JP6889088B2 - Object distribution estimation system - Google Patents

Object distribution estimation system Download PDF

Info

Publication number
JP6889088B2
JP6889088B2 JP2017206473A JP2017206473A JP6889088B2 JP 6889088 B2 JP6889088 B2 JP 6889088B2 JP 2017206473 A JP2017206473 A JP 2017206473A JP 2017206473 A JP2017206473 A JP 2017206473A JP 6889088 B2 JP6889088 B2 JP 6889088B2
Authority
JP
Japan
Prior art keywords
density
image
estimation
waiting time
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206473A
Other languages
Japanese (ja)
Other versions
JP2019080202A5 (en
JP2019080202A (en
Inventor
史比古 高井
史比古 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secom Co Ltd
Original Assignee
Secom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Secom Co Ltd filed Critical Secom Co Ltd
Priority to JP2017206473A priority Critical patent/JP6889088B2/en
Publication of JP2019080202A publication Critical patent/JP2019080202A/en
Publication of JP2019080202A5 publication Critical patent/JP2019080202A5/ja
Application granted granted Critical
Publication of JP6889088B2 publication Critical patent/JP6889088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、人等の所定の物体が存在し得る空間が順次撮影された時系列の撮影画像を伝送して、伝送された撮影画像から物体の分布を推定する物体分布推定システムに関する。 The present invention relates to an object distribution estimation system that transmits a time-series photographed image in which a space in which a predetermined object such as a person can exist is sequentially photographed and estimates the distribution of the object from the transmitted photographed image.

イベント会場等の混雑が発生し得る空間においては事故防止等のために、混雑が発生している区域に警備員を多く配置するなどの対応が求められる。そこで、会場の各所に監視カメラを配置して撮影画像から人の分布を推定し、推定した分布を表示することによって監視員による混雑状況の把握を容易化することができる。 In spaces where congestion may occur, such as event venues, it is necessary to take measures such as allocating a large number of security guards in areas where congestion is occurring in order to prevent accidents. Therefore, by arranging surveillance cameras at various places in the venue, estimating the distribution of people from the captured image, and displaying the estimated distribution, it is possible to facilitate the grasp of the congestion situation by the observer.

人の分布を推定する方法のひとつに、人の混雑時の画像の特徴を予め学習した識別器で撮影画像をスキャンする方法がある。例えば、下記特許文献1に記載の群衆解析装置においては、予め密度下限値を超えた人物密度の群衆が撮影された学習画像を用いて人物密度ごとに機械学習した識別器を用い人物密度を推定することによって、群衆の発生を判定することが記載されている。 One of the methods for estimating the distribution of people is to scan the captured image with a classifier that has learned the characteristics of the image at the time of congestion of people in advance. For example, in the crowd analysis device described in Patent Document 1 below, the person density is estimated using a classifier machine-learned for each person density using a learning image in which a crowd having a person density exceeding the lower limit of density is captured in advance. It is stated that by doing so, the occurrence of the crowd is determined.

特開2017−068598号公報Japanese Unexamined Patent Publication No. 2017-068598

イベント会場等は一般に広大であり、多数の監視カメラによる多数の撮影画像が時々刻々と取得されて推定対象となる。そのため、これら多数の監視カメラを画像解析センター等に接続して一元的に推定を行う場合、監視カメラから画像解析センター等への撮影画像の伝送に係る通信コストを抑制することが強く要請される。 Event venues and the like are generally vast, and a large number of images taken by a large number of surveillance cameras are acquired every moment and become an estimation target. Therefore, when connecting a large number of these surveillance cameras to an image analysis center or the like and performing estimation in a unified manner, it is strongly required to suppress the communication cost related to the transmission of captured images from the surveillance cameras to the image analysis center or the like. ..

ここで撮影画像内の人が混雑している領域においては、人の動きが遅いため急激な混雑状況の変化が生じにくく、人の分布についての表示に短時間で生じる変化は微小である。 Here, in the area where people are crowded in the captured image, since the movement of people is slow, it is difficult for a sudden change in the congestion situation to occur, and the change that occurs in a short time in the display of the distribution of people is minute.

しかしながら、従来技術においては、混雑している領域の有無に依らず撮影画像が入力されるたびに撮影画像の全体を伝送していたため、無駄な通信コストが生じていた。 However, in the prior art, the entire captured image is transmitted every time the captured image is input regardless of the presence or absence of a congested area, which causes a wasteful communication cost.

本発明は上記問題に鑑みてなされたものであり、所定の物体が存在し得る空間が順次撮影された時系列の撮影画像を、通信コストを抑制して伝送し、伝送された撮影画像から物体の分布を推定する分布推定システムを提供することを目的とする。 The present invention has been made in view of the above problems, and a time-series photographed image in which a space in which a predetermined object can exist is sequentially photographed is transmitted while suppressing communication costs, and an object is transmitted from the transmitted photographed image. It is an object of the present invention to provide a distribution estimation system for estimating the distribution of.

(1)本発明に係る物体分布推定システムは、所定の物体が存在し得る空間を所定のフレームレートで撮影する撮影装置と、撮影画像を解析して前記空間における前記物体の分布を推定する分布推定装置と、前記撮影装置から前記分布推定装置に前記撮影画像を中継する中継装置とが、ネットワークを介して接続されたシステムであって、前記分布推定装置は、前記撮影画像内に複数設定された局所領域ごとの解析によって前記局所領域それぞれにおける前記物体の混雑度合いを求めることで前記分布を推定し、前記中継装置は、前記局所領域それぞれにおける前記撮影画像を、当該局所領域について前記分布推定装置が求めた前記混雑度合いに応じたフレームレートで中継する。 (1) the object distribution estimation system according to the present invention, the image capturing apparatus for capturing a space in which a predetermined object may be present at a predetermined frame rate, by analyzing the shooting image to estimate the distribution of the object in the space A system in which a distribution estimation device and a relay device that relays the captured image from the imaging device to the distribution estimation device are connected via a network, and a plurality of the distribution estimation devices are set in the captured image. The distribution is estimated by obtaining the degree of congestion of the object in each of the local regions by the analysis of each local region, and the relay device estimates the distribution of the captured image in each of the local regions and the distribution of the local region. It relays at a frame rate according to the degree of congestion obtained by the apparatus.

(2)上記(1)に記載の物体分布推定システムにおいて、前記中継装置は、前記局所領域それぞれにおける前記撮影画像を、当該局所領域について前記分布推定装置が求めた前記混雑度合いが高いほど低いフレームレートで中継する構成とすることができる。 (2) In the object distribution estimation system according to (1) above, the relay device captures the captured image in each of the local regions, and the higher the degree of congestion obtained by the distribution estimation device for the local region, the lower the frame. It can be configured to relay at a rate.

(3)上記(1)および(2)に記載の物体分布推定システムにおいて、前記中継装置は、それぞれが2以上の前記局所領域からなるブロックごとに、当該ブロック内で最も低い前記混雑度合いに応じたフレームレートで中継する構成とすることができる。 (3) In the object distribution estimation system according to the above (1) and (2), the relay device responds to the lowest degree of congestion in the block for each block consisting of two or more of the local regions. It can be configured to relay at a different frame rate.

(4)上記(1)〜(3)に記載の物体分布推定システムにおいて、前記分布推定装置は、所定の密度ごとに当該密度にて前記物体が存在する空間を撮影した密度画像それぞれの特徴を学習した密度推定器を用いて、前記局所領域ごとに前記混雑度合いを表す前記物体の前記密度を求める構成とすることができる。 (4) In the object distribution estimation system according to the above (1) to (3), the distribution estimation device captures the characteristics of each density image obtained by photographing the space in which the object exists at the density at a predetermined density. Using the learned density estimator, the density of the object representing the degree of congestion can be obtained for each local region.

本発明によれば、撮影されている物体の混雑度合いが高い領域の画像ほど低いフレームレートで伝送するため、人等の所定の物体が存在し得る空間が順次撮影された時系列の撮影画像を、通信コストを抑制して伝送しつつ、伝送された撮影画像から高い信頼性で物体の分布を推定できる。 According to the present invention, since an image in a region where the degree of congestion of the imaged object is high is transmitted at a lower frame rate, a time-series photographed image in which a space in which a predetermined object such as a person can exist is sequentially photographed is transmitted. It is possible to estimate the distribution of objects with high reliability from the transmitted captured image while suppressing the communication cost and transmitting the object.

本発明の実施形態に係る物体分布推定システムの概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムにおける撮影装置の機能ブロック図である。It is a functional block diagram of the photographing apparatus in the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムにおける中継装置の機能ブロック図である。It is a functional block diagram of the relay device in the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムにおける分布推定装置の機能ブロック図である。It is a functional block diagram of the distribution estimation apparatus in the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムにおける表示装置の機能ブロック図である。It is a functional block diagram of the display device in the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムにおける中継装置の動作の概略のフロー図である。It is a schematic flow chart of the operation of the relay device in the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムにおける分布推定装置の動作の概略のフロー図である。It is a schematic flow chart of the operation of the distribution estimation apparatus in the object distribution estimation system which concerns on embodiment of this invention. 分布推定装置におけるブロックごとの密度推定処理の概略のフロー図である。It is a schematic flow chart of the density estimation process for each block in a distribution estimation device. 本発明の実施形態に係る物体分布推定システムの或る時刻tでの処理例を示す模式図である。It is a schematic diagram which shows the processing example at a certain time t of the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムの時刻t+1での処理例を示す模式図である。It is a schematic diagram which shows the processing example at time t + 1 of the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムの時刻t+2での処理例を示す模式図である。It is a schematic diagram which shows the processing example at time t + 2 of the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムの時刻t+3での処理例を示す模式図である。It is a schematic diagram which shows the processing example at time t + 3 of the object distribution estimation system which concerns on embodiment of this invention. 本発明の実施形態に係る物体分布推定システムの時刻t+4での処理例を示す模式図である。It is a schematic diagram which shows the processing example at time t + 4 of the object distribution estimation system which concerns on embodiment of this invention.

以下、本発明の実施の形態(以下実施形態という)に係る物体分布推定システム1について、図面に基づいて説明する。物体分布推定システム1は人が存在し得る空間(監視空間)を所定時間おきに撮影した撮影画像を順次解析することによって、その空間における人の分布を推定し、推定結果を監視員に対して表示する。 Hereinafter, the object distribution estimation system 1 according to the embodiment of the present invention (hereinafter referred to as the embodiment) will be described with reference to the drawings. The object distribution estimation system 1 estimates the distribution of people in a space (surveillance space) in which a person can exist by sequentially analyzing captured images taken at predetermined time intervals, and estimates the estimation result to the observer. indicate.

[物体分布推定システム1の構成]
図1は物体分布推定システム1の概略の構成を示すブロック図である。物体分布推定システム1は、撮影装置2、中継装置3、分布推定装置4および表示装置5からなる。例えば、物体分布推定システム1は撮影装置2として複数の撮影装置2−1a,2−1b,…,2−2a,2−2b,…を含み、また中継装置3として複数の中継装置3−1,3−2,…を含む。
[Configuration of object distribution estimation system 1]
FIG. 1 is a block diagram showing a schematic configuration of the object distribution estimation system 1. The object distribution estimation system 1 includes a photographing device 2, a relay device 3, a distribution estimation device 4, and a display device 5. For example, the object distribution estimation system 1 includes a plurality of photographing devices 2-1a, 2-1b, ..., 2-2a, 2-2b, ... As the photographing device 2, and a plurality of relay devices 3-1 as the relay device 3. , 3-2, ... Included.

複数の撮影装置2のそれぞれは、いわゆるネットワークカメラであり、インターネットなどの所定の通信ネットワーク(以下、ネットワーク)に接続されて、監視空間内に設定された互いに異なる対象空間を所定のフレームレート、つまり所定の時間間隔(撮影周期)で撮影して撮影画像を生成し、撮影画像を分布推定装置4および表示装置5へ向けて順次送信する。以下、撮影周期で刻まれる時間の単位を1時刻とする。 Each of the plurality of photographing devices 2 is a so-called network camera, and is connected to a predetermined communication network (hereinafter referred to as a network) such as the Internet, and sets different target spaces in the monitoring space at a predetermined frame rate, that is, A photographed image is generated by photographing at a predetermined time interval (shooting cycle), and the photographed image is sequentially transmitted to the distribution estimation device 4 and the display device 5. Hereinafter, the unit of time engraved in the shooting cycle is set to 1 hour.

例えば、複数の撮影装置2のそれぞれは、イベント会場に設置されたポールに対象空間を俯瞰する視野を有して設置され、インターネットに有線接続または無線接続される。その視野は固定されていてもよいし、予めのスケジュール或いはインターネットを介した外部からの指示に従って変更されてもよい。例えば、撮影装置2は対象空間を撮影周期1秒で撮影してカラー画像を生成する。また、撮影装置2はカラー画像の代わりにモノクロ画像を生成してもよい。 For example, each of the plurality of photographing devices 2 is installed on a pole installed at the event venue with a field of view overlooking the target space, and is connected to the Internet by wire or wirelessly. The field of view may be fixed or may be changed according to a prior schedule or external instructions via the Internet. For example, the photographing device 2 photographs the target space with a photographing cycle of 1 second to generate a color image. Further, the photographing device 2 may generate a monochrome image instead of the color image.

複数の中継装置3のそれぞれは、中継用のサーバーコンピュータであり、上記ネットワークに接続されて、撮影装置2と分布推定装置4および表示装置5との間の通信、並びに分布推定装置4と表示装置5との間の通信を中継する。 Each of the plurality of relay devices 3 is a server computer for relay, and is connected to the above network to communicate between the photographing device 2 and the distribution estimation device 4 and the display device 5, and the distribution estimation device 4 and the display device. The communication with 5 is relayed.

具体的には、各中継装置3は、撮影装置2から分布推定装置4への撮影画像の送信、撮影装置2から表示装置5への撮影画像の送信、および分布推定装置4から表示装置5への物体分布の送信をそれぞれ中継する。 Specifically, each relay device 3 transmits a captured image from the photographing device 2 to the distribution estimation device 4, transmits the captured image from the photographing device 2 to the display device 5, and transmits the captured image from the distribution estimation device 4 to the display device 5. The transmission of the object distribution of is relayed.

また、各中継装置3は撮影画像に対するフィルタ機能を有し、分布推定装置4宛の撮影画像内の一部の領域を間引くことによって通信コストを低減する。以下では、フィルタリング後の分布推定装置4宛の撮影画像を推定用画像とも称し、これと区別するために、中継装置3に中継された表示装置5宛の撮影画像を表示用画像とも称する。 Further, each relay device 3 has a filter function for the captured image, and reduces the communication cost by thinning out a part of the captured image addressed to the distribution estimation device 4. Hereinafter, the captured image addressed to the distribution estimation device 4 after filtering is also referred to as an estimation image, and in order to distinguish it from this, the captured image addressed to the display device 5 relayed to the relay device 3 is also referred to as a display image.

具体的には、各中継装置3は、分布推定装置4への推定用画像の中継において、分布推定装置4によって解析された推定用画像内の局所領域ごとの混雑度合いに基づいて、混雑度合いが高い局所領域の画像ほど低いフレームレート、つまり長い時間間隔で中継し、混雑度合いが低い局所領域の画像ほど高いフレームレート、つまり短い時間間隔で中継する。これら局所領域を伝送するフレームレートに対応する時間間隔を伝送間隔と称する。例えば、混雑度合いは3段階に定められ、最も混雑度合いが高い領域の画像の伝送間隔は4時刻、最も混雑度合いが低い領域の画像の伝送間隔は1時刻、中間の混雑度合いである領域の画像の伝送間隔は2時刻とすることができる。 Specifically, each relay device 3 relays the estimation image to the distribution estimation device 4, and the degree of congestion is determined based on the degree of congestion of each local region in the estimation image analyzed by the distribution estimation device 4. Images in the higher local region are relayed at a lower frame rate, that is, at longer time intervals, and images in the local region, which are less congested, are relayed at a higher frame rate, that is, at shorter time intervals. The time interval corresponding to the frame rate for transmitting these local regions is referred to as a transmission interval. For example, the degree of congestion is set in three stages, the transmission interval of the image in the region with the highest degree of congestion is 4 hours, the transmission interval of the image in the region with the lowest degree of congestion is 1 hour, and the transmission interval of the image in the region with the intermediate degree of congestion is 1 hour. The transmission interval of is 2 hours.

伝送間隔は、対象空間の混雑状況の変化によって時々刻々と変化し、また撮影画像に設定される局所領域どうしにて非同期となる。このような伝送間隔の制御を実時間で行うために、局所領域の混雑度合いが推定されるたびに当該混雑度合いに応じた伝送間隔が当該局所領域の画像の伝送待ち時間として設定されて、新たな推定用画像が取得されるたびに伝送待ち時間をカウントダウンし、伝送待ち時間が0になった局所領域の画像を伝送する(伝送待ち時間が0でない局所領域の画像を間引いて伝送する)、という制御が行われる。 The transmission interval changes from moment to moment due to changes in the congestion status of the target space, and is asynchronous between the local regions set in the captured image. In order to control the transmission interval in real time, every time the degree of congestion in the local area is estimated, the transmission interval according to the degree of congestion is set as the transmission waiting time for the image in the local area. Each time an image for estimation is acquired, the transmission waiting time is counted down, and the image of the local area where the transmission waiting time is 0 is transmitted (the image of the local area where the transmission waiting time is not 0 is thinned out and transmitted). Is controlled.

そのために、各中継装置3は、分布推定装置4から自装置宛の伝送待ち時間の設定を受信し、受信した設定に基づいてフィルタリングを行う。 Therefore, each relay device 3 receives the setting of the transmission waiting time addressed to its own device from the distribution estimation device 4, and performs filtering based on the received setting.

なお、複数の撮影装置2と複数の中継装置3の接続関係は、固定されてもよいし、動的に変更されてもよいが、本実施形態において例示する期間中は、撮影装置2−1a,2−1bは中継装置3−1に接続され、撮影装置2−2a,2−2bは中継装置3−2に接続されているものとする。 The connection relationship between the plurality of photographing devices 2 and the plurality of relay devices 3 may be fixed or dynamically changed, but during the period illustrated in the present embodiment, the photographing devices 2-1a , 2-1b are connected to the relay device 3-1 and the photographing devices 2-2a and 2-2b are connected to the relay device 3-2.

分布推定装置4は画像処理用のサーバーコンピュータであり、上記ネットワークに接続され、例えばイベント会場から離れた遠隔地の画像解析センターに設置される。分布推定装置4は、撮影装置2−1a,2−1b,…,2−2a,2−2b,…により撮影されて中継装置3−1,3−2,…によりフィルタリングされた推定用画像を受信し、受信した推定用画像の局所領域ごとに当該局所領域における人(物体)の混雑度合いを解析し、解析結果である物体分布の情報を表示装置5へ向けて送信する。 The distribution estimation device 4 is a server computer for image processing, is connected to the above network, and is installed in, for example, an image analysis center in a remote location away from the event venue. The distribution estimation device 4 captures an estimation image captured by the photographing devices 2-1a, 2-1b, ..., 2-2a, 2-2b, ... And filtered by the relay device 3-1, 3-2, ... For each local region of the received estimation image, the degree of congestion of people (objects) in the local region is analyzed, and the information of the object distribution as the analysis result is transmitted to the display device 5.

また、分布推定装置4は、局所領域ごとの混雑度合いに応じて各局所領域における伝送間隔を設定するとともに、伝送間隔に基づいて設定された伝送待ち時間を時刻の経過に応じて更新し、更新した伝送待ち時間の情報を、対応する撮影装置2が接続された中継装置3に送信する。 Further, the distribution estimation device 4 sets the transmission interval in each local region according to the degree of congestion in each local region, and updates and updates the transmission waiting time set based on the transmission interval according to the passage of time. The information on the transmission waiting time is transmitted to the relay device 3 to which the corresponding photographing device 2 is connected.

表示装置5は、モニタを備えたPC(Personal Computer)等の端末装置であり、上記ネットワークに接続され、例えばイベント会場内の監視センターに設置される。表示装置5は、撮影装置2−1a,2−1b,…,2−2a,2−2b,…により撮影された表示用画像を受信するとともに、分布推定装置4により解析された物体分布の情報を受信し、表示用画像に当該画像に対応する物体分布の情報を合成して合成画像をモニタに表示する。監視員は、表示された合成画像を視認することによって監視空間に混雑が発生している地点を把握し、当該地点に警備員を派遣し或いは増員するなどの対処を行う。 The display device 5 is a terminal device such as a PC (Personal Computer) equipped with a monitor, is connected to the above network, and is installed in, for example, a monitoring center in an event venue. The display device 5 receives the display image captured by the photographing devices 2-1a, 2-1b, ..., 2-2a, 2-2b, ..., And the information on the object distribution analyzed by the distribution estimation device 4. Is received, the information of the object distribution corresponding to the image is synthesized with the display image, and the composite image is displayed on the monitor. By visually recognizing the displayed composite image, the observer grasps the point where congestion is occurring in the monitoring space, and takes measures such as dispatching or increasing the number of guards to the point.

[物体分布推定システム1を構成する各装置の機能]
以下、図2〜図5を参照して、物体分布推定システム1を構成する各装置の機能を説明する。ここで、複数の撮影装置2どうしおよび複数の中継装置3どうしについては、接続関係や対象空間等の一部設定が異なるが機能は共通する。
[Functions of each device constituting the object distribution estimation system 1]
Hereinafter, the functions of each device constituting the object distribution estimation system 1 will be described with reference to FIGS. 2 to 5. Here, the plurality of photographing devices 2 and the plurality of relay devices 3 have the same functions although the connection relationship and some settings such as the target space are different.

図2は撮影装置2の機能ブロック図である。上述のように撮影装置2−1a,2−1b,…,2−2a,2−2b,…は互いに機能が共通であり、図2に示す撮影装置2はそれらの任意の1つである。撮影装置2は画像取得手段20および撮影画像送信手段21を含んで構成される。 FIG. 2 is a functional block diagram of the photographing device 2. As described above, the photographing devices 2-1a, 2-1b, ..., 2-2a, 2-2b, ... Have common functions to each other, and the photographing device 2 shown in FIG. 2 is any one of them. The photographing device 2 includes an image acquiring means 20 and a photographed image transmitting means 21.

画像取得手段20はCCD等の撮像素子およびレンズ等の光学部品等からなる。各撮影装置2の画像取得手段20は、当該撮影装置2に割り当てられた対象空間を上述したフレームレートで撮影して撮影画像を生成し、生成した撮影画像を撮影画像送信手段21に順次出力する。 The image acquisition means 20 includes an image pickup element such as a CCD and optical components such as a lens. The image acquisition means 20 of each photographing device 2 photographs the target space assigned to the photographing device 2 at the frame rate described above to generate a photographed image, and sequentially outputs the generated photographed image to the photographed image transmitting means 21. ..

撮影画像送信手段21は、ネットワークとの通信インターフェース回路、メモリ、クロック回路等からなる。メモリには、撮影装置2ごとに予め付与されたカメラIDおよび分布推定装置4のアドレス等が予め記憶されている。また、クロック回路により現在時刻が計時される。撮影画像送信手段21は、画像取得手段20から入力された撮影画像にカメラIDおよび現在時刻(撮影時刻)を付与するとともに分布推定装置4のアドレスを宛先に設定し、当該撮影画像をネットワークに送出する。 The captured image transmitting means 21 includes a communication interface circuit with a network, a memory, a clock circuit, and the like. The camera ID and the address of the distribution estimation device 4 assigned in advance for each photographing device 2 are stored in the memory in advance. In addition, the current time is clocked by the clock circuit. The captured image transmitting means 21 assigns a camera ID and a current time (shooting time) to the captured image input from the image acquiring means 20, sets the address of the distribution estimation device 4 as a destination, and sends the captured image to the network. To do.

図3は中継装置3の機能ブロック図である。上述のように中継装置3−1,3−2,…は互いに機能が共通であり、図3に示す中継装置3はそれらの任意の1つである。中継装置3は、CPU(Central Processing Unit)等の演算装置、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリ、ネットワークとの通信インターフェース回路を含んで構成され、撮影画像受信手段30、撮影画像記憶手段31、待ち時間受信手段32、待ち時間記憶手段33、推定用画像送信手段34および表示用画像送信手段35等として動作する。メモリにはプログラムや各種設定値が予め記憶され、演算装置がこれらに従って、各種処理を行うとともに、通信インターフェース回路と協働してネットワークを介した各種情報の送受信を行い、およびメモリとの間で各種情報の入出力を行うことによって各手段として動作する。 FIG. 3 is a functional block diagram of the relay device 3. As described above, the relay devices 3-1, 3-2, ... Have the same function as each other, and the relay device 3 shown in FIG. 3 is any one of them. The relay device 3 includes a computing device such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and a communication interface circuit with a network. , The captured image storage means 31, the waiting time receiving means 32, the waiting time storage means 33, the estimation image transmitting means 34, the display image transmitting means 35, and the like. Programs and various setting values are stored in the memory in advance, and the arithmetic unit performs various processes according to these, sends and receives various information via the network in cooperation with the communication interface circuit, and communicates with the memory. It operates as each means by inputting and outputting various information.

各中継装置3の撮影画像受信手段30は、当該中継装置3に接続された撮影装置2から、分布推定装置4宛に送信された撮影画像および表示装置5宛に送信された撮影画像を受信して、当該各画像を撮影画像記憶手段31に記憶させる。 The captured image receiving means 30 of each relay device 3 receives the captured image transmitted to the distribution estimation device 4 and the captured image transmitted to the display device 5 from the photographing device 2 connected to the relay device 3. Then, each image is stored in the captured image storage means 31.

各中継装置3の待ち時間受信手段32は、分布推定装置4から当該中継装置3宛に送信された伝送待ち時間の情報を受信して、当該情報を待ち時間記憶手段33に記憶させる。伝送待ち時間の情報は対応する撮影画像における各局所領域の伝送待ち時間である。後述するように、局所領域は画素であり、伝送待ち時間はそれぞれが2以上の画素からなるブロック単位で設定される。つまり、伝送待ち時間の情報は、対応する撮影画像に付与されたカメラIDと、対応する撮影画像の各ブロックの伝送待ち時間とからなる。ちなみに、本実施形態では中継装置3と撮影装置2との接続関係は固定されており、各中継装置3の待ち時間記憶手段33は基本的に当該中継装置3に接続される撮影装置2に対応した伝送待ち時間の情報を記憶する。なお、中継装置3に接続される撮影装置2が動的に変更される場合には例えば、各中継装置3の待ち時間記憶手段33は全ての撮影装置2についての当該情報を記憶してもよい。 The waiting time receiving means 32 of each relay device 3 receives the transmission waiting time information transmitted from the distribution estimation device 4 to the relay device 3, and stores the information in the waiting time storage means 33. The transmission waiting time information is the transmission waiting time of each local region in the corresponding captured image. As will be described later, the local region is a pixel, and the transmission waiting time is set in block units each consisting of two or more pixels. That is, the transmission waiting time information includes the camera ID assigned to the corresponding captured image and the transmission waiting time of each block of the corresponding captured image. Incidentally, in the present embodiment, the connection relationship between the relay device 3 and the photographing device 2 is fixed, and the waiting time storage means 33 of each relay device 3 basically corresponds to the photographing device 2 connected to the relay device 3. The information of the transmission waiting time is stored. When the photographing device 2 connected to the relay device 3 is dynamically changed, for example, the waiting time storage means 33 of each relay device 3 may store the information about all the photographing devices 2. ..

推定用画像送信手段34は、待ち時間記憶手段33から伝送待ち時間の情報を読み出すとともに、当該情報に対応する分布推定装置4宛の撮影画像を撮影画像記憶手段31から読み出して、当該画像のうち伝送待ち時間が0であるブロックに帰属する画素の画素値のみからなる推定用画像を生成する。そして、推定用画像に元の撮影画像に付与されていたカメラIDおよび撮影時刻を付与するとともに分布推定装置4のアドレスを宛先に設定して当該推定用画像をネットワークに送出する。 The estimation image transmitting means 34 reads the transmission waiting time information from the waiting time storage means 33, and reads the captured image addressed to the distribution estimation device 4 corresponding to the information from the captured image storage means 31, and among the images. An estimation image consisting of only the pixel values of the pixels belonging to the block having the transmission waiting time of 0 is generated. Then, the camera ID and the shooting time assigned to the original captured image are assigned to the estimation image, the address of the distribution estimation device 4 is set as the destination, and the estimation image is transmitted to the network.

表示用画像送信手段35は、表示装置5宛の撮影画像を撮影画像記憶手段31から読み出してネットワークに送出する。 The display image transmitting means 35 reads the captured image addressed to the display device 5 from the captured image storage means 31 and sends it to the network.

図4は分布推定装置4の機能ブロック図である。分布推定装置4は、CPU等の演算装置、ROM、RAM等のメモリ、ネットワークとの通信インターフェース回路を含んで構成され、推定用画像受信手段40、密度推定器記憶手段41、密度推定手段42、物体分布記憶手段43、伝送間隔設定手段44、待ち時間記憶手段45、待ち時間送信手段46および物体分布送信手段47等として動作する。メモリにはプログラムや各種設定値が予め記憶され、演算装置がこれらに従って、各種処理を行うとともに、通信インターフェース回路と協働してネットワークを介した各種情報の送受信を行い、およびメモリとの間で各種情報の入出力を行うことによって各手段として動作する。 FIG. 4 is a functional block diagram of the distribution estimation device 4. The distribution estimation device 4 includes an arithmetic unit such as a CPU, a memory such as a ROM and a RAM, and a communication interface circuit with a network, and includes an image receiving means 40 for estimation, a density estimator storage means 41, and a density estimation means 42. It operates as an object distribution storage means 43, a transmission interval setting means 44, a waiting time storage means 45, a waiting time transmission means 46, an object distribution transmission means 47, and the like. Programs and various setting values are stored in the memory in advance, and the arithmetic unit performs various processes according to these, sends and receives various information via the network in cooperation with the communication interface circuit, and communicates with the memory. It operates as each means by inputting and outputting various information.

推定用画像受信手段40は、撮影装置2から分布推定装置4宛に送出され途中の中継装置3によりフィルタリングされた撮影画像である推定用画像を受信して、当該画像を密度推定手段42に出力する。 The estimation image receiving means 40 receives an estimation image which is a captured image sent from the photographing device 2 to the distribution estimation device 4 and filtered by the relay device 3 on the way, and outputs the image to the density estimation means 42. To do.

密度推定器記憶手段41は、所定の密度ごとに当該密度にて物体(人)が存在する空間を撮影した密度画像それぞれの画像特徴を学習した推定密度算出関数であって、画像の特徴量を入力されると当該画像に撮影されている物体の密度の推定値(推定密度)を算出し、算出した推定密度を出力する推定器(密度推定器)の情報を予め記憶している。つまり上記推定密度算出関数の係数等のパラメータを密度推定器の情報として予め記憶している。 The density estimator storage means 41 is an estimated density calculation function that learns the image features of each density image obtained by photographing a space in which an object (person) exists at the density at a predetermined density, and obtains the feature amount of the image. When input, the estimated value (estimated density) of the density of the object captured in the image is calculated, and the information of the estimator (density estimator) that outputs the calculated estimated density is stored in advance. That is, parameters such as the coefficient of the estimated density calculation function are stored in advance as information of the density estimator.

密度推定手段42は、撮影画像内に複数設定された局所領域ごとの解析によって、局所領域それぞれにおける物体の混雑度合いを求めることで対象空間における物体の分布を推定する。具体的には、密度推定手段42は、推定用画像受信手段40から入力された推定用画像における任意の局所領域についての密度推定用の特徴量を抽出するとともに密度推定器記憶手段41から密度推定器を読み出して、抽出した特徴量を密度推定器に入力することによって当該局所領域における密度を推定する。この推定を撮影画像内の複数の位置にて行うことにより、対象空間における物体の分布が求められる。密度推定手段42は、局所領域の座標および推定密度を推定用画像に付与されていたカメラIDおよび撮影時刻と対応付けて物体分布記憶手段43に記憶させるとともに、推定密度を伝送間隔設定手段44に入力する。 The density estimation means 42 estimates the distribution of objects in the target space by obtaining the degree of congestion of the objects in each of the local regions by analyzing each of a plurality of local regions set in the captured image. Specifically, the density estimation means 42 extracts features for density estimation for an arbitrary local region in the estimation image input from the estimation image receiving means 40, and also estimates the density from the density estimator storage means 41. The density in the local region is estimated by reading out the instrument and inputting the extracted features into the density estimator. By performing this estimation at a plurality of positions in the captured image, the distribution of objects in the target space can be obtained. The density estimation means 42 stores the coordinates of the local region and the estimated density in the object distribution storage means 43 in association with the camera ID and the shooting time assigned to the estimation image, and stores the estimated density in the transmission interval setting means 44. input.

ここで推定される推定密度は、推定用画像に対応して一部が間引かれた情報であるが、物体分布記憶手段43においては過去の推定密度と合わさって全局所領域にわたる推定密度が記憶されている状態となる。密度推定手段42は、新たに推定した推定密度を物体分布記憶手段43に記憶させた後に、物体分布記憶手段43からカメラIDごとに各局所領域の最新撮影時刻の推定密度を読み出して、カメラIDおよび全局所領域の中で最新の撮影時刻を付与して物体分布送信手段47に出力する。 The estimated density estimated here is information that is partially thinned out corresponding to the image for estimation, but the object distribution storage means 43 stores the estimated density over the entire local region in combination with the past estimated density. It will be in the state of being. The density estimation means 42 stores the newly estimated estimated density in the object distribution storage means 43, then reads out the estimated density of the latest shooting time of each local region from the object distribution storage means 43 for each camera ID, and the camera ID. And the latest shooting time is given in the entire local area and output to the object distribution transmitting means 47.

密度推定の処理と密度推定器について具体的に説明する。 The processing of density estimation and the density estimator will be specifically described.

本実施形態においては撮影画像内の各画素を局所領域として設定する。密度推定手段42は、推定用画像の各画素の位置に密度推定用の窓を設定し、各窓における推定用画像から特徴量を抽出する。特徴量はGLCM(Gray Level Co-occurrence Matrix)特徴である。 In the present embodiment, each pixel in the captured image is set as a local region. The density estimation means 42 sets a window for density estimation at the position of each pixel of the estimation image, and extracts a feature amount from the estimation image in each window. The feature quantity is a GLCM (Gray Level Co-occurrence Matrix) feature.

各窓に撮影されている対象空間内の領域は同一サイズであることが望ましい。すなわち、好適には密度推定手段42は不図示のカメラパラメータ記憶手段から予め記憶されている撮影装置2のカメラパラメータを読み出し、カメラパラメータを用いたホモグラフィ変換により撮影画像の任意の画素に撮影されている対象空間内の領域が同一サイズとなるように推定用画像を変形してから窓を設定して特徴量を抽出する。各窓は後述する密度画像と同形・同大の領域とすることができる。 It is desirable that the areas in the target space photographed by each window are the same size. That is, preferably, the density estimation means 42 reads out the camera parameters of the photographing device 2 stored in advance from the camera parameter storage means (not shown), and images the captured images at arbitrary pixels by homography conversion using the camera parameters. After transforming the estimation image so that the areas in the target space are the same size, the windows are set and the features are extracted. Each window can be an area having the same shape and size as the density image described later.

密度推定器は多クラスの画像を識別する識別器で実現することができ、多クラスSVM(Support Vector Machine)法で学習した識別関数とすることができる。 The density estimator can be realized by a discriminator that discriminates a multi-class image, and can be a discriminant function learned by a multi-class SVM (Support Vector Machine) method.

密度は、例えば、人が存在しない「背景」クラス、0人/mより高く2人/m以下である「低密度」クラス、2人/mより高く4人/m以下である「中密度」クラス、4人/mより高い「高密度」クラスの4クラスと定義することができる。 Density, for example, there is no human "Background" class is 0 people / m higher than 2 is two / m 2 or less "low density" class, higher than two / m 2 4 persons / m 2 or less It can be defined as 4 classes of "medium density" class and "high density" class higher than 4 people / m 2.

推定密度は各クラスに予め付与された値であり、分布推定の結果として出力される値である。本実施形態では各クラスに対応する値を「背景」、「低密度」、「中密度」、「高密度」と表記する。 The estimated density is a value given in advance to each class and is a value output as a result of distribution estimation. In this embodiment, the values corresponding to each class are described as "background", "low density", "medium density", and "high density".

すなわち、密度推定器は「背景」クラス、「低密度」クラス、「中密度」クラス、「高密度」クラスのそれぞれに帰属する多数の画像(密度画像)の特徴量に多クラスSVM法を適用して学習して得られる、各クラスの密度画像を他のクラスと識別するための識別関数である。この学習により導出された識別関数のパラメータが密度推定器として記憶されている。なお、学習時の特徴量は、密度推定手段42が抽出する特徴量と同種であり、GLCM特徴である。 That is, the density estimator applies the multi-class SVM method to the features of a large number of images (density images) belonging to each of the "background" class, "low density" class, "medium density" class, and "high density" class. This is an identification function for distinguishing the density image of each class from other classes, which is obtained by learning. The parameters of the discriminant function derived by this learning are stored as a density estimator. The feature amount at the time of learning is the same type as the feature amount extracted by the density estimation means 42, and is a GLCM feature.

密度推定手段42は、各画素に対応して抽出した特徴量のそれぞれを密度推定器に入力することによってその出力値である推定密度を取得する。なお、推定用画像を変形させて特徴量を抽出した場合、密度推定手段42は、カメラパラメータを用いたホモグラフィ変換により密度分布を元の推定用画像の形状に変形させる。 The density estimation means 42 acquires the estimated density, which is the output value, by inputting each of the feature quantities extracted corresponding to each pixel into the density estimator. When the feature amount is extracted by deforming the estimation image, the density estimation means 42 transforms the density distribution into the shape of the original estimation image by homography conversion using camera parameters.

こうして得られた、撮影画像の画素ごとに対応して求められた推定密度の集まりが物体分布である。ここで、推定密度が「高密度」クラスである局所領域(高混雑領域)においては、混雑により人の動きが遅くなっており急激な混雑度合いの変化が生じにくい。そのため、高混雑領域は短い時間間隔で解析しなくても監視員の判断などに与える影響は少ない。他方、推定密度が「背景」クラスおよび「低密度」クラスである局所領域(低混雑領域)においては、人が走ることも可能であり急激な混雑度合いの変化が生じ得る。そのため、低混雑領域については短い時間間隔で解析して変化の様子を監視員に逐次提示することが望ましい。また、推定密度が「中密度」クラスである局所領域(中混雑領域)における人の動きの速さは高混雑領域と低混雑領域との中間的な速さと考えられる。 The object distribution is a set of estimated densities obtained in this way for each pixel of the captured image. Here, in the local region (highly congested region) where the estimated density is in the “high density” class, the movement of people is slowed down due to congestion, and a sudden change in the degree of congestion is unlikely to occur. Therefore, the highly congested area has little influence on the judgment of the observer even if it is not analyzed at short time intervals. On the other hand, in the local region (low congestion region) where the estimated density is the "background" class and the "low density" class, it is possible for a person to run and a sudden change in the degree of congestion can occur. Therefore, it is desirable to analyze the low-congestion area at short time intervals and present the state of change to the observer in sequence. Further, the speed of movement of a person in a local region (medium-congested region) whose estimated density is in the "medium-density" class is considered to be an intermediate speed between a high-congested region and a low-congested region.

そこで、物体分布推定システム1は、推定密度が高い局所領域ほど長い伝送間隔で画像を送受信することによって、密度推定の結果の信頼度を確保しつつ密度推定の通信コストを抑制する。 Therefore, the object distribution estimation system 1 suppresses the communication cost of density estimation while ensuring the reliability of the density estimation result by transmitting and receiving images at longer transmission intervals in the local region where the estimated density is higher.

そのために、伝送間隔設定手段44は密度推定手段42が推定した推定密度に応じて局所領域それぞれの伝送間隔を設定し、各局所領域の画像を当該局所領域に設定された伝送間隔にて中継装置3へ送信させる。 Therefore, the transmission interval setting means 44 sets the transmission interval of each local region according to the estimated density estimated by the density estimation means 42, and relays the image of each local region at the transmission interval set in the local region. Send to 3.

例えば、伝送間隔設定手段44は、推定密度が「高密度」クラスであった局所領域の伝送間隔を4時刻とし、推定密度が「中密度」クラスであった局所領域の伝送間隔を2時刻とし、推定密度が「背景」クラスであった局所領域および「低密度」クラスであった局所領域の伝送間隔を1時刻と設定する。 For example, the transmission interval setting means 44 sets the transmission interval of the local region whose estimated density is the “high density” class to 4 hours, and the transmission interval of the local region whose estimated density is the “medium density” class to 2 hours. , The transmission interval of the local region whose estimated density was the "background" class and the local region whose estimated density was the "low density" class is set to 1 time.

具体的には、上記伝送間隔の制御を実時間で行うために、伝送間隔設定手段44は、例えば、局所領域ごとの伝送間隔を伝送待ち時間として待ち時間記憶手段45に書き込んで、新たな推定用画像を取得するたびに伝送待ち時間を減少させる。 Specifically, in order to control the transmission interval in real time, the transmission interval setting means 44 writes, for example, the transmission interval for each local area as the transmission waiting time in the waiting time storage means 45, and makes a new estimation. The transmission waiting time is reduced each time an image is acquired.

また、高混雑領域のうち、中混雑領域あるいは低混雑領域との境界付近は、それ以外の領域に比べて混雑度合いの変化が生じやすい。また、同様に中混雑領域のうち低混雑領域との境界付近はそれ以外の領域に比べて混雑度合いの変化が生じやすい。そこで、伝送間隔設定手段44は、それぞれが2以上の局所領域からなるブロックごとに、当該ブロック内で最も低い密度に応じた伝送間隔を設定する。ブロックは予め設定され、伝送間隔設定手段44と密度推定手段42とはその設定を共有する。ブロックの大きさは物体1〜2個分(人ひとり乃至ふたり分)程度の大きさとするのがよい。この大きさは混雑度合いの変化を生じさせる最小単位である。このように物体の大きさに応じたブロックとすることで、境界付近の更新遅延を防ぎつつ、境界付近以外での不要に頻繁な更新を防ぐことができる。 Further, among the high-congested areas, the vicinity of the boundary with the medium-congested area or the low-congested area is more likely to change in the degree of congestion than the other areas. Similarly, in the medium-congested region near the boundary with the low-congested region, the degree of congestion is more likely to change than in the other regions. Therefore, the transmission interval setting means 44 sets the transmission interval according to the lowest density in the block for each block each consisting of two or more local regions. The block is set in advance, and the transmission interval setting means 44 and the density estimation means 42 share the setting. The size of the block should be about one or two objects (one or two people). This size is the smallest unit that causes a change in the degree of congestion. By forming blocks according to the size of the object in this way, it is possible to prevent an update delay near the boundary and prevent unnecessary frequent updates other than near the boundary.

伝送間隔設定手段44にて設定される伝送待ち時間は、推定用画像に対応して一部のブロックが間引かれた情報であり得るが、待ち時間記憶手段45においては過去に設定した伝送待ち時間と合わさって全ブロックにわたる伝送待ち時間が記憶されている状態となる。伝送間隔設定手段44は、新たな伝送待ち時間を待ち時間記憶手段45に記憶させた後に、待ち時間記憶手段45から全ブロックの伝送待ち時間を読み出して、推定用画像に付与されていたカメラIDおよび撮影時刻を付与して待ち時間送信手段46に出力する。 The transmission waiting time set by the transmission interval setting means 44 may be information in which some blocks are thinned out corresponding to the estimation image, but the waiting time storage means 45 has a transmission waiting time set in the past. Combined with the time, the transmission waiting time over all blocks is stored. The transmission interval setting means 44 reads the transmission waiting time of all blocks from the waiting time storage means 45 after storing the new transmission waiting time in the waiting time storage means 45, and assigns the camera ID to the estimation image. And the shooting time is given and output to the waiting time transmission means 46.

待ち時間送信手段46は、伝送間隔設定手段44から入力された伝送待ち時間の情報を、当該情報に付与されているカメラIDと対応する中継装置3のアドレスを宛先に設定してネットワークに送出する。 The waiting time transmission means 46 transmits the transmission waiting time information input from the transmission interval setting means 44 to the network by setting the address of the relay device 3 corresponding to the camera ID given to the information as the destination. ..

物体分布送信手段47は、密度推定手段42から入力された物体分布の情報を、表示装置5のアドレスを宛先に設定してネットワークに送出する。 The object distribution transmitting means 47 transmits the object distribution information input from the density estimation means 42 to the network by setting the address of the display device 5 as the destination.

図5は表示装置5の機能ブロック図である。表示装置5は、液晶ディスプレイ等のモニタ、CPU等の演算装置、ROM、RAM等のメモリ、ネットワークとの通信インターフェース回路を含んで構成され、表示用画像受信手段50、物体分布受信手段51、画像合成手段52、物体分布表示手段53等として動作する。メモリにはプログラムや各種設定値が予め記憶され、演算装置がこれらに従って、各種処理を行うとともに、通信インターフェース回路と協働してネットワークを介した各種情報の送受信を行い、モニタと協働して各種情報の表示を行い、およびメモリとの間で各種情報の入出力を行うことによって各手段として動作する。 FIG. 5 is a functional block diagram of the display device 5. The display device 5 includes a monitor such as a liquid crystal display, a computing device such as a CPU, a memory such as a ROM and a RAM, and a communication interface circuit with a network, and includes a display image receiving means 50, an object distribution receiving means 51, and an image. It operates as a synthesis means 52, an object distribution display means 53, and the like. Programs and various setting values are stored in the memory in advance, and the arithmetic unit performs various processes according to these, sends and receives various information via the network in cooperation with the communication interface circuit, and cooperates with the monitor. It operates as each means by displaying various information and inputting / outputting various information to / from the memory.

表示用画像受信手段50は、撮影装置2から表示装置5宛に送出され中継装置3により中継された撮影画像である表示用画像を受信して、当該画像を画像合成手段52に出力する。 The display image receiving means 50 receives a display image which is a captured image sent from the photographing device 2 to the display device 5 and relayed by the relay device 3, and outputs the image to the image synthesizing means 52.

物体分布受信手段51は、分布推定装置4から表示装置5宛に送出され中継装置3により中継された物体分布の情報を受信して、当該情報を画像合成手段52に出力する。 The object distribution receiving means 51 receives the information of the object distribution sent from the distribution estimation device 4 to the display device 5 and relayed by the relay device 3, and outputs the information to the image synthesizing means 52.

画像合成手段52は、表示用画像受信手段50から入力された表示用画像と、物体分布受信手段51から入力された物体分布の情報のうち、カメラIDおよび撮影時刻が共に一致するもの同士を合成し、合成画像を物体分布表示手段53に出力する。 The image synthesizing means 52 synthesizes the display image input from the display image receiving means 50 and the object distribution information input from the object distribution receiving means 51 that have the same camera ID and shooting time. Then, the composite image is output to the object distribution display means 53.

その際、画像合成手段52は例えば、「高密度」クラスと推定された局所領域の画素値は赤、「中密度」クラスと推定された局所領域の画素値は黄、「低密度」クラスと推定された局所領域の画素値は緑、「背景」クラスと推定された局所領域の画素値は黒に設定した分布画像を生成して、表示用画像に透過合成する。 At that time, the image synthesizing means 52 has, for example, red for the pixel value of the local region estimated to be the "high density" class, yellow for the pixel value of the local region estimated to be the "medium density" class, and "low density" class. A distribution image in which the estimated pixel value of the local region is set to green and the pixel value of the estimated local region in the "background" class is set to black is generated and transparently combined with the display image.

物体分布表示手段53は、画像合成手段52から入力された合成画像をモニタに表示する。 The object distribution display means 53 displays the composite image input from the image synthesis means 52 on the monitor.

[物体分布推定システム1の動作]
図6〜図8のフロー図を参照して物体分布推定システム1の動作を説明する。
[Operation of object distribution estimation system 1]
The operation of the object distribution estimation system 1 will be described with reference to the flow charts of FIGS. 6 to 8.

物体分布推定システム1が起動すると、撮影装置2において、画像取得手段20が所定の撮影周期で対象空間を撮影し、撮影画像送信手段21が撮影画像を順次、分布推定装置4および表示装置5に宛てて送信する。また、撮影装置2に視野変更が生じた場合、当該撮影装置2は分布推定装置4宛に視野変更が生じた旨を通知する。 When the object distribution estimation system 1 is activated, in the photographing device 2, the image acquisition means 20 photographs the target space at a predetermined imaging cycle, and the captured image transmitting means 21 sequentially transfers the captured images to the distribution estimation device 4 and the display device 5. Send to the address. Further, when the field of view is changed in the photographing device 2, the photographing device 2 notifies the distribution estimation device 4 that the field of view has been changed.

図6は中継装置3の動作の概略のフロー図である。撮影装置2が送信した撮影画像は中継装置3によって中継される。中継装置3の撮影画像受信手段30は任意の撮影装置2から撮影画像を受信したときに(ステップS30にて「YES」の場合)、当該画像を撮影画像記憶手段31に記憶させる(ステップS31)。一方、いずれの撮影装置2からも撮影画像を受信していないときは(ステップS30にて「NO」の場合)、ステップS31はスキップされる。 FIG. 6 is a schematic flow chart of the operation of the relay device 3. The captured image transmitted by the photographing device 2 is relayed by the relay device 3. When the captured image receiving means 30 of the relay device 3 receives the captured image from an arbitrary photographing device 2 (when “YES” in step S30), the captured image receiving means 30 stores the captured image in the captured image storage means 31 (step S31). .. On the other hand, when no captured image is received from any of the photographing devices 2 (in the case of "NO" in step S30), step S31 is skipped.

また、中継装置3には前時刻の推定用画像に基づいて更新された伝送待ち時間の情報が分布推定装置4から送信される。中継装置3の待ち時間受信手段32は分布推定装置4から任意の撮影装置2に関してカメラIDが付与された伝送待ち時間の情報を受信したときに(ステップS32にて「YES」の場合)、当該情報を待ち時間記憶手段33に記憶されているカメラIDが同一である伝送待ち時間の情報に上書きすることで情報を更新する(ステップS33)。 Further, the distribution estimation device 4 transmits updated transmission waiting time information based on the estimation image of the previous time to the relay device 3. When the waiting time receiving means 32 of the relay device 3 receives the transmission waiting time information to which the camera ID is assigned for the arbitrary photographing device 2 from the distribution estimation device 4 (when “YES” in step S32), the said The information is updated by overwriting the information with the transmission waiting time information having the same camera ID stored in the waiting time storage means 33 (step S33).

伝送待ち時間の情報が更新されると、中継装置3の推定用画像送信手段34は、撮影画像記憶手段31を参照して、更新された当該情報と同一のカメラIDが付与され且つ当該情報よりも新しい撮影時刻が付与された分布推定装置4宛の撮影画像および表示装置5宛の撮影画像が受信されているか否かを確認する(ステップS34)。 When the transmission waiting time information is updated, the estimation image transmitting means 34 of the relay device 3 refers to the captured image storage means 31 and is given the same camera ID as the updated information, and from the information. Also confirms whether or not the captured image addressed to the distribution estimation device 4 and the captured image addressed to the display device 5 to which a new shooting time is assigned have been received (step S34).

中継装置3が該当する撮影画像を受信済みである場合(ステップS34にて「YES」の場合)、推定用画像送信手段34は、分布推定装置4宛の撮影画像から、更新された伝送待ち時間の情報において伝送待ち時間が0であるブロックの画素のみを抜き出して推定用画像を生成し、生成した推定用画像を分布推定装置4に送信する(ステップS35)。 When the relay device 3 has already received the corresponding captured image (when “YES” in step S34), the estimation image transmitting means 34 receives an updated transmission waiting time from the captured image addressed to the distribution estimation device 4. Only the pixels of the block whose transmission waiting time is 0 are extracted from the information of the above to generate an estimation image, and the generated estimation image is transmitted to the distribution estimation device 4 (step S35).

なお、本実施形態では後述するように、伝送待ち時間のカウントダウンは分布推定装置4で行う構成としている。そこで、中継装置3は撮影装置2からの撮影画像の受信に同期した伝送待ち時間の1時刻の経過を分布推定装置4に知らせるために、ステップS35では伝送待ち時間が0であるブロックの有無にかかわらず推定用画像の送信動作を行う。ここで、伝送待ち時間が0であるブロックがない場合の推定用画像は撮影画像の画素値を含まない実質的に空のデータであり、単に分布推定装置4に時刻の経過を知らせるためのデータとなる。 In this embodiment, as will be described later, the distribution estimation device 4 is used to count down the transmission waiting time. Therefore, in order to notify the distribution estimation device 4 of the passage of one time of the transmission waiting time synchronized with the reception of the captured image from the photographing device 2, the relay device 3 determines the presence or absence of the block in which the transmission waiting time is 0 in step S35. Regardless, the estimation image is transmitted. Here, the estimation image when there is no block having a transmission waiting time of 0 is substantially empty data that does not include the pixel value of the captured image, and is simply data for notifying the distribution estimation device 4 of the passage of time. It becomes.

また、中継装置3の表示用画像送信手段35は、表示用画像を表示装置5に送信する(ステップS36)。 Further, the display image transmission means 35 of the relay device 3 transmits the display image to the display device 5 (step S36).

なお、いずれの撮影装置2に関しても更新された伝送待ち時間の情報を分布推定装置4から受信していないときは(ステップS32にて「NO」の場合)、ステップS33〜S36の処理はスキップされる。また、更新された伝送待ち時間の情報が受信された撮影装置2について当該情報よりも新しい撮影画像が未だ受信されていないときは(ステップS34にて「NO」の場合)、ステップS34〜S36の処理はスキップされる。 When the updated transmission waiting time information is not received from the distribution estimation device 4 for any of the photographing devices 2 (when “NO” in step S32), the processes of steps S33 to S36 are skipped. To. Further, when the photographed device 2 for which the updated transmission waiting time information has been received has not yet received a photographed image newer than the information (in the case of "NO" in step S34), steps S34 to S36 The process is skipped.

以上の処理を終えると中継装置3は処理をステップS30に戻しステップS30〜S36の上述の動作を繰り返す。 When the above processing is completed, the relay device 3 returns the processing to step S30 and repeats the above-mentioned operations of steps S30 to S36.

図7は分布推定装置4の動作の概略のフロー図である。分布推定装置4はステップS50〜S58からなるループ処理を実行する。 FIG. 7 is a schematic flow chart of the operation of the distribution estimation device 4. The distribution estimation device 4 executes a loop process including steps S50 to S58.

まず、伝送間隔設定手段44が初回起動時であるか否かおよび視野変更があったか否かを確認する(ステップS50)。すなわち伝送間隔設定手段44は待ち時間記憶手段45を参照して伝送待ち時間の情報が記憶されていなければ初回起動時と判定する。また伝送間隔設定手段44は中継装置3を介した撮影装置2からの通知を確認して視野変更通知を受信していれば視野変更があったと判定する。 First, it is confirmed whether or not the transmission interval setting means 44 is at the time of initial activation and whether or not the field of view has been changed (step S50). That is, the transmission interval setting means 44 refers to the waiting time storage means 45, and if the transmission waiting time information is not stored, the transmission interval setting means 44 determines that it is the first start-up. Further, the transmission interval setting means 44 confirms the notification from the photographing device 2 via the relay device 3, and if the notification for changing the field of view is received, it is determined that the field of view has been changed.

初回起動時である場合、または撮影装置2に視野変更があった場合(ステップS50にて「YES」の場合)、伝送間隔設定手段44は伝送待ち時間情報の初期化処理を行う(ステップS51,S52)。当該初期化処理は、初回起動時である場合は全ての撮影装置2の伝送待ち時間情報について行われる。一方、撮影装置2の視野変更の場合には、当該初期化処理は当該撮影装置2に関してのみ行われる。 When the image is started for the first time, or when the field of view is changed in the photographing device 2 (when “YES” in step S50), the transmission interval setting means 44 initializes the transmission waiting time information (step S51, S52). The initialization process is performed on the transmission waiting time information of all the photographing devices 2 at the time of the first startup. On the other hand, in the case of changing the field of view of the photographing device 2, the initialization process is performed only on the photographing device 2.

当該初期化処理では、伝送間隔設定手段44が初期化対象の撮影装置2について撮影画像における全ブロックの伝送待ち時間を0[時刻]に初期化した伝送待ち時間情報を生成し(ステップS51)、待ち時間送信手段46が当該伝送待ち時間情報を中継装置3に送信する(ステップS52)。また、当該伝送待ち時間情報は待ち時間記憶手段45に記憶される。ちなみに、初回起動または視野変更が検知されると直ちに、0に初期化された伝送待ち時間情報を中継装置3へ送信することで、起動後または視野変更後の撮影画像を速やかに推定用画像として分布推定装置4へ送信することができる(図6のステップS35)。 In the initialization process, the transmission interval setting means 44 generates transmission waiting time information in which the transmission waiting time of all blocks in the captured image is initialized to 0 [time] for the photographing device 2 to be initialized (step S51). The waiting time transmission means 46 transmits the transmission waiting time information to the relay device 3 (step S52). Further, the transmission waiting time information is stored in the waiting time storage means 45. By the way, as soon as the first start-up or the change of the field of view is detected, the transmission waiting time information initialized to 0 is transmitted to the relay device 3, so that the captured image after the start-up or the change of the field of view is promptly used as an estimation image. It can be transmitted to the distribution estimation device 4 (step S35 in FIG. 6).

なお、初回起動時でなく且つ視野変更がなかった場合(ステップS50にてNO)、ステップS51およびS52の処理はスキップされ、既に待ち時間記憶手段45に記憶されている値が維持される。 If the field of view is not changed at the time of initial activation (NO in step S50), the processes of steps S51 and S52 are skipped, and the values already stored in the waiting time storage means 45 are maintained.

次に、推定用画像受信手段40が、撮影装置2から送信され、必要に応じて中継装置3によりフィルタリングされた撮影画像である推定用画像を受信しているか否かを確認する(ステップS53)。 Next, it is confirmed whether or not the estimation image receiving means 40 receives the estimation image which is the captured image transmitted from the photographing device 2 and filtered by the relay device 3 as needed (step S53). ..

推定用画像を受信した場合(ステップS53にて「YES」の場合)、推定用画像受信手段40は当該推定用画像を密度推定手段42に入力し、推定用画像を入力された密度推定手段42は、各ブロックを順次、注目ブロックに設定してステップS54〜S56のループ処理を実行する。すなわち、伝送待ち時間が0であるブロックは推定密度の更新タイミングが到来したブロックであるとして、当該ブロックについて推定密度を更新する処理を行う。 When the estimation image is received (when "YES" in step S53), the estimation image receiving means 40 inputs the estimation image to the density estimation means 42, and the density estimation means 42 into which the estimation image is input. Sequentially sets each block as a block of interest and executes the loop processing of steps S54 to S56. That is, assuming that the block having the transmission waiting time of 0 is the block for which the update timing of the estimated density has arrived, the process of updating the estimated density is performed for the block.

図8はブロックごとの密度推定に関する処理S55の概略のフロー図である。図8を参照して当該処理S55を説明する。 FIG. 8 is a schematic flow chart of the process S55 relating to the density estimation for each block. The process S55 will be described with reference to FIG.

上述したように推定用画像は、撮影装置2により撮影された画像を構成する画素値のうち伝送待ち時間が0であるブロックに帰属する画素の画素値の情報のみを含み、それ以外の画素の画素値は省略された画像である。当該推定用画像のデータは、伝送待ち時間が0ではないブロックの画素値が省略されることで高い圧縮効率を得ることができ、中継装置3から分布推定装置4への伝送効率を高めることができる。推定用画像のデータ圧縮には周知の各種の手法を用いることができる。 As described above, the estimation image includes only the pixel value information of the pixel belonging to the block in which the transmission waiting time is 0 among the pixel values constituting the image captured by the photographing device 2, and includes information on the pixel values of the other pixels. Pixel values are omitted images. The data of the estimation image can obtain high compression efficiency by omitting the pixel value of the block whose transmission waiting time is not 0, and can improve the transmission efficiency from the relay device 3 to the distribution estimation device 4. it can. Various well-known methods can be used for data compression of the estimation image.

本実施形態では推定用画像受信手段40は中継装置3から推定用画像のデータを受信すると、当該データを撮影装置2が出力する撮影画像と同じ2次元の画素配列からなる画像に展開し、この展開画像を密度推定手段42へ出力する。なお、当該展開画像では、伝送待ち時間が0であるブロックに帰属する画素のみが有効な画素値を有する。 In the present embodiment, when the estimation image receiving means 40 receives the estimation image data from the relay device 3, the estimation image receiving means 40 develops the data into an image having the same two-dimensional pixel array as the captured image output by the photographing device 2. The developed image is output to the density estimation means 42. In the developed image, only the pixels belonging to the block having the transmission waiting time of 0 have effective pixel values.

密度推定手段42は、図7のステップS54で順次設定する注目ブロックについて、待ち時間記憶手段45を参照して伝送待ち時間が0であるか否かを確認する(ステップS80)。 The density estimation means 42 confirms whether or not the transmission waiting time is 0 by referring to the waiting time storage means 45 for the attention block sequentially set in step S54 of FIG. 7 (step S80).

注目ブロックの伝送待ち時間が0であれば(ステップS80にて「YES」の場合)、密度推定手段42は推定用画像における注目ブロック内の各画素での密度を推定し、当該画素での推定密度を物体分布記憶手段43に上書き記憶させることにより、注目ブロック内の各画素における密度を更新する(ステップS81)。 If the transmission waiting time of the attention block is 0 (when “YES” in step S80), the density estimation means 42 estimates the density of each pixel in the attention block in the estimation image, and estimates at that pixel. By overwriting and storing the density in the object distribution storage means 43, the density in each pixel in the attention block is updated (step S81).

すなわち、密度推定手段42は、推定用画像内の各画素の位置を基準とする窓を設定して当該窓内の特徴量を抽出するとともに密度推定器記憶手段41から密度推定器を読み出して、各画素の位置にて抽出した特徴量を密度推定器に入力して当該画素における推定密度を密度推定器の出力値として得る。 That is, the density estimation means 42 sets a window based on the position of each pixel in the estimation image, extracts the feature amount in the window, and reads out the density estimator from the density estimator storage means 41. The feature amount extracted at the position of each pixel is input to the density estimator, and the estimated density in the pixel is obtained as the output value of the density estimator.

また、密度推定手段42は注目ブロック内の各画素の推定密度を伝送間隔設定手段44に出力する。伝送間隔設定手段44は、入力された推定密度に基づいて、注目ブロックについて次に推定密度の更新を行うまでの時間である更新間隔を決定し、当該更新間隔を待ち時間記憶手段45に新たな伝送待ち時間として設定する。 Further, the density estimation means 42 outputs the estimated density of each pixel in the block of interest to the transmission interval setting means 44. Based on the input estimated density, the transmission interval setting means 44 determines the update interval, which is the time until the next update of the estimated density for the block of interest, and the update interval is newly added to the waiting time storage means 45. Set as the transmission waiting time.

具体的には、伝送間隔設定手段44は、注目ブロック内の各画素に関し入力された推定密度に「背景」クラスまたは「低密度」クラスを示す値が含まれているか否かを確認する(ステップS82)。そして、注目ブロックに「背景」クラスまたは「低密度」クラスが含まれている場合(ステップS82にて「YES」の場合)、伝送間隔設定手段44は待ち時間記憶手段45に記憶されている注目ブロックの伝送待ち時間を1[時刻]に更新する(ステップS83)。 Specifically, the transmission interval setting means 44 confirms whether or not the estimated density input for each pixel in the block of interest includes a value indicating a "background" class or a "low density" class (step). S82). Then, when the attention block includes the "background" class or the "low density" class (when "YES" in step S82), the transmission interval setting means 44 pays attention stored in the waiting time storage means 45. The block transmission waiting time is updated to 1 [time] (step S83).

一方、注目ブロックに「背景」クラスまたは「低密度」クラスが含まれていない場合(ステップS82にて「NO」の場合)、伝送間隔設定手段44は入力された推定密度に「中密度」クラスを示す値が含まれているか否かを確認する(ステップS84)。注目ブロックに「中密度」クラスが含まれている場合(ステップS84にて「YES」の場合)、伝送間隔設定手段44は待ち時間記憶手段45に記憶されている注目ブロックの伝送待ち時間を2[時刻]に更新する(ステップS85)。 On the other hand, when the attention block does not include the "background" class or the "low density" class (when "NO" in step S82), the transmission interval setting means 44 has the "medium density" class in the input estimated density. It is confirmed whether or not the value indicating the above is included (step S84). When the attention block includes the "medium density" class (when "YES" in step S84), the transmission interval setting means 44 sets the transmission waiting time of the attention block stored in the waiting time storage means 45 to 2. Update to [Time] (step S85).

また、注目ブロックに「中密度」クラスが含まれていない場合(ステップS84にて「NO」の場合)、伝送間隔設定手段44は注目ブロック内が「高密度」クラスのみであるとして待ち時間記憶手段45に記憶されている注目ブロックの伝送待ち時間を4[時刻]に更新する(ステップS86)。 Further, when the attention block does not include the "medium density" class (when "NO" in step S84), the transmission interval setting means 44 assumes that the attention block contains only the "high density" class and stores the waiting time. The transmission waiting time of the attention block stored in the means 45 is updated to 4 [time] (step S86).

なお、注目ブロックの伝送待ち時間が0でなければ(ステップS80にて「NO」の場合)、注目ブロックに対するステップS81〜S86の処理は省略される。 If the transmission waiting time of the attention block is not 0 (when “NO” in step S80), the processing of steps S81 to S86 for the attention block is omitted.

こうして注目ブロックに対する密度推定処理S55を終えると処理は図7のステップS56に進められ、密度推定手段42は、全ブロックが処理済みであるか否かを確認する。未処理のブロックがある場合(ステップS56にて「NO」の場合)、密度推定手段42は処理をステップS54に戻して次のブロックを注目ブロックに設定し、ループ処理を継続する。 When the density estimation process S55 for the block of interest is completed in this way, the process proceeds to step S56 of FIG. 7, and the density estimation means 42 confirms whether or not all the blocks have been processed. If there is an unprocessed block (“NO” in step S56), the density estimation means 42 returns the process to step S54, sets the next block as the block of interest, and continues the loop process.

他方、全ブロックが処理済みである場合(ステップS56にて「YES」の場合)、中継装置3へ新たな伝送待ち時間を送信する。ここで、ステップS56での推定密度の更新に伴い設定された伝送待ち時間は本来的には、その後の撮影装置2の撮影周期に応じた時刻の経過とともにカウントダウンされるものである。しかしながら、本実施形態では、分布推定装置4にて伝送待ち時間をカウントダウンし、その伝送待ち時間の情報を中継装置3へ送信する構成としており、この処理を簡素化するために、分布推定装置4では、次の推定用画像の受信を待たずに伝送待ち時間のカウントダウンを行う。すなわち、伝送間隔設定手段44はステップS55にて設定され待ち時間記憶手段45に記憶されている各ブロックの伝送待ち時間を1[時刻]ずつ減算した値に更新し、待ち時間送信手段46はこの更新後の伝送待ち時間情報を中継装置3に送信する(ステップS57)。 On the other hand, when all the blocks have been processed (when "YES" in step S56), a new transmission waiting time is transmitted to the relay device 3. Here, the transmission waiting time set with the update of the estimated density in step S56 is essentially counted down with the passage of time according to the subsequent shooting cycle of the shooting device 2. However, in the present embodiment, the distribution estimation device 4 counts down the transmission waiting time and transmits the transmission waiting time information to the relay device 3, and in order to simplify this process, the distribution estimation device 4 Then, the transmission waiting time is counted down without waiting for the reception of the next estimation image. That is, the transmission interval setting means 44 updates the transmission waiting time of each block set in step S55 and stored in the waiting time storage means 45 by 1 [time], and the waiting time transmitting means 46 updates the transmission waiting time. The updated transmission waiting time information is transmitted to the relay device 3 (step S57).

また、密度推定手段42は物体分布記憶手段43から全画素の推定密度を物体分布として読み出して物体分布を物体分布送信手段47に出力し、物体分布送信手段47は密度推定手段42から入力された物体分布を表示装置5に宛てて送信する(ステップS58)。 Further, the density estimation means 42 reads the estimated density of all pixels from the object distribution storage means 43 as an object distribution, outputs the object distribution to the object distribution transmission means 47, and the object distribution transmission means 47 is input from the density estimation means 42. The object distribution is transmitted to the display device 5 (step S58).

なお、新たな推定用画像を受信するまでの間(ステップS53にて「NO」の場合)、ステップS54〜S58は省略される。 Note that steps S54 to S58 are omitted until a new estimation image is received (in the case of "NO" in step S53).

以上の処理を終えると、分布推定装置4の動作はステップS50に戻され、ステップS50〜S58の処理が繰り返される。 When the above processing is completed, the operation of the distribution estimation device 4 is returned to step S50, and the processing of steps S50 to S58 is repeated.

表示装置5では、撮影装置2から表示装置5宛に送信されて中継装置3により中継された撮影画像である表示用画像を、表示用画像受信手段50が受信して画像合成手段52に出力する。また、分布推定装置4から表示装置5宛に送信されて中継装置3により中継された物体分布の情報を、物体分布受信手段51が受信して画像合成手段52に出力する。 In the display device 5, the display image receiving means 50 receives the display image, which is a captured image transmitted from the photographing device 2 to the display device 5 and relayed by the relay device 3, and outputs the display image to the image combining means 52. .. Further, the object distribution receiving means 51 receives the information of the object distribution transmitted from the distribution estimation device 4 to the display device 5 and relayed by the relay device 3, and outputs the information to the image synthesizing means 52.

そして、表示装置5では、画像合成手段52が、物体分布の情報を各画素の推定密度に応じた色値を有する画像に変換して、当該物体分布を変換した画像を当該物体分布と対応する表示用画像に透過合成して、物体分布表示手段53に出力する。 Then, in the display device 5, the image synthesizing means 52 converts the information of the object distribution into an image having a color value corresponding to the estimated density of each pixel, and the converted image corresponds to the object distribution. It is transparently combined with the display image and output to the object distribution display means 53.

[処理例]
図9〜図13は、時刻tから時刻(t+4)までの5時刻にわたる処理によって、待ち時間記憶手段45に記憶されている伝送待ち時間が更新される様子、更新タイミングが到来したブロックの密度が推定される様子、および物体分布記憶手段43に記憶されている推定密度が更新される様子を例示する模式図である。
[Processing example]
9 to 13 show how the transmission waiting time stored in the waiting time storage means 45 is updated by the processing over 5 hours from the time t to the time (t + 4), and the density of the blocks whose update timing has arrived. It is a schematic diagram which illustrates the state of being estimated, and the state of updating the estimated density stored in the object distribution storage means 43.

解析待ち時間の情報100,102,110,112,120,122,130,132,140,142は撮影画像に対応する2次元座標におけるブロックの配列と、各ブロックの伝送待ち時間とを模式的に画像として示している。当該画像にて、行列状に2次元配列される複数の矩形はそれぞれブロックを表しており、当該矩形内の数値は当該矩形が表すブロックの伝送待ち時間を表している。 The analysis waiting time information 100, 102, 110, 112, 120, 122, 130, 132, 140, 142 schematically describes the arrangement of blocks in the two-dimensional coordinates corresponding to the captured image and the transmission waiting time of each block. It is shown as an image. In the image, each of the plurality of rectangles arranged two-dimensionally in a matrix represents a block, and the numerical value in the rectangle represents the transmission waiting time of the block represented by the rectangle.

ここで、図9〜図13において「伝送待ち時間(画像取得時)」として示す情報100,110,120,130,140のうち任意の時刻Tにおけるものは、基本的には分布推定装置4が時刻Tの推定用画像を受信したとき(図7のステップS53)に分布推定装置4の待ち時間記憶手段45および中継装置3の待ち時間記憶手段33に記憶されている情報である。一方、「伝送待ち時間(密度推定後)」として示す情報102,112,122,132,142は具体的には図7に示すステップS54〜S56の密度推定に関するループ処理が完了した後の伝送待ち時間を表しており、ステップS55内の処理(ステップS83,S85,S86)での更新結果が反映されている。 Here, among the information 100, 110, 120, 130, 140 shown as "transmission waiting time (at the time of image acquisition)" in FIGS. 9 to 13, the information at any time T is basically the distribution estimation device 4. This is information stored in the waiting time storage means 45 of the distribution estimation device 4 and the waiting time storage means 33 of the relay device 3 when the estimation image at time T is received (step S53 in FIG. 7). On the other hand, the information 102, 112, 122, 132, 142 shown as "transmission waiting time (after density estimation)" specifically waits for transmission after the loop processing related to density estimation in steps S54 to S56 shown in FIG. 7 is completed. It represents the time and reflects the update result in the processing (steps S83, S85, S86) in step S55.

図9〜図13において「密度推定結果(更新部分)」として示す密度推定結果101,111,121,131,141は、各時刻において新たに得られた推定密度を、撮影画像に対応する2次元座標にて模式的に画像として示している。当該推定密度は図7に示すステップS55内の処理(ステップS81)で更新された密度であり、撮影画像に対応するブロック群のうち密度が更新された部分だけが図9〜図13に密度推定結果の画像として示されている。 The density estimation results 101, 111, 121, 131, 141 shown as "density estimation results (updated portion)" in FIGS. 9 to 13 show the estimated densities newly obtained at each time in two dimensions corresponding to the captured images. It is schematically shown as an image in coordinates. The estimated density is the density updated in the process (step S81) in step S55 shown in FIG. 7, and only the portion of the block group corresponding to the captured image whose density is updated is the density estimation in FIGS. 9 to 13. It is shown as the resulting image.

具体的には、「伝送待ち時間(画像取得時)」として示す情報100,110,120,130,140にて伝送待ち時間が0であるブロックに対応して、「密度推定結果(更新部分)」として示す密度推定結果101,111,121,131,141が生成される。 Specifically, the "density estimation result (updated portion)" corresponds to the block in which the transmission waiting time is 0 in the information 100, 110, 120, 130, 140 shown as "transmission waiting time (at the time of image acquisition)". The density estimation results 101, 111, 121, 131, 141 shown as "" are generated.

なお、図9〜図13における各密度推定結果の画像において、白抜き部は「背景」クラスである画素、斜線部は「低密度」クラスである画素、横線部は「中密度」クラスである画素、網掛け部は「高密度」クラスである画素を表している。 In the images of the density estimation results in FIGS. 9 to 13, the white areas are pixels in the "background" class, the shaded areas are pixels in the "low density" class, and the horizontal lines are in the "medium density" class. Pixels and shaded areas represent pixels of the "high density" class.

図8を用いて説明したように、密度推定結果101,111,121,131,141が生成された推定密度の更新部分について、新たな更新間隔が設定され、その結果が反映されて「伝送待ち時間(密度推定後)」として示す情報102,112,122,132,142が生成される。 As described with reference to FIG. 8, a new update interval is set for the update portion of the estimated density for which the density estimation results 101, 111, 121, 131, 141 are generated, and the result is reflected in the “waiting for transmission”. Information 102, 112, 122, 132, 142 shown as "time (after density estimation)" is generated.

図9〜図13において「密度推定結果(合成結果)」として示す密度推定結果103,113,123,133,143は物体分布記憶手段43に記憶される推定密度を、それぞれ撮影画像に対応する2次元画像で模式的に示している。密度推定結果103,113,123,133,143のうち任意の時刻Tのものは、当該時刻の1時刻前に生成され物体分布記憶手段43に記憶されている推定密度と、更新部分の密度推定結果101,111,121,131,141のうち当該時刻Tについて生成されたものとを合成して生成され、物体分布記憶手段43に記憶される。例えば、時刻t+1における密度推定結果113は、時刻tの密度推定結果103に時刻t+1の更新部分の密度推定結果111を上書き合成して生成される。 The density estimation results 103, 113, 123, 133, and 143 shown as "density estimation results (synthesis results)" in FIGS. 9 to 13 correspond to the estimated densities stored in the object distribution storage means 43, respectively, corresponding to the captured images2. It is schematically shown in a dimensional image. Of the density estimation results 103, 113, 123, 133, and 143, those at arbitrary time T have the estimated density generated one time before the time and stored in the object distribution storage means 43, and the density estimation of the updated portion. The result 101, 111, 121, 131, 141 is generated by synthesizing the one generated at the time T, and is stored in the object distribution storage means 43. For example, the density estimation result 113 at time t + 1 is generated by overwriting the density estimation result 111 of the updated portion at time t + 1 with the density estimation result 103 at time t + 1.

以下、時刻t〜t+4の各時刻での処理をより具体的に説明する。 Hereinafter, the processing at each time of time t to t + 4 will be described more specifically.

図9は時刻tにおける処理に関する。時刻tの撮影画像は初回起動または視野変更の直後に取得され、よってその直前に全ブロックは伝送待ち時間を0に初期化され(図7のステップS51)、当該伝送待ち時間が中継装置3に送信されて(図7のステップS52)待ち時間記憶手段33に記憶されている。その結果、中継装置3は推定用画像として全ブロックの画像を分布推定装置4へ送信し、また、分布推定装置4は待ち時間記憶手段45を参照して全ブロックについて推定密度の更新タイミングが到来したとして、受信した推定用画像に基づき、密度推定結果101の画像で示すように全ブロックにおける各画素について密度を推定する。 FIG. 9 relates to processing at time t. The captured image at time t is acquired immediately after the first activation or the change of the field of view, so that the transmission waiting time of all the blocks is initialized to 0 immediately before that (step S51 in FIG. 7), and the transmission waiting time is set to the relay device 3. It is transmitted (step S52 in FIG. 7) and stored in the waiting time storage means 33. As a result, the relay device 3 transmits an image of all blocks as an estimation image to the distribution estimation device 4, and the distribution estimation device 4 refers to the waiting time storage means 45 to reach the update timing of the estimation density for all blocks. As a result, the density is estimated for each pixel in all blocks as shown in the image of the density estimation result 101 based on the received estimation image.

密度推定結果101に対応し、全ブロックについて推定密度に応じた新たな伝送待ち時間が設定され、伝送待ち時間の情報102が生成される。具体的には、「背景」クラスまたは「低密度」クラスの画素を含むブロックの伝送待ち時間は1に、それ以外で「中密度」クラスの画素を含むブロックの伝送待ち時間は2に、それら以外のブロックは「高密度」クラスのみの画素からなるとされて伝送待ち時間は4に更新されている。 Corresponding to the density estimation result 101, a new transmission waiting time is set according to the estimated density for all blocks, and transmission waiting time information 102 is generated. Specifically, the transmission waiting time of a block containing "background" class or "low density" class pixels is 1, and the transmission waiting time of a block containing other "medium density" class pixels is 2. The blocks other than the above are said to consist of pixels of only the "high density" class, and the transmission waiting time is updated to 4.

また、密度推定結果101が全ブロックについて生成されることに対応し、密度推定結果103における全ブロックの推定密度は密度推定結果101の情報で更新されている。 Further, the density estimation result 101 is generated for all blocks, and the estimated density of all blocks in the density estimation result 103 is updated with the information of the density estimation result 101.

図10は時刻t+1における処理に関する。時刻t+1の撮影画像が取得される際の伝送待ち時間の情報110は、時刻tにおける処理(図7のステップS57)にて、伝送待ち時間の情報102の全ブロックの伝送待ち時間を1ずつ減算して生成されている。その結果、全120ブロックのうちの63ブロックの伝送待ち時間が0となり、中継装置3は当該63ブロックを含む推定用画像を分布推定装置4へ送信する。そして分布推定装置4はそれら63ブロックについて更新タイミングが到来したとして密度を推定し、その結果、密度推定結果111が得られている。 FIG. 10 relates to processing at time t + 1. The transmission waiting time information 110 when the captured image at time t + 1 is acquired is obtained by subtracting the transmission waiting time of all blocks of the transmission waiting time information 102 by 1 in the process at time t (step S57 in FIG. 7). Is generated. As a result, the transmission waiting time of 63 blocks out of all 120 blocks becomes 0, and the relay device 3 transmits the estimation image including the 63 blocks to the distribution estimation device 4. Then, the distribution estimation device 4 estimates the density of these 63 blocks on the assumption that the update timing has arrived, and as a result, the density estimation result 111 is obtained.

そして、伝送待ち時間の情報110のうち密度が推定された当該63ブロックについて伝送待ち時間が更新され、伝送待ち時間の情報112が生成される。具体的には、当該63ブロックのうちの「背景」クラスまたは「低密度」クラスの画素を含む62ブロックの伝送待ち時間は1に、それ以外で「中密度」クラスの画素を含む1ブロックの伝送待ち時間は2に更新されている。ちなみに、上からi行目、左からj列目のブロックをBijと表すと、伝送待ち時間が2に設定される1ブロックはB27である。なお、密度推定結果111にはB27以外にも「中密度」クラスの画素を示す横線部の領域が得られているが、当該領域のブロックは一部に斜線部で示す「低密度」クラスの画素を含むため、伝送待ち時間を1に設定されている。 Then, the transmission waiting time is updated for the 63 blocks whose density is estimated out of the transmission waiting time information 110, and the transmission waiting time information 112 is generated. Specifically, the transmission waiting time of 62 blocks including the pixels of the "background" class or the "low density" class out of the 63 blocks is 1, and the transmission waiting time of the other blocks including the pixels of the "medium density" class is 1. The transmission waiting time has been updated to 2. Incidentally, i-th row from the top, expressed from left j-th column block and B ij, 1 block transmission latency is set to 2 is B 27. In the density estimation result 111, a horizontal line area indicating pixels of the "medium density" class is obtained in addition to B 27 , but some blocks in the area are in the "low density" class shown by the shaded area. The transmission waiting time is set to 1 because it includes the pixels of.

また、密度推定結果103のうち上述の63ブロックが密度推定結果111の情報で更新されて密度推定結果113が生成される。 Further, the 63 blocks of the density estimation result 103 are updated with the information of the density estimation result 111 to generate the density estimation result 113.

図11は時刻t+2における処理に関する。時刻t+2の撮影画像が取得される際の伝送待ち時間の情報120は、時刻t+1における処理(図7のステップS57)にて、伝送待ち時間の情報112の全ブロックの伝送待ち時間を1ずつ減算して生成される。その結果、全120ブロックのうちの91ブロックについて伝送待ち時間が0となり更新タイミングが到来する。これに対応して、中継装置3は当該91ブロックを含む推定用画像を分布推定装置4へ送信する。そして、分布推定装置4では、推定密度の更新部分として当該91ブロックからなる密度推定結果121が生成され、また更新された推定密度に基づいて当該91ブロックについて伝送待ち時間が更新され、伝送待ち時間の情報122が生成される。具体的には、当該91ブロックのうちの「背景」クラスまたは「低密度」クラスの画素を含む64ブロックの伝送待ち時間は1に、それ以外で「中密度」クラスの画素を含む27ブロックの伝送待ち時間は2に更新されている。また、密度推定結果113のうち上述の91ブロックが密度推定結果121の情報で更新されて密度推定結果123が生成される。 FIG. 11 relates to processing at time t + 2. The transmission waiting time information 120 when the captured image at time t + 2 is acquired is obtained by subtracting the transmission waiting time of all blocks of the transmission waiting time information 112 by 1 in the process at time t + 1 (step S57 in FIG. 7). Is generated. As a result, the transmission waiting time becomes 0 for 91 blocks out of all 120 blocks, and the update timing arrives. Correspondingly, the relay device 3 transmits the estimation image including the 91 blocks to the distribution estimation device 4. Then, in the distribution estimation device 4, a density estimation result 121 composed of the 91 blocks is generated as an update portion of the estimated density, and the transmission waiting time is updated for the 91 blocks based on the updated estimated density, and the transmission waiting time is transmitted. Information 122 is generated. Specifically, the transmission waiting time of 64 blocks including "background" class or "low density" class pixels out of the 91 blocks is 1, and 27 blocks including "medium density" class pixels other than that. The transmission waiting time has been updated to 2. Further, the 91 blocks of the density estimation result 113 are updated with the information of the density estimation result 121 to generate the density estimation result 123.

図12に示す時刻t+3における処理、および図13に示す時刻t+4における処理も同様にして行われ、前時刻に更新され待ち時間記憶手段45に記憶された伝送待ち時間から画像取得時の伝送待ち時間が生成されて中継装置3に送信され、中継装置3は更新タイミングが到来したブロックの画素のみについて推定用画像として分布推定装置4へ送信し、分布推定装置4は更新タイミングが到来したブロックのみについて推定密度を更新する。そして、その結果に基づいて、伝送待ち時間の更新、および撮影画像全体での推定密度の合成結果の生成が行われる。 The processing at time t + 3 shown in FIG. 12 and the processing at time t + 4 shown in FIG. 13 are also performed in the same manner, and the transmission waiting time at the time of image acquisition from the transmission waiting time updated at the previous time and stored in the waiting time storage means 45 is performed in the same manner. Is generated and transmitted to the relay device 3, the relay device 3 transmits only the pixels of the block whose update timing has arrived to the distribution estimation device 4 as an estimation image, and the distribution estimation device 4 transmits only the blocks whose update timing has arrived. Update the estimated density. Then, based on the result, the transmission waiting time is updated and the synthesis result of the estimated density of the entire captured image is generated.

このような処理の結果、5時刻の間に144ブロック分の密度推定の処理コストが削減される。その一方で、密度推定結果103,113,123,133,143においては混雑状況の変化が高い確度で得られている。 As a result of such processing, the processing cost of density estimation for 144 blocks is reduced in 5 hours. On the other hand, in the density estimation results 103, 113, 123, 133, and 143, changes in the congestion situation are obtained with high accuracy.

[変形例]
(1)上記実施形態においては、検出対象の物体を人とする例を示したが、これに限らず、検出対象の物体を車両、牛や羊等の動物等とすることもできる。
[Modification example]
(1) In the above embodiment, an example in which the object to be detected is a human is shown, but the object to be detected is not limited to this, and the object to be detected may be a vehicle, an animal such as a cow or a sheep, or the like.

(2)上記実施形態およびその変形例においては、多クラスSVM法にて学習した密度推定器を例示したが、多クラスSVM法に代えて、決定木型のランダムフォレスト法、多クラスのアダブースト(AdaBoost)法または多クラスロジスティック回帰法などにて学習した密度推定器など種々の密度推定器とすることができる。 (2) In the above embodiment and its modifications, the density estimator learned by the multi-class SVM method is illustrated, but instead of the multi-class SVM method, a decision tree type random forest method and multi-class AdaBoost ( Various density estimators such as the density estimator learned by the AdaBoost) method or the multiclass logistic regression method can be used.

或いは識別型のCNN(Convolutional Neural Network)を用いた密度推定器とすることもできる。 Alternatively, it can be a density estimator using an identification type CNN (Convolutional Neural Network).

(3)上記実施形態およびその各変形例においては、密度推定器が推定する背景以外の密度のクラスを3クラスとしたが、より細かくクラスを分けてもよい。その場合、クラス分けに対応したより細かい段階で伝送間隔が設定される。 (3) In the above-described embodiment and each modification thereof, the classes of densities other than the background estimated by the density estimator are set to 3 classes, but the classes may be further divided. In that case, the transmission interval is set at a finer stage corresponding to the classification.

(4)上記実施形態およびその各変形例においては、多クラスに分類する密度推定器を例示したがこれに代えて、特徴量から密度の値(推定密度)を回帰する回帰型の密度推定器とすることもできる。すなわち、リッジ回帰法、サポートベクターリグレッション法、回帰木型のランダムフォレスト法またはガウス過程回帰(Gaussian Process Regression)などによって、特徴量から推定密度を求めるための回帰関数のパラメータを学習した密度推定器とすることができる。 (4) In the above-described embodiment and each modification thereof, a density estimator classified into multiple classes is illustrated, but instead of this, a regression-type density estimator that returns a density value (estimated density) from a feature amount. It can also be. That is, with a density estimator that has learned the parameters of the regression function for obtaining the estimated density from the features by the ridge regression method, the support vector regression method, the random forest method of the regression tree type, or the Gaussian Process Regression. can do.

或いは回帰型のCNNを用いた密度推定器とすることもできる。 Alternatively, it can be a density estimator using a regression type CNN.

これらの場合、密度クラスの値の代わりに連続値で出力される推定密度の値域を、更新間隔と対応付けて設定しておく。 In these cases, the range of the estimated density that is output as a continuous value instead of the value of the density class is set in association with the update interval.

(5)上記実施形態およびその各変形例において示した伝送間隔は一例であり、推定密度の範囲設定、検出対象の速さ、撮影装置2の撮影周期および画角等の撮影条件に応じて、それらの条件に適した別の値とすることができる。 (5) The transmission interval shown in the above embodiment and each modification thereof is an example, and depends on the shooting conditions such as the range setting of the estimated density, the speed of the detection target, the shooting cycle of the shooting device 2, and the angle of view. It can be another value suitable for those conditions.

(6)上記実施形態およびその各変形例においては、密度推定器が学習する特徴量および密度推定に用いる特徴量としてGLCM特徴を例示したが、これらはGLCM特徴に代えて、局所二値パターン(Local Binary Pattern:LBP)特徴量、ハールライク(Haar-like)特徴量、HOG(Histograms of Oriented Gradients)特徴量、輝度パターンなどの種々の特徴量とすることができ、またはGLCM特徴とこれらのうちの複数を組み合わせた特徴量とすることもできる。 (6) In the above-described embodiment and each modification thereof, the GLCM feature is exemplified as the feature amount learned by the density estimator and the feature amount used for the density estimation, but these are local binary patterns (instead of the GLCM feature). It can be various features such as Local Binary Pattern (LBP) feature, Haar-like feature, HOG (Histograms of Oriented Gradients) feature, brightness pattern, or GLCM feature and among them. It is also possible to use a combination of a plurality of features.

(7)上記実施形態およびその各変形例においては、撮影画像上での密度推定手段42の走査間隔を1画素ごととする例を示したが、当該走査間隔を2画素以上ごとのように間隔を空けて行うことも可能である。 (7) In the above-described embodiment and each modification thereof, an example in which the scanning interval of the density estimation means 42 on the captured image is set to each pixel is shown, but the scanning interval is set to every two or more pixels. It is also possible to open the space.

(8)上記実施形態およびその各変形例においては、混雑度合いを推定する手段として例示した密度推定手段42が、混雑度合いとして物体の密度を推定することによって物体の分布を推定する例を示したが、混雑度合いの推定処理として画像の複雑度の解析によって物体の分布を推定することもできる。例えば、撮影画像を互いに色が類似する隣接画素ごとの領域に分割し、上述したブロックごとに当該ブロックとの重なりを有する分割領域を計数して計数値が多いほど高い複雑度を求める。或いは、撮影画像のブロックごとに周波数解析を行って平均周波数が高いほど高い複雑度を求める。そして、予めの実験を通じて複雑度と混雑度合いの関係を定めておき(複雑度が高いほど混雑度合いが高い関係)、ブロックごとに、求めた複雑度に対応する混雑度合いを推定値とする。 (8) In the above-described embodiment and each modification thereof, an example is shown in which the density estimation means 42 exemplified as a means for estimating the degree of congestion estimates the distribution of an object by estimating the density of the object as the degree of congestion. However, as a process of estimating the degree of congestion, the distribution of objects can be estimated by analyzing the complexity of the image. For example, the captured image is divided into regions for adjacent pixels whose colors are similar to each other, and the divided regions having overlap with the blocks are counted for each of the blocks described above, and the higher the count value, the higher the complexity. Alternatively, frequency analysis is performed for each block of captured images, and the higher the average frequency, the higher the complexity. Then, the relationship between the complexity and the degree of congestion is determined through an experiment in advance (the higher the complexity, the higher the degree of congestion), and the degree of congestion corresponding to the obtained complexity is used as an estimated value for each block.

1 物体分布推定システム、2 撮影装置、3 中継装置、4 分布推定装置、5 表示装置、20 画像取得手段、21 撮影画像送信手段、30 撮影画像受信手段、31 撮影画像記憶手段、32 待ち時間受信手段、33,45 待ち時間記憶手段、34 推定用画像送信手段、35 表示用画像送信手段、40 推定用画像受信手段、41 密度推定器記憶手段、42 密度推定手段、43 物体分布記憶手段、44 伝送間隔設定手段、46 待ち時間送信手段、47 物体分布送信手段。 1 Object distribution estimation system, 2 Imaging device, 3 Relay device, 4 Distribution estimation device, 5 Display device, 20 Image acquisition means, 21 Captured image transmission means, 30 Captured image receiving means, 31 Captured image storage means, 32 Waiting time reception Means, 33, 45 Waiting time storage means, 34 Estimating image transmitting means, 35 Displaying image transmitting means, 40 Estimating image receiving means, 41 Density estimator storage means, 42 Density estimating means, 43 Object distribution storage means, 44 Transmission interval setting means, 46 waiting time transmission means, 47 object distribution transmission means.

Claims (4)

所定の物体が存在し得る空間を所定のフレームレートで撮影する撮影装置と、撮影画像を解析して前記空間における前記物体の分布を推定する分布推定装置と、前記撮影装置から前記分布推定装置に前記撮影画像を中継する中継装置とが、ネットワークを介して接続された物体分布推定システムであって、
前記分布推定装置は、前記撮影画像内に複数設定された局所領域ごとの解析によって前記局所領域それぞれにおける前記物体の混雑度合いを求めることで前記分布を推定し、
前記中継装置は、前記局所領域それぞれにおける前記撮影画像を、当該局所領域について前記分布推定装置が求めた前記混雑度合いに応じたフレームレートで中継すること、を特徴とする物体分布推定システム。
A photographing apparatus for photographing a space in which a predetermined object may be present at a predetermined frame rate, and distribution estimation device for estimating a distribution of the object in the space by analyzing the shadow image shooting, the distribution estimation device from the imaging device The relay device that relays the captured image is an object distribution estimation system connected via a network.
The distribution estimation device estimates the distribution by obtaining the degree of congestion of the object in each of the local regions by analyzing each of a plurality of local regions set in the captured image.
The relay device is an object distribution estimation system characterized in that the captured image in each of the local regions is relayed at a frame rate corresponding to the degree of congestion obtained by the distribution estimation device for the local region.
前記中継装置は、前記局所領域それぞれにおける前記撮影画像を、当該局所領域について前記分布推定装置が求めた前記混雑度合いが高いほど低いフレームレートで中継すること、を特徴とする請求項1に記載の物体分布推定システム。 The relay device according to claim 1, wherein the relay device relays the captured image in each of the local regions at a lower frame rate as the degree of congestion obtained by the distribution estimation device for the local region increases. Object distribution estimation system. 前記中継装置は、それぞれが2以上の前記局所領域からなるブロックごとに、当該ブロック内で最も低い前記混雑度合いに応じたフレームレートで中継すること、を特徴とする請求項1または請求項2に記載の物体分布推定システム。 According to claim 1 or 2, the relay device relays each block composed of two or more of the local regions at a frame rate corresponding to the lowest degree of congestion in the block. The described object distribution estimation system. 前記分布推定装置は、所定の密度ごとに当該密度にて前記物体が存在する空間を撮影した密度画像それぞれの特徴を学習した密度推定器を用いて、前記局所領域ごとに前記混雑度合いを表す前記物体の前記密度を求めること、を特徴とする請求項1から請求項3のいずれか1つに記載の物体分布推定システム。 The distribution estimation device expresses the degree of congestion for each local region by using a density estimator that learns the characteristics of each density image obtained by photographing a space in which the object exists at the density at a predetermined density. The object distribution estimation system according to any one of claims 1 to 3, wherein the density of the object is obtained.
JP2017206473A 2017-10-25 2017-10-25 Object distribution estimation system Active JP6889088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206473A JP6889088B2 (en) 2017-10-25 2017-10-25 Object distribution estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206473A JP6889088B2 (en) 2017-10-25 2017-10-25 Object distribution estimation system

Publications (3)

Publication Number Publication Date
JP2019080202A JP2019080202A (en) 2019-05-23
JP2019080202A5 JP2019080202A5 (en) 2020-08-06
JP6889088B2 true JP6889088B2 (en) 2021-06-18

Family

ID=66628857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206473A Active JP6889088B2 (en) 2017-10-25 2017-10-25 Object distribution estimation system

Country Status (1)

Country Link
JP (1) JP6889088B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045666A (en) * 2003-07-24 2005-02-17 Mitsubishi Electric Corp Transcoder
EP2290979B1 (en) * 2008-06-23 2018-07-25 Mitsubishi Electric Corporation In-train monitor system
JP6577397B2 (en) * 2015-08-27 2019-09-18 株式会社東芝 Image analysis apparatus, image analysis method, image analysis program, and image analysis system
US10289884B2 (en) * 2015-08-27 2019-05-14 Kabushiki Kaisha Toshiba Image analyzer, image analysis method, computer program product, and image analysis system
JP6283008B2 (en) * 2015-10-13 2018-02-21 セコム株式会社 Tracking device

Also Published As

Publication number Publication date
JP2019080202A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
KR101337060B1 (en) Imaging processing device and imaging processing method
EP3024227A1 (en) Image processing apparatus and image processing method
JP6572535B2 (en) Image recognition system, server device, and image recognition method
JP2019118043A (en) Image pickup apparatus, image processing apparatus, control method, and program
CN107431761B (en) Image processing apparatus, image processing method, and image processing system
US7460705B2 (en) Head-top detecting method, head-top detecting system and a head-top detecting program for a human face
CN113781421A (en) Underwater-based target identification method, device and system
CN111401215A (en) Method and system for detecting multi-class targets
KR102127276B1 (en) The System and Method for Panoramic Video Surveillance with Multiple High-Resolution Video Cameras
US11605220B2 (en) Systems and methods for video surveillance
JP6889088B2 (en) Object distribution estimation system
JP6266946B2 (en) Surveillance camera and image monitoring device
JP6949656B2 (en) Object distribution estimator
CN111738043A (en) Pedestrian re-identification method and device
JP6920949B2 (en) Object distribution estimator
JPWO2020039897A1 (en) Station monitoring system and station monitoring method
JP5769468B2 (en) Object detection system and object detection method
EP3217320A1 (en) Person verification system and person verification method
JP2005269473A (en) Monitoring system
CN117280708A (en) Shutter value adjustment of monitoring camera using AI-based object recognition
JP2018173913A (en) Image processing system, information processing device, and program
JP7027171B2 (en) Information processing equipment, information processing methods and programs
JP6851241B2 (en) Image analyzer
JP7099809B2 (en) Image monitoring system
JP6767788B2 (en) Information processing equipment, control methods and programs for information processing equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6889088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150