JP6843660B2 - Ethylene polymer powder and its molded product - Google Patents

Ethylene polymer powder and its molded product Download PDF

Info

Publication number
JP6843660B2
JP6843660B2 JP2017056517A JP2017056517A JP6843660B2 JP 6843660 B2 JP6843660 B2 JP 6843660B2 JP 2017056517 A JP2017056517 A JP 2017056517A JP 2017056517 A JP2017056517 A JP 2017056517A JP 6843660 B2 JP6843660 B2 JP 6843660B2
Authority
JP
Japan
Prior art keywords
ethylene
polymer powder
based polymer
polymerization
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017056517A
Other languages
Japanese (ja)
Other versions
JP2018158989A (en
Inventor
匠 加賀
匠 加賀
藤原 昭夫
昭夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017056517A priority Critical patent/JP6843660B2/en
Publication of JP2018158989A publication Critical patent/JP2018158989A/en
Application granted granted Critical
Publication of JP6843660B2 publication Critical patent/JP6843660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cell Separators (AREA)

Description

本発明は、エチレン系重合体パウダー及びその成形体に関する。 The present invention relates to an ethylene polymer powder and a molded product thereof.

高分子量エチレン系重合体は、フィルム、シート、微多孔膜、繊維、パイプ等多種多様な用途に用いられている。特に鉛蓄電池やリチウムイオン電池に代表される二次電池のセパレーター用微多孔膜及び高強度繊維の原料として、高分子量エチレン系重合体パウダーが用いられている。高分子量エチレン系重合体パウダーが用いられている理由としては、分子量が高いため、延伸加工性に優れ、強度が高く、化学的安定性が高く、かつ長期信頼性に優れること等が挙げられる。 High molecular weight ethylene-based polymers are used in a wide variety of applications such as films, sheets, microporous membranes, fibers, and pipes. In particular, high molecular weight ethylene polymer powder is used as a raw material for a microporous film for a separator of a secondary battery represented by a lead storage battery and a lithium ion battery and a high-strength fiber. The reason why the high molecular weight ethylene polymer powder is used is that it has a high molecular weight, so that it has excellent stretchability, high strength, high chemical stability, and excellent long-term reliability.

これら高分子量エチレン系重合体パウダーは、分子量が高いので射出成型等による加工が困難であり、それゆえに、プレス成形や押出し成形の他、溶剤に溶解して成型することが多い。産業界、特に、リチウムイオン二次電池セパレーター及び高強度繊維の業界では、高い需要成長とともに、低コスト化が強く求められており、高い生産性が強く望まれている。また、特にリチウムイオン二次電池セパレーター及び高強度繊維では、長期信頼性の観点から、膜厚や繊維径等、高い製品寸法安定性が強く望まれている。 Since these high molecular weight ethylene polymer powders have a high molecular weight, they are difficult to process by injection molding or the like. Therefore, in addition to press molding and extrusion molding, they are often dissolved in a solvent for molding. In the industrial world, especially in the lithium ion secondary battery separator and high-strength fiber industries, there is a strong demand for cost reduction along with high demand growth, and high productivity is strongly desired. Further, particularly for lithium ion secondary battery separators and high-strength fibers, high product dimensional stability such as film thickness and fiber diameter is strongly desired from the viewpoint of long-term reliability.

近年、高分子量エチレン系重合体パウダーが、それを用いたリチウムイオン二次電池セパレーター及び高強度繊維等の原料として開発されている(例えば、特許文献1〜4参照)。 In recent years, high molecular weight ethylene polymer powder has been developed as a raw material for lithium ion secondary battery separators and high-strength fibers using the powder (see, for example, Patent Documents 1 to 4).

特開2015−212373号公報Japanese Unexamined Patent Publication No. 2015-21273 国際公開第2004/081064号International Publication No. 2004/081064 国際公開第2015/005287号International Publication No. 2015/005287 特開2014−040577号公報Japanese Unexamined Patent Publication No. 2014-040577

上述の通り、微多孔膜や高強度繊維等に使用される超高分子量のエチレン系重合体パウダー(以下、「エチレン系重合体パウダー」とも称す)は、未溶融物の無いことや、製造工程中に延伸工程が含まれうる高強度繊維の用途においては、延伸後の繊維が、糸切れや毛羽立ちが少ない均一な繊維であることが望まれている。一方、エチレン系重合体パウダーにはステアリン酸カルシウムなどの塩素キャッチャー剤を添加することが一般的である。しかし微多孔膜や高強度繊維の用途等においては、ポリマーの溶解後に回収リサイクルされる溶媒中にステアリン酸カルシウムが濃縮されることがあり、濃縮したステアリン酸カルシウムが成形体中に存在すると欠点(例えば微多孔膜中の比較的大きな穴(す)や高強度繊維の糸切れ等)が生じ得るため、ステアリン酸カルシウムなどの塩素キャッチャー剤を添加しないことを要望されている。しかし、従来のチーグラー・ナッタ型の触媒を用いて製造されるエチレン系重合体パウダーは、固体触媒にチタン−塩素を含むため、塩素キャッチャー剤を添加しない場合、高強度繊維の成型機や延伸ロールなどで錆が発生し、ロール等の掃除で生産加工機を停止することにより、連続して加工することができず、生産性に劣る問題がある。 As described above, the ultra-high molecular weight ethylene polymer powder (hereinafter, also referred to as “ethylene polymer powder”) used for microporous films and high-strength fibers has no unmelted material and is manufactured in the manufacturing process. In the use of high-strength fibers that can include a drawing step, it is desired that the fibers after drawing are uniform fibers with less yarn breakage and fluffing. On the other hand, it is common to add a chlorine catcher agent such as calcium stearate to the ethylene polymer powder. However, in applications such as microporous membranes and high-strength fibers, calcium stearate may be concentrated in a solvent that is recovered and recycled after the polymer is dissolved, and the presence of concentrated calcium stearate in the molded product is a drawback (for example, fine). Since relatively large holes in the porous film and thread breakage of high-strength fibers may occur), it is required not to add a chlorine catcher agent such as calcium stearate. However, ethylene-based polymer powder produced using a conventional Ziegler-Natta type catalyst contains titanium-chlorine in the solid catalyst, so if a chlorine catcher agent is not added, a high-strength fiber molding machine or drawing roll There is a problem that rust is generated due to such factors, and the production processing machine is stopped by cleaning the roll or the like, so that continuous processing cannot be performed and the productivity is inferior.

また、成形品にチタン−塩素が多く残存すると、成形直後や成形後、白色から黄色への調変化を起こすことが知られており、加工後の色調変化抑制も求められている。 Further, it is known that when a large amount of titanium-chlorine remains in a molded product, a tone change from white to yellow occurs immediately after molding or after molding, and it is also required to suppress the color tone change after processing.

本発明は、上記問題点に鑑みてなされたものであり、溶融時の未溶融物、延伸加工時の糸切れや毛羽立ちが十分少なく、延伸後の強度が高く、ステアリン酸カルシウムなどの塩素キャッチャー剤を用いなくても、高生産性で生産加工機での長期連続安定運転が可能で、成形品の色調変化を抑制できる、エチレン系重合体パウダー、及び、そのようなエチレン系重合体パウダーを用いて得られる成形体を提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of providing a chlorine catcher agent such as calcium stearate, which has sufficiently little unmelted material at the time of melting, thread breakage and fluffing at the time of drawing, and high strength after drawing. Using ethylene-based polymer powder, which is highly productive, enables long-term continuous stable operation in a production processing machine, and can suppress color change of molded products, and such ethylene-based polymer powder. An object of the present invention is to provide a obtained molded product.

そこで、本発明者らは、前記課題を達成するために鋭意研究を重ねた結果、所定の超高
分子量エチレン系重合体パウダーであれば上記課題を解決できることを見出して、本発明
を完成するに至った。
すなわち、本発明は以下のとおりである。
〔1〕
1)粘度平均分子量が200,000以上であり、
2)硫黄含有量が0.10以上50ppm以下の範囲であり、
3)塩素含有量/硫黄含有量の比が0.010以上10以下の範囲である、
エチレン系重合体パウダーであって、
該エチレン系重合体パウダー中の塩素含有量が10ppm以下である、エチレン系重合体パウダー
〔2〕
エチレン単独重合体(A);及びエチレン共重合体(B)のいずれか一方であって、
該エチレン共重合体(B)は、
a)エチレン75.0重量%以上100質量%未満と、
b)炭素数3〜20のα−オレフィン、炭素数3〜20の環状オレフィン、式CH2
CHR(但し、Rは炭素数6〜20のアリール基である。)で表される化合物、及び炭素
数4〜20の直鎖状、分岐状又は環状のジエン、よりなる群から選ばれる少なくとも1種
のオレフィンであるコモノマー0質量%超25.0重量%以下と、
を共重合して得られる、上記〔1〕に記載のエチレン系重合体パウダー。
〔3〕
上記〔1〕又は〔2〕に記載のエチレン系重合体パウダーを用いて得られる、成形体。
〔4〕
上記〔1〕又は〔2〕に記載のエチレン系重合体パウダーを用いて得られる、リチウムイオン二次電池用セパレーター。
〔5〕
上記〔1〕又は〔2〕に記載のエチレン系重合体パウダーを用いて得られる、繊維。
〔6〕
上記〔1〕又は〔2〕に記載のエチレン系重合体パウダーを用いて得られる、プレス成型品。
Therefore, as a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a predetermined ultra-high molecular weight ethylene-based polymer powder can solve the above-mentioned problems, and have completed the present invention. I arrived.
That is, the present invention is as follows.
[1]
1) The viscosity average molecular weight is 200,000 or more,
2) The sulfur content is in the range of 0.10 or more and 50 ppm or less.
3) The chlorine content / sulfur content ratio is in the range of 0.010 or more and 10 or less.
An ethylene-based polymer powder,
An ethylene polymer powder having a chlorine content of 10 ppm or less in the ethylene polymer powder .
[2]
Either the ethylene homopolymer (A); or the ethylene copolymer (B).
The ethylene copolymer (B) is
a) Ethylene 75.0% by weight or more and less than 100% by mass,
b) α-olefin having 3 to 20 carbon atoms, cyclic olefin having 3 to 20 carbon atoms, formula CH 2 =
At least one selected from the group consisting of a compound represented by CHR (where R is an aryl group having 6 to 20 carbon atoms) and a linear, branched or cyclic diene having 4 to 20 carbon atoms. Comonomer, which is a seed olefin, is more than 0% by mass and 25.0% by mass or less.
The ethylene-based polymer powder according to the above [1], which is obtained by copolymerizing the above.
[3]
A molded product obtained by using the ethylene-based polymer powder according to the above [1] or [2].
[4]
A separator for a lithium ion secondary battery obtained by using the ethylene-based polymer powder according to the above [1] or [2].
[5]
A fiber obtained by using the ethylene-based polymer powder according to the above [1] or [2].
[6]
A press-molded product obtained by using the ethylene-based polymer powder according to the above [1] or [2].

本発明によれば、溶融時の未溶融物、延伸加工時の糸切れや毛羽立ちが十分少なく、延伸後の強度が高く、ステアリン酸カルシウムなどの塩素キャッチャー剤を用いなくても、高生産性で生産加工機での長期連続安定運転が可能で、成形品の色調変化を抑制できる、エチレン系重合体パウダー、及び、そのようなエチレン系重合体パウダーを用いて得られる成形体を提供することができる。 According to the present invention, unmelted matter at the time of melting, thread breakage and fluffing at the time of drawing processing are sufficiently small, strength after drawing is high, and production is possible with high productivity without using a chlorine catcher agent such as calcium stearate. It is possible to provide an ethylene-based polymer powder capable of long-term continuous stable operation in a processing machine and capable of suppressing a change in color tone of a molded product, and a molded product obtained by using such an ethylene-based polymer powder. ..

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく。その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail, but the present invention is not limited thereto. Various modifications are possible within the range that does not deviate from the gist.

〔エチレン系重合体パウダー〕
本実施形態に係るエチレン系重合体パウダーは、下記1)〜3)を満たす。
1)粘度平均分子量が200,000以上である;
2)該ポリマー中の硫黄含有量が0.10〜50ppmの範囲である;
3)該ポリマー中の塩素含有量/硫黄含有量比が0.010〜10の範囲である;
上記構成を有することにより、本実施形態に係るエチレン系重合体パウダーは、成形時の未溶融物が無く、得られる成形体の強度に優れ、成形時の糸切れや毛羽たちが少なく製品ロスが少ない。更には、エチレン系重合体パウダー中に塩素が少ないことにより、成型機・加工機の錆(金属腐食)を抑制でき、当該成型機・加工機を停止しなくてもよいので長期連続運転、具体的には成型品、例えばゲル紡糸繊維、リチウムイオン電池セパレーター等の加工品を連続で安定して生産することができる。また、塩素が少ないことにより、成形品の変色が少なく、製品としての品質の変化の十分少ないものが得られる。
[Ethylene polymer powder]
The ethylene polymer powder according to this embodiment satisfies the following 1) to 3).
1) The viscosity average molecular weight is 200,000 or more;
2) The sulfur content in the polymer is in the range of 0.10 to 50 ppm;
3) The chlorine content / sulfur content ratio in the polymer is in the range of 0.010-10;
By having the above structure, the ethylene-based polymer powder according to the present embodiment has no unmelted matter at the time of molding, has excellent strength of the obtained molded product, has less yarn breakage and fluff during molding, and causes product loss. Few. Furthermore, since the amount of chlorine in the ethylene-based polymer powder is small, rust (metal corrosion) of the molding machine / processing machine can be suppressed, and the molding machine / processing machine does not have to be stopped, so that long-term continuous operation can be performed. Specifically, molded products such as gel-spun fibers and processed products such as lithium-ion battery separators can be continuously and stably produced. Further, since the amount of chlorine is small, the discoloration of the molded product is small, and the quality of the product is sufficiently changed.

[粘度平均分子量(Mv)]
粘度平均分子量(Mv)は200,000以上である。粘度平均分子量(Mv)は、200,000以上15,000,000以下であることが好ましく、250,000以上10,000,000以下であることがさらに好ましい。粘度平均分子量が200,000以上であることにより、本実施形態のエチレン系重合体パウダーが超高分子量となり、成形品の強度が向上する。また、粘度平均分子量が、15,000,000以下であることにより、延伸加工性が向上する。さらに粘度平均分子量が上記範囲であることにより、生産性により優れ、成形した場合には、延伸性及び膜強度により優れる。このような特性を有するエチレン系重合体パウダーは、例えばリチウムイオン二次電池セパレーターや高強度繊維に好適に用いることがでる。
[Viscosity average molecular weight (Mv)]
The viscosity average molecular weight (Mv) is 200,000 or more. The viscosity average molecular weight (Mv) is preferably 200,000 or more and 150,000 or less, and more preferably 250,000 or more and 10,000,000 or less. When the viscosity average molecular weight is 200,000 or more, the ethylene-based polymer powder of the present embodiment has an ultra-high molecular weight, and the strength of the molded product is improved. Further, when the viscosity average molecular weight is 15,000,000 or less, the stretchability is improved. Further, when the viscosity average molecular weight is in the above range, the productivity is excellent, and when molded, the stretchability and the film strength are excellent. Ethylene-based polymer powder having such characteristics can be suitably used for, for example, a lithium ion secondary battery separator and high-strength fibers.

粘度平均分子量を上記範囲に制御する方法としては、エチレン系重合体パウダーを重合する際の反応器の重合温度を変化させることが挙げられる。一般には、重合温度を高温にするほど粘度平均分子量は低くなる傾向にあり、重合温度を低温にするほど粘度平均分子量は高くなる傾向にある。 As a method of controlling the viscosity average molecular weight within the above range, it is possible to change the polymerization temperature of the reactor when polymerizing the ethylene-based polymer powder. In general, the higher the polymerization temperature, the lower the viscosity average molecular weight tends to be, and the lower the polymerization temperature, the higher the viscosity average molecular weight tends to be.

また、エチレン系重合体パウダーを重合する際に連鎖移動剤を添加してもよい。連鎖移動剤を添加することで、同一重合温度でも生成するエチレン系重合体パウダーの粘度平均分子量を低く制御できる。 Further, a chain transfer agent may be added when polymerizing the ethylene polymer powder. By adding a chain transfer agent, the viscosity average molecular weight of the ethylene-based polymer powder produced even at the same polymerization temperature can be controlled to be low.

そしてまた、エチレン系重合体パウダーを製造する際の重合反応器内の連鎖移動剤(例えば水素など)を極力少なくするか、連鎖移動剤除去として水素添加能を有する化合物(水添触媒)を用いるなどの方法がある。特にメタロセン触媒を用いて重合する場合、重合初期活性が高いため、重合反応器に導入されたとき、触媒の分散不良などにより塊状のスケールを生成し易い。これを抑制するため、特開2000−198804号公報で重合反応器に入る前に、触媒と水素とを事前に混合しておくことが提案されているが、エチレン系重合体パウダーを重合する際には、導入された水素が重合系で連鎖移動剤として働き、エチレン系重合体パウダーの高分子量化を抑制する。エチレン系重合体パウダーを安定的に効率よく重合するためには、この水素を連鎖移動剤除去として水素添加能を有する化合物を添加することが必要である。すなわち水素添加能を有する化合物にて、エチレンを水素で水添化することで、エタンに消費され、重合系内の水素を除去することができる(例えば、国際公開第2004/081064号参照)。 Further, the chain transfer agent (for example, hydrogen) in the polymerization reactor when producing the ethylene polymer powder is reduced as much as possible, or a compound having a hydrogenation ability (hydrogenation catalyst) is used for removing the chain transfer agent. There are methods such as. In particular, when polymerization is carried out using a metallocene catalyst, the initial polymerization activity is high, so that when introduced into a polymerization reactor, massive scale is likely to be generated due to poor dispersion of the catalyst or the like. In order to suppress this, Japanese Patent Application Laid-Open No. 2000-198804 proposes that the catalyst and hydrogen are mixed in advance before entering the polymerization reactor, but when the ethylene-based polymer powder is polymerized, it is proposed. In the above, the introduced hydrogen acts as a chain transfer agent in the polymerization system and suppresses the increase in the molecular weight of the ethylene-based polymer powder. In order to polymerize the ethylene-based polymer powder stably and efficiently, it is necessary to add a compound having a hydrogenating ability by using this hydrogen as a chain transfer agent remover. That is, by hydrogenating ethylene with a compound having a hydrogenating ability, it is possible to remove hydrogen consumed by ethane and in the polymerization system (see, for example, International Publication No. 2004/081064).

本実施形態に係るエチレン系重合体パウダーの粘度平均分子量(Mv)は、デカヒドロナフタレン溶液中にエチレン系重合体パウダーを異なる濃度で溶解させ、135℃で求めた還元粘度を濃度0に外挿して求めた極限粘度[η](dL/g)から、以下の数式Aにより算出することができる。より詳細には、実施例に記載の方法により求めることができる。
Mv=(5.34×10)×[η]1.49 ・・・数式A
The viscosity average molecular weight (Mv) of the ethylene polymer powder according to the present embodiment is obtained by dissolving the ethylene polymer powder in a decahydronaphthalene solution at different concentrations and extrapolating the reduced viscosity obtained at 135 ° C. to a concentration of 0. It can be calculated by the following formula A from the ultimate viscosity [η] (dL / g) obtained. More specifically, it can be obtained by the method described in Examples.
Mv = (5.34 × 10 4 ) × [η] 1.49・ ・ ・ Formula A

[硫黄含有量]
本実施形態のエチレン系重合体パウダーの硫黄含有量は、0.10ppm以上50ppm以下であることが好ましく、0.10ppm以上40ppm以下であることがより好ましく、0.10ppm以上30ppm以下であることがさらに好ましい。
[Sulfur content]
The sulfur content of the ethylene polymer powder of the present embodiment is preferably 0.10 ppm or more and 50 ppm or less, more preferably 0.10 ppm or more and 40 ppm or less, and preferably 0.10 ppm or more and 30 ppm or less. More preferred.

本実施形態において、理由は定かではないが、この硫黄成分がポリマー中に存在することで、成形品加工機の錆の抑制や成形品の色調変化を抑制する効果、成形品中の未溶融物や糸切れや毛立ちの要因となり得る、重合反応器内の淀み部分などに付着して重合成長する異常重合物等を抑制する効果が有ることが見出された。そして、この効果をより十分に発揮させるには、硫黄成分をポリマー中に存在させるとともに、その含有量を0.10ppm以上の範囲にすることがよいこと、また、硫黄含有量を50ppm以下とすることにより、触媒活性が低下して色調変化することを抑制することができることが見出された。 In the present embodiment, although the reason is not clear, the presence of this sulfur component in the polymer has the effect of suppressing rust in the molded product processing machine and suppressing the color tone change of the molded product, and the unmelted product in the molded product. It has been found that it has an effect of suppressing an abnormal polymer or the like which adheres to a stagnation portion in a polymerization reactor and grows by polymerization, which may cause thread breakage or fluffing. In order to exert this effect more sufficiently, the sulfur component should be present in the polymer and its content should be in the range of 0.10 ppm or more, and the sulfur content should be 50 ppm or less. Therefore, it was found that it is possible to suppress the decrease in catalytic activity and the change in color tone.

また、エチレン系重合体パウダー中の硫黄成分としては、特に限定されるものではないが、例えば、エチレン系重合体パウダーを重合する際に重合系に添加し得る、硫黄成分を含有する硫黄化合物を由来とすることができ、当該硫黄化合物としては、有機硫黄化合物が好ましい。有機硫黄化合物としては、チオエーテル、チオフェン、チオール、スルホキシド、スルホン及びチオケトン、スルホン酸やスルホン酸エステル及びアミド化合物が好ましい。特に、スルホン酸やスルホン酸エステル及びアミド化合物がより好ましい。このような化合物として、エチレン系重合体パウダーを重合する際に、重合反応器へのポリマーの静電気付着を抑制するためInnospec社製(代理店丸和物産)のStadis450等の静電気防止剤を使用することも可能であり、このStadsi450等の静電気防止剤の中には、硫黄化合物の成分が存在する。 The sulfur component in the ethylene-based polymer powder is not particularly limited, but for example, a sulfur compound containing a sulfur component that can be added to the polymerization system when polymerizing the ethylene-based polymer powder is used. It can be derived, and the sulfur compound is preferably an organic sulfur compound. As the organic sulfur compound, thioether, thiophene, thiol, sulfoxide, sulfone and thioketone, sulfonic acid, sulfonic acid ester and amide compound are preferable. In particular, sulfonic acids, sulfonic acid esters and amide compounds are more preferable. As such a compound, when polymerizing an ethylene-based polymer powder, an antistatic agent such as Stadis450 manufactured by Innospec (distributor Maruwa Bussan) is used in order to suppress static electricity adhesion of the polymer to the polymerization reactor. It is also possible, and a component of a sulfur compound is present in the antistatic agent such as Stadsi450.

そして、硫黄含有量については、重合して得られたパウダー内に硫黄成分が効果的に含有されやすくする観点から、助触媒と共に硫黄化合物を重合系に添加する方法、固体触媒と硫黄化合物を同一ラインないし近いラインで重合系に添加する方法、固体触媒中に硫黄化合物を混合した混合物を重合系に添加する方法、固体触媒と硫黄化合物を重合系の撹拌を低速で行うことにより、エチレン系重合体中の硫黄含有量を制御することができる。 Regarding the sulfur content, from the viewpoint of making it easier for the sulfur component to be effectively contained in the powder obtained by polymerization, the method of adding the sulfur compound to the polymerization system together with the co-catalyst, the solid catalyst and the sulfur compound are the same. A method of adding to the polymerization system on a line or a close line, a method of adding a mixture of a sulfur compound in a solid catalyst to the polymerization system, and a method of stirring the solid catalyst and the sulfur compound in the polymerization system at a low speed to obtain an ethylene-based weight. The sulfur content in the coalescence can be controlled.

なお、上記硫黄含有量の制御する方法としての、固体触媒と硫黄化合物を近いラインで重合系に添加する方法について、当該「近いライン」とは、固体触媒と硫黄化合物を重合系に供給するラインの供給口を、例えば重合反応器の直径の10%以下の距離とすることが好ましく、より好ましくは5%以下である。 Regarding the method of adding the solid catalyst and the sulfur compound to the polymerization system in a line close to each other as a method of controlling the sulfur content, the "close line" is a line for supplying the solid catalyst and the sulfur compound to the polymerization system. The supply port is preferably, for example, a distance of 10% or less of the diameter of the polymerization reactor, and more preferably 5% or less.

また、エチレン系重合体パウダーの硫黄含有量を上記範囲に制御する別の方法としては、重合活性を上げる方法、つまり、重合触媒や助触媒、重合温度、重合圧力、スラリー濃度、滞留時間などにより制御する方法が挙げられる。重合触媒としてはメタロセン系触媒を使用することが好ましい。 Further, as another method for controlling the sulfur content of the ethylene-based polymer powder within the above range, a method for increasing the polymerization activity, that is, a polymerization catalyst, a co-catalyst, a polymerization temperature, a polymerization pressure, a slurry concentration, a residence time, etc. There is a method of controlling. It is preferable to use a metallocene-based catalyst as the polymerization catalyst.

なお、パウダーの硫黄含有量や後述の塩素含有量は、それぞれ硫黄原子や塩素原子を含む化合物のパウダーに対する含有量ではなく、それぞれ硫黄原子や塩素原子のパウダーに対する含有量を指す。 The sulfur content of the powder and the chlorine content described later refer to the content of the sulfur atom and the chlorine atom in the powder, not the content of the compound containing the sulfur atom and the chlorine atom in the powder, respectively.

[塩素含有量]
本実施形態のエチレン系重合体パウダーの塩素含有量は、10ppm以下であることが好ましく、8ppm以下であることがより好ましく、6ppm以下であることがさらに好ましい。塩素含有量を10ppm以下とすることにより、成形機の錆抑制や成形品の色調変化を抑制できる。
[Chlorine content]
The chlorine content of the ethylene polymer powder of the present embodiment is preferably 10 ppm or less, more preferably 8 ppm or less, and further preferably 6 ppm or less. By setting the chlorine content to 10 ppm or less, it is possible to suppress rust in the molding machine and suppress changes in the color tone of the molded product.

なお、エチレン系重合体パウダーの塩素含有量を上記範囲に制御する方法としては、重合活性を上げる方法、つまり、重合触媒や助触媒、重合温度、重合圧力、スラリー濃度、滞留時間などにより制御する方法が挙げられる。重合触媒としてはメタロセン系触媒を使用することが好ましい。 As a method of controlling the chlorine content of the ethylene-based polymer powder within the above range, it is controlled by a method of increasing the polymerization activity, that is, a polymerization catalyst, a co-catalyst, a polymerization temperature, a polymerization pressure, a slurry concentration, a residence time, and the like. The method can be mentioned. It is preferable to use a metallocene-based catalyst as the polymerization catalyst.

[塩素含有量/硫黄含有量]
本実施形態のエチレン系重合体パウダーの塩素含有量/硫黄含有量比は、0.010以上10以下であることが好ましく、0.050以上10以下であることがより好ましく、0.10以上10以下であることがさらに好ましい。エチレン系重合体パウダー中の塩素含有量/硫黄含有量の比を上記範囲にすることで、理由は定かではないが、塩素に対し硫黄が一定割合存在することとなり、ポリエチレン中の触媒由来の塩素による色調変化を抑制することができると推定される。
[Chlorine content / Sulfur content]
The chlorine content / sulfur content ratio of the ethylene polymer powder of the present embodiment is preferably 0.010 or more and 10 or less, more preferably 0.050 or more and 10 or less, and 0.10 or more and 10 or less. The following is more preferable. By setting the ratio of chlorine content / sulfur content in the ethylene polymer powder to the above range, the reason is not clear, but sulfur is present in a certain ratio with respect to chlorine, and chlorine derived from the catalyst in polyethylene is present. It is presumed that the change in color tone due to the above can be suppressed.

エチレン系重合体パウダー中の塩素含有量/硫黄含有量比を制御する方法としては、助触媒と共に硫黄化合物を重合系に添加する方法、固体触媒と硫黄化合物を同一ラインないし近いラインで重合系に添加する方法、固体触媒中に硫黄化合物を混合した混合物を重合系に添加する方法、固体触媒と硫黄化合物を重合系の撹拌を低速で行うことにより、エチレン系重合体パウダー中の塩素含有量/硫黄含有量の比を制御することができる。 As a method of controlling the chlorine content / sulfur content ratio in the ethylene-based polymer powder, a method of adding a sulfur compound to the polymerization system together with a co-catalyst, or a method of adding a solid catalyst and a sulfur compound to the polymerization system on the same line or a similar line. The chlorine content in the ethylene-based polymer powder / by the method of adding, the method of adding a mixture of a sulfur compound in a solid catalyst to the polymerization system, and the stirring of the solid catalyst and the sulfur compound in the polymerization system at a low speed. The ratio of sulfur content can be controlled.

また、エチレン系重合体パウダーの塩素含有量/硫黄含有量の比を上記範囲に制御する別の方法としては、重合活性を上げる方法、つまり、重合触媒や助触媒、重合温度、重合圧力、スラリー濃度、滞留時間などにより制御する方法が挙げられる。重合触媒としてはメタロセン系触媒を使用することが好ましい。 Further, as another method of controlling the chlorine content / sulfur content ratio of the ethylene-based polymer powder within the above range, there is a method of increasing the polymerization activity, that is, a polymerization catalyst, a co-catalyst, a polymerization temperature, a polymerization pressure, and a slurry. Examples thereof include a method of controlling by concentration, residence time and the like. It is preferable to use a metallocene-based catalyst as the polymerization catalyst.

[エチレン系重合体パウダーのコモノマー濃度]
本明細書中において、重合体を構成する各単量体単位の命名は、単量体単位が由来する単量体の命名に従う。例えば、「エチレン単位」とは、単量体であるエチレンを重合した結果生ずる重合体の構成単位を意味し、その構造は、エチレンの二つの炭素が重合体主鎖となっている分子構造である。また、「コモノマー単位」とは、単量体であるコモノマーを重合した結果生ずる重合体の構成単位を意味し、その構造は、コモノマーに含まれるオレフィンの二つの炭素が重合体主鎖となっている分子構造である。
[Concentration of ethylene-based polymer powder comonomer]
In the present specification, the naming of each monomer unit constituting the polymer follows the naming of the monomer from which the monomer unit is derived. For example, "ethylene unit" means a structural unit of a polymer produced as a result of polymerizing ethylene, which is a monomer, and its structure is a molecular structure in which two carbons of ethylene are the main chain of the polymer. is there. Further, the "comonomer unit" means a structural unit of a polymer produced as a result of polymerizing a comonomer which is a monomer, and its structure is such that two carbons of an olefin contained in the comonomer form a polymer main chain. It is a molecular structure.

本実施形態で用いるエチレン系重合体パウダーとしては、特に限定されないが、具体的には、エチレン単独重合体、及びエチレンと、エチレンと共重合可能なオレフィンと、の共重合体が挙げられる。エチレンと共重合可能なオレフィンとしては、特に限定されないが、具体的には、炭素数3〜20のα−オレフィン、炭素数3〜20の環状オレフィン、式CH=CHR(ここで、Rは炭素数6〜20のアリール基である。)で表される化合物、及び炭素数4〜20のジエン、からなる群より選ばれる少なくとも1種のオレフィンが挙げられる。当該ジエンは、直鎖状、分岐状又は環状である。この中でも、共重合可能なオレフィンとしては、微多孔膜や高強度繊維に代表される成形体の耐熱性及び強度の観点から、プロピレン及び1−ブテンが好ましい。エチレン系重合体パウダーがエチレンとオレフィンとの共重合を含む場合は、共重合体パウダーに占めるエチレンのモル比は、75質量%以上100質量%未満が好ましく、90質量%以上100質量%未満がより好ましく、5質量%以上100質量%未満がさらに好ましい。エチレン系重合体パウダーがエチレンとオレフィンとの共重合を含む場合において、エチレンのモル比が上記範囲内であることにより、耐熱性及び/又は強度により優れる傾向にある。 The ethylene-based polymer powder used in the present embodiment is not particularly limited, and specific examples thereof include an ethylene homopolymer and a copolymer of ethylene and an olefin copolymerizable with ethylene. The olefin copolymerizable with ethylene is not particularly limited, but specifically, an α-olefin having 3 to 20 carbon atoms, a cyclic olefin having 3 to 20 carbon atoms, and the formula CH 2 = CHR (where R is). Examples thereof include at least one olefin selected from the group consisting of a compound represented by an aryl group having 6 to 20 carbon atoms) and a diene having 4 to 20 carbon atoms. The diene is linear, branched or cyclic. Among these, as the copolymerizable olefin, propylene and 1-butene are preferable from the viewpoint of heat resistance and strength of a molded product typified by a microporous membrane or high-strength fiber. When the ethylene-based polymer powder contains a copolymerization of ethylene and olefin, the molar ratio of ethylene to the copolymer powder is preferably 75% by mass or more and less than 100% by mass, and 90% by mass or more and less than 100% by mass. More preferably, it is more preferably 5% by mass or more and less than 100% by mass. When the ethylene-based polymer powder contains a copolymerization of ethylene and olefin, the heat resistance and / or strength tends to be superior when the molar ratio of ethylene is within the above range.

エチレン系重合体パウダー中のb)コモノマー含有量を上記範囲に制御する方法としては、重合反応器内に添加する、b)コモノマー/[エチレン+b)コモノマー](モル%)を変化させることが挙げられる。通常のチーグラー・ナッタ触媒を用いたエチレン系重合体パウダーの製造では、b)コモノマーにより分子量が低下する傾向にある。これはb)コモノマーが一部連鎖移動剤として作用するためであると考えられる。エチレン系重合体パウダーの分子量を高めるには、できるだけb)コモノマーの含有量を少なくすることが好ましい。一方、メタロセン触媒では、分子量の制御は水素添加能を有する化合物の添加などで実施可能であるので、高分子量を維持したまま、b)コモノマー含有量の高い領域まで製造可能である。 As a method for controlling the b) comonomer content in the ethylene polymer powder within the above range, it is possible to change b) comonomer / [ethylene + b) comonomer] (mol%) added to the polymerization reactor. Be done. In the production of ethylene-based polymer powder using a normal Ziegler-Natta catalyst, b) the molecular weight tends to decrease due to the comonomer. It is considered that this is because b) the comonomer acts as a chain transfer agent. In order to increase the molecular weight of the ethylene polymer powder, it is preferable to reduce the content of b) comonomer as much as possible. On the other hand, in the metallocene catalyst, since the molecular weight can be controlled by adding a compound having a hydrogenation ability or the like, b) it is possible to produce a region having a high comonomer content while maintaining the high molecular weight.

なお、b)コモノマー単位の含有量の測定は、G.J.RayらのMacromolecules, 10, 773 (1977)に開示された方法に準じて行われ、b)コモノマー単位の含有量は、13C−NMRスペクトルにより観測されるメチレン炭素のシグナルを用いて、その面積強度より算出することができる。より具体的には、実施例に記載の方法により測定することができる。 In addition, b) The measurement of the content of the comonomer unit was carried out by G.M. J. Performed according to the method disclosed in Macromolecules, 10, 773 (1977) by Ray et al., B) The content of comonomer units is the area of the methylene carbon signal observed by the 13 C-NMR spectrum. It can be calculated from the strength. More specifically, it can be measured by the method described in Examples.

[エチレン系重合体パウダーの製造方法]
本実施形態に係るエチレン系重合体パウダーの製造に使用される触媒成分は、特に限定されず、一般的なチーグラー・ナッタ触媒やメタロセン触媒を用いて製造することが可能であり、後述するメタロセン触媒システムを用いて製造することが好ましい。チーグラー・ナッタ触媒及びメタロセン触媒としては、例えば、特許第5782558号公報や国際公開第2015/005287号公報等に開示されているチーグラー・ナッタ触媒やメタロセン触媒を使用することができる。
[Manufacturing method of ethylene polymer powder]
The catalyst component used for producing the ethylene-based polymer powder according to the present embodiment is not particularly limited, and can be produced using a general Ziegler-Natta catalyst or metallocene catalyst, and a metallocene catalyst described later. It is preferably manufactured using the system. As the Ziegler-Natta catalyst and the metallocene catalyst, for example, the Ziegler-Natta catalyst and the metallocene catalyst disclosed in Japanese Patent No. 5782558 and International Publication No. 2015/005287 can be used.

前記触媒成分は、固体触媒成分、及び、有機金属化合物成分(以下、触媒と省略する)をエチレン系重合体パウダーの重合条件下である重合系内に添加する際には、両者を別々に重合系内に添加してもよいし、予め両者を混合させた後に重合系内に添加してもよい。また組み合わせる両者の比率は、特に限定されないが、固体触媒中のチタン成分に対する有機金属化合物成分のモル比は、1以上500以下が好ましく、10以上200以下がより好ましく、10以上100以下がさらに好ましい。両者を混合させる他の目的としては、保存タンクや配管等への静電付着を防止することも挙げられる。 When the solid catalyst component and the organometallic compound component (hereinafter abbreviated as catalyst) are added to the polymerization system under the polymerization conditions of the ethylene-based polymer powder, the catalyst component is polymerized separately. It may be added into the system, or both may be mixed in advance and then added into the polymerization system. The ratio of the two to be combined is not particularly limited, but the molar ratio of the organometallic compound component to the titanium component in the solid catalyst is preferably 1 or more and 500 or less, more preferably 10 or more and 200 or less, and further preferably 10 or more and 100 or less. .. Another purpose of mixing the two is to prevent electrostatic adhesion to storage tanks, pipes, and the like.

エチレン系重合体パウダーの製造方法における重合法としては、懸濁重合法により、エチレンを重合し、又はエチレンとb)コモノマーとを共重合する方法が挙げられる。重合法は、重合熱を効率的に除熱する観点から、懸濁重合法が好ましい。懸濁重合法においては、媒体として不活性炭化水素媒体を用いることができ、さらにオレフィン自身を溶媒として用いることもできる。 Examples of the polymerization method in the method for producing an ethylene-based polymer powder include a method of polymerizing ethylene by a suspension polymerization method or copolymerizing ethylene with b) a comonomer. As the polymerization method, the suspension polymerization method is preferable from the viewpoint of efficiently removing the heat of polymerization. In the suspension polymerization method, an inert hydrocarbon medium can be used as the medium, and the olefin itself can also be used as the solvent.

上記不活性炭化水素媒体としては、特に限定されないが、具体的には、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;及びこれらの混合物等を挙げることができる。 The inert hydrocarbon medium is not particularly limited, but specifically, aliphatic hydrocarbons such as propane, butane, isopentane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, kerosene; cyclopentane, Aliphatic hydrocarbons such as cyclohexane and methylcyclopentane; and mixtures thereof and the like can be mentioned.

本実施形態のエチレン系重合体パウダーを得るための製造方法における重合温度は、40℃以上100℃以下であることが好ましく、50℃以上95℃以下であることがより好ましく、60℃以上90℃以下であることがさらに好ましい。重合温度が40℃以上であることにより、工業的に効率的な製造が可能である。重合温度が100℃以下であることにより、重合ポリマーが一部溶融した、抜出ラインを詰めるような塊状のスケールを抑制でき、連続的な安定した製造が可能である。 The polymerization temperature in the production method for obtaining the ethylene polymer powder of the present embodiment is preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 50 ° C. or higher and 95 ° C. or lower, and 60 ° C. or higher and 90 ° C. The following is more preferable. When the polymerization temperature is 40 ° C. or higher, industrially efficient production is possible. When the polymerization temperature is 100 ° C. or lower, it is possible to suppress a lumpy scale in which the polymer is partially melted and clog the extraction line, and continuous and stable production is possible.

本実施形態のエチレン系重合体パウダーを得るための製造方法における重合圧力は、常圧以上2MPa以下であることが好ましく、0.2MPa以上1.5MPa以下であることがより好ましく、0.3MPa以上1.0MPa以下であることがさらに好ましい。重合圧力が常圧以上であることにより、触媒残渣となる金属成分や塩素量の少ないエチレン系重合体パウダーが得られる傾向にある。重合圧力が2MPa以下であることにより、重合反応器内での急重合による塊状のスケールを発生させることがなくエチレン系重合体パウダーを安定的に生産できる傾向にある。 The polymerization pressure in the production method for obtaining the ethylene-based polymer powder of the present embodiment is preferably normal pressure or more and 2 MPa or less, more preferably 0.2 MPa or more and 1.5 MPa or less, and 0.3 MPa or more. It is more preferably 1.0 MPa or less. When the polymerization pressure is equal to or higher than normal pressure, an ethylene-based polymer powder having a small amount of metal components and chlorine as a catalyst residue tends to be obtained. When the polymerization pressure is 2 MPa or less, the ethylene-based polymer powder tends to be stably produced without generating massive scale due to rapid polymerization in the polymerization reactor.

一般的にエチレン系重合体パウダーを重合する際には、重合反応器へのポリマーの静電気付着を抑制するためInnospec社製(代理店丸和物産)のStadisやSTATSAFE等の静電気防止剤を使用することも可能である。StadisやSTATSAFE等の静電気防止剤は、不活性炭化水素媒体に希釈したものをポンプ等により重合反応器に添加することもできる。この際の添加量は、単位時間当たりのエチレン系重合体パウダーの生産量に対して、1ppm以上500ppm以下が好ましく、10ppm以上250ppm以下がより好ましい。 Generally, when polymerizing an ethylene polymer powder, an antistatic agent such as Stadis or STATSAFE manufactured by Innospec (distributor Maruwa Bussan) should be used in order to suppress the electrostatic adhesion of the polymer to the polymerization reactor. Is also possible. As the antistatic agent such as Stadis and STATSAFE, a diluted solution in an inert hydrocarbon medium can be added to the polymerization reactor by a pump or the like. The amount added at this time is preferably 1 ppm or more and 500 ppm or less, and more preferably 10 ppm or more and 250 ppm or less, based on the amount of ethylene-based polymer powder produced per unit time.

本実施形態のエチレン系重合体パウダーを含むスラリーは重合反応器から定量的に抜出し、遠心分離機等を用いて溶媒と分離後、乾燥機に送られる。この際の、溶媒含有率は、20重量%以上50重量%に制御することが好ましい。 The slurry containing the ethylene-based polymer powder of the present embodiment is quantitatively extracted from the polymerization reactor, separated from the solvent using a centrifuge or the like, and then sent to a dryer. At this time, the solvent content is preferably controlled to 20% by weight or more and 50% by weight.

本実施形態のエチレン系重合体パウダーを得るための、重合後の乾燥方法としては、できるだけ熱をかけない乾燥方法が好ましい。乾燥機の形式としては、ロータリーキルン方式やパドル方式や流動乾燥機などが好ましい。乾燥温度としては50℃以上150℃以下が好ましく、70℃以上100℃以下がさらに好ましい。また乾燥機に窒素等の不活性ガスを導入し乾燥を促進することも効果的である。その際に、固体触媒の失活剤としてスチーム等を同伴させる方法も更に効果的である。 As a drying method after polymerization for obtaining the ethylene-based polymer powder of the present embodiment, a drying method in which heat is not applied as much as possible is preferable. As the type of dryer, a rotary kiln method, a paddle method, a fluidized dryer, or the like is preferable. The drying temperature is preferably 50 ° C. or higher and 150 ° C. or lower, and more preferably 70 ° C. or higher and 100 ° C. or lower. It is also effective to introduce an inert gas such as nitrogen into the dryer to promote drying. At that time, it is more effective to accompany steam or the like as a deactivating agent for the solid catalyst.

本実施形態のエチレン系重合体パウダーは、必要に応じて、公知の各種添加剤を添加して用いてもよい。上記添加剤としては、熱安定剤、滑剤、及び、塩化水素吸収剤等が挙げられる。上記熱安定剤としては、特に限定されないが、例えば、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシ)ヒドロシンナメート]メタン、ジステアリルチオジプロピオネート等の耐熱安定剤;や、ビス(2,2’,6,6’−テトラメチル−4−ピペリジン)セバケート、2−(2−ヒドロキシ−t−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール等の耐候安定剤;等が挙げられる。また、上記滑剤や上記塩化水素吸収剤としては、例えば、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛等のステアリン酸塩等が好適に挙げることができる。 The ethylene-based polymer powder of the present embodiment may be used by adding various known additives, if necessary. Examples of the additive include a heat stabilizer, a lubricant, a hydrogen chloride absorber and the like. The heat stabilizer is not particularly limited, and is, for example, a heat stabilizer such as tetrakis [methylene (3,5-di-t-butyl-4-hydroxy) hydrocinnamate] methane and distearylthiodipropionate; And weather stabilizers such as bis (2,2', 6,6'-tetramethyl-4-piperidin) sebacate, 2- (2-hydroxy-t-butyl-5-methylphenyl) -5-chlorobenzotriazole, etc. ; Etc. can be mentioned. Moreover, as the lubricant and the hydrogen chloride absorber, for example, stearate such as calcium stearate, magnesium stearate, zinc stearate and the like can be preferably mentioned.

[エチレン系重合体パウダーの成形体]
本実施形態においては、上記のエチレン系重合体パウダーを用いて、成型体を得ることができ、具体的には、リチウムイオン電池セパレーター、繊維(高強度繊維など)及びプレス成型品を得ることができる。上記のエチレン系重合体パウダーを用いることにより、上記の成型品を製造する際、プレス板やゲル紡糸、リチウムイオン電池セパレーター等の成型機廻りの金属腐食を抑制でき、それゆえに、連続的に安定して生産された成形品を得ることができる。また、エチレン系重合体パウダー中に塩素が少ないので、成形品の変色が少なく、製品としての品質の変化の無いものが得られる。
[Molded product of ethylene polymer powder]
In the present embodiment, a molded product can be obtained by using the above ethylene-based polymer powder, and specifically, a lithium ion battery separator, fibers (high-strength fibers, etc.) and a press-molded product can be obtained. it can. By using the above ethylene polymer powder, it is possible to suppress metal corrosion around the molding machine such as a press plate, gel spinning, lithium ion battery separator, etc. when manufacturing the above molded product, and therefore it is continuously stable. The molded product produced in this manner can be obtained. Further, since the ethylene-based polymer powder contains less chlorine, a molded product with less discoloration and no change in quality as a product can be obtained.

以下に、実施例及び比較例によって本発明を説明するが、本発明はこれら実施例に限定されるものではない。
まず、エチレン系重合体パウダーの物性の評価方法について説明する。
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
First, a method for evaluating the physical properties of the ethylene-based polymer powder will be described.

[エチレン系重合体パウダーの粘度平均分子量(Mv)の測定方法]
エチレン系重合体パウダーの分子量は、ISO1628−3(2010)従って、以下に示す方法によって求めた。
[Method for measuring viscosity average molecular weight (Mv) of ethylene polymer powder]
The molecular weight of the ethylene polymer powder was determined by the method shown below according to ISO1628-3 (2010).

まず、溶融管にエチレン系重合体パウダー10mgを秤量し、溶融管を窒素置換した後、20mLのデカヒドロナフタレン(2,6−ジ−t−ブチル−4−メチルフェノールを1g/Lとなるように加えたもの)を加え、150℃で2時間攪拌して該エチレン系重合体パウダーを溶解させた。該エチレン系重合体パウダーの溶液を135℃の恒温槽で、キャノン−フェンスケの粘度計(柴田科学器械工業社製:製品番号−100)を用いて、標線間の落下時間(ts)を測定した。同様に、上記エチレン系重合体パウダー量を7mg、5mg、3mgと変えたサンプルついても同様に標線間の落下時間(ts)を測定した。ブランクとしてデカヒドロナフタレンのみの落下時間(tb)を測定した。以下の式に従って求めたエチレン系重合体パウダーの還元粘度(ηsp/C)をそれぞれプロットして濃度(C)(単位:g/dL)とエチレン系重合体パウダーの還元粘度(ηsp/C)の直線式を導き、濃度0に外挿し、極限粘度[IV]を求めた。
ηsp/C=(ts/tb−1)/C (単位:dL/g)
この極限粘度を下記式に代入し粘度平均分子量(Mv)を求めた。
Mv=(5.34×10)×[η]1.49
First, 10 mg of ethylene-based polymer powder is weighed in the melting tube, the melting tube is replaced with nitrogen, and then 20 mL of decahydronaphthalene (2,6-di-t-butyl-4-methylphenol) is adjusted to 1 g / L. Was added, and the mixture was stirred at 150 ° C. for 2 hours to dissolve the ethylene-based polymer powder. Measure the fall time (ts) between marked lines using a Canon-Fenceke viscometer (manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd .: product number -100) in a constant temperature bath at 135 ° C. for the solution of the ethylene polymer powder. did. Similarly, the fall time (ts) between the marked lines was measured for the sample in which the amount of the ethylene-based polymer powder was changed to 7 mg, 5 mg, and 3 mg. The fall time (tb) of decahydronaphthalene alone as a blank was measured. The reduced viscosity (ηsp / C) of the ethylene-based polymer powder obtained according to the following formula is plotted to determine the concentration (C) (unit: g / dL) and the reduced viscosity (ηsp / C) of the ethylene-based polymer powder. A linear equation was derived and extrapolated to a concentration of 0 to determine the ultimate viscosity [IV].
ηsp / C = (ts / tb-1) / C (unit: dL / g)
This limit viscosity was substituted into the following formula to determine the viscosity average molecular weight (Mv).
Mv = (5.34 × 10 4 ) × [η] 1.49

[エチレン系重合体パウダーの硫黄含有量の測定]
エチレン系重合体パウダーを100mg秤量し、燃焼管内で燃焼させ、発生したガスを薄い過酸化水素を含む純水に吸収させ、吸収液の一部を自動的にイオンクロマトグラフに注入し測定した。
燃焼システム :燃焼炉(SQ−1型)、吸収ユニット(HSU−35型)
燃焼管 :石英製
燃焼炉温度 :移動炉内400→900℃、16分 固体炉内 1,000℃、4 分
イオンクロマトシステム:ICA−2000東亜ディーケーケー(株)製
カラム :Shodex IC SI−90 4E
(4.0mm ID*250mm) 35℃
溶離液 :1.0mMol/L NaCO 1.7mMol/L NaHCO
流速 :1.2ml/min
注入量 :100μl
吸収液 :少量のH添加純水(25ml+15ml、total40ml)
検出 :電気伝導度検出
尚、検量線作成には標準試料(C12NOFClBrS、分子量364.62、S=8.79%)を用いた。
[Measurement of sulfur content of ethylene polymer powder]
100 mg of ethylene polymer powder was weighed and burned in a combustion tube, the generated gas was absorbed by pure water containing thin hydrogen peroxide, and a part of the absorption liquid was automatically injected into an ion chromatograph for measurement.
Combustion system: Combustion furnace (SQ-1 type), absorption unit (HSU-35 type)
Combustion tube: Quartz Combustion furnace temperature: Mobile furnace 400 → 900 ° C, 16 minutes Solid furnace 1,000 ° C, 4 minutes Ion chromatography system: ICA-2000 Made by Toa DK Co., Ltd. Column: Shodex IC SI-904E
(4.0mm ID * 250mm) 35 ℃
Eluent: 1.0 mMol / L Na 2 CO 3 1.7 mMol / L NaHCO 3
Flow velocity: 1.2 ml / min
Injection volume: 100 μl
Absorption liquid: A small amount of H 2 O 2 added pure water (25 ml + 15 ml, total 40 ml)
Detection: Electrical conductivity detection A standard sample (C 12 H 8 NO 2 FClBrS, molecular weight 364.62, S = 8.79%) was used to prepare the calibration curve.

[エチレン系重合体パウダーの塩素含有量の測定]
エチレン系重合体パウダーを自動試料燃焼装置(三菱化学アナリテック社製 AQF−100)で燃焼後、吸収液に吸収させ、その吸収液をイオンクロマトグラフ装置(ダイオネクス社製、ICS1500、カラム(分離カラム:AS12A、ガードカラム:AG12A)サプレッサー ASRS300)に注入させ全塩素含有量を測定した。
[Measurement of chlorine content of ethylene polymer powder]
After burning the ethylene polymer powder with an automatic sample combustion device (AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd.), it is absorbed by an absorption liquid, and the absorption liquid is absorbed by an ion chromatograph device (Dionex Co., Ltd., ICS1500, column (separation column). : AS12A, guard column: AG12A) Suppressor ASRS300) was injected and the total chlorine content was measured.

[エチレン系重合体パウダーの腐食(耐錆性)試験]
上下に260mm*260mm*厚さ5mmのSUS鉄板と、300mm*300mm*厚さ0.1mmのアルミ箔、厚み50μmのPETマイラーを置き、その上に50mm*50mm*厚さ2mmのSUS316の鉄板(以下SUS板と記す)を4枚置き、エチレン系重合体パウダーを160g流し込み平らにならし、神藤金属鉱業所製圧縮成型機(型式SFA−37)を用いて、温度200℃にて、(1次加圧)圧力15MPa、300秒の条件で加圧した後脱気(0MPa)し、(2次加圧)圧力15MPa、5秒の条件で加圧した後脱気(0MPa)する操作を5サイクル行い、(3次加圧)圧力15MPa、900秒の条件で加圧して常圧にする、という工程で圧縮成型した後、同所圧縮成型機(同形式)の25℃に冷却された圧縮成型機にて15MPaで600秒冷却した。取り出した、エチレン系重合体パウダーと接触したSUS板を取り外した。
[Corrosion (rust resistance) test of ethylene polymer powder]
A 260 mm * 260 mm * 5 mm thick SUS iron plate, a 300 mm * 300 mm * 0.1 mm thick aluminum foil, and a 50 μm thick PET mylar are placed on the top and bottom, and a 50 mm * 50 mm * 2 mm thick SUS316 iron plate ( Place four sheets (hereinafter referred to as SUS plates), pour 160 g of ethylene-based polymer powder, flatten them, and use a compression molding machine (model SFA-37) manufactured by Shinto Metal Mining Co., Ltd. at a temperature of 200 ° C. (1). The operation of degassing (0 MPa) after pressurizing under the condition of (second pressurization) pressure of 15 MPa and 300 seconds, and degassing (0 MPa) after pressurizing under the condition of (secondary pressurization) pressure of 15 MPa and 5 seconds is 5 After performing a cycle and pressurizing under the conditions of (tertiary pressurization) pressure of 15 MPa and 900 seconds to make it normal pressure, compression molding was performed, and then compression cooled to 25 ° C. of the same place compression molding machine (same type). It was cooled at 15 MPa in a molding machine for 600 seconds. The SUS plate that was taken out and was in contact with the ethylene polymer powder was removed.

温度60℃、湿度90%のEYELA製恒温恒湿槽の中に上記SUS板を入れ、一定時間後(20、40、60、120分)のサンプルの錆の発生状況を確認し以下の基準にて評価を実施した。
○:錆発生無
×:錆発生
Place the above SUS plate in an EYELA constant temperature and humidity chamber with a temperature of 60 ° C and a humidity of 90%, and after a certain period of time (20, 40, 60, 120 minutes), check the rust generation status of the sample and use the following criteria. The evaluation was carried out.
○: No rust generated ×: Rust generated

[エチレン系重合体パウダーの欠点測定]
100ccのポリカップに、エチレン系重合体パウダー4.0g、及び酸化防止剤としてペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.012g(0.3質量%)投入して、ドライブレンドすることにより、ポリマー等混合物を得た。さらに、該混合物に流動パラフィン(37.78℃における動粘度7.59×10−5/s)36.0g(ポリエチレン濃度10質量%)を投入し、室温にてスパチュラで撹拌することにより、均一なスラリーを得た。
[Measurement of defects in ethylene polymer powder]
In a 100 cc polycup, 4.0 g of ethylene polymer powder and 0.012 g of pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant (3,5-di-t-butyl-4-hydroxyphenyl) propionate ( 0.3% by mass) was added and dry-blended to obtain a mixture such as a polymer. Further, 36.0 g (polyethylene concentration 10% by mass) of liquid paraffin (kinematic viscosity at 37.78 ° C. 7.59 × 10-5 m 2 / s) was added to the mixture, and the mixture was stirred at room temperature with a spatula. , A uniform slurry was obtained.

当該スラリーを190℃に設定したラボプラストミル((株)東洋精機製作所製4C150−01型)に投入し、窒素雰囲気下、回転数50rpmで30分間混練した。混練によって得られた混合物(ゲル)を165℃に加熱したプレス機で圧縮することにより、厚さ1.0mmのゲルシートを作製した。作製したゲルシートから10cm×10cmの試験片を切り出し、120℃に加熱した同時二軸テンター延伸機にセットし、3分間保持した。その後、12mm/secのスピードでMD倍率7.0倍、TD倍率7.0倍(即ち、7×7倍)になるように延伸した。次に延伸後のシートをノルマルヘキサン中に充分に浸漬して流動パラフィンを抽出除去し、その後ノルマルヘキサンを乾燥除去した。抽出完了後の薄膜を室温で10時間乾燥した。乾燥後の薄膜を光にかざして、30cm×30cm中に存在する直径1mm以上の白点(溶け残り)の数をカウントした。
溶解性の評価は以下の基準で実施した。
○:欠点の数が、5個以下である。
×:欠点の数が、5個超である。
The slurry was put into a lab plast mill (4C150-01 type manufactured by Toyo Seiki Seisakusho Co., Ltd.) set at 190 ° C., and kneaded in a nitrogen atmosphere at a rotation speed of 50 rpm for 30 minutes. The mixture (gel) obtained by kneading was compressed with a press heated to 165 ° C. to prepare a gel sheet having a thickness of 1.0 mm. A 10 cm × 10 cm test piece was cut out from the prepared gel sheet, set in a simultaneous biaxial tenter stretching machine heated to 120 ° C., and held for 3 minutes. Then, it was stretched at a speed of 12 mm / sec so that the MD magnification was 7.0 times and the TD magnification was 7.0 times (that is, 7 × 7 times). Next, the stretched sheet was sufficiently immersed in normal hexane to extract and remove liquid paraffin, and then normal hexane was dried and removed. The thin film after the extraction was completed was dried at room temperature for 10 hours. The dried thin film was held over light, and the number of white spots (undissolved) having a diameter of 1 mm or more existing in 30 cm × 30 cm was counted.
The solubility was evaluated according to the following criteria.
◯: The number of defects is 5 or less.
X: The number of defects is more than 5.

[エチレン系重合体パウダーの耐変色性]
日本電色工業(株)製カラーマシーン(Z−300A型)を使用し、標準白板をレファレンスとして、同大きさの超高分子量エチレン系重合体のプレス成形体をサンプルとして測定し算出されるb値をもって、色の変化を確認する。
スガ試験機(株)製キセノンウェーザーメーター(形式X75)を用いキセノンランプ照射後50、100、250、500時間後のサンプルの色調変化をもって耐変色性とした。
耐変色性:○ b値<5
× b値≧5
[Discoloration resistance of ethylene polymer powder]
Calculated by using a color machine (Z-300A type) manufactured by Nippon Denshoku Kogyo Co., Ltd., using a standard white plate as a reference, and using a press-molded product of an ultra-high molecular weight ethylene polymer of the same size as a sample. Check the color change with the value.
Using a xenon weather meter (type X75) manufactured by Suga Test Instruments Co., Ltd., discoloration resistance was determined by changing the color tone of the sample 50, 100, 250, and 500 hours after irradiation with the xenon lamp.
Discoloration resistance: ○ b value <5
× b value ≧ 5

[参考例1]
触媒合成例1:固体触媒成分[A]の調製
(1)(A−1)担体の合成
充分に窒素置換された8Lステンレス製オートクレーブに2mol/Lのヒドロキシトリクロロシランのヘキサン溶液1,000mLを仕込み、65℃で500rpmで攪拌しながら組成式AlMg(C11(OCで表される有機マグネシウム化合物のヘキサン溶液2,550mL(マグネシウム2.68mol相当)を4時間かけて滴下し、さらに65℃で1時間攪拌しながら反応を継続させた。反応終了後、上澄み液を除去し、1,800mLのヘキサンで4回洗浄し、(A−1)担体を得た。
(2)固体触媒成分[A]の調製
上記(A−1)担体150gを含有するヘキサンスラリー1,970mLに10℃で攪拌しながら1mol/Lの四塩化チタンヘキサン溶液110mLと1mol/Lの組成式AlMg(C11(OSiHCHで表される有機マグネシウム化合物のヘキサン溶液110mLとを同時に400rpmで撹拌しながら1時間かけて添加した。添加後、10℃で1時間反応を継続させた。反応終了後、上澄み液を1,100mL除去し、ヘキサン1,100mLで2回洗浄することにより、固体触媒成分[A]を調製した。この固体触媒成分[A]1g中に含まれるチタン量は0.75mmolであった。
[Reference example 1]
Catalyst Synthesis Example 1: Preparation of Solid Catalyst Component [A] (1) (A-1) Synthesis of Carrier In an 8 L stainless steel autoclave fully substituted with nitrogen, 1,000 mL of a hexane solution of 2 mol / L hydroxytrichlorosilane was charged. , A hexane solution of the organic magnesium compound represented by the composition formula AlMg 5 (C 4 H 9 ) 11 (OC 4 H 9 ) 2 at 500 rpm at 65 ° C. for 4 hours. The reaction was continued with stirring at 65 ° C. for 1 hour. After completion of the reaction, the supernatant was removed and washed 4 times with 1,800 mL of hexane to obtain a carrier (A-1).
(2) Preparation of Solid Catalyst Component [A] A composition of 110 mL of 1 mol / L titanium tetrachloride hexane solution and 1 mol / L while stirring at 10 ° C. in 1,970 mL of a hexane slurry containing 150 g of the carrier (A-1). 110 mL of a hexane solution of an organic magnesium compound represented by the formula AlMg 5 (C 4 H 9 ) 11 (OSiHCH 3 ) 2 was added simultaneously over 1 hour with stirring at 400 rpm. After the addition, the reaction was continued at 10 ° C. for 1 hour. After completion of the reaction, 1,100 mL of the supernatant was removed, and the solid catalyst component [A] was prepared by washing twice with 1,100 mL of hexane. The amount of titanium contained in 1 g of this solid catalyst component [A] was 0.75 mmol.

[参考例2]
触媒合成例2:メタロセン系触媒の調製
メタロセン系触媒は、以下の固体触媒[B]、液体成分[E]及び水添触媒[F](水素添加能を有する化合物)から構成される。
[Reference example 2]
Catalyst Synthesis Example 2: Preparation of Metallocene Catalyst The metallocene catalyst is composed of the following solid catalyst [B], liquid component [E] and hydrogenated catalyst [F] (compound having hydrogenation ability).

(固体触媒[B]の調製)
固体触媒[B]の調製を行うにあたって、まず、下記シリカ担体[B1]、遷移金属化合物成分[C]、活性化剤[D]の調製を行った。
(Preparation of solid catalyst [B])
In preparing the solid catalyst [B], first, the following silica carrier [B1], transition metal compound component [C], and activator [D] were prepared.

((シリカ担体[B1]の調製))
シリカ担体[B1]の前駆体として、平均粒径7μm、比表面積660m/g、細孔容積1.4mL/g、圧縮強度7MPaのシリカを用いた。
((Preparation of silica carrier [B1]))
As a precursor of the silica carrier [B1], silica having an average particle size of 7 μm, a specific surface area of 660 m 2 / g, a pore volume of 1.4 mL / g, and a compression strength of 7 MPa was used.

窒素置換した容量8Lオートクレーブに加熱処理後のシリカ(130g)をヘキサン2500mL中に分散させ、スラリーを得た。得られたスラリーに、攪拌下20℃にて、ルイス酸性化合物であるトリエチルアルミニウムのヘキサン溶液(濃度1M)を195mL加えた。その後、2時間攪拌し、トリエチルアルミニウムとシリカの表面水酸基とを反応させて、トリエチルアルミニウムを吸着させたシリカ担体[B1]のヘキサンスラリー2695mLを調製した。 Silica (130 g) after heat treatment was dispersed in 2500 mL of hexane in a nitrogen-substituted capacity 8 L autoclave to obtain a slurry. To the obtained slurry, 195 mL of a hexane solution (concentration 1M) of triethylaluminum, which is a Lewis acidic compound, was added at 20 ° C. with stirring. Then, the mixture was stirred for 2 hours, and triethylaluminum was reacted with the surface hydroxyl group of silica to prepare 2695 mL of a hexane slurry of silica carrier [B1] on which triethylaluminum was adsorbed.

((遷移金属化合物成分[C]の調製))
遷移金属化合物(C−1)として、[(N−t−ブチルアミド)(テトラメチル−η5−シクロペンタジエニル)ジメチルシラン]チタニウム−1,3−ペンタジエン(以下、「錯体1」と略称する)を使用した。また、有機マグネシウム化合物(C−2)として、組成式Mg(C)(C)(以下、「Mg1」と略称する)を使用した。
((Preparation of transition metal compound component [C]))
As the transition metal compound (C-1), [(N-t-butyramide) (tetramethyl-η5-cyclopentadienyl) dimethylsilane] titanium-1,3-pentadiene (hereinafter abbreviated as "complex 1"). It was used. Further, as the organic magnesium compound (C-2), composition formula Mg (C 2 H 5 ) (C 4 H 9 ) (hereinafter, abbreviated as “Mg 1”) was used.

200mmolの錯体1をイソパラフィン炭化水素(エクソンモービル社製アイソパーE)1000mLに溶解し、これにMg1のヘキサン溶液(濃度1M)を40mL加え、更にヘキサンを加えて錯体1の濃度を0.1Mに調整し、遷移金属化合物成分[C]を得た。 200 mmol of complex 1 is dissolved in 1000 mL of isoparaffin hydrocarbon (Isoper E manufactured by Exxon Mobile Co., Ltd.), 40 mL of a hexane solution of Mg1 (concentration 1 M) is added thereto, and hexane is further added to adjust the concentration of complex 1 to 0.1 M. Then, the transition metal compound component [C] was obtained.

((活性化剤[D]の調製))
ボレート化合物(D−1)として、ビス(水素化タロウアルキル)メチルアンモニウム−テトラキス(ペンタフルオロフェニル)ボレート(以下、「ボレート」と略称する)17.8gをトルエン156mLに添加して溶解し、ボレートの100mmol/Lトルエン溶液を得た。このボレートのトルエン溶液に(D−2)としてエトキシジエチルアルミニウムの1mol/Lヘキサン溶液15.6mLを室温で加え、さらにトルエンを加えて溶液中のボレート濃度が70mmol/Lとなるように調整した。その後、室温で1時間攪拌し、ボレートを含む活性化剤[D]を調製した。
((Preparation of activator [D]))
As the borate compound (D-1), 17.8 g of bis (taroalkyl hydride) methylammonium-tetrakis (pentafluorophenyl) borate (hereinafter abbreviated as "borate") was added to 156 mL of toluene to dissolve it, and the borate was dissolved. A 100 mmol / L toluene solution was obtained. To this boron solution of boron, 15.6 mL of a 1 mol / L hexane solution of ethoxydiethylaluminum as (D-2) was added at room temperature, and toluene was further added to adjust the volate concentration in the solution to 70 mmol / L. Then, the mixture was stirred at room temperature for 1 hour to prepare an activator [D] containing borate.

上記操作により、シリカ担体[B1]、遷移金属化合物成分[C]、活性化剤[D]を得、そして、固体触媒[B]を次のようにして調製した。
シリカ担体[B1]のスラリー2695mLに、25℃にて400rpmで撹拌しながら、活性化剤[D]219mLと、遷移金属化合物成分[C]175mLと、を別のラインから定量ポンプを用い、同時に添加し、添加時間30分で、その後、3時間反応を継続することにより、固体触媒[B]を調製した。
By the above operation, a silica carrier [B1], a transition metal compound component [C], and an activator [D] were obtained, and a solid catalyst [B] was prepared as follows.
While stirring 2695 mL of the slurry of the silica carrier [B1] at 400 rpm at 25 ° C., 219 mL of the activator [D] and 175 mL of the transition metal compound component [C] were added from another line using a metering pump at the same time. The solid catalyst [B] was prepared by adding the mixture, adding the mixture for 30 minutes, and then continuing the reaction for 3 hours.

(液体成分[E]の調製)
有機マグネシウム化合物[E1]として、組成式AlMg(C(C12(以下、「Mg2」と略称する)を使用した。
200mLのフラスコに、ヘキサン40mLとMg2を、MgとAlの総量として38.0mmolを攪拌しながら添加し、20℃でメチルヒドロポリシロキサン(25℃における粘度20センチストークス;以下、「シロキサン化合物」と略称する)2.27g(37.8mmol)を含有するヘキサン40mLを攪拌しながら添加し、その後80℃に温度を上げて3時間、攪拌下で反応させることにより、液体成分[E]を調製した。
(Preparation of liquid component [E])
As the organic magnesium compound [E1], composition formula AlMg 6 (C 2 H 5 ) 3 (C 4 H 9 ) 12 (hereinafter abbreviated as “Mg 2”) was used.
To a 200 mL flask, 40 mL of hexane and Mg2 were added with stirring at 38.0 mmol as the total amount of Mg and Al, and at 20 ° C., methylhydropolysiloxane (viscosity 20 cm Stokes at 25 ° C.; hereinafter referred to as “siloxane compound”). 40 mL of hexane containing 2.27 g (37.8 mmol) (abbreviated) was added with stirring, and then the temperature was raised to 80 ° C. and the reaction was carried out under stirring for 3 hours to prepare the liquid component [E]. ..

(水添触媒[F]の調製)
窒素置換した攪拌機付の容量2.0LのSUSオートクレーブに、チタノセンジクロライド37.3gをヘキサン1Lで導入した。500rpmで撹拌しながら、トリイソブチルアルミニウムとジイソブチルアルミニウムハイドライドの(9:1)の混合物0.7mol/L、429mLを室温で、1時間かけてポンプで添加した。添加後71mLのヘキサンでラインを洗浄した。1時間撹拌を継続し、濃青色の均一な100mM/L溶液[F]を得た。
(Preparation of hydrogenated catalyst [F])
37.3 g of titanocene dichloride was introduced with 1 L of hexane into a 2.0 L SUS autoclave equipped with a nitrogen-substituted stirrer. 0.7 mol / L, 429 mL of a (9: 1) mixture of triisobutylaluminum and diisobutylaluminum hydride was added by pump at room temperature over 1 hour with stirring at 500 rpm. After the addition, the line was washed with 71 mL of hexane. Stirring was continued for 1 hour to obtain a dark blue uniform 100 mM / L solution [F].

[実施例1]
3枚後退翼付の撹拌装置と3枚邪魔板が付いたベッセル型300L重合反応器を用いた。重合反応器の撹拌速度は120prmとした。重合温度はジャケット冷却により75℃に保った。溶媒としてノルマルヘキサンを60L/時間で供給した。固体触媒[B]を生産速度が10kg/時間となるように供給した。固体触媒には、Stadis450をノルマルヘキサンで希釈したものを、固体触媒に対して10wt%で添加した。液体成分[E]をMgとAlの総量として6mmol/時間で供給した。水素は固体触媒[B]のフィード配管に4NL/時間で供給した。重合温度75℃、重合圧力0.8MPaG、平均滞留時間2.3時間の条件で、エチレンを供給し連続重合を行った。重合反応器内の重合スラリーは、重合反応器内のレベルが一定に保たれるよう圧力0.05MPaG、温度60℃のフラッシュタンクに導き、未反応のエチレン、水素を分離した。次にエチレン系重合体スラリーは、フラッシュタンクからポンプにより連続的に遠心分離機に送り、ポリマーと溶媒を分離し、分離されたエチレン系重合体パウダーは、80℃に制御された乾燥機に送り、窒素ブローしながら乾燥させた。
[Example 1]
A Vessel type 300L polymerization reactor with a stirrer with three swept blades and three baffles was used. The stirring speed of the polymerization reactor was 120 pm. The polymerization temperature was maintained at 75 ° C. by cooling the jacket. Normal hexane was supplied as a solvent at 60 L / hour. The solid catalyst [B] was supplied so that the production rate was 10 kg / hour. As the solid catalyst, Stadis 450 diluted with normal hexane was added at 10 wt% with respect to the solid catalyst. The liquid component [E] was supplied at 6 mmol / hour as the total amount of Mg and Al. Hydrogen was supplied to the feed pipe of the solid catalyst [B] at 4 NL / hour. Continuous polymerization was carried out by supplying ethylene under the conditions of a polymerization temperature of 75 ° C., a polymerization pressure of 0.8 MPaG, and an average residence time of 2.3 hours. The polymerization slurry in the polymerization reactor was guided to a flash tank having a pressure of 0.05 MPaG and a temperature of 60 ° C. so that the level in the polymerization reactor was kept constant, and unreacted ethylene and hydrogen were separated. Next, the ethylene-based polymer slurry is continuously pumped from the flash tank to the centrifuge to separate the polymer and the solvent, and the separated ethylene-based polymer powder is sent to the dryer controlled at 80 ° C. , Dryed while blowing nitrogen.

触媒の重合活性は、9,600g/gsで、得られたエチレン系重合体パウダーPE1の粘度平均分子量は300,000、嵩密度は0.32g/cmであった。結果は、表1に記載する。 The polymerization activity of the catalyst was 9,600 g / gs, the viscosity average molecular weight of the obtained ethylene polymer powder PE1 was 300,000, and the bulk density was 0.32 g / cm 3 . The results are shown in Table 1.

[実施例2]
水素フィード配管に、別途水添触媒[F]を反応器内濃度が0.3μmol/Lとなるように供給した以外は、実施例1と同様に行いエチレン系重合体パウダーPE2を得た。結果は、表1に記載する。
[Example 2]
An ethylene polymer powder PE2 was obtained in the same manner as in Example 1 except that a hydrogenation catalyst [F] was separately supplied to the hydrogen feed pipe so that the concentration in the reactor was 0.3 μmol / L. The results are shown in Table 1.

[実施例3]
水添触媒のフィード量を重合反応器内濃度で0.6μmol/Lとした以外は、実施例1と同様に行ないエチレン系重合体パウダーPE3を得た。結果は、表1に記載する。
[Example 3]
The same procedure as in Example 1 was carried out except that the feed amount of the hydrogenation catalyst was set to 0.6 μmol / L in the polymerization reactor to obtain an ethylene polymer powder PE3. The results are shown in Table 1.

[実施例4]
水添触媒のフィード量を重合反応器内濃度で4.0μmol/Lとした以外は、実施例1と同様に行いエチレン系重合体パウダーPE4を得た。結果は、表1に記載する。
[Example 4]
An ethylene-based polymer powder PE4 was obtained in the same manner as in Example 1 except that the feed amount of the hydrogenation catalyst was set to 4.0 μmol / L in the polymerization reactor. The results are shown in Table 1.

[実施例5]
α−オレフィンとして、1−ブテンを、系内のエチレンに対する濃度(α−オレフィン/(エチレン+α−オレフィン))として0.13mol%フィードとした以外は、実施例4と同様に行いエチレン系重合体パウダーPE5を得た。結果は、表1に記載する。
[Example 5]
As the α-olefin, 1-butene was fed in the same manner as in Example 4 except that the concentration of 1-butene with respect to ethylene in the system (α-olefin / (ethylene + α-olefin)) was 0.13 mol%. Powder PE5 was obtained. The results are shown in Table 1.

[実施例6]
フラッシュタンクにStadis450をエチレン系重合体に対して10g/hにて添加した以外は、実施例3と同様に行いエチレン系重合体パウダーPE6を得た。結果は、表1に記載する。
[Example 6]
The same procedure as in Example 3 was carried out except that Stadis 450 was added to the flash tank at 10 g / h with respect to the ethylene polymer to obtain an ethylene polymer powder PE6. The results are shown in Table 1.

[実施例7]
固体触媒に添加するStadis450の代わりに、「ジノニルナフタレンスルホン酸」を用いた以外は実施例1と同様に行いエチレン系共重合体パウダーPE7を得た。結果は、表1に記載する。
[Example 7]
An ethylene-based copolymer powder PE7 was obtained in the same manner as in Example 1 except that "dinonylnaphthalene sulfonic acid" was used instead of Stadis 450 added to the solid catalyst. The results are shown in Table 1.

[比較例1]
固体触媒にStadis450を添加せずにおこなった以外は、実施例1と同様に行いエチレン系重合体パウダーPE8を得た。重合反応器からの抜取がしばしば詰まる傾向にあった。結果は、表1に記載する。
[Comparative Example 1]
An ethylene polymer powder PE8 was obtained in the same manner as in Example 1 except that Stadis450 was not added to the solid catalyst. Extraction from the polymerization reactor often tended to be clogged. The results are shown in Table 1.

[比較例2]
重合反応器に別途水素を気相から添加し、重合反応器内のエチレンに対する濃度(水素/エチレン+水素)として1,700ppmとした以外は、実施例1と同様に行いエチレン系重合体パウダーPE9を得た。結果は、表1に記載する。
[Comparative Example 2]
The same procedure as in Example 1 was carried out except that hydrogen was separately added to the polymerization reactor from the gas phase and the concentration (hydrogen / ethylene + hydrogen) with respect to ethylene in the polymerization reactor was set to 1,700 ppm. Ethylene-based polymer powder PE9 Got The results are shown in Table 1.

[比較例3]
固体触媒にStadis450を添加せず、別途液体成分[E]の供給配管に、重合生産速度に10kg/h対して25ppmとなる様添加した以外は、実施例1と同様に行いエチレン系重合体パウダーPE10を得た。結果は、表1に記載する。
[Comparative Example 3]
Ethylene-based polymer powder was carried out in the same manner as in Example 1 except that Stadis450 was not added to the solid catalyst and was separately added to the supply pipe of the liquid component [E] so as to be 25 ppm with respect to the polymerization production rate of 10 kg / h. PE10 was obtained. The results are shown in Table 1.

[比較例4]
重合反応器の撹拌速度を500prmとした以外は、実施例1と同様に行いエチレン系重合体パウダーPE11を得た。結果は、表1に記載する。
[Comparative Example 4]
An ethylene-based polymer powder PE11 was obtained in the same manner as in Example 1 except that the stirring speed of the polymerization reactor was set to 500 pm. The results are shown in Table 1.

[比較例5]
実施例1と同様の重合反応器を使用した。重合温度はジャケット冷却により78℃に保った。ヘキサンは60L/Hrで重合器に供給した。固体触媒成分[A]を1g/hと、助触媒成分としてトリイソブチルアルミニウムとジイソブチルアルミニウムハイドライド(9:1)の混合物0.7mol/Lを10mmol/Hrの速度で固体触媒成分[A]とは別の導入ラインにより添加した。固体触媒には、Stadis450をノルマルヘキサンで希釈したものを、固体触媒に対して10wt%で添加した。エチレンを連続的に供給して重合圧力を0.35MPaに保った。エチレン系重合体の製造速度は10kg/Hrを保ち、エチレン系重合体パウダーPE12を得た。結果は、表1に示す。
[Comparative Example 5]
The same polymerization reactor as in Example 1 was used. The polymerization temperature was maintained at 78 ° C. by cooling the jacket. Hexane was supplied to the polymerizer at 60 L / Hr. The solid catalyst component [A] is 1 g / h, and 0.7 mol / L of a mixture of triisobutylaluminum and diisobutylaluminum hydride (9: 1) as a co-catalyst component is used at a rate of 10 mmol / Hr. Added by another introduction line. As the solid catalyst, Stadis 450 diluted with normal hexane was added at 10 wt% with respect to the solid catalyst. Ethylene was continuously supplied to maintain the polymerization pressure at 0.35 MPa. The production rate of the ethylene polymer was maintained at 10 kg / Hr, and the ethylene polymer powder PE12 was obtained. The results are shown in Table 1.

[比較例6]
固体触媒に添加するStadis450の添加量を30wt%とし、さらに重合反応器に別途Stadis450を生産速度10kg/hrに対して10g/hr添加した以外は実施例1と同様に行いエチレン系重合体パウダーPE13を得た。結果は、表1に記載する。
[Comparative Example 6]
The amount of Stadis450 added to the solid catalyst was set to 30 wt%, and 10 g / hr was separately added to the polymerization reactor at a production rate of 10 kg / hr in the same manner as in Example 1. Ethylene-based polymer powder PE13 Got The results are shown in Table 1.

Figure 0006843660
Figure 0006843660

表1に示す結果から明らかなように、粘度平均分子量、硫黄含有量及び塩素含有量/硫黄含有量を所定の範囲内にした実施例1〜7は、それらを範囲外とした比較例1〜6と比較して、耐錆性が良く、欠点個数が少なく、耐変色性が良いことが分かった。 As is clear from the results shown in Table 1, Examples 1 to 7 in which the viscosity average molecular weight, the sulfur content and the chlorine content / sulfur content were within the predetermined ranges were compared with Comparative Examples 1 to 7 in which they were out of the range. Compared with No. 6, it was found that the rust resistance was good, the number of defects was small, and the discoloration resistance was good.

本発明のエチレン系重合体パウダーは、高生産性での連続製造が可能で、微多孔膜や高強度繊維などの強度が高く、成型加工機の錆を発生させることなく、長期連続安定生産が可能であることから、成形後の変色性も少ないく、リチウムイオン二次電池用微多孔膜やロープ、ネット、防弾衣料、防護衣料、防護手袋、繊維補強コンクリート製品、ヘルメット等に使用される高強度繊維用途等の広い用途において、産業上の利用可能性を有する。 The ethylene-based polymer powder of the present invention can be continuously produced with high productivity, has high strength such as microporous membranes and high-strength fibers, and can be stably produced for a long period of time without causing rust on the molding machine. Since it is possible, there is little discoloration after molding, and it is used for microporous membranes for lithium ion secondary batteries, ropes, nets, bulletproof clothing, protective clothing, protective gloves, fiber reinforced concrete products, helmets, etc. It has industrial potential in a wide range of applications such as strength fiber applications.

Claims (6)

1)粘度平均分子量が200,000以上であり、
2)硫黄含有量が0.10以上50ppm以下の範囲であり、
3)塩素含有量/硫黄含有量の比が0.010以上10以下の範囲である、
エチレン系重合体パウダーであって、
該エチレン系重合体パウダー中の塩素含有量が10ppm以下である、エチレン系重合体パウダー
1) The viscosity average molecular weight is 200,000 or more,
2) The sulfur content is in the range of 0.10 or more and 50 ppm or less.
3) The chlorine content / sulfur content ratio is in the range of 0.010 or more and 10 or less.
An ethylene-based polymer powder,
An ethylene polymer powder having a chlorine content of 10 ppm or less in the ethylene polymer powder .
エチレン単独重合体(A);及びエチレン共重合体(B)のいずれか一方であって、
該エチレン共重合体(B)は、
a)エチレン75.0重量%以上100質量%未満と、
b)炭素数3〜20のα−オレフィン、炭素数3〜20の環状オレフィン、式CH2
CHR(但し、Rは炭素数6〜20のアリール基である。)で表される化合物、及び炭素
数4〜20の直鎖状、分岐状又は環状のジエン、よりなる群から選ばれる少なくとも1種
のオレフィンであるコモノマー0質量%超25.0重量%以下と、
を共重合して得られる、請求項1に記載のエチレン系重合体パウダー。
Either the ethylene homopolymer (A); or the ethylene copolymer (B).
The ethylene copolymer (B) is
a) Ethylene 75.0% by weight or more and less than 100% by mass,
b) α-olefin having 3 to 20 carbon atoms, cyclic olefin having 3 to 20 carbon atoms, formula CH 2 =
At least one selected from the group consisting of a compound represented by CHR (where R is an aryl group having 6 to 20 carbon atoms) and a linear, branched or cyclic diene having 4 to 20 carbon atoms. Comonomer, which is a seed olefin, is more than 0% by mass and 25.0% by mass or less.
The ethylene-based polymer powder according to claim 1, which is obtained by copolymerizing the above.
請求項1又は2に記載のエチレン系重合体パウダーを用いて得られる、成形体。 A molded product obtained by using the ethylene-based polymer powder according to claim 1 or 2. 請求項1又は2に記載のエチレン系重合体パウダーを用いて得られる、リチウムイオン二次電池用セパレーター。 A separator for a lithium ion secondary battery obtained by using the ethylene-based polymer powder according to claim 1 or 2. 請求項1又は2に記載のエチレン系重合体パウダーを用いて得られる、繊維。 A fiber obtained by using the ethylene-based polymer powder according to claim 1 or 2. 請求項1又は2に記載のエチレン系重合体パウダーを用いて得られる、プレス成型品。 A press-molded product obtained by using the ethylene-based polymer powder according to claim 1 or 2.
JP2017056517A 2017-03-22 2017-03-22 Ethylene polymer powder and its molded product Active JP6843660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017056517A JP6843660B2 (en) 2017-03-22 2017-03-22 Ethylene polymer powder and its molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056517A JP6843660B2 (en) 2017-03-22 2017-03-22 Ethylene polymer powder and its molded product

Publications (2)

Publication Number Publication Date
JP2018158989A JP2018158989A (en) 2018-10-11
JP6843660B2 true JP6843660B2 (en) 2021-03-17

Family

ID=63796457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056517A Active JP6843660B2 (en) 2017-03-22 2017-03-22 Ethylene polymer powder and its molded product

Country Status (1)

Country Link
JP (1) JP6843660B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889025B2 (en) * 2017-05-12 2021-06-18 旭化成株式会社 Ethylene copolymer powder and its molded product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830064B2 (en) * 2012-08-10 2015-12-09 旭化成ケミカルズ株式会社 High molecular weight polyethylene powder, microporous membrane, and high strength fiber
JP6294639B2 (en) * 2013-11-26 2018-03-14 旭化成株式会社 Polyethylene resin composition and high-purity chemical container
JP5830187B2 (en) * 2014-03-03 2015-12-09 旭化成ケミカルズ株式会社 Polyethylene powder, microporous membrane, and fiber
JP5829295B2 (en) * 2014-03-06 2015-12-09 旭化成ケミカルズ株式会社 Ethylene polymer powder, method for producing the same, and molded product

Also Published As

Publication number Publication date
JP2018158989A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP5498296B2 (en) Ultra high molecular weight polyethylene particles, method for producing the same, and molded body using the same
JP5830064B2 (en) High molecular weight polyethylene powder, microporous membrane, and high strength fiber
KR101804740B1 (en) Ultrahigh-molecular weight ethylene copolymer powder and molded article using the ultrahigh-molecular weight ethylene copolymer powder
JP5774084B2 (en) Polyethylene powder
EP3650475B1 (en) Polyethylene powder, molded body and microporous membrane
KR102368240B1 (en) Ultra High Molecular Weight Polyethylene Powder
JP2016094554A (en) Polyethylene powder
JP2012229417A (en) Method for producing ultra high molecular weight polyethylene particle and molded product using the ultra high molecular weight polyethylene particle
JP6195403B1 (en) Ultra high molecular weight ethylene copolymer powder and molded product using ultra high molecular weight ethylene copolymer powder
JP7461334B2 (en) polyethylene powder
JP6393672B2 (en) Polyethylene powder and fiber
JP5777583B2 (en) Granular ultra-high molecular weight polyethylene and molded body
US8076418B2 (en) Ethylene based polymer composition and film
KR102025018B1 (en) Ultrahigh-molecular weight ethylene polymer powder, and molded article using the ultrahigh-molecular weight ethylene polymer powder
JP6843660B2 (en) Ethylene polymer powder and its molded product
JP2014133874A (en) Ethylenic polymer powder, molding, and separator for lithium ion secondary battery
JP6868355B2 (en) Ultra high molecular weight polyethylene powder
JP6889025B2 (en) Ethylene copolymer powder and its molded product
JP2000129044A (en) Vessel made of polyethylene for high-purity chemicals
JP2020094153A (en) Resin composition mainly comprising ethylenic polymer powder, and molded article comprising the same
JP7130819B2 (en) Polyethylene resin for secondary battery separator, method for producing the same, and separator using the same
DE112010004818T5 (en) Ethylene-α-olefin copolymer
JP2018138642A (en) Polyethylene particle and molded body
JP2021152140A (en) Polyethylene powder, and molding
JP2023138477A (en) Polyethylene powder and molded body made by using the powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210224

R150 Certificate of patent or registration of utility model

Ref document number: 6843660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150