide nanoparticle toluene dispersion liquid of this invention.

以下、本発明を実施するための形態を詳細に説明する。 なお、本実施形態は、本発明を実施するための一形態に過ぎず、本発明は本実施形態によって限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更実施の形態が可能である。 Hereinafter, embodiments for carrying out the present invention will be described in detail. It should be noted that the present embodiment is only one embodiment for carrying out the present invention, and the present invention is not limited to the present embodiment, and various modified embodiments are provided without departing from the gist of the present invention. It is possible.

本発明の酸化セリウムナノ粒子は、水酸基不含有カルボン酸および水酸基含有カルボン酸で表面処理されていることを特徴とする。 The cerium oxide nanoparticles of the present invention are characterized in that they are surface-treated with a hydroxyl group-free carboxylic acid and a hydroxyl group-containing carboxylic acid.

本発明で用いる水酸基不含有カルボン酸としては、水酸基を含有しない脂肪族および芳香族のモノカルボン酸が挙げられ、脂肪族であれば、飽和、不飽和を問わず、枝分かれまたはフェニル基等の芳香族置換基を有してもよい炭素数が3から22のモノカルボン酸であり、有機溶媒、モノマー等への分散性を考慮するとその炭素数は6から22が好ましい。 より具体的には、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、オクチル酸、ペラルゴン酸、カプリン酸、ネオデカン酸、ウンデカン酸、ラウリン酸、トリデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、ヘプタデカン酸、ステアリン酸、ノナデカン酸、エイコサン酸、ヘネイコサン酸、ドコサン酸等の飽和モノカルボン酸、オレイン酸、リノール酸、リノレイン酸、魚油を鹸化分解して得られる脂肪酸等の不飽和脂肪酸およびそれらの幾何異性体、並びに、3−フェニルプロピオン酸、桂皮酸等が例示される。 また、水酸基不含有芳香族モノカルボン酸は、芳香環にカルボン酸残基が直接結合しているモノカルボン酸で、安息香酸、トルイル酸等が例示される。 Examples of the hydroxyl group-free carboxylic acid used in the present invention include hydroxyl group-free aliphatic and aromatic monocarboxylic acids, and if it is an aliphatic, it may be saturated or unsaturated, and has an aromatic such as branched or phenyl group. It is a monocarboxylic acid having 3 to 22 carbon atoms which may have a group substituent, and the carbon number is preferably 6 to 22 in consideration of dispersibility in an organic solvent, a monomer and the like. More specifically, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, octyl acid, pelargonic acid, capric acid, neodecanoic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, Saturated monocarboxylic acids such as heptadecanoic acid, stearic acid, nonadecanoic acid, eicosanoic acid, heneicosanoic acid, docosanoic acid, unsaturated fatty acids such as oleic acid, linoleic acid, linoleic acid, fatty acids obtained by saponification and decomposition of fish oil, and theirs. Geometric isomers, 3-phenylpropionic acid, cinnamic acid and the like are exemplified. Further, the hydroxyl group-free aromatic monocarboxylic acid is a monocarboxylic acid in which a carboxylic acid residue is directly bonded to an aromatic ring, and examples thereof include benzoic acid and toluic acid.

本発明で用いる水酸基含有カルボン酸としては、飽和、不飽和を問わず、枝分かれまたはフェニル基等の芳香族置換基を有してもよい炭素数が6から22の水酸基含有脂肪族モノカルボン酸が好ましく、具体的には、メバロン酸、パントイン酸、2−ヒドロキシデカン酸、3−ヒドロキシヘキサン酸、2−ヒドロキシステアリン酸、12−ヒドロキシステアリン酸、リシノール酸等が例示される。 The hydroxyl group-containing carboxylic acid used in the present invention includes a hydroxyl group-containing aliphatic monocarboxylic acid having 6 to 22 carbon atoms which may have an aromatic substituent such as a branched or phenyl group regardless of whether it is saturated or unsaturated. Preferably, specifically, mevalonic acid, pantoic acid, 2-hydroxydecanoic acid, 3-hydroxyhexanoic acid, 2-hydroxystearic acid, 12-hydroxystearic acid, ricinoleic acid and the like are exemplified.

前記水酸基不含有カルボン酸、特に、脂肪族カルボン酸または芳香族カルボン酸は、酸化セリウムナノ粒子表面に疎水性を与え、その有機溶媒等中での分散安定性に寄与する。 また、前記水酸基含有カルボン酸の水酸基は、分散媒がカルボニル基または水酸基を有する有機溶媒、モノマーまたは重合性オリゴマーである場合に、そのカルボニル基または水酸基との水素結合により分散体の安定性に寄与するものと考えられる。 The hydroxyl group-free carboxylic acid, particularly an aliphatic carboxylic acid or an aromatic carboxylic acid, imparts hydrophobicity to the surface of cerium oxide nanoparticles and contributes to dispersion stability in an organic solvent or the like. Further, when the dispersion medium is an organic solvent, monomer or polymerizable oligomer having a carbonyl group or a hydroxyl group, the hydroxyl group of the hydroxyl group-containing carboxylic acid contributes to the stability of the dispersion by hydrogen bonding with the carbonyl group or the hydroxyl group. It is thought that it will be done.

本発明の酸化セリウムナノ粒子は、前記水酸基不含有カルボン酸の金属塩および前記水酸基含有カルボン酸の金属塩をアンモニア水に溶解し、これに硝酸二アンモニウムセリウムの水溶液を添加した後、得られた混合物を水熱反応に供することによって製造される。 The cerium oxide nanoparticles of the present invention are a mixture obtained by dissolving the metal salt of the hydroxyl group-free carboxylic acid and the metal salt of the hydroxyl group-containing carboxylic acid in aqueous ammonia, adding an aqueous solution of diammonium cerium nitrate to the solution. Is produced by subjecting to a hydrothermal reaction.

この水熱反応は、密閉容器中で120〜240℃、好ましくは150〜200℃で行われる。 120℃未満では反応が遅いため(反応時間が24時間を超える場合がある)実際的ではなく、200℃を超えると装置が大掛かりなものとなる。 This hydrothermal reaction is carried out in a closed container at 120 to 240 ° C., preferably 150 to 200 ° C. If the temperature is lower than 120 ° C., the reaction is slow (the reaction time may exceed 24 hours), which is not practical, and if the temperature exceeds 200 ° C., the apparatus becomes large-scale.

水熱反応後、定法により精製して本発明の酸化セリウムナノ粒子を得ることができる。 例えば、反応液の上澄み液除去、濾過と溶媒洗浄、または溶媒中での超音波洗浄と遠心分離により精製し、乾燥することによって、黄色粉末として本発明の酸化セリウムナノ粒子を得ることができる。 After the hydrothermal reaction, the cerium oxide nanoparticles of the present invention can be obtained by purification by a conventional method. For example, the cerium oxide nanoparticles of the present invention can be obtained as a yellow powder by purifying and drying by removing the supernatant of the reaction solution, filtering and washing with a solvent, or ultrasonic washing and centrifugation in a solvent.

このようにして得られた酸化セリウムナノ粒子は、粒子径が数nm〜数10nmの単分散したものとなるが、その平均粒子径は1〜20nmが好ましく、分散体の透明性を考慮すると1〜10nmがより好ましい。
なお、本発明において、平均粒子径は、粉末X 線回折データから結晶子サイズをScherrer式により求め、その値と同等であるとした。 図1には、後記実施例4の透過電子顕微鏡での観察結果を示しているが、全ての粒子が10nm以下で凝集も見られない。 実際、実施例4において透過電子顕微鏡の観察から無作為に100個の粒子を選び、その長径と短径の二軸平均値から求めた値の平均値と前述の結晶子サイズとを比較すると、前者では4.5nm、後者では3.9nmと、ほぼ同等の数値が得られている。
The cerium oxide nanoparticles thus obtained are monodisperse having a particle size of several nm to several tens of nm, and the average particle size is preferably 1 to 20 nm, and 1 to 1 in consideration of the transparency of the dispersion. 10 nm is more preferable.
In the present invention, the average particle size was determined by the Scherrer equation for the crystallite size from the powder X-ray diffraction data, and was considered to be equivalent to that value. FIG. 1 shows the observation results of Example 4 described later with a transmission electron microscope, but all the particles were 10 nm or less and no aggregation was observed. In fact, in Example 4, 100 particles were randomly selected from the observation with a transmission electron microscope, and the average value obtained from the biaxial average values of the major axis and the minor axis was compared with the above-mentioned crystallite size. The former has 4.5 nm, and the latter has 3.9 nm, which are almost the same values.

また、水酸基不含有カルボン酸および水酸基含有カルボン酸による表面処理量は、得られた酸化セリウムナノ粒子に対して5質量%以上30質量%以下である。 5質量%未満では有機溶媒、モノマー等への分散性が不十分で、30質量%を超えると屈折率低下が著しくなるため好ましくない。 ここで、水酸基不含有カルボン酸および水酸基含有カルボン酸による表面処理量は、窒素雰囲気下40℃/分の速度で900℃まで昇温したときの質量減少率とした。 The amount of surface treatment with the hydroxyl group-free carboxylic acid and the hydroxyl group-containing carboxylic acid is 5% by mass or more and 30% by mass or less with respect to the obtained cerium oxide nanoparticles. If it is less than 5% by mass, the dispersibility in an organic solvent, a monomer or the like is insufficient, and if it exceeds 30% by mass, the refractive index is significantly lowered, which is not preferable. Here, the amount of surface treatment with the hydroxyl group-free carboxylic acid and the hydroxyl group-containing carboxylic acid was taken as the mass reduction rate when the temperature was raised to 900 ° C. at a rate of 40 ° C./min under a nitrogen atmosphere.

本発明の酸化セリウムナノ粒子は、その表面が適度に疎水化され、凝集しにくいため、有機溶媒、モノマー、樹脂等への分散性に優れている。 従って、例えば超音波ホモジナイザーを用いることにより有機溶媒中に容易に均一分散させることができるばかりでなく、モノマーや重合性オリゴマーに分散させてから重合させたり、樹脂に分散させたりすることによって酸化セリウムナノ粒子が樹脂中に微分散した樹脂複合体を得ることができる。 なお、本発明の酸化セリウムナノ粒子分散体および樹脂複合体には、その目的に応じて酸化防止剤、離型剤、重合開始剤、染顔料、分散剤等を含有してもよい。 Since the surface of the cerium oxide nanoparticles of the present invention is appropriately hydrophobized and does not easily aggregate, it is excellent in dispersibility in organic solvents, monomers, resins and the like. Therefore, for example, not only can it be easily uniformly dispersed in an organic solvent by using an ultrasonic homogenizer, but also cerium oxide nano can be dispersed in a monomer or a polymerizable oligomer and then polymerized or dispersed in a resin. A resin composite in which the particles are finely dispersed in the resin can be obtained. The cerium oxide nanoparticle dispersion and the resin composite of the present invention may contain an antioxidant, a mold release agent, a polymerization initiator, a dye pigment, a dispersant and the like, depending on the purpose.

前記の有機溶媒としては、例えば、エタノール、2−プロパノール、ブタノール、オクタノール、シクロヘキサノール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等のエステル類、ジエチルエーテル、テトラヒドロフラン、エチレングリールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、N,N−ジメチルアセトアセトアミド、N−メチルピロリドン等のアミド類が好適に用いられ、これらの溶媒のうち1 種または2 種以上を用いることができる。 Examples of the organic solvent include alcohols such as ethanol, 2-propanol, butanol, octanol and cyclohexanol, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate and γ-. Esters such as butyrolactone, diethyl ether, tetrahydrofuran, ethylene grease monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethers such as dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone , Ketones such as acetylacetone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, and amides such as dimethylformamide, N, N-dimethylacetacetamide and N-methylpyrrolidone are preferably used. One or more of the solvents can be used.

前記のモノマーおよび重合性オリゴマーとしては、ラジカル重合性、縮重合性、開環重合性等のいずれであっても使用できる。 例えば、ラジカル重合性のモノマーとしては、アクリル酸メチル、メタクリル酸メチル等の(メタ)アクリル系モノマー、グリシジル基、イソシアネート基、ビニルエーテル基等の反応性官能基を持つ(メタ)アクリル系モノマー、スチレン等のビニル系モノマー等、縮重合性のモノマーとしてはポリアミドやポリエステルを形成するモノマー、ポリイソシアネートとポリオールおよびポリチオールとの組み合わせ等、開環重合性のモノマーとしてはエポキシ系モノマー等が好適に使用できる。 また、重合性オリゴマーとしては、ウレタンアクリレート系オリゴマー、エポキシアクリレート系オリゴマー、アクリレート系オリゴマー等が好適に使用できる。 As the above-mentioned monomer and polymerizable oligomer, any of radically polymerizable, polycondensable, ring-opening polymerizable and the like can be used. For example, as the radically polymerizable monomer, a (meth) acrylic monomer such as methyl acrylate and methyl methacrylate, a (meth) acrylic monomer having a reactive functional group such as a glycidyl group, an isocyanate group and a vinyl ether group, and styrene. As the contractile polymerizable monomer such as vinyl-based monomer, a monomer forming polyamide or polyester, a combination of polyisocyanate with polyol and polythiol, etc., and as a ring-opening polymerizable monomer, an epoxy-based monomer and the like can be preferably used. .. Further, as the polymerizable oligomer, urethane acrylate-based oligomers, epoxy acrylate-based oligomers, acrylate-based oligomers and the like can be preferably used.

本発明の酸化セリウムナノ粒子を、モノマーまたは重合性オリゴマーに分散させてから重合させたり、樹脂中に分散させることによって樹脂複合体を得ることができる。 本発明の酸化セリウムナノ粒子は、その紫外線吸収能を生かした高屈折率で透明性を要求される用途等に好適に用いられる。
ここで、本発明の酸化セリウムナノ粒子を分散させる樹脂としては、熱可塑性樹脂、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ乳酸、ポリエチレンテレフタレート等のポリエステル、ポリアミド、ポリ(メタ)アクリレート、ポリフェニレンエーテル、ポリウレタン、ポリスチレン、環状ポリオレフィン、ポリカーボネートなどから選ばれた1種または2種以上が好ましく用いられる。
A resin complex can be obtained by dispersing the cerium oxide nanoparticles of the present invention in a monomer or a polymerizable oligomer and then polymerizing the particles, or by dispersing them in a resin. The cerium oxide nanoparticles of the present invention are suitably used for applications that require high refractive index and transparency by taking advantage of their ultraviolet absorbing ability.
Here, as the resin for dispersing the cerium oxide nanoparticles of the present invention, a thermoplastic resin such as polyolefin such as polyethylene and polypropylene, polyester such as polylactic acid and polyethylene terephthalate, polyamide, poly (meth) acrylate, polyphenylene ether and polyurethane , One or more selected from polystyrene, cyclic polyolefin, polycarbonate and the like are preferably used.

以下に実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。 なお、実施例および比較例中で、部は質量部、% は質量%を意味する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In Examples and Comparative Examples, "parts" means "parts by mass" and "%" means "% by mass".

本発明において酸化セリウムナノ粒子の結晶構造は、X線回折装置(PANalytical社製、X’Pert PRO MRD)を用い、測定条件を、X線管電圧45kV、X線管電電流40mA、走査範囲2θは10.0−65.0°で測定し、その平均粒子径は、2θが28.6付近の(111) 面の解析強度からその半価幅βを求め、下記数式1のScherrer式において、Scherrer定数Kを0.9、X線管球の波長λを1.54056として結晶子サイズDを求め、その値とした。 In the present invention, the crystal structure of the cerium oxide nanoparticles is prepared by using an X-ray diffractometer (X'Pert PRO MRD manufactured by PANAlytic), and the measurement conditions are as follows: X-ray tube voltage 45 kV, X-ray tube electric current 40 mA, scanning range 2θ. The average particle size was measured at 10.0-65.0 °, and the half-wavelength β was obtained from the analysis intensity of the (111) plane where 2θ was near 28.6. The crystallite size D was obtained with the constant K set to 0.9 and the wavelength λ of the X-ray tube set to 1.54056, and used as the value.

(数1)
D=K ・λ/(β・cosθ)
(Number 1)
D = K ・ λ / (β ・ cosθ)

また、有機溶媒またはモノマー中での分散性は、合成した酸化セリウム粒子に50%濃度になるように種々の有機溶媒またはモノマーを添加し、超音波洗浄器(ヴェルヴォクリーア社製3周波超音波洗浄器 VS−100III)による数分の処理後、目視により、透明なものを○、半透明なものを△、白濁または沈降するものを×として評価した。 Further, for dispersibility in the organic solvent or monomer, various organic solvents or monomers are added to the synthesized cerium oxide particles so as to have a concentration of 50%, and an ultrasonic cleaner (3 frequency ultrasonic wave manufactured by Vervocreer Co., Ltd.) is added. After several minutes of treatment with the washer VS-100III), a transparent one was visually evaluated as ◯, a translucent one was evaluated as Δ, and a cloudy or precipitated substance was evaluated as ×.

(実施例1)
オクタン酸ナトリウム1.8g(10mmol)、リシノール酸ナトリウム0.45g(1.4mmol)および25%アンモニア水溶液10mLを純水30gに添加、撹拌し透明な溶液を調製した。 この溶液に、硝酸二アンモニウムセリウム3.84g(7mmol)を純水30gに溶解させた溶液を加え、 撹拌し、淡黄懸濁液を得た。 この懸濁液をオートクレーブで150℃、15時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、水洗、乾燥して1.40gの表面処理された酸化セリウムナノ粒子を黄色粉末として得た。 酸化セリウムナノ粒子の表面処理量は、PerkinElmer社製の熱質量測定装置Pylis1TGAにより、窒素雰囲気下40℃/分の速度で900℃まで昇温した質量減少率から25.38%であった。
(Example 1)
1.8 g (10 mmol) of sodium octanoate, 0.45 g (1.4 mmol) of sodium ricinoleate and 10 mL of a 25% aqueous ammonia solution were added to 30 g of pure water and stirred to prepare a transparent solution. A solution prepared by dissolving 3.84 g (7 mmol) of diammonium diammonium nitrate in 30 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. After hydrothermal treatment of this suspension in an autoclave at 150 ° C. for 15 hours, the supernatant was removed, and the obtained precipitate was filtered, washed with water, and dried to obtain 1.40 g of surface-treated cerium oxide nanoparticles in yellow. Obtained as a powder. The surface treatment amount of the cerium oxide nanoparticles was 25.38% from the mass reduction rate of heating to 900 ° C. at a rate of 40 ° C./min in a nitrogen atmosphere by the thermogravimetric measuring device Pyris1TGA manufactured by PerkinElmer.

(実施例2)
オクタン酸ナトリウム5.4g(32mmol)、リシノール酸ナトリウム1.35g(4.2mmol)および25%アンモニア水溶液30mLを純水20gに添加、撹拌し透明な溶液を調製した。 この溶液に、硝酸二アンモニウムセリウム11.52g(21mmol)を純水10gに溶解させた溶液を加え、撹拌し、淡黄懸濁液を得た。 この懸濁液をオートクレーブで150℃、15時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、洗浄、乾燥して4.68gの表面処理された酸化セリウムナノ粒子を黄色粉末として得た。 酸化セリウムナノ粒子の表面処理量は、実施例1と同様に測定し24.61%であった。
(Example 2)
5.4 g (32 mmol) of sodium octanoate, 1.35 g (4.2 mmol) of sodium ricinoleate and 30 mL of a 25% aqueous ammonia solution were added to 20 g of pure water and stirred to prepare a transparent solution. A solution prepared by dissolving 11.52 g (21 mmol) of diammonium cerium nitrate in 10 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. After hydrothermal treatment of this suspension in an autoclave at 150 ° C. for 15 hours, the supernatant was removed, and the obtained precipitate was filtered, washed and dried to obtain 4.68 g of surface-treated cerium oxide nanoparticles in yellow. Obtained as a powder. The surface treatment amount of the cerium oxide nanoparticles was 24.61% as measured in the same manner as in Example 1.

(実施例3)
オクタン酸3.76g(26mmol)、リシノール酸1.01g(3.3mmol)、25%アンモニア水溶液24mLおよび6M水酸化ナトリウム水溶液6mLを純水16gに添加、撹拌し透明な溶液を調製した。 この溶液に、硝酸二アンモニウムセリウム9.22g(17mmol)を純水8gに溶解させた溶液を加え、撹拌し、淡黄懸濁液を得た。 この懸濁液をオートクレーブで150℃、15時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、水洗、乾燥して3.8gの表面処理された酸化セリウムナノ粒子を黄色粉末として得た。 酸化セリウムナノ粒子の表面処理量は、実施例1と同様に測定し26.42%であった。
(Example 3)
3.76 g (26 mmol) of octanoic acid, 1.01 g (3.3 mmol) of ricinoleic acid, 24 mL of a 25% aqueous ammonia solution and 6 mL of a 6 M aqueous sodium hydroxide solution were added to 16 g of pure water and stirred to prepare a transparent solution. A solution prepared by dissolving 9.22 g (17 mmol) of diammonium cerium nitrate in 8 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. After hydrothermal treatment of this suspension in an autoclave at 150 ° C. for 15 hours, the supernatant was removed, and the obtained precipitate was filtered, washed with water, and dried to obtain 3.8 g of surface-treated cerium oxide nanoparticles in yellow. Obtained as a powder. The surface treatment amount of the cerium oxide nanoparticles was 26.42% as measured in the same manner as in Example 1.

(実施例4)
オクタン酸3.12g(22mmol)、リシノール酸0.84g(2.8mmol)、25%アンモニア水溶液20mLおよび6M水酸化ナトリウム水溶液5mLを純水15gに添加、撹拌し透明な溶液を調製した。 この溶液に、硝酸二アンモニウムセリウム7.68g(17mmol)を純水20gに溶解させた溶液を加え、撹拌し、淡黄懸濁液を得た。 この懸濁液をオートクレーブで180℃、15時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、水洗、乾燥して3.0gの黄色粉末を得た。 酸化セリウムナノ粒子の表面処理量は、実施例1と同様に測定し23.46%であった。 ここで得られた粉末について、電解放出型分析透過電子顕微鏡(トプコンテクノハウスEM002BF)による測定結果を図1として載せたが、全ての粒子が10nm以下であることが分かる。
(Example 4)
3.12 g (22 mmol) of octanoic acid, 0.84 g (2.8 mmol) of ricinoleic acid, 20 mL of a 25% aqueous ammonia solution and 5 mL of a 6M aqueous sodium hydroxide solution were added to 15 g of pure water and stirred to prepare a transparent solution. A solution prepared by dissolving 7.68 g (17 mmol) of diammonium cerium nitrate in 20 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. The suspension was hydroheat-treated at 180 ° C. for 15 hours in an autoclave, the supernatant was removed, and the obtained precipitate was filtered, washed with water and dried to obtain 3.0 g of a yellow powder. The surface treatment amount of the cerium oxide nanoparticles was measured in the same manner as in Example 1 and was 23.46%. Regarding the powder obtained here, the measurement results by a field emission type analytical transmission electron microscope (Topcon Technohouse EM002BF) are shown as FIG. 1, and it can be seen that all the particles are 10 nm or less.

(実施例5)
オクタン酸3.12g(22mmol)、12−ヒドロキシステアリン酸0.85g(2.8mmol)、25%アンモニア水溶液20mLおよび6M水酸化ナトリウム水溶液5mLを純水15gに添加、撹拌し透明な溶液を調製した。 この溶液に、硝酸二アンモニウムセリウム7.68g(17mmol)を純水20gに溶解させた溶液を加え、撹拌し、淡黄懸濁液を得た。この懸濁液をオートクレーブで180℃、15時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、水洗、乾燥して2.98gの表面処理された酸化セリウムナノ粒子を黄色粉末として得た。 酸化セリウムナノ粒子の表面処理量は、実施例1と同様に測定し21.77%であった。
(Example 5)
3.12 g (22 mmol) of octanoic acid, 0.85 g (2.8 mmol) of 12-hydroxystearic acid, 20 mL of 25% aqueous ammonia solution and 5 mL of 6M aqueous sodium hydroxide solution were added to 15 g of pure water and stirred to prepare a transparent solution. .. A solution prepared by dissolving 7.68 g (17 mmol) of diammonium cerium nitrate in 20 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. After hydrothermal treatment of this suspension in an autoclave at 180 ° C. for 15 hours, the supernatant was removed, and the obtained precipitate was filtered, washed with water and dried to obtain 2.98 g of surface-treated cerium oxide nanoparticles in yellow. Obtained as a powder. The surface treatment amount of the cerium oxide nanoparticles was 21.77% as measured in the same manner as in Example 1.

(比較例1)
オレイン酸ナトリウム2.13g(7mmol)および25%アンモニア水溶液10mLを純水30gに添加、撹拌し透明な溶液を調製した。 この溶液に、硝酸二アンモニウムセリウム3.84g(7mmol)を純水30gに溶解させた溶液を加え、撹拌し、淡黄懸濁液を得た。 この懸濁液をオートクレーブで150℃、6時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、洗浄、乾燥して1.39gの表面処理された酸化セリウムナノ粒子を黄色粉末として得た。 酸化セリウムナノ粒子の表面処理量は、実施例1と同様に測定し38.38%であった。
(Comparative Example 1)
2.13 g (7 mmol) of sodium oleate and 10 mL of a 25% aqueous ammonia solution were added to 30 g of pure water and stirred to prepare a transparent solution. A solution prepared by dissolving 3.84 g (7 mmol) of diammonium diammonium nitrate in 30 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. After hydrothermal treatment of this suspension in an autoclave at 150 ° C. for 6 hours, the supernatant was removed, and the obtained precipitate was filtered, washed and dried to obtain 1.39 g of surface-treated cerium oxide nanoparticles in yellow. Obtained as a powder. The surface treatment amount of the cerium oxide nanoparticles was 38.38% as measured in the same manner as in Example 1.

(比較例2)
オクタン酸ナトリウム1.20g(7.2mmol)および25%アンモニア水溶液10mLを純水30gに添加、撹拌し透明な溶液を調製した。 この溶液に、硝酸二アンモニウムセリウム33.84g(7mmol)を純水30gに溶解させた溶液を加え、撹拌し、淡黄懸濁液を得た。 この懸濁液をオートクレーブで150℃、15時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、洗浄、乾燥して1.17gの表面処理された酸化セリウムナノ粒子を黄色粉末として得た。 酸化セリウムナノ粒子の表面処理量は、実施例1と同様に測定し15.34%であった。
(Comparative Example 2)
1.20 g (7.2 mmol) of sodium octanoate and 10 mL of a 25% aqueous ammonia solution were added to 30 g of pure water and stirred to prepare a transparent solution. A solution prepared by dissolving 33.84 g (7 mmol) of diammonium cerium nitrate in 30 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. After hydrothermal treatment of this suspension in an autoclave at 150 ° C. for 15 hours, the supernatant was removed, and the obtained precipitate was filtered, washed and dried to give 1.17 g of surface-treated cerium oxide nanoparticles yellow. Obtained as a powder. The surface treatment amount of the cerium oxide nanoparticles was 15.34% as measured in the same manner as in Example 1.

(比較例3)
オクタン酸ナトリウム2.0g(12mmol)および25%アンモニア水溶液10mLを純水30gに添加、撹拌し透明な溶液を調製した。 この溶液に、硝酸二アンモニウムセリウム3.84g(7mmol)を純水30gに溶解させた溶液を加え、撹拌し、淡黄懸濁液を得た。 この懸濁液をオートクレーブで150℃、15時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、水洗、乾燥して1.19gの表面処理された酸化セリウムナノ粒子を黄色粉末として得た。 酸化セリウムナノ粒子の表面処理量は、実施例1と同様に測定し15.23%であった。
(Comparative Example 3)
2.0 g (12 mmol) of sodium octanate and 10 mL of a 25% aqueous ammonia solution were added to 30 g of pure water and stirred to prepare a transparent solution. A solution prepared by dissolving 3.84 g (7 mmol) of diammonium diammonium nitrate in 30 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. After hydrothermal treatment of this suspension in an autoclave at 150 ° C. for 15 hours, the supernatant was removed, and the obtained precipitate was filtered, washed with water and dried to obtain 1.19 g of surface-treated cerium oxide nanoparticles in yellow. Obtained as a powder. The surface treatment amount of the cerium oxide nanoparticles was 15.23% as measured in the same manner as in Example 1.

(比較例4)
リシノール酸4.20g(14mmol)、25%アンモニア水溶液20mLおよび6M水酸化ナトリウム水溶液5mLを純水15gに添加、撹拌し、透明な溶液を調製した。 この溶液に硝酸二アンモニウムセリウム7.68g(14mmol)を純水30gに溶解させた溶液を加え、撹拌し、淡黄懸濁液を得た。 この懸濁液をオートクレーブで180℃、15時間の水熱処理後、上澄み液を除去し、得られた沈殿物を、ろ過、水洗、乾燥して2.75gの表面処理された酸化セリウムナノ粒子を黄色粉末として得た。 酸化セリウムナノ粒子の表面処理量は、実施例1と同様に測定し15.23%であった。
(Comparative Example 4)
4.20 g (14 mmol) of ricinoleic acid, 20 mL of a 25% aqueous ammonia solution and 5 mL of a 6M sodium hydroxide aqueous solution were added to 15 g of pure water and stirred to prepare a transparent solution. A solution prepared by dissolving 7.68 g (14 mmol) of diammonium cerium nitrate in 30 g of pure water was added to this solution, and the mixture was stirred to obtain a pale yellow suspension. After hydrothermal treatment of this suspension in an autoclave at 180 ° C. for 15 hours, the supernatant was removed, and the obtained precipitate was filtered, washed with water, and dried to obtain 2.75 g of surface-treated cerium oxide nanoparticles in yellow. Obtained as a powder. The surface treatment amount of the cerium oxide nanoparticles was 15.23% as measured in the same manner as in Example 1.

実施例1〜5および比較例1〜4で得られた酸化セリウム粒子について、酸化セリウム粒子50%における有機溶媒またはモノマー中での分散液の分散性および透明性、ならびにシェラー式から算出される結晶子径および熱質量測定から概算される酸化セリウムへの表面処理剤の被覆量を表1に記載した。 For the cerium oxide particles obtained in Examples 1 to 5 and Comparative Examples 1 to 4, the dispersibility and transparency of the dispersion in the organic solvent or monomer in 50% of the cerium oxide particles, and the crystals calculated from the Scherrer formula. Table 1 shows the coating amount of the surface treatment agent on cerium oxide estimated from the particle diameter and thermal mass measurement.

Figure 0006889575
Figure 0006889575

(製造例1)
2−アクリロイルオキシエチルサクシネート(屈折率=1.463)1部およびエトキシ化o−フェニルフェノールアクリレート(屈折率=1.577)2部のトルエン混合溶液に、乾燥後の表面処理酸化セリウムナノ粒子含量が45%となるように実施例4の表面処理酸化セリウムナノ粒子を加え、光重合開始剤の存在下に、膜厚1μmとなるようにガラス基板上にスピンコートし、紫外線照射により光重合させることで硬化膜を得た。 膜厚モニター(大塚電子社製:FE−300UV)を用いた589nmにおける硬化膜の屈折率は1.640であった。
また、紫外−可視分光光度計により300−800nmでの透過率を測定したところ、ガラスおよびアクリレートのみ(比較製造例1)の硬化膜と比較して、紫外線をより遮蔽することが確認できた(図2参照)。
さらに、硬化膜について透過値およびヘイズ値を測定したところ、透過値は89.0、ヘイズ値は0.07となり、透明性が確認できた。
(Manufacturing Example 1)
Surface-treated cerium oxide nanoparticles content after drying in a toluene mixed solution of 1 part of 2-acryloyloxyethyl succinate (refractive index = 1.463) and 2 parts of ethoxylated o-phenylphenol acrylate (refractive index = 1.577) The surface-treated cerium oxide nanoparticles of Example 4 are added so as to have a concentration of 45%, spin-coated on a glass substrate so as to have a film thickness of 1 μm in the presence of a photopolymerization initiator, and photopolymerized by irradiation with ultraviolet rays. A cured film was obtained in. The refractive index of the cured film at 589 nm using a film thickness monitor (manufactured by Otsuka Electronics Co., Ltd .: FE-300UV) was 1.640.
In addition, when the transmittance at 300-800 nm was measured with an ultraviolet-visible spectrophotometer, it was confirmed that it shielded more ultraviolet rays than the cured film containing only glass and acrylate (Comparative Production Example 1) (Comparative Production Example 1). (See FIG. 2).
Furthermore, when the permeation value and haze value of the cured film were measured, the permeation value was 89.0 and the haze value was 0.07, confirming the transparency.

(比較製造例1)
製造例1で表面処理酸化セリウムナノ粒子を除いた場合、硬化膜の膜厚1μmの屈折率は1.562、透過値は90.0、ヘイズ値は0.08であった。
(Comparative Manufacturing Example 1)
When the surface-treated cerium oxide nanoparticles were removed in Production Example 1, the refractive index of the cured film having a film thickness of 1 μm was 1.562, the transmission value was 90.0, and the haze value was 0.08.

なお、比較例1で製造した酸化セリウムではモノマーに相溶・分散しないため評価できるような樹脂組成物が得られなかった。 The cerium oxide produced in Comparative Example 1 did not dissolve or disperse in the monomer, so that a resin composition that could be evaluated could not be obtained.

Claims (7)

水酸基不含有カルボン酸の金属塩および水酸基含有カルボン酸の金属塩をアンモニア水に溶解する工程と、
その得られた溶液に硝酸二アンモニウムセリウムの水溶液を添加する工程と、
その得られた混合物を水熱反応に供する工程と、
を含むことを特徴とする酸化セリウムナノ粒子の製造方法
A step of dissolving a metal salt of a hydroxyl group-free carboxylic acid and a metal salt of a hydroxyl group-containing carboxylic acid in aqueous ammonia,
The step of adding an aqueous solution of diammonium cerium nitrate to the obtained solution, and
The step of subjecting the obtained mixture to a hydrothermal reaction and
A method for producing cerium oxide nanoparticles, which comprises .
前記水酸基不含有カルボン酸が脂肪族モノカルボン酸または芳香族モノカルボン酸であることを特徴とする請求項1記載の酸化セリウムナノ粒子の製造方法 The method for producing cerium oxide nanoparticles according to claim 1, wherein the hydroxyl group-free carboxylic acid is an aliphatic monocarboxylic acid or an aromatic monocarboxylic acid. 前記水酸基不含有カルボン酸の炭素数が3以上22以下であることを特徴とする請求項1または2記載の酸化セリウムナノ粒子の製造方法 The method for producing cerium oxide nanoparticles according to claim 1 or 2, wherein the hydroxyl group-free carboxylic acid has 3 or more and 22 or less carbon atoms. 前記水酸基含有カルボン酸が水酸基含有脂肪族モノカルボン酸であることを特徴とする請求項1から3のいずれかに記載の酸化セリウムナノ粒子の製造方法 The method for producing cerium oxide nanoparticles according to any one of claims 1 to 3, wherein the hydroxyl group-containing carboxylic acid is a hydroxyl group-containing aliphatic monocarboxylic acid. 前記水酸基含有カルボン酸の炭素数が6以上22以下であることを特徴とする請求項1から4のいずれかに記載の酸化セリウムナノ粒子の製造方法 The method for producing cerium oxide nanoparticles according to any one of claims 1 to 4, wherein the hydroxyl group-containing carboxylic acid has 6 or more and 22 or less carbon atoms. 請求項1から5のいずれかの製造方法で得られた酸化セリウムナノ粒子を、有機溶媒、モノマーおよび重合性オリゴマーから選ばれた少なくとも一つを含有する分散媒中に分散させることを特徴とする酸化セリウムナノ粒子分散体の製造方法The cerium oxide particles obtained in any of the manufacturing method of claims 1 5, characterized in Rukoto dispersed in a dispersion medium containing at least one selected from organic solvents, monomers and polymerizable oligomers A method for producing a cerium oxide nanoparticles dispersion. 請求項1から5のいずれかの製造方法で得られた酸化セリウムナノ粒子を、モノマーおよび重合性オリゴマーから選ばれた少なくとも一つを含有する分散媒中に分散させる工程と、
得られた分散体を重合させる工程と、
を含むことを特徴とする酸化セリウムナノ粒子分散樹脂複合体の製造方法
A step of dispersing the cerium oxide nanoparticles obtained by the production method according to any one of claims 1 to 5 in a dispersion medium containing at least one selected from a monomer and a polymerizable oligomer.
The step of polymerizing the obtained dispersion and
A method for producing a cerium oxide nanoparticle-dispersed resin complex, which comprises.
JP2017042448A 2017-03-07 2017-03-07 Cerium oxide nanoparticles, their production methods, dispersions and resin complexes Active JP6889575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042448A JP6889575B2 (en) 2017-03-07 2017-03-07 Cerium oxide nanoparticles, their production methods, dispersions and resin complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042448A JP6889575B2 (en) 2017-03-07 2017-03-07 Cerium oxide nanoparticles, their production methods, dispersions and resin complexes

Publications (2)

Publication Number Publication Date
JP2018145057A JP2018145057A (en) 2018-09-20
JP6889575B2 true JP6889575B2 (en) 2021-06-18

Family

ID=63589960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042448A Active JP6889575B2 (en) 2017-03-07 2017-03-07 Cerium oxide nanoparticles, their production methods, dispersions and resin complexes

Country Status (1)

Country Link
JP (1) JP6889575B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299527A1 (en) * 2021-02-25 2024-01-03 Tokyo Printing Ink Mfg. Co., Ltd. Bismuth oxide nanoparticles, dispersion thereof, resin composite and production method
CN115703646A (en) * 2021-08-16 2023-02-17 中国人民解放军陆军军医大学 Synthesis method of multi-morphology cerium oxide nanoparticles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2066767B1 (en) * 2006-09-05 2015-10-21 Cerion LLC Cerium dioxide nanoparticle-containing fuel additive
JP2011236110A (en) * 2010-04-12 2011-11-24 Nitto Denko Corp Method for producing organic-inorganic composite particle, particle dispersion, particle-dispersed resin composition, and method for producing organic-inorganic composite particle

Also Published As

Publication number Publication date
JP2018145057A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP5379182B2 (en) New mass production method of monodisperse nanoparticles
JP4922040B2 (en) Metal oxide fine particle aqueous dispersion and method for producing the same
JP6889575B2 (en) Cerium oxide nanoparticles, their production methods, dispersions and resin complexes
Fajzulin et al. Nanoparticulate inorganic UV absorbers: a review
Etape et al. Structural Characterization and Magnetic Properties of Undoped and Ti‐Doped ZnO Nanoparticles Prepared by Modified Oxalate Route
JP6087389B2 (en) Tetragonal zirconium oxide nanoparticles, method for producing the same, dispersion, and resin composite
JP2006348213A (en) Metal ultrafine particle, resin composition or resin molded product containing the ultrafine particle, and manufacturing method of resin composition or resin molded product therefrom
JP2009024068A (en) Method for producing resin particles containing zirconium oxide nanoparticles and resin particles
Liang et al. One‐Step Synthesis of Spherical γ‐Fe2O3 Nanopowders and the Evaluation of Their Photocatalytic Activity for Orange I Degradation
JP5177970B2 (en) Method for producing metal oxide nanoparticles, metal nanoparticles, treated metal nanoparticles and uses thereof
Olad et al. The use of biodegradable polymers for the stabilization of copper nanoparticles synthesized by chemical reduction method
JP7101051B2 (en) Hafnia nanoparticles, their dispersions, resin complexes and manufacturing methods,
JP2006097116A (en) High concentration metal particulate-dispersed liquid and its production method
JP5038194B2 (en) Method for producing tetragonal zirconium oxide nanoparticles
JP5691136B2 (en) Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles
JP5727215B2 (en) Dispersant and dispersion composition
CN111434380A (en) Preparation method and application of oil-soluble monodisperse metal oxide nano catalyst
CN108883946B (en) Zirconia nanoparticles
JP2016160531A (en) Production of assembly of fine particles dispersed in organic compound and production method thereof
JP6159284B2 (en) Method for producing metal oxide fine particles, metal oxide fine particles, and powder, dispersion, dispersion and coated substrate
JP2009209052A (en) Fatty acid metal salt for forming ultrafine metal particle
US20240132702A1 (en) Bismuth oxide nanoparticles, dispersion thereof, resin composite, and production method
US20240228750A9 (en) Bismuth oxide nanoparticles, dispersion thereof, resin composite, and production method
KR20160090861A (en) Dispersions of silver nanoparticles
JP5629425B2 (en) Fatty acid metal salt for forming ultrafine metal particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210521

R150 Certificate of patent or registration of utility model

Ref document number: 6889575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250