JP6889025B2 - Ethylene copolymer powder and its molded product - Google Patents

Ethylene copolymer powder and its molded product Download PDF

Info

Publication number
JP6889025B2
JP6889025B2 JP2017096063A JP2017096063A JP6889025B2 JP 6889025 B2 JP6889025 B2 JP 6889025B2 JP 2017096063 A JP2017096063 A JP 2017096063A JP 2017096063 A JP2017096063 A JP 2017096063A JP 6889025 B2 JP6889025 B2 JP 6889025B2
Authority
JP
Japan
Prior art keywords
ethylene
polymer powder
based polymer
less
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017096063A
Other languages
Japanese (ja)
Other versions
JP2018193433A (en
Inventor
匠 加賀
匠 加賀
藤原 昭夫
昭夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017096063A priority Critical patent/JP6889025B2/en
Publication of JP2018193433A publication Critical patent/JP2018193433A/en
Application granted granted Critical
Publication of JP6889025B2 publication Critical patent/JP6889025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、エチレン系重合体パウダー及びその成形体に関する。 The present invention relates to an ethylene polymer powder and a molded product thereof.

高分子量エチレン系重合体は、フィルム、シート、微多孔膜、繊維、発泡体、パイプ等多種多様な用途に用いられている。特に鉛蓄電池やリチウムイオン電池に代表される二次電池のセパレーター用微多孔膜及び高強度繊維の原料として、高分子量エチレン系重合体パウダーが用いられている。高分子量エチレン系重合体パウダーが用いられている理由としては、分子量が高いため、延伸加工性に優れ、強度が高く、化学的安定性が高く、かつ長期信頼性に優れること等が挙げられる。 High molecular weight ethylene-based polymers are used in a wide variety of applications such as films, sheets, microporous membranes, fibers, foams, and pipes. In particular, high molecular weight ethylene polymer powder is used as a raw material for a microporous film for a separator of a secondary battery represented by a lead storage battery and a lithium ion battery and a high-strength fiber. The reason why the high molecular weight ethylene polymer powder is used is that it has a high molecular weight, so that it has excellent stretchability, high strength, high chemical stability, and excellent long-term reliability.

これら高分子量エチレン系重合体パウダーは、分子量が高いので射出成型等による加工が困難であり、それゆえに、プレス成形や押出し成形の他、溶剤に溶解させて成型することが多い。産業界、特に、リチウムイオン二次電池セパレーター及び高強度繊維の業界では、高い需要成長とともに、低コスト化や高い生産性が強く望まれている。また、特にリチウムイオン二次電池セパレーター及び高強度繊維では、長期信頼性の観点から、膜厚や繊維径等、高い製品寸法安定性が強く望まれている。 Since these high molecular weight ethylene polymer powders have a high molecular weight, they are difficult to process by injection molding or the like. Therefore, in addition to press molding and extrusion molding, they are often molded by dissolving them in a solvent. In the industrial world, especially in the lithium ion secondary battery separator and high-strength fiber industry, there is a strong demand for cost reduction and high productivity as well as high demand growth. Further, particularly for lithium ion secondary battery separators and high-strength fibers, high product dimensional stability such as film thickness and fiber diameter is strongly desired from the viewpoint of long-term reliability.

ここで、近年、例えば特許文献1〜6に示すように、高分子量エチレン系重合体パウダ
ーを用いたリチウムイオン二次電池セパレーター及び高強度繊維等の成形法が開発されている。
Here, in recent years, for example, as shown in Patent Documents 1 to 6, a molding method for a lithium ion secondary battery separator, a high-strength fiber, or the like using a high molecular weight ethylene polymer powder has been developed.

特開2014−133873号公報Japanese Unexamined Patent Publication No. 2014-133873 特開2014−133874号公報Japanese Unexamined Patent Publication No. 2014-133874 特開2015−212373号公報Japanese Unexamined Patent Publication No. 2015-21273 特開2015−157905号公報Japanese Unexamined Patent Publication No. 2015-157905 特開2015−168755号公報Japanese Unexamined Patent Publication No. 2015-168755 国際公開第2008/013144号International Publication No. 2008/013144

上述の通り、微多孔膜や高強度繊維等に使用される高分子量エチレン系重合体パウダー(以下、「エチレン系重合体パウダー」とも称す)は、未溶融物の無いことや、製造工程中に延伸工程が含まれうる高強度繊維の用途においては、延伸後の繊維が、糸切れや毛羽立ちが少ない均一な繊維であることが望まれている。一方、エチレン系重合体パウダーにはステアリン酸カルシウムなどの塩素キャッチャー剤を添加することが一般的である。しかし、ポリマー溶解後に回収リサイクルされる溶媒中にステアリン酸カルシウムが濃縮されることがあり、微多孔膜や高強度繊維の用途等においては濃縮したステアリン酸カルシウムが成型体中に存在すると欠点(例えば微多孔膜中の比較的大きな穴(す)や高強度繊維の糸切れ等)が生じ得るため、ステアリン酸カルシウム等の塩素キャッチャー剤を添加しないことを要望されている。しかし、従来のチーグラー・ナッタ型の触媒を用いて製造されるエチレン系重合体パウダーは、固体触媒にチタン−塩素を含むため、塩素キャッチ
ャー剤を添加しない場合、成型品にチタン−塩素が多く残存し得た。そして、当該残存により、成型直後や成型後、白色から黄色への色調変化を起こる虞が生じるため、加工後の色調変化抑制も求められている。
As described above, the high molecular weight ethylene polymer powder used for microporous films, high-strength fibers, etc. (hereinafter, also referred to as "ethylene polymer powder") has no unmelted material and is used during the manufacturing process. In the use of high-strength fibers that can include a drawing step, it is desired that the fibers after drawing are uniform fibers with less yarn breakage and fluffing. On the other hand, it is common to add a chlorine catcher agent such as calcium stearate to the ethylene polymer powder. However, calcium stearate may be concentrated in a solvent that is recovered and recycled after the polymer is dissolved, and in applications such as microporous membranes and high-strength fibers, the presence of concentrated calcium stearate in the molded body is a drawback (for example, microporous). Since relatively large holes in the film, thread breakage of high-strength fibers, etc.) may occur, it is requested not to add a chlorine catcher agent such as calcium stearate. However, since the ethylene polymer powder produced by using the conventional Ziegler-Natta type catalyst contains titanium-chlorine in the solid catalyst, a large amount of titanium-chlorine remains in the molded product when the chlorine catcher agent is not added. I was able to do it. Then, since there is a possibility that the color tone changes from white to yellow immediately after or after molding due to the residual, it is also required to suppress the color tone change after processing.

一方で、上記の課題を解決するに当たっては、エチレン系重合体パウダーを連続的且つ高い生産性で生産できることも肝要であるところ、エチレン系重合体パウダーの生産の際
、ポリエチレンの重合速度が速い場合(生産性を高めた場合)には、重合反応器内部で局部的な急重合により塊などのスケールが発生し、それにより、エチレン系重合体を含むスラリーを抜き取るための抜取ラインが閉塞したり、凝集パウダーが多くなったりすることがあった。その結果として、エチレン系重合体パウダーの連続生産性に劣ることがあり、その改良も求められている。
On the other hand, in order to solve the above problems, it is also important to be able to continuously produce the ethylene-based polymer powder with high productivity. However, when the ethylene-based polymer powder is produced, the polymerization rate of polyethylene is high. In (when productivity is increased), scales such as lumps are generated inside the polymerization reactor due to local rapid polymerization, which may block the extraction line for extracting the slurry containing the ethylene polymer. , The amount of coagulated powder may increase. As a result, the continuous productivity of the ethylene-based polymer powder may be inferior, and improvement thereof is also required.

本発明は、上記問題点に鑑みてなされたものであり、溶融時の未溶融物、延伸加工時の糸切れや毛羽立ちが十分少なく、延伸後の強度が高く、ステアリン酸カルシウムなどの塩素キャッチャー剤を用いなくても、高生産性で連続安定運転が可能で、成形品の色調変化を抑制できる、エチレン系重合体パウダー、及び、そのようなエチレン系重合体パウダーを用いて得られる成形体を提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of providing a chlorine catcher agent such as calcium stearate, which has sufficiently little unmelted material at the time of melting, thread breakage and fluffing at the time of drawing, and high strength after drawing. Provided are an ethylene-based polymer powder capable of high productivity, continuous stable operation without use, and capable of suppressing color change of a molded product, and a molded product obtained by using such an ethylene-based polymer powder. The purpose is to do.

そこで、本発明者らは、前記課題を達成するために鋭意研究を重ねた結果、所定のエチレン系重合体パウダーであれば上記課題を解決できることを見出して、本発明を完成するに至った。 Therefore, as a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a predetermined ethylene-based polymer powder can solve the above-mentioned problems, and have completed the present invention.

すなわち、本発明は以下のとおりである。
〔1〕
1)粘度平均分子量が200,000以上であり、
2)硫黄含有量が0.20ppm以上5ppm以下であり、
3)塩素含有量が10ppm以上80ppm以下であり、
4)塩素含有量/硫黄含有量比が10超80以下である、
エチレン系重合体パウダー。
〔2〕
エチレン単独重合体(A);及びエチレン共重合体(B)のいずれか一方であって、
該エチレン共重合体(B)は、
a)エチレン90.00重量%以上100質量%未満と、
b)炭素数3〜20のα−オレフィン、炭素数3〜20の環状オレフィン、式CH2
CHR(但し、Rは炭素数6〜20のアリール基である。)で表される化合物、及び炭素
数4〜20の直鎖状、分岐状または環状のジエン、よりなる群から選ばれる少なくとも1
種のオレフィンであるコモノマー0質量%超10.00重量%以下と、
を共重合して得られる、上記[1]に記載のエチレン系重合体パウダー。
〔3〕
該エチレン系重合体パウダーのJIS K−6721:1997で測定された嵩密度が
、0.35kg/m3以上0.60以下kg/m3である上記[1]あるいは[2]に記
載のエチレン系重合体パウダー。
〔4〕
上記[1]〜[3]のいずれかに記載のエチレン系重合体パウダーを用いて得られる、
成型体。
〔5〕
上記[1]〜[3]のいずれかに記載のエチレン系重合体パウダーを用いて得られる、
リチウムイオン二次電池用セパレーター。
[6]
上記[1]〜[3]のいずれかに記載のエチレン系重合体パウダーを用いて得られる、
鉛蓄電池用セパレーター。
[7]
上記[1]〜[3]のいずれかに記載のエチレン系重合体パウダーを用いて得られる、
繊維。
[8]
上記[1]〜[3]のいずれかに記載のエチレン系重合体パウダーを用いて得られる、
プレス成型体。
[9]
上記[1]〜[3]のいずれかに記載のエチレン系重合体パウダーを用いて得られる、
ラム押出し成型体。
That is, the present invention is as follows.
[1]
1) The viscosity average molecular weight is 200,000 or more,
2) The sulfur content is 0.20 ppm or more and 5 ppm or less.
3) The chlorine content is 10 ppm or more and 80 ppm or less.
4) Chlorine content / sulfur content ratio is more than 10 and 80 or less.
Ethylene polymer powder.
[2]
Either the ethylene homopolymer (A); or the ethylene copolymer (B).
The ethylene copolymer (B) is
a) Ethylene 90.00% by weight or more and less than 100% by mass,
b) α-olefin having 3 to 20 carbon atoms, cyclic olefin having 3 to 20 carbon atoms, formula CH 2 =
At least one selected from the group consisting of a compound represented by CHR (where R is an aryl group having 6 to 20 carbon atoms) and a linear, branched or cyclic diene having 4 to 20 carbon atoms.
Comonomer, which is a seed olefin, is more than 0% by mass and 10.00% by weight or less.
The ethylene-based polymer powder according to the above [1], which is obtained by copolymerizing the above.
[3]
The ethylene polymer powder JIS K-6721: bulk density measured at 1997 is an ethylene according to 0.35 kg / m 3 to 0.60 kg / m 3 and is the [1] or [2] System polymer powder.
[4]
Obtained by using the ethylene polymer powder according to any one of the above [1] to [3].
Molded body.
[5]
Obtained by using the ethylene polymer powder according to any one of the above [1] to [3].
Separator for lithium-ion secondary batteries.
[6]
Obtained by using the ethylene polymer powder according to any one of the above [1] to [3].
Separator for lead-acid batteries.
[7]
Obtained by using the ethylene polymer powder according to any one of the above [1] to [3].
fiber.
[8]
Obtained by using the ethylene polymer powder according to any one of the above [1] to [3].
Press molded body.
[9]
Obtained by using the ethylene polymer powder according to any one of the above [1] to [3].
Lamb extruded body.

本発明によれば、溶融時の未溶融物が、延伸時の糸切れや毛羽立ちが十分少なく、延伸後の強度が高く、ステアリン酸カルシウムなどの塩素キャッチャー剤を用いなくても、高生産性で連続安定運転が可能で、成形品の色調変化を抑制できる、エチレン系重合体パウダー、及び、そのようなエチレン系重合体パウダーを用いて得られる成型体を提供することができる。 According to the present invention, the unmelted product at the time of melting has sufficiently little thread breakage and fluffing at the time of stretching, has high strength after stretching, and is highly productive and continuous without using a chlorine catcher agent such as calcium stearate. It is possible to provide an ethylene-based polymer powder capable of stable operation and suppressing a change in color tone of a molded product, and a molded product obtained by using such an ethylene-based polymer powder.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited thereto, and various modifications are made without departing from the gist thereof. Is possible.

〔超高分子量エチレン系重合体パウダー〕
本実施形態に係る超高分子量エチレン系重合体パウダーは、下記1)〜4)を満たす。
1)粘度平均分子量が、200,000以上である;
2)硫黄含有量が0.10ppm以上5ppm以下である;
3)塩素含有量が10ppm以上80以下ppm以下である;
4)塩素含有量/硫黄含有量比が10超80以下である;
上記構成を有することにより、本実施形態に係るエチレン系重合体パウダーは、成型時の未溶融物が無く、得られる成型体の強度に優れ、成型時の糸切れや毛羽たちが少なく製品ロスが少ない。更には、エチレン系重合体パウダー中に塩素が含まれていても、成型品の変色が少なく、製品としての品質の変化の十分少ないものが得られる。また、このような場合であっても、エチレン系重合体パウダーの製造において、高生産性で連続安定運転ができる。具体的には、上記エチレン系重合体パウダーを生産する際において、重合反応の活性を維持して生産性を高めるとともに、重合反応器内部で局部的な急重合により発生する塊などのスケールにより、スラリー抜取ライン閉塞を起こすことなく、また凝集パウダーが少なく、連続安定生産ができる。
[Ultra high molecular weight ethylene polymer powder]
The ultra-high molecular weight ethylene polymer powder according to this embodiment satisfies the following 1) to 4).
1) The viscosity average molecular weight is 200,000 or more;
2) Sulfur content is 0.10 ppm or more and 5 ppm or less;
3) Chlorine content is 10 ppm or more and 80 or less ppm or less;
4) Chlorine content / sulfur content ratio is more than 10 and 80 or less;
By having the above structure, the ethylene polymer powder according to the present embodiment has no unmelted matter at the time of molding, has excellent strength of the obtained molded body, has less thread breakage and fluff at the time of molding, and causes product loss. Few. Further, even if chlorine is contained in the ethylene-based polymer powder, the molded product is less discolored and the quality of the product is sufficiently changed. Further, even in such a case, in the production of the ethylene-based polymer powder, high productivity and continuous stable operation can be performed. Specifically, when producing the above ethylene-based polymer powder, the activity of the polymerization reaction is maintained to increase the productivity, and the scale of lumps or the like generated by local rapid polymerization inside the polymerization reactor is used. Continuous stable production is possible without causing clogging of the slurry extraction line and with less coagulated powder.

[粘度平均分子量]
本実施形態に係るエチレン系重合体パウダーの粘度平均分子量(Mv)は200,000以上である。粘度平均分子量(Mv)は、200,000以上15,000,000以下であることが好ましく、250,000以上、10,000,000以下であることがより好ましい。粘度平均分子量が200,000以上であることにより、本実施形態のエチレン系重合体パウダーが超高分子量となり、成型品の強度が向上し、また、15,000,000以下であることにより、延伸加工性が向上する。さらに粘度平均分子量が上記範囲であることにより、生産性により優れ、成形した場合には、延伸性及び膜強度により優れる。このような特性を有するエチレン系重合体パウダーは、例えばリチウムイオン二次電池セパレーターや高強度繊維に好適に用いることができる。
[Viscosity average molecular weight]
The viscosity average molecular weight (Mv) of the ethylene polymer powder according to this embodiment is 200,000 or more. The viscosity average molecular weight (Mv) is preferably 200,000 or more and 150,000 or less, and more preferably 250,000 or more and 10,000,000 or less. When the viscosity average molecular weight is 200,000 or more, the ethylene-based polymer powder of the present embodiment has an ultra-high molecular weight, the strength of the molded product is improved, and when it is 15,000,000 or less, it is stretched. Workability is improved. Further, when the viscosity average molecular weight is in the above range, the productivity is excellent, and when molded, the stretchability and the film strength are excellent. Ethylene-based polymer powder having such characteristics can be suitably used for, for example, a lithium ion secondary battery separator and high-strength fibers.

粘度平均分子量を上記範囲に制御する方法としては、エチレン系重合体パウダーを重合する際の反応器の重合温度を変化させることが挙げられる。一般には、重合温度を高温にするほど粘度平均分子量は低くなる傾向にあり、重合温度を低温にするほど粘度平均分子量は高くなる傾向にある。また、粘度平均分子量を上記範囲にする別の方法としては、エチレン系重合体パウダーを重合する際に使用する助触媒として、有機金属化合物種を変更することが挙げられる(例えば、特許第05829295号公報等参照)。 As a method of controlling the viscosity average molecular weight within the above range, it is possible to change the polymerization temperature of the reactor when polymerizing the ethylene-based polymer powder. In general, the higher the polymerization temperature, the lower the viscosity average molecular weight tends to be, and the lower the polymerization temperature, the higher the viscosity average molecular weight tends to be. Further, as another method for setting the viscosity average molecular weight in the above range, changing the organometallic compound species as an auxiliary catalyst used when polymerizing the ethylene-based polymer powder can be mentioned (for example, Japanese Patent No. 0589295). See publications, etc.).

そしてまた、粘度平均分子量を上記範囲にする別の方法としては、エチレン系重合体パウダーを重合する際、重合反応器内に連鎖移動剤(例えば水素など)を添加することが挙げられる。このように連鎖移動剤を添加することで、同一重合温度でも生成するエチレン系重合体の粘度平均分子量を制御できる。
本実施形態においては、両者を組み合わせて制御する方が好ましい。
Further, as another method for setting the viscosity average molecular weight in the above range, a chain transfer agent (for example, hydrogen) is added into the polymerization reactor when the ethylene-based polymer powder is polymerized. By adding the chain transfer agent in this way, the viscosity average molecular weight of the ethylene-based polymer produced even at the same polymerization temperature can be controlled.
In the present embodiment, it is preferable to control both in combination.

本実施形態に係るエチレン系重合体パウダーの粘度平均分子量(Mv)は、デカヒドロナフタレン溶液中にエチレン系重合体パウダーを異なる濃度で溶解させ、135℃で求めた還元粘度を濃度0に外挿して求めた極限粘度[η](dL/g)から、以下の数式Aにより算出することができる。より詳細には、実施例に記載の方法により求めることができる。
Mv=(5.34×10)×[η]1.49 ・・・数式A
The viscosity average molecular weight (Mv) of the ethylene polymer powder according to the present embodiment is obtained by dissolving the ethylene polymer powder in a decahydronaphthalene solution at different concentrations and extrapolating the reduced viscosity obtained at 135 ° C. to a concentration of 0. It can be calculated by the following formula A from the ultimate viscosity [η] (dL / g) obtained. More specifically, it can be obtained by the method described in Examples.
Mv = (5.34 × 10 4 ) × [η] 1.49・ ・ ・ Formula A

[硫黄含有量]
本実施形態のエチレン系重合体パウダーの硫黄含有量は、0.10ppm以上5ppm以下であることが好ましく、0.20ppm以上2ppm以下であることがより好ましく、0.50ppm以上1.5ppm以下であることがさらに好ましい。
[Sulfur content]
The sulfur content of the ethylene polymer powder of the present embodiment is preferably 0.10 ppm or more and 5 ppm or less, more preferably 0.20 ppm or more and 2 ppm or less, and 0.50 ppm or more and 1.5 ppm or less. Is even more preferable.

本実施形態において、理由は定かではないが、この硫黄成分がポリマー中に存在することで、成型品中の未溶融物や糸切れや毛羽立ちの要因と成り得る、重合反応器内の淀み部分などに付着して重合成長する異常重合物等を抑制する効果が有ることが見出された。そして、この効果をより十分に発揮させるには、硫黄成分をポリマー中に存在させるとともに、その含有量を0.10ppm以上の範囲にすることが見出された。また、ポリエチレンの重合速度が速すぎる(活性が高すぎる)とエチレン系重合体パウダーの連続生産性に影響し得るところ、硫黄成分の含有量を0.10ppm以上にすることにより、重合速度が速すぎることを抑制することもできる。それにより、局部的な急重合により発生し得るスケールの発生を抑制し、エチレン系重合体パウダーの連続生産性を向上させることができる。また、硫黄成分の含有量を5ppm以下にすることにより、ポリエチレンの重合速度が低下しすぎる(活性が低下しすぎる)ことを防止し、生産性を向上することができる
。また、活性が低下するとパウダーが微粒子化する傾向があり、微粒子化するとパウダーの搬送中にブリッジしやすくなり流動性が低下するところ、活性が低下しすぎるのを防止するので、パウダーの取扱い性を向上させることができる。
In the present embodiment, although the reason is not clear, the presence of this sulfur component in the polymer may cause unmelted matter in the molded product, thread breakage, and fluffing, such as a stagnation portion in the polymerization reactor. It was found that it has an effect of suppressing an abnormal polymer or the like which adheres to and grows by polymerization. Then, in order to exert this effect more sufficiently, it was found that the sulfur component is present in the polymer and its content is in the range of 0.10 ppm or more. Further, if the polymerization rate of polyethylene is too fast (activity is too high), it may affect the continuous productivity of the ethylene-based polymer powder. Therefore, by setting the sulfur component content to 0.10 ppm or more, the polymerization rate is high. It is also possible to suppress too much. As a result, it is possible to suppress the generation of scales that may occur due to local rapid polymerization and improve the continuous productivity of the ethylene-based polymer powder. Further, by setting the content of the sulfur component to 5 ppm or less, it is possible to prevent the polymerization rate of polyethylene from being excessively lowered (the activity is too low) and improve the productivity. In addition, when the activity decreases, the powder tends to become fine particles, and when the activity becomes fine particles, it becomes easy to bridge during the transportation of the powder and the fluidity decreases, but the activity is prevented from decreasing too much, so that the handleability of the powder is improved. Can be improved.

硫黄含有量については、後述する添加可能な硫黄化合物を重合系に存在させ又は添加しつつ、次の方法を行うこと、具体的には、固体触媒と硫黄化合物を高速で重合系に添加する方法、助触媒と共に硫黄化合物を重合系に添加する方法、重合反応器の撹拌翼の形状を三枚後退翼やアンカー翼など、より撹拌強度の高い撹拌翼を使用する方法、重合するエチレンのフィード口を複数にしそれぞれからエチレンを供給する方法などを行うことにより
、エチレン系重合体ポリマー中の硫黄含有量を制御することができる。なお、上記の「固体触媒と硫黄化合物を高速で重合系に添加する方法」では、固体触媒と硫黄化合物を線速1m/s以上で添加することが好ましい。
Regarding the sulfur content, the following method is carried out while the additiveable sulfur compound described later is present or added to the polymerization system, specifically, a method of adding the solid catalyst and the sulfur compound to the polymerization system at high speed. , A method of adding a sulfur compound to the polymerization system together with a co-catalyst, a method of using a stirring blade with a higher stirring strength such as a three-piece receding blade or an anchor blade for the shape of the stirring blade of the polymerization reactor, a feed port for ethylene to be polymerized. The sulfur content in the ethylene-based polymer polymer can be controlled by setting a plurality of ethylenes and supplying ethylene from each of them. In the above-mentioned "method of adding the solid catalyst and the sulfur compound to the polymerization system at high speed", it is preferable to add the solid catalyst and the sulfur compound at a linear velocity of 1 m / s or more.

また、エチレン系重合体パウダーの硫黄含有量を上記範囲に制御する別の方法としては
、後述する添加可能な硫黄化合物を重合系に存在させ又は添加しつつ、次の方法、即ち、重合触媒や助触媒、重合温度、重合圧力、スラリー濃度、滞留時間などにより制御する方法が挙げられる。
Further, as another method for controlling the sulfur content of the ethylene-based polymer powder within the above range, the following method, that is, a polymerization catalyst or a polymerization catalyst, is performed while an addable sulfur compound described later is present or added to the polymerization system. Examples thereof include a method of controlling by a co-catalyst, a polymerization temperature, a polymerization pressure, a slurry concentration, a residence time and the like.

また、エチレン系重合体パウダー中の硫黄成分としては、特に限定されるものではないが、例えば、エチレン系重合体パウダーを重合する際に重合系に添加し得る、硫黄成分を含有する硫黄化合物を由来とすることができる。当該硫黄化合物としては、有機硫黄化合物が好ましい。添加可能な硫黄化合物がエチレン系重合体の重合時に系内に存在するとき
、触媒に対する、当該硫黄化合物中の硫黄成分の接近の程度(重合時のスラリーにおいて
、硫黄成分がエチレン系重合体側に含まれるか、溶媒側に含まれるか)により触媒の活性が変動し得る。
有機硫黄化合物としては、チオエーテル、チオフェン、チオール、スルホキシド、スルホン及びチオケトン、スルホン酸やスルホン酸エステル及びアミド化合物が好ましい。特に、スルホン酸やスルホン酸エステル及びアミド化合物がより好ましい。このような化合物として、エチレン系重合体パウダーを重合する際に、重合反応器へのポリマーの静電気付着を抑制するためInnospec社製(代理店丸和物産)のStadis450等の静電気防止剤を使用することも可能であり、このStadsi450等の静電気防止剤の中には、硫黄化合物の成分が存在する。
なお、パウダーの硫黄含有量や後述の塩素含有量は、それぞれ硫黄原子や塩素原子を含む化合物のパウダーに対する含有量ではなく、それぞれ硫黄原子や塩素原子のパウダーに対する含有量を指す。
The sulfur component in the ethylene-based polymer powder is not particularly limited, but for example, a sulfur compound containing a sulfur component that can be added to the polymerization system when polymerizing the ethylene-based polymer powder is used. Can be derived. As the sulfur compound, an organic sulfur compound is preferable. When the sulfur compound that can be added is present in the system during the polymerization of the ethylene polymer, the degree of proximity of the sulfur component in the sulfur compound to the catalyst (in the slurry at the time of polymerization, the sulfur component is contained on the ethylene polymer side). The activity of the catalyst can vary depending on whether it is contained on the solvent side.
As the organic sulfur compound, thioether, thiophene, thiol, sulfoxide, sulfone and thioketone, sulfonic acid, sulfonic acid ester and amide compound are preferable. In particular, sulfonic acids, sulfonic acid esters and amide compounds are more preferable. As such a compound, when polymerizing an ethylene-based polymer powder, an antistatic agent such as Stadis450 manufactured by Innospec (distributor Maruwa Bussan) is used in order to suppress static electricity adhesion of the polymer to the polymerization reactor. It is also possible, and a component of a sulfur compound is present in the antistatic agent such as Stadsi450.
The sulfur content of the powder and the chlorine content described later refer to the content of the sulfur atom and the chlorine atom in the powder, not the content of the compound containing the sulfur atom and the chlorine atom in the powder, respectively.

[塩素量]
本実施形態のエチレン系重合体パウダーの塩素含有量は、10ppm以上80ppm以下である。また、エチレン系重合体パウダーの塩素含有量は、10ppm以上70ppm以下であることが好ましく、10ppm以上65ppm以下であることがより好ましい。塩素含有量を10ppm以上とすることにより、重合反応の活性(触媒1g当たりのエチレン系重合体パウダーの生成量)が高くなりすぎるのを抑制できるので、局部的な急重合により発生し得るスケールの発生を抑制し、エチレン系重合体パウダーの連続生産性を向上させることができる。また、塩素含有量を80ppm以下とすることにより、重合反応反の活性が低くなりすぎるのを抑制できるので、生産性を向上することができ、また、パウダーの取扱い性を向上させることができる。さらに、塩素含有量を80ppm以下とすることにより、ポリエチレン中の固体触媒由来の塩素による色調変化を抑制することができる。
エチレン系重合体パウダーの塩素含有量を上記範囲に制御する方法としては、エチレン系重合体を重合する際の、重合触媒や助触媒、重合温度、重合圧力、スラリー濃度、滞留時間などにより制御する方法が挙げられる。
[Chlorine amount]
The chlorine content of the ethylene polymer powder of this embodiment is 10 ppm or more and 80 ppm or less. The chlorine content of the ethylene polymer powder is preferably 10 ppm or more and 70 ppm or less, and more preferably 10 ppm or more and 65 ppm or less. By setting the chlorine content to 10 ppm or more, it is possible to prevent the activity of the polymerization reaction (the amount of ethylene-based polymer powder produced per 1 g of the catalyst) from becoming too high, so that the scale that can be generated by local rapid polymerization can be suppressed. The generation can be suppressed and the continuous productivity of the ethylene-based polymer powder can be improved. Further, by setting the chlorine content to 80 ppm or less, it is possible to suppress the activity of the polymerization reaction reaction from becoming too low, so that the productivity can be improved and the handleability of the powder can be improved. Further, by setting the chlorine content to 80 ppm or less, it is possible to suppress the color change due to chlorine derived from the solid catalyst in polyethylene.
As a method of controlling the chlorine content of the ethylene-based polymer powder within the above range, it is controlled by a polymerization catalyst, a co-catalyst, a polymerization temperature, a polymerization pressure, a slurry concentration, a residence time, etc. when polymerizing the ethylene-based polymer. The method can be mentioned.

[塩素含有量/硫黄含有量比]
本実施形態のエチレン系重合体パウダーの塩素含有量(ppm)/硫黄含有量(ppm
)比は、10超80以下であることが好ましく、10超74以下であることがより好ましく、10超70以下であることがさらに好ましい。エチレン系重合体パウダーの塩素含有量/硫黄含有量の比を上記範囲内にすることで、理由は定かではないが、塩素に対し硫黄が一定量割合存在することとなり、ポリエチレン中の固体触媒由来の塩素による色調変化を抑制できると推定される。また、塩素含有量/硫黄含有量比を80以下にすることにより、エチレン系重合体パウダーが粗粉化するのを抑制することができる。
エチレン系重合体パウダーの塩素含有量/硫黄含有量比を上記範囲内に制御する方法としては、添加可能な硫黄化合物を重合系に存在させ又は添加しつつ、次の方法を行うこと
、具体的には、硫黄化合物と固体触媒を高速で重合反応場に添加する方法、助触媒と共に硫黄化合物を重合系に添加する方法、重合反応器の撹拌翼の形状を三枚後退翼やアンカー翼などより撹拌強度の高い撹拌翼を使用する方法、重合するエチレンのフィード口を複数にしそれぞれからエチレンを供給する方法などを行うことにより、制御することができる。
[Chlorine content / sulfur content ratio]
Chlorine content (ppm) / sulfur content (ppm) of the ethylene polymer powder of this embodiment
) Ratio is preferably more than 10 and 80 or less, more preferably more than 10 and 74 or less, and further preferably more than 10 and 70 or less. By keeping the ratio of chlorine content / sulfur content of the ethylene polymer powder within the above range, the reason is not clear, but a certain amount of sulfur is present with respect to chlorine, and it is derived from the solid catalyst in polyethylene. It is presumed that the change in color due to chlorine can be suppressed. Further, by setting the chlorine content / sulfur content ratio to 80 or less, it is possible to suppress the coarsening of the ethylene polymer powder.
As a method for controlling the chlorine content / sulfur content ratio of the ethylene-based polymer powder within the above range, the following method is specifically performed while an addable sulfur compound is present or added to the polymerization system. A method of adding a sulfur compound and a solid catalyst to the polymerization reaction field at high speed, a method of adding a sulfur compound to the polymerization system together with a co-catalyst, and a method of changing the shape of the stirring blade of the polymerization reactor from three swept blades or anchor blades. It can be controlled by using a stirring blade having high stirring strength, a method of providing a plurality of feed ports for polymerizing ethylene and supplying ethylene from each of them.

また、エチレン系重合体パウダーの塩素含有量/硫黄含有量の比を上記範囲に制御する別の方法としては、添加可能な硫黄化合物を重合系に存在させ又は添加しつつ、次の方法
、即ち、重合触媒や助触媒、重合温度、重合圧力、スラリー濃度、滞留時間などにより制御する方法が挙げられる。
Further, as another method of controlling the chlorine content / sulfur content ratio of the ethylene-based polymer powder within the above range, the following method, that is, while adding or adding an addable sulfur compound to the polymerization system, that is, , A method of controlling by a polymerization catalyst or a co-catalyst, a polymerization temperature, a polymerization pressure, a slurry concentration, a residence time and the like can be mentioned.

[嵩密度]
本実施形態に係るエチレン系重合体パウダーの嵩密度は、0.35g/cm以上0.
60g/cm以下であり、0.38g/cm以上0.55g/cm以下であることが好ましく、0.40g/cm以上0.50g/cm以下であることがより好ましい
。嵩密度が0.35g/cm以上であることにより、エチレン系重合体パウダーの流動性が充分に高くなり、ハンドリング性に優れ、押出機へのフィードが安定し、膜や繊維の延伸性や膜厚、繊維径が安定する。また、成形品へのガスの巻き込みが少なく気泡などの無い成形品が得られる。一方、嵩密度が0.60g/cm以下であることにより、電池セパレーターや繊維への加工等の際に、生産性及び/又は延伸性等に優れ、より良好な加工適用性を示す。
[The bulk density]
The bulk density of the ethylene polymer powder according to this embodiment is 0.35 g / cm 3 or more and 0.
And at 60 g / cm 3 or less, and more preferably it is preferably at most 0.38 g / cm 3 or more 0.55 g / cm 3, or less 0.40 g / cm 3 or more 0.50 g / cm 3. When the bulk density is 0.35 g / cm 3 or more, the fluidity of the ethylene polymer powder becomes sufficiently high, the handleability is excellent, the feed to the extruder is stable, and the stretchability of the film and fibers is improved. Stable film thickness and fiber diameter. In addition, a molded product with less gas entrainment in the molded product and no air bubbles can be obtained. On the other hand, when the bulk density is 0.60 g / cm 3 or less, it is excellent in productivity and / or stretchability when processing into a battery separator or a fiber, and exhibits better processing applicability.

一般的に、嵩密度は、使用する固体触媒によって異なるが、単位触媒あたりのエチレン系重合体の生産性により制御することが可能である。具体的には、エチレン系重合体の嵩密度は、重合する際の重合温度によって制御することが可能であり、重合温度を高くすることによりその嵩密度を低下させることが可能である。また、エチレン系重合体の嵩密度は重合器内のスラリー濃度によって制御することも可能であり、スラリー濃度を高くすることによりその嵩密度を増加させることが可能である。なお、エチレン系重合体の嵩密度はJIS K−6721:1997に準拠して測定するが、具体的には実施例に記載の方法によって測定することができる。 In general, the bulk density varies depending on the solid catalyst used, but can be controlled by the productivity of the ethylene polymer per unit catalyst. Specifically, the bulk density of the ethylene-based polymer can be controlled by the polymerization temperature at the time of polymerization, and the bulk density can be lowered by raising the polymerization temperature. Further, the bulk density of the ethylene-based polymer can be controlled by the slurry concentration in the polymerizer, and the bulk density can be increased by increasing the slurry concentration. The bulk density of the ethylene polymer is measured in accordance with JIS K-6721: 1997, but can be specifically measured by the method described in Examples.

[コモノマー濃度]
本明細書中において、重合体を構成する各単量体単位の命名は、単量体単位が由来する単量体の命名に従う。例えば、「エチレン単位」とは、単量体であるエチレンを重合した結果生ずる重合体の構成単位を意味し、その構造は、エチレンの二つの炭素が重合体主鎖となっている分子構造である。また、「コモノマー単位」とは、単量体であるコモノマーを重合した結果生ずる重合体の構成単位を意味し、その構造は、コモノマーに含まれるオレフィンの二つの炭素が重合体主鎖となっている分子構造である。
[Comonomer concentration]
In the present specification, the naming of each monomer unit constituting the polymer follows the naming of the monomer from which the monomer unit is derived. For example, "ethylene unit" means a structural unit of a polymer produced as a result of polymerizing ethylene, which is a monomer, and its structure is a molecular structure in which two carbons of ethylene are the main chain of the polymer. is there. Further, the "comonomer unit" means a structural unit of a polymer produced as a result of polymerizing a comonomer which is a monomer, and its structure is such that two carbons of an olefin contained in the comonomer form a polymer main chain. It is a molecular structure.

本実施形態で用いるエチレン系重合体パウダーとしては、特に限定されないが、具体的には、エチレン単独重合体、及びエチレンと、エチレンと共重合可能なオレフィンと、の共重合体が挙げられる。エチレンと共重合可能なオレフィンとしては、特に限定されないが、具体的には、炭素数3〜20のα−オレフィン、炭素数3〜20の環状オレフィン、式CH=CHR(ここで、Rは炭素数6〜20のアリール基である。)で表される化合物、及び炭素数4〜20のジエン、からなる群より選ばれる少なくとも1種のオレフィンが挙げられる。当該ジエンは、直鎖状、分岐状又は環状である。この中でも、共重合可能なオレフィンとしては、微多孔膜や高強度繊維に代表される成形体の耐熱性及び強度の観点から、プロピレン及び1−ブテンが好ましい。エチレン系重合体パウダーがエチレンとオレフィンとの共重合を含む場合は、共重合体パウダーに占めるエチレンの質量比は、90.00質量%以上100質量%未満が好ましく、95.00質量%以上100質量%未満がより好ましく、99.00質量%以上100質量%未満がさらに好ましい。エチレンの質量比が上記範囲内であることにより、耐熱性及び/又は強度により優れる傾向にある。 The ethylene-based polymer powder used in the present embodiment is not particularly limited, and specific examples thereof include an ethylene homopolymer and a copolymer of ethylene and an olefin copolymerizable with ethylene. The olefin copolymerizable with ethylene is not particularly limited, but specifically, an α-olefin having 3 to 20 carbon atoms, a cyclic olefin having 3 to 20 carbon atoms, and the formula CH 2 = CHR (where R is). Examples thereof include at least one olefin selected from the group consisting of a compound represented by an aryl group having 6 to 20 carbon atoms) and a diene having 4 to 20 carbon atoms. The diene is linear, branched or cyclic. Among these, as the copolymerizable olefin, propylene and 1-butene are preferable from the viewpoint of heat resistance and strength of a molded product typified by a microporous membrane or high-strength fiber. When the ethylene-based polymer powder contains a copolymerization of ethylene and olefin, the mass ratio of ethylene to the copolymer powder is preferably 90.00% by mass or more and less than 100% by mass, and 95.00% by mass or more and 100%. Less than mass% is more preferable, and 99.00% by mass or more and less than 100% by mass is further preferable. When the mass ratio of ethylene is within the above range, it tends to be more excellent in heat resistance and / or strength.

エチレン系重合体パウダー中のb)コモノマー含有量を上記範囲に制御する方法としては、重合反応器内に添加する、b)コモノマー/[エチレン+b)コモノマー](質量%
)を変化させることが挙げられる。通常のチーグラー・ナッタ触媒を用いたエチレン系重合体パウダーの製造では、b)コモノマーにより分子量が低下する傾向にある。これはb
)コモノマーが一部連鎖移動剤として作用するためであると考えられる。エチレン系重合体パウダーの分子量を高めるには、できるだけ少ないb)コモノマーの含有量を少なくすることが好ましい。
As a method for controlling the b) comonomer content in the ethylene polymer powder within the above range, b) comonomer / [ethylene + b) comonomer] (mass%) added into the polymerization reactor.
) Can be changed. In the production of ethylene-based polymer powder using a normal Ziegler-Natta catalyst, b) the molecular weight tends to decrease due to the comonomer. This is b
) It is considered that this is because the comonomer acts as a chain transfer agent. In order to increase the molecular weight of the ethylene polymer powder, it is preferable to reduce the content of b) comonomer as small as possible.

なお、b)コモノマー単位の含有量の測定は、G.J.RayらのMacromolecules, 10, 773 (1977)に開示された方法に準じて行われ、b)コモノマー単位の含有量は、13C−NMRスペクトルにより観測されるメチレン炭素のシグナルを用いて、その面積強度より算出することができる。より具体的には、実施例に記載の方法により測定することができる。 In addition, b) The content of the comonomer unit was measured by G.I. J. Performed according to the method disclosed in Macromolecules, 10, 773 (1977) by Ray et al., B) The content of comonomer units is the area of the methylene carbon signal observed by the 13 C-NMR spectrum. It can be calculated from the strength. More specifically, it can be measured by the method described in Examples.

[エチレン系重合体のパウダーの製造方法]
本実施形態に係るエチレン系重合体パウダーの製造に使用される触媒成分は、特に限定されず、一般的なチーグラー・ナッタ触媒やメタロセン触媒を用いて製造することが可能であり、チーグラー・ナッタ触媒およびメタロセン触媒としては、例えば、特許第578
2558号公報や国際公開第2015/005287号公報等に開示されているチーグラ
ー・ナッタ触媒及びメタロセン触媒を使用することができる。
[Method for producing ethylene polymer powder]
The catalyst component used for producing the ethylene-based polymer powder according to the present embodiment is not particularly limited, and can be produced using a general Ziegler-Natta catalyst or metallocene catalyst, and is a Ziegler-Natta catalyst. And as a metallocene catalyst, for example, Patent No. 578.
The Ziegler-Natta catalyst and the metallocene catalyst disclosed in Japanese Patent Publication No. 2558 and Japanese Patent Publication No. 2015/005287 can be used.

前記触媒成分は、固体触媒成分、及び、有機金属化合物成分(以下、触媒と省略する)をエチレン系重合体パウダーの重合条件下である重合系内に添加する際には、両者を別々に重合系内に添加してもよいし、予め両者を混合させた後に重合系内に添加してもよい。また組み合わせる両者の比率は、特に限定されないが、固体触媒中のチタン含有量に対して有機金属化合物成分のモル比は、1以上500以下が好ましく、10以上200以下がより好ましく、10以上100以下がさらに好ましい。両者を混合させる他の目的としては、保存タンクや配管等への静電付着を防止することも挙げられる。 When the solid catalyst component and the organometallic compound component (hereinafter abbreviated as catalyst) are added to the polymerization system under the polymerization conditions of the ethylene-based polymer powder, the catalyst component is polymerized separately. It may be added into the system, or both may be mixed in advance and then added into the polymerization system. The ratio of the two to be combined is not particularly limited, but the molar ratio of the organometallic compound component to the titanium content in the solid catalyst is preferably 1 or more and 500 or less, more preferably 10 or more and 200 or less, and 10 or more and 100 or less. Is even more preferable. Another purpose of mixing the two is to prevent electrostatic adhesion to storage tanks, pipes, and the like.

エチレン系重合体パウダーの製造方法における重合法としては、懸濁重合法により、エチレンを重合し、又はエチレンとb)コモノマーとを共重合する方法が挙げられる。重合又は、重合熱を効率的に除熱する観点から、懸濁重合が好ましい。懸濁重合法においては
、媒体として不活性炭化水素媒体を用いることができ、さらにオレフィン自身を溶媒として用いることもできる。
Examples of the polymerization method in the method for producing an ethylene-based polymer powder include a method of polymerizing ethylene by a suspension polymerization method or copolymerizing ethylene with b) a comonomer. Suspension polymerization is preferable from the viewpoint of polymerization or efficient removal of heat from polymerization. In the suspension polymerization method, an inert hydrocarbon medium can be used as the medium, and the olefin itself can also be used as the solvent.

上記不活性炭化水素媒体としては、特に限定されないが、具体的には、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;及びこれらの混合物等を挙げることができる。 The inert hydrocarbon medium is not particularly limited, but specifically, aliphatic hydrocarbons such as propane, butane, isobutane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, Aliphatic hydrocarbons such as cyclohexane and methylcyclopentane; and mixtures thereof.

本実施形態のエチレン系重合体パウダーを得るための製造方法における重合温度は、4
0℃以上100℃以下であることが好ましく、50℃以上95℃以下であることがより好ましく、50℃以上90℃以下であることがさらに好ましい。重合温度が40℃以上であることにより、工業的に効率的な製造が可能である。重合温度が100℃以下であることにより、重合ポリマーが一部溶融した、抜出ラインを詰めるような塊状のスケールを抑制でき、連続的な安定した製造が可能である。
The polymerization temperature in the production method for obtaining the ethylene-based polymer powder of the present embodiment is 4.
It is preferably 0 ° C. or higher and 100 ° C. or lower, more preferably 50 ° C. or higher and 95 ° C. or lower, and further preferably 50 ° C. or higher and 90 ° C. or lower. When the polymerization temperature is 40 ° C. or higher, industrially efficient production is possible. When the polymerization temperature is 100 ° C. or lower, it is possible to suppress a lumpy scale in which the polymer is partially melted and clog the extraction line, and continuous and stable production is possible.

本実施形態のエチレン系重合体パウダーを得るための製造方法における重合圧力は、常圧以上2MPa以下であることが好ましく、0.2MPa以上1.5MPa以下であることがより好ましく、0.3MPa以上1.0MPa以下であることがさらに好ましい。重合圧力が常圧以上であることにより、工業的に効率的な製造が可能である。重合圧力が2MPa以下であることにより、重合反応器内での急重合による塊状のスケールを発生させることがなくエチレン系重合体パウダーを安定的に生産できる傾向にある。 The polymerization pressure in the production method for obtaining the ethylene-based polymer powder of the present embodiment is preferably normal pressure or more and 2 MPa or less, more preferably 0.2 MPa or more and 1.5 MPa or less, and 0.3 MPa or more. It is more preferably 1.0 MPa or less. When the polymerization pressure is equal to or higher than normal pressure, industrially efficient production is possible. When the polymerization pressure is 2 MPa or less, the ethylene-based polymer powder tends to be stably produced without generating massive scale due to rapid polymerization in the polymerization reactor.

一般的にエチレン系重合体パウダーを重合する際には、重合反応器へのポリマーの静電気付着を抑制するためInnospec社製(代理店丸和物産)のStadisやSTATSAFE等の静電気防止剤を使用することも可能である。その他、硫黄化合物としては
、有機硫黄化合物が好ましく、チオエーテル、イオフェン、チオール、スルホキシド、スルホン及びチオケトン、スルホン酸やスルホン酸エステル及びアミド化合物が好ましい。特に、スルホン酸やスルホン酸エステル及びアミド化合物がより好ましい。StadisやSTATSAFE等の静電気防止剤は、不活性炭化水素媒体に希釈したものをポンプ等により重合反応器に添加することもできる。この際の添加量は、固体触媒に事前に添加する方法や、重合反応器に添加するなど、単位時間当たりのエチレン系重合体パウダーの生産量に対して、1ppm以上500ppm以下が好ましく、10ppm以上100ppm以下がより好ましい。
Generally, when polymerizing an ethylene polymer powder, an antistatic agent such as Stadis or STATSAFE manufactured by Innospec (distributor Maruwa Bussan) should be used in order to suppress static electricity adhesion of the polymer to the polymerization reactor. Is also possible. In addition, as the sulfur compound, an organic sulfur compound is preferable, and thioether, iophen, thiol, sulfoxide, sulfone and thioketone, sulfonic acid, sulfonic acid ester and amide compound are preferable. In particular, sulfonic acids, sulfonic acid esters and amide compounds are more preferable. The antistatic agent such as Stadis or STATSAFE can also be added to the polymerization reactor by diluting it with an inert hydrocarbon medium by a pump or the like. The amount added at this time is preferably 1 ppm or more and 500 ppm or less, preferably 10 ppm or more, with respect to the production amount of the ethylene-based polymer powder per unit time, such as by adding it to a solid catalyst in advance or adding it to a polymerization reactor. More preferably 100 ppm or less.

本実施形態のエチレン系重合体パウダーを含むスラリーは重合反応器から定量的に抜出し、遠心分離機等を用いて溶媒と分離後、乾燥機に送られる。この際の、溶媒含有率は、20重量%以上50重量%に制御することが好ましい。 The slurry containing the ethylene-based polymer powder of the present embodiment is quantitatively extracted from the polymerization reactor, separated from the solvent using a centrifuge or the like, and then sent to a dryer. At this time, the solvent content is preferably controlled to 20% by weight or more and 50% by weight.

本実施形態のエチレン系重合体パウダーを得るための、重合後の乾燥方法としては、できるだけ熱をかけない乾燥方法が好ましい。乾燥機の形式としては、ロータリーキルン方式やパドル方式や流動乾燥機などが好ましい。乾燥温度としては50℃以上、150℃以下が好ましく、70℃以上100℃以下がさらに好ましい。また乾燥機に窒素等の不活性ガスを導入し乾燥を促進することも効果的である。その際に、固体触媒の失活剤としてスチーム等を同伴させる方法も更に効果的である。 As a drying method after polymerization for obtaining the ethylene-based polymer powder of the present embodiment, a drying method in which heat is not applied as much as possible is preferable. As the type of dryer, a rotary kiln method, a paddle method, a fluidized dryer, or the like is preferable. The drying temperature is preferably 50 ° C. or higher and 150 ° C. or lower, and more preferably 70 ° C. or higher and 100 ° C. or lower. It is also effective to introduce an inert gas such as nitrogen into the dryer to promote drying. At that time, it is more effective to accompany steam or the like as a deactivating agent for the solid catalyst.

上記のようなエチレン系重合体パウダーは、必要に応じて公知の各種添加剤と組み合わせて用いてもよい。上記添加剤としては、熱安定剤、滑剤、及び、塩化水素吸収剤等が挙げられる。熱安定剤としては、特に限定されないが、例えば、テトラキス[メチレン(3
,5−ジ−t−ブチル−4−ヒドロキシ)ヒドロシンナメート]メタン、ジステアリルチオジプロピオネート等の耐熱安定剤;又はビス(2,2’,6,6’−テトラメチル−4−ピペリジン)セバケート、2−(2−ヒドロキシ−t−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール等の耐候安定剤等が挙げられる。また、滑剤や塩化水素吸収剤等として公知であるステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛等のステアリン酸塩も、好適な添加剤として挙げることができる。
The ethylene-based polymer powder as described above may be used in combination with various known additives, if necessary. Examples of the additive include a heat stabilizer, a lubricant, a hydrogen chloride absorber and the like. The heat stabilizer is not particularly limited, but for example, tetrakis [methylene (3).
, 5-Di-t-Butyl-4-hydroxy) hydrocinnamate] Heat stabilizers such as methane, distearylthiodipropionate; or bis (2,2', 6,6'-tetramethyl-4-piperidine) ) Sevacate, weather-resistant stabilizers such as 2- (2-hydroxy-t-butyl-5-methylphenyl) -5-chlorobenzotriazole and the like can be mentioned. In addition, stearate salts such as calcium stearate, magnesium stearate, and zinc stearate, which are known as lubricants and hydrogen chloride absorbers, can also be mentioned as suitable additives.

本実施形態のエチレン系重合体パウダーから、成型品及び高強度繊維及びリチウムイオン電池セパレーターを得ることができる。 Molded products, high-strength fibers, and lithium-ion battery separators can be obtained from the ethylene-based polymer powder of the present embodiment.

[エチレン系重合体パウダーの成形体]
本実施形態においては、上記のエチレン系重合体パウダーを用いて、成型体を得ることができ、具体的には、リチウムイオン電池セパレーター、繊維(高強度繊維など)及びプレス成型品を得ることができる。上記のエチレン系重合体パウダーを用いることにより、未溶解物が抑制されているので、上記の成型品において欠点を低減させることができる。また、エチレン系重合体パウダー中に塩素が少ないので、成形品の変色が少なく、製品としての品質の変化の無いものが得られる。
[Molded product of ethylene polymer powder]
In the present embodiment, a molded product can be obtained by using the above ethylene-based polymer powder, and specifically, a lithium ion battery separator, fibers (high-strength fibers, etc.) and a press-molded product can be obtained. it can. By using the above-mentioned ethylene-based polymer powder, undissolved substances are suppressed, so that defects in the above-mentioned molded product can be reduced. Further, since the ethylene-based polymer powder contains less chlorine, a molded product with less discoloration and no change in quality as a product can be obtained.

以下に、実施例及び比較例によって本発明を説明するが、本発明はこれら実施例に限定されるものではない。
まず、エチレン系重合体パウダーの物性の評価方法について説明する。
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
First, a method for evaluating the physical properties of the ethylene-based polymer powder will be described.

[エチレン系重合体パウダーの粘度平均分子量(Mv)の測定方法]
エチレン系重合体パウダーの分子量は、ISO1628−3(2010)従って、以下に示す方法によって求めた。
まず、溶融管にエチレン系重合体パウダー10mgを秤量し、溶融管を窒素置換した後
、20mLのデカヒドロナフタレン(2,6−ジ−t−ブチル−4−メチルフェノールを1g/Lとなるように加えたもの)を加え、150℃で2時間攪拌して該エチレン系重合体パウダーを溶解させた。該エチレン系重合体パウダーの溶液を135℃の恒温槽で、キ
ャノン−フェンスケの粘度計(柴田科学器械工業社製:製品番号−100)を用いて、標線間の落下時間(ts)を測定した。同様に、上記エチレン系重合体パウダー量を7mg
、5mg、3mgと変えたサンプルついても同様に標線間の落下時間(ts)を測定した
。ブランクとしてデカヒドロナフタレンのみの落下時間(tb)を測定した。以下の式に従って求めたエチレン系重合体パウダーの還元粘度(ηsp/C)をそれぞれプロットして濃度(C)(単位:g/dL)とエチレン系重合体パウダーの還元粘度(ηsp/C)の直線式を導き、濃度0に外挿し、極限粘度[IV]を求めた。
ηsp/C=(ts/tb−1)/C (単位:dL/g)
この極限粘度を下記式に代入し粘度平均分子量(Mv)を求めた。
Mv=(5.34×10)×[η]1.49
[Method for measuring viscosity average molecular weight (Mv) of ethylene polymer powder]
The molecular weight of the ethylene polymer powder was determined by the method shown below according to ISO1628-3 (2010).
First, 10 mg of ethylene-based polymer powder is weighed in the melting tube, the melting tube is replaced with nitrogen, and then 20 mL of decahydronaphthalene (2,6-di-t-butyl-4-methylphenol) is adjusted to 1 g / L. Was added, and the mixture was stirred at 150 ° C. for 2 hours to dissolve the ethylene-based polymer powder. Measure the fall time (ts) between marked lines using a cannon-fenceke viscometer (manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd .: product number -100) in a constant temperature bath at 135 ° C. for the solution of the ethylene polymer powder. did. Similarly, the amount of the above ethylene polymer powder is 7 mg.
The fall time (ts) between the marked lines was measured in the same manner for the samples changed to 5 mg and 3 mg. The fall time (tb) of decahydronaphthalene alone as a blank was measured. The reduced viscosity (ηsp / C) of the ethylene-based polymer powder obtained according to the following formula is plotted to determine the concentration (C) (unit: g / dL) and the reduced viscosity (ηsp / C) of the ethylene-based polymer powder. A linear equation was derived and extrapolated to a concentration of 0 to determine the ultimate viscosity [IV].
ηsp / C = (ts / tb-1) / C (unit: dL / g)
This limit viscosity was substituted into the following formula to determine the viscosity average molecular weight (Mv).
Mv = (5.34 × 10 4 ) × [η] 1.49

[エチレン系重合体パウダーの硫黄含有量の測定]
エチレン系重合体パウダーを100mg秤量し、燃焼管内で燃焼させ、発生したガスを薄い過酸化水素を含む純水に吸収させ、吸収液の一部を自動的にイオンクロマトグラフに注入し測定した。
燃焼システム :燃焼炉(SQ−1型)、吸収ユニット(HSU−35型)
燃焼管 :石英製
燃焼炉温度 :移動炉内400→900℃、16分 固体炉内 1,000℃、4 分
イオンクロマトシステム:ICA−2000東亜ディーケーケー(株)製
カラム :Shodex IC SI−90 4E
(4.0mm ID*250mm) 35℃
溶離液:1.0mMol/L NaCO 1.7mMol/L NaHCO
流速 :1.2ml/min
注入量 :100μl
吸収液 :少量のH添加純水(25ml+15ml、total40ml)
検出 :電気伝導度検出
尚、検量線作成には標準試料(C12NOFClBrS、分子量364.62、S=8.79%)を用いた。
[Measurement of sulfur content of ethylene polymer powder]
100 mg of ethylene polymer powder was weighed and burned in a combustion tube, the generated gas was absorbed by pure water containing thin hydrogen peroxide, and a part of the absorption liquid was automatically injected into an ion chromatograph for measurement.
Combustion system: Combustion furnace (SQ-1 type), absorption unit (HSU-35 type)
Combustion tube: Quartz Combustion furnace temperature: Mobile furnace 400 → 900 ° C, 16 minutes Solid furnace 1,000 ° C, 4 minutes Ion chromatography system: ICA-2000 Made by Toa DK Co., Ltd. Column: Shodex IC SI-904E
(4.0mm ID * 250mm) 35 ℃
Eluent: 1.0 mMol / L Na 2 CO 3 1.7 mMol / L NaHCO 3
Flow velocity: 1.2 ml / min
Injection volume: 100 μl
Absorption liquid: A small amount of H 2 O 2 added pure water (25 ml + 15 ml, total 40 ml)
Detection: Electrical conductivity detection A standard sample (C 12 H 8 NO 2 FClBrS, molecular weight 364.62, S = 8.79%) was used to prepare the calibration curve.

[エチレン系重合体パウダーの塩素含有量の測定]
エチレン系重合体パウダーを自動試料燃焼装置(三菱化学アナリテック社製 AQF−100)で燃焼後、吸収液に吸収させ、その吸収液をイオンクロマトグラフ装置(ダイオネクス社製、ICS1500、カラム(分離カラム:AS12A、ガードカラム:AG12A)サプレッサー ASRS300)に注入させ全塩素含有量を測定した。
[Measurement of chlorine content of ethylene polymer powder]
After burning the ethylene-based polymer powder with an automatic sample combustion device (AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd.), it is absorbed by an absorption liquid, and the absorption liquid is absorbed by an ion chromatograph device (Dionex Co., Ltd., ICS1500, column (separation column). : AS12A, guard column: AG12A) Suppressor ASRS300) was injected and the total chlorine content was measured.

[エチレン系重合体パウダーの白点測定]
100ccのポリカップに、エチレン系重合体パウダー4.0g、及び酸化防止剤としてペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフ
ェニル)プロピオネート]を0.012g(0.3質量%)投入して、ドライブレンドすることにより、ポリマー等混合物を得た。さらに、該混合物に流動パラフィン(37.7
8℃における動粘度7.59×10−5/s)36.0g(ポリエチレン濃度10質
量%)を投入し、室温にてスパチュラで撹拌することにより、均一なスラリーを得た。
当該スラリーを190℃に設定したラボプラストミル((株)東洋精機製作所製4C150−01型)に投入し、窒素雰囲気下、回転数50rpmで30分間混練した。混練によって得られた混合物(ゲル)を165℃に加熱したプレス機で圧縮することにより、厚さ1.0mmのゲルシートを作製した。作製したゲルシートから10cm×10cmの試験片を切り出し、120℃に加熱した同時二軸テンター延伸機にセットし、3分間保持した。その後、12mm/secのスピードでMD倍率7.0倍、TD倍率7.0倍(即ち、7×7倍)になるように延伸した。次に延伸後のシートをノルマルヘキサン中に充分に浸漬して流動パラフィンを抽出除去し、その後ノルマルヘキサンを乾燥除去した。抽出完了後の薄膜を室温で10時間乾燥した。乾燥後の薄膜を光にかざして、30cm×30cm中に存在する直径1mm以上の白点(溶け残り、欠点)の数をカウントした。
溶解性の評価は以下の基準で実施した。
○:白点の数、5個以下
×:白点の数、5個超
[Measurement of white spots on ethylene polymer powder]
In a 100 cc polycup, 4.0 g of ethylene polymer powder and 0.012 g of pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant (3,5-di-t-butyl-4-hydroxyphenyl) propionate ( 0.3% by mass) was added and dry-blended to obtain a mixture such as a polymer. In addition, liquid paraffin (37.7) was added to the mixture.
A uniform slurry was obtained by adding 36.0 g (polyethylene concentration 10% by mass) having a kinematic viscosity at 8 ° C. of 7.59 × 10-5 m 2 / s and stirring with a spatula at room temperature.
The slurry was put into a lab plast mill (4C150-01 type manufactured by Toyo Seiki Seisakusho Co., Ltd.) set at 190 ° C., and kneaded in a nitrogen atmosphere at a rotation speed of 50 rpm for 30 minutes. The mixture (gel) obtained by kneading was compressed with a press heated to 165 ° C. to prepare a gel sheet having a thickness of 1.0 mm. A 10 cm × 10 cm test piece was cut out from the prepared gel sheet, set in a simultaneous biaxial tenter stretching machine heated to 120 ° C., and held for 3 minutes. Then, it was stretched at a speed of 12 mm / sec so that the MD magnification was 7.0 times and the TD magnification was 7.0 times (that is, 7 × 7 times). Next, the stretched sheet was sufficiently immersed in normal hexane to extract and remove liquid paraffin, and then normal hexane was dried and removed. The thin film after the extraction was completed was dried at room temperature for 10 hours. The dried thin film was held over light, and the number of white spots (undissolved, defects) having a diameter of 1 mm or more existing in 30 cm × 30 cm was counted.
The solubility was evaluated according to the following criteria.
◯: Number of white spots, 5 or less ×: Number of white spots, more than 5

[エチレン系重合体パウダーの耐変色性]
日本電色工業(株)製カラーマシーン(Z−300A型)を使用し、標準白板をレファレンスとして、同大きさのエチレン系重合体ポリマーのプレス成形体をサンプルとして測定し算出されるb値をもって、耐変色性確認する。
耐変色性:○ b値:1未満
× b値:1以上
[Discoloration resistance of ethylene polymer powder]
Using a color machine (Z-300A type) manufactured by Nippon Denshoku Kogyo Co., Ltd., using a standard white plate as a reference, and using a press-molded product of an ethylene-based polymer polymer of the same size as a sample, with the b value calculated. , Check the discoloration resistance.
Discoloration resistance: ○ b value: less than 1
× b value: 1 or more

尚、エチレン系重合体ポリマーのプレス成形体は下記方法にて成形した。
上下に260mm*260mm*厚さ5mmのSUS鉄板と、300mm*300mm*厚さ0.1mmのアルミ箔、厚み50μmのPETフィルムを置き、エチレン系重合体パウダーを160g流し込み平らにならし、神藤金属鉱業所製圧縮成型機(型式SFA−37)を用いて、温度200℃にて、(1次加圧)圧力15MPa、300秒の条件で加圧した後脱気(0MPa)し、(2次加圧)圧力15MPa、5秒の条件で加圧した後脱気(0MPa)する操作を5サイクル行い、(3次加圧)圧力15MPa、900秒の条件で加圧して常圧にする、という工程で圧縮成型した後、同所圧縮成型機(同形式)の25℃に冷却された圧縮成型機にて15MPaで600秒冷却した。
The press-molded product of the ethylene-based polymer polymer was molded by the following method.
Place 260 mm * 260 mm * 5 mm thick SUS iron plate, 300 mm * 300 mm * 0.1 mm thick aluminum foil, and 50 μm thick PET film on the top and bottom, pour 160 g of ethylene polymer powder into it, and flatten it. Using a compression molding machine (model SFA-37) manufactured by Mining Co., Ltd., pressure was applied at a temperature of 200 ° C. under the conditions of (primary pressurization) pressure of 15 MPa and 300 seconds, and then degassed (0 MPa) and (secondary pressurization). Pressurization) pressure 15MPa, pressurize for 5 seconds, then degas (0MPa) for 5 cycles, and pressurize (3rd pressurization) pressure 15MPa, 900 seconds to normal pressure. After compression molding in the process, it was cooled at 15 MPa for 600 seconds in a compression molding machine cooled to 25 ° C. of the same place compression molding machine (same type).

[凝集パウダー含有量]
エチレン系重合体パウダー100gをJIS X 8801−1(2006年)に記載された、目開き35メッシュの篩(目開き425μm)を用い、通過しない割合を算出した。
凝集粒子割合:○ 1wt%未満
× 1wt%以上
[Coagulated powder content]
The ratio of not passing 100 g of ethylene-based polymer powder was calculated using a sieve with a mesh opening of 35 mesh (opening 425 μm) described in JIS X 8801-1 (2006).
Agglomerated particle ratio: ○ Less than 1 wt%
× 1 wt% or more

[参考例]
固体触媒成分[A]の調製
(1)(A−1)担体の合成
充分に窒素置換された8Lステンレス製オートクレーブに2mol/Lのヒドロキシトリクロロシランのヘキサン溶液1,000mLを仕込み、65℃で500rpmで攪拌しながら組成式AlMg(C11(OCで表される有機マグネシウム化合物のヘキサン溶液2,550mL(マグネシウム2.68mol相当)を4時間かけて滴下し、さらに65℃で1時間攪拌しながら反応を継続させた。反応終了後、上澄み液を除去し、1,800mLのヘキサンで4回洗浄した。この固体((A−1)担体)を分析した結果、固体1g当たりに含まれるマグネシウムが8.31mmolであった。
[Reference example]
Preparation of solid catalyst component [A] (1) (A-1) Synthesis of carrier In an 8 L stainless steel autoclave fully substituted with nitrogen, 1,000 mL of a hexane solution of 2 mol / L hydroxytrichlorosilane was charged, and 500 rpm at 65 ° C. A hexane solution of the organic magnesium compound represented by the composition formula AlMg 5 (C 4 H 9 ) 11 (OC 4 H 9 ) 2 was added dropwise over 4 hours while stirring with. Further, the reaction was continued with stirring at 65 ° C. for 1 hour. After completion of the reaction, the supernatant was removed and washed 4 times with 1,800 mL of hexane. As a result of analyzing this solid ((A-1) carrier), magnesium contained in 1 g of the solid was 8.31 mmol.

(2)固体触媒成分[A]の調製
上記(A−1)担体150gを含有するヘキサンスラリー1,970mLに10℃で攪拌しながら1mol/Lの四塩化チタンヘキサン溶液110mLと1mol/Lの組成式AlMg(C11(OSiHCHで表される有機マグネシウム化合物の
ヘキサン溶液110mLとを同時に400rpmで撹拌しながら1時間かけて添加した。添加後、10℃で1時間反応を継続させた。反応終了後、上澄み液を1,100mL除去し、ヘキサン1,100mLで2回洗浄することにより、固体触媒成分[A]を調製した。この固体触媒成分[A]1g中に含まれるチタン量は0.75mmolであった。
(2) Preparation of Solid Catalyst Component [A] A composition of 110 mL of 1 mol / L titanium tetrachloride hexane solution and 1 mol / L while stirring at 10 ° C. in 1,970 mL of a hexane slurry containing 150 g of the above (A-1) carrier. 110 mL of a hexane solution of an organic magnesium compound represented by the formula AlMg 5 (C 4 H 9 ) 11 (OSiHCH 3 ) 2 was added simultaneously over 1 hour with stirring at 400 rpm. After the addition, the reaction was continued at 10 ° C. for 1 hour. After completion of the reaction, 1,100 mL of the supernatant was removed, and the solid catalyst component [A] was prepared by washing twice with 1,100 mL of hexane. The amount of titanium contained in 1 g of this solid catalyst component [A] was 0.75 mmol.

[実施例1]
3枚後退翼の撹拌翼と3枚の邪魔板が付いたベッセル型300L重合反応器を用いた。重合反応器の撹拌速度は230prmとした。重合温度はジャケット冷却により83℃に保った。溶媒としてノルマルヘキサンを80L/時間で供給した。固体触媒[A]を生産速度が10kg/時間となるように供給した。固体触媒には、Stadis450をノルマルヘキサンで希釈したものを、固体触媒に対して5wt%で添加した。助触媒成分としてトリイソブチルアルミニウムとジイソブチルアルミニウムハイドライド(9:1混合物
)を10mmol/時間で供給した。水素は13mol%(水素/エチレン+水素モル比
)で供給した。重合温度83℃、重合圧力0.5MPaG、平均滞留時間1.8時間の条件で行った。重合反応器にはエチレンを3本のフィード口から液相に供給し連続重合を行
った。重合反応器内の重合スラリーは、重合反応器内のレベルが一定に保たれるよう圧力0.05MPaG、温度60℃のフラッシュタンクに導き、未反応のエチレン、水素を分離した。次にエチレン系重合体スラリーは、フラッシュタンクからポンプにより連続的に遠心分離機に送り、ポリマーと溶媒を分離し、分離された超高分子量エチレン系重合体パウダーは、80℃に制御された乾燥機に送り、窒素ブローしながら乾燥させた。
触媒の重合活性は、20,000g/gsで得られたエチレン系重合体PE1の粘度平均分子量は300,000、嵩密度は0.51g/cmであった。結果は、表1に記載する。
[Example 1]
A vessel-type 300L polymerization reactor with a stirring blade of three swept blades and three baffles was used. The stirring speed of the polymerization reactor was 230 prm. The polymerization temperature was maintained at 83 ° C. by cooling the jacket. Normal hexane was supplied as a solvent at 80 L / hour. The solid catalyst [A] was supplied so that the production rate was 10 kg / hour. As the solid catalyst, Stadis 450 diluted with normal hexane was added at 5 wt% with respect to the solid catalyst. Triisobutylaluminum and diisobutylaluminum hydride (9: 1 mixture) were supplied as co-catalyst components at 10 mmol / hour. Hydrogen was supplied at 13 mol% (hydrogen / ethylene + hydrogen molar ratio). The polymerization temperature was 83 ° C., the polymerization pressure was 0.5 MPaG, and the average residence time was 1.8 hours. Ethylene was supplied to the liquid phase through three feed ports to carry out continuous polymerization in the polymerization reactor. The polymerization slurry in the polymerization reactor was guided to a flash tank having a pressure of 0.05 MPaG and a temperature of 60 ° C. so that the level in the polymerization reactor was kept constant, and unreacted ethylene and hydrogen were separated. Next, the ethylene-based polymer slurry was continuously pumped from the flash tank to the centrifuge to separate the polymer and the solvent, and the separated ultra-high molecular weight ethylene-based polymer powder was dried at 80 ° C. It was sent to a machine and dried while blowing nitrogen.
As for the polymerization activity of the catalyst, the viscosity average molecular weight of the ethylene-based polymer PE1 obtained at 20,000 g / gs was 300,000, and the bulk density was 0.51 g / cm 3 . The results are shown in Table 1.

[実施例2]
重合温度78℃に、水素濃度を5mol%になるように供給した以外は、実施例1と同様に行い超高分子量エチレン系重合体PE2を得た。結果は、表1に記載する。
[Example 2]
The ultrahigh molecular weight ethylene polymer PE2 was obtained in the same manner as in Example 1 except that the hydrogen concentration was supplied to 78 ° C. at a polymerization temperature of 5 mol%. The results are shown in Table 1.

[実施例3]
水素を2000ppmとした以外は、実施例1と同様に行ないエチレン系重合体PE3を得た。結果は、表1に記載する。
[Example 3]
The same procedure as in Example 1 was carried out except that the hydrogen content was 2000 ppm, to obtain an ethylene polymer PE3. The results are shown in Table 1.

[実施例4]
重合温度を75℃とし、α−オレフィンとして、1−ブテンを、系内のエチレンに対する濃度(α−オレフィン/エチレン+α−オレフィン)として0.25mol%フィードとした以外は、実施例3と同様に行いエチレン系重合体PE4を得た。エチレン系重合体パウダー中の1−ブテン含有量は0.05mol%であった。結果は、表1に記載する。
[Example 4]
The same as in Example 3 except that the polymerization temperature was 75 ° C. and 1-butene was fed as α-olefin by 0.25 mol% as the concentration (α-olefin / ethylene + α-olefin) with respect to ethylene in the system. This was carried out to obtain an ethylene-based polymer PE4. The 1-butene content in the ethylene polymer powder was 0.05 mol%. The results are shown in Table 1.

[実施例5]
重合温度を59℃、重合圧力を0.5MPaとし、助触媒として6Mg(C12AL(C25を用い、水素を添加しない以外は、実施例4と同様に行い、エチレン系重合体PE5を得た。結果は、表1に記載する。
[Example 5]
The polymerization temperature was 59 ° C., the polymerization pressure was 0.5 MPa, 6 Mg (C 4 H 9 ) 12 AL (C 2 H 5 ) 3 was used as an co-catalyst, and the same procedure as in Example 4 was carried out except that hydrogen was not added. , Ethylene-based polymer PE5 was obtained. The results are shown in Table 1.

[実施例6]
固体触媒に添加するStadis450の代わりに、ジノニルスルホン酸を用いた以外は、実施例3と同様に行いエチレン系重合体PE6を得た。結果は、表1に記載する。
[Example 6]
An ethylene polymer PE6 was obtained in the same manner as in Example 3 except that dinonylsulfonic acid was used instead of Stadis450 added to the solid catalyst. The results are shown in Table 1.

[比較例1]
固体触媒にStadis450を添加しない以外は、実施例1と同様に行いエチレン系重合体PE7を得た。塊が生じ重合反応器からの抜取がしばしば詰まる傾向にあった。結果は、表1に記載する。
[Comparative Example 1]
An ethylene polymer PE7 was obtained in the same manner as in Example 1 except that Stadis450 was not added to the solid catalyst. Clumps were formed and extraction from the polymerization reactor often tended to be clogged. The results are shown in Table 1.

[比較例2]
固体触媒に対して、Stadis450をノルマルヘキサンで希釈したものを、固体触媒に対して30wt%で添加したした以外は、実施例1と同様に行いエチレン系重合体PE8を得た。触媒の重合活性は、4,000g/gsと大幅に低下した。結果は、表1に記載する。
[Comparative Example 2]
An ethylene-based polymer PE8 was obtained in the same manner as in Example 1 except that Stadis450 diluted with normal hexane was added to the solid catalyst at 30 wt% with respect to the solid catalyst. The polymerization activity of the catalyst was significantly reduced to 4,000 g / gs. The results are shown in Table 1.

[比較例3]
水素濃度を30mol%にした以外は、実施例1と同様に行いエチレン系重合体PE9を得た。結果は、表1に記載する。
[Comparative Example 3]
An ethylene polymer PE9 was obtained in the same manner as in Example 1 except that the hydrogen concentration was set to 30 mol%. The results are shown in Table 1.

[比較例4]
重合反応器の撹拌翼を6枚タービン翼とした以外は、実施例1と同様に行いエチレン系重合体PE10を得た。塊が生じ重合反応器からの抜取がしばしば詰まる傾向にあった。結果は、表1に記載する。
[Comparative Example 4]
An ethylene-based polymer PE10 was obtained in the same manner as in Example 1 except that the stirring blades of the polymerization reactor were 6 turbine blades. Clumps were formed and extraction from the polymerization reactor often tended to be clogged. The results are shown in Table 1.

[比較例5]
エチレンのフィード口を1本とした以外は、実施例1と同様に行いエチレン系重合体PE11を得た。エチレンフィード口付近で塊が生じ、重合反応器からの抜取がしばしば詰まる傾向にあった。結果は、表1に示す。
[Comparative Example 5]
An ethylene polymer PE11 was obtained in the same manner as in Example 1 except that one ethylene feed port was used. Clumps were formed near the ethylene feed port, and the extraction from the polymerization reactor tended to be clogged. The results are shown in Table 1.

[比較例6]
固体触媒に対して、Stadis450をノルマルヘキサンで希釈したものを、固体触媒に対して20wt%で添加した以外は、実施例1と同様に行いエチレン系重合体PE12を得た。結果は、表1に記載する。
[Comparative Example 6]
An ethylene-based polymer PE12 was obtained in the same manner as in Example 1 except that Stadis450 diluted with normal hexane was added to the solid catalyst at 20 wt% with respect to the solid catalyst. The results are shown in Table 1.

Figure 0006889025
Figure 0006889025

表1に示す結果から明らかなように、粘度平均分子量、硫黄含有量、塩素含有量及び硫黄含有量/硫黄含有量を所定の範囲内にした実施例1〜6は、それらを範囲外とした比較例1〜6と比較して、耐変色性が良く、白点数が少なく、凝集パウダーの含有量が低いことが分かった。 As is clear from the results shown in Table 1, Examples 1 to 6 in which the viscosity average molecular weight, the sulfur content, the chlorine content and the sulfur content / sulfur content were within the predetermined ranges were excluded from the range. It was found that the discoloration resistance was good, the number of white spots was small, and the content of the agglomerated powder was low as compared with Comparative Examples 1 to 6.

本発明のエチレン系重合体パウダーは、溶融時の未溶融物、延伸加工時の糸切れや毛羽立ちが十分少なく、延伸後の強度が高く、ステアリン酸カルシウムなどの塩素キャッチャ
ー剤を用いなくても、高生産性で連続安定運転が可能で、成形品の色調変化を抑制できる
。また、本発明の成形体は、当該エチレン系重合体パウダーを用いて得られるものであり
、パウダーが上記効果を奏することから、リチウムイオン二次電池用微多孔膜やロープ、ネット、防弾衣料、防護衣料、防護手袋、繊維補強コンクリート製品、ヘルメット等に使用される高強度繊維用途等の広い用途において用いることができる。
The ethylene-based polymer powder of the present invention has sufficiently little unmelted matter at the time of melting, thread breakage and fluffing at the time of stretching, high strength after stretching, and is high even without using a chlorine catcher agent such as calcium stearate. Continuous stable operation is possible with productivity, and it is possible to suppress changes in the color tone of molded products. Further, the molded product of the present invention is obtained by using the ethylene-based polymer powder, and since the powder exerts the above-mentioned effect, a microporous film for a lithium ion secondary battery, a rope, a net, a bulletproof garment, etc. It can be used in a wide range of applications such as high-strength fiber applications used in protective clothing, protective gloves, fiber reinforced concrete products, helmets, and the like.

Claims (9)

1)粘度平均分子量が200,000以上であり、
2)硫黄含有量が0.20ppm以上5ppm以下であり、
3)塩素含有量が10ppm以上80ppm以下であり、
)塩素含有量/硫黄含有量の比が10超80以下である、
エチレン系重合体パウダー。
1) The viscosity average molecular weight is 200,000 or more,
2) The sulfur content is 0.20 ppm or more and 5 ppm or less.
3) The chlorine content is 10 ppm or more and 80 ppm or less.
4 ) The ratio of chlorine content / sulfur content is more than 10 and 80 or less.
Ethylene polymer powder.
エチレン単独重合体(A);及びエチレン共重合体(B)のいずれか一方であって、
該エチレン共重合体(B)は、
a)エチレン90.00重量%以上100質量%未満と、
b)炭素数3〜20のα−オレフィン、炭素数3〜20の環状オレフィン、式CH2
CHR(但し、Rは炭素数6〜20のアリール基である。)で表される化合物、及び炭素
数4〜20の直鎖状、分岐状又は環状のジエン、よりなる群から選ばれる少なくとも1種
のオレフィンであるコモノマー0質量%超10.00重量%以下と、
を共重合して得られる、請求項1に記載のエチレン系重合体パウダー。
Either the ethylene homopolymer (A); or the ethylene copolymer (B).
The ethylene copolymer (B) is
a) Ethylene 90.00% by weight or more and less than 100% by mass,
b) α-olefin having 3 to 20 carbon atoms, cyclic olefin having 3 to 20 carbon atoms, formula CH 2 =
At least one selected from the group consisting of a compound represented by CHR (where R is an aryl group having 6 to 20 carbon atoms) and a linear, branched or cyclic diene having 4 to 20 carbon atoms. Comonomer, which is a seed olefin, is more than 0% by mass and 10.00% by weight or less.
The ethylene-based polymer powder according to claim 1, which is obtained by copolymerizing the above.
該エチレン系重合体パウダーのJIS K−6721:1997で測定された嵩密度が
0.35kg/m3以上0.60kg/m3以下である、請求項1又は2に記載のエチレ
ン系重合体パウダー。
The ethylene-based polymer powder according to claim 1 or 2, wherein the ethylene-based polymer powder has a bulk density of 0.35 kg / m 3 or more and 0.60 kg / m 3 or less as measured by JIS K-6721: 1997. ..
請求項1〜3のいずれかに記載のエチレン系重合体パウダーを用いて得られる、成形体。 A molded product obtained by using the ethylene polymer powder according to any one of claims 1 to 3. 請求項1〜3のいずれかに記載のエチレン系重合体パウダーを用いて得られる、リチウ
ムイオン二次電池用セパレーター。
A separator for a lithium ion secondary battery obtained by using the ethylene-based polymer powder according to any one of claims 1 to 3.
請求項1〜3のいずれかに記載のエチレン系重合体パウダーを用いて得られる、鉛蓄電
池用セパレーター。
A separator for a lead storage battery obtained by using the ethylene-based polymer powder according to any one of claims 1 to 3.
請求項1〜3のいずれかに記載のエチレン系重合体パウダーを用いて得られる、繊維。 A fiber obtained by using the ethylene-based polymer powder according to any one of claims 1 to 3. 請求項1〜3のいずれかに記載のエチレン系重合体パウダーを用いて得られる、プレス
成形体。
A press-molded article obtained by using the ethylene-based polymer powder according to any one of claims 1 to 3.
請求項1〜3のいずれかに記載のエチレン系重合体パウダーを用いて得られる、ラム押
出し成形体。
A ram extruded product obtained by using the ethylene polymer powder according to any one of claims 1 to 3.
JP2017096063A 2017-05-12 2017-05-12 Ethylene copolymer powder and its molded product Active JP6889025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017096063A JP6889025B2 (en) 2017-05-12 2017-05-12 Ethylene copolymer powder and its molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017096063A JP6889025B2 (en) 2017-05-12 2017-05-12 Ethylene copolymer powder and its molded product

Publications (2)

Publication Number Publication Date
JP2018193433A JP2018193433A (en) 2018-12-06
JP6889025B2 true JP6889025B2 (en) 2021-06-18

Family

ID=64571482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017096063A Active JP6889025B2 (en) 2017-05-12 2017-05-12 Ethylene copolymer powder and its molded product

Country Status (1)

Country Link
JP (1) JP6889025B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1860126A1 (en) * 2006-05-26 2007-11-28 INEOS Manufacturing Belgium NV Polyolefin powder
JP5829257B2 (en) * 2012-12-11 2015-12-09 旭化成ケミカルズ株式会社 Polyethylene powder, molded body, and separator for lithium ion secondary battery
JP5829258B2 (en) * 2012-12-11 2015-12-09 旭化成ケミカルズ株式会社 Ethylene polymer powder, molded product, and separator for lithium ion secondary battery
JP5830114B2 (en) * 2014-02-24 2015-12-09 旭化成ケミカルズ株式会社 Ultra high molecular weight ethylene copolymer powder and molded product
JP5829295B2 (en) * 2014-03-06 2015-12-09 旭化成ケミカルズ株式会社 Ethylene polymer powder, method for producing the same, and molded product
JP6843660B2 (en) * 2017-03-22 2021-03-17 旭化成株式会社 Ethylene polymer powder and its molded product

Also Published As

Publication number Publication date
JP2018193433A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
KR101804740B1 (en) Ultrahigh-molecular weight ethylene copolymer powder and molded article using the ultrahigh-molecular weight ethylene copolymer powder
JP5767203B2 (en) Ethylene polymer, stretched molded body, microporous membrane, and battery separator
JP5498296B2 (en) Ultra high molecular weight polyethylene particles, method for producing the same, and molded body using the same
JP5774084B2 (en) Polyethylene powder
KR20190079657A (en) Process for producing polyolefin film composition and film produced therefrom
KR102212011B1 (en) Polyethylene powder, molded body and microporous membrane
JP2012229417A (en) Method for producing ultra high molecular weight polyethylene particle and molded product using the ultra high molecular weight polyethylene particle
CN103865145B (en) Polyethylene powder body, formed body and Separator for Lithium-ion battery
JP7461334B2 (en) polyethylene powder
JP6393672B2 (en) Polyethylene powder and fiber
JP6195403B1 (en) Ultra high molecular weight ethylene copolymer powder and molded product using ultra high molecular weight ethylene copolymer powder
US9828495B2 (en) Low haze polyethylene polymer compositions
JP6487591B1 (en) Ultra high molecular weight ethylene polymer powder and molded product using ultra high molecular weight ethylene polymer powder
CN107075018B (en) Process for polymerizing ultra-high molecular weight polyethylene
JPH0118932B2 (en)
JP2014133874A (en) Ethylenic polymer powder, molding, and separator for lithium ion secondary battery
JP6889025B2 (en) Ethylene copolymer powder and its molded product
JP6843660B2 (en) Ethylene polymer powder and its molded product
JP6868355B2 (en) Ultra high molecular weight polyethylene powder
JP2020094153A (en) Resin composition mainly comprising ethylenic polymer powder, and molded article comprising the same
KR20220147127A (en) Polyethylene powder and its molded body
CN106459526B (en) Polyethylene composition for injection moulding
JP7130819B2 (en) Polyethylene resin for secondary battery separator, method for producing the same, and separator using the same
NL2027813B1 (en) Polyethylene powder and molded article
JP2023138477A (en) Polyethylene powder and molded body made by using the powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6889025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150