JP6886676B2 - Fuel refueling pipe - Google Patents

Fuel refueling pipe Download PDF

Info

Publication number
JP6886676B2
JP6886676B2 JP2016132722A JP2016132722A JP6886676B2 JP 6886676 B2 JP6886676 B2 JP 6886676B2 JP 2016132722 A JP2016132722 A JP 2016132722A JP 2016132722 A JP2016132722 A JP 2016132722A JP 6886676 B2 JP6886676 B2 JP 6886676B2
Authority
JP
Japan
Prior art keywords
peripheral surface
outer peripheral
fuel
zinc
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132722A
Other languages
Japanese (ja)
Other versions
JP2018002002A (en
Inventor
稔正 山根
稔正 山根
篤 中崎
篤 中崎
修 藤山
修 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keylex Corp
Original Assignee
Keylex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keylex Corp filed Critical Keylex Corp
Priority to JP2016132722A priority Critical patent/JP6886676B2/en
Publication of JP2018002002A publication Critical patent/JP2018002002A/en
Application granted granted Critical
Publication of JP6886676B2 publication Critical patent/JP6886676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、自動車等の燃料タンクに燃料を給油する際の通路となる燃料給油管に関する。 The present invention relates to a fuel refueling pipe that serves as a passage for refueling a fuel tank of an automobile or the like.

近年では、環境負荷物質の低減を目的として、自動車等に使用する燃料をガソリンや軽油等の化石燃料からバイオ燃料に置き換える取り組みがなされている。このバイオ燃料は、酸化劣化し易いことが一般的に知られ、化石燃料に比べると、酸化劣化により生成される有機酸によって金属材料の腐食が引き起こされ易い。したがって、上述の如きバイオ燃料を自動車等に使用する場合、燃料を貯溜する燃料タンクだけでなく、当該燃料タンクに燃料を案内する燃料給油管においても腐食に対して耐性の強い構造にしておく必要がある。 In recent years, efforts have been made to replace fossil fuels such as gasoline and light oil with biofuels for the purpose of reducing environmentally hazardous substances. It is generally known that this biofuel is easily oxidatively deteriorated, and compared to fossil fuels, organic acids produced by oxidative deterioration are more likely to cause corrosion of metal materials. Therefore, when using biofuel as described above for automobiles, etc., it is necessary to have a structure that is highly resistant to corrosion not only in the fuel tank that stores the fuel but also in the fuel supply pipe that guides the fuel to the fuel tank. There is.

これに対応するために、腐食に対する耐性の強いステンレス材を用いて燃料給油管を形成することが考えられる。 In order to cope with this, it is conceivable to form a fuel oil supply pipe using a stainless steel material having strong resistance to corrosion.

例えば、特許文献1では、燃料給油管において燃料の通路となる円筒状の給油管本体を、オーステナイト系のステンレス材か、或いは、フェライト系のステンレス材からなる円管状の電縫管を用いて形成することにより、腐食に対して耐性の強い構造となるようにしている。 For example, in Patent Document 1, a cylindrical refueling pipe main body serving as a fuel passage in a fuel refueling pipe is formed by using a circular tubular electric sewing pipe made of austenitic stainless steel or ferrite stainless steel. By doing so, the structure is made to have strong resistance to corrosion.

特開2005−271040号公報Japanese Unexamined Patent Publication No. 2005-271040

しかし、給油管本体をオーステナイト系のステンレス材で形成すると、給油管本体に曲げ加工や拡管加工を施す際、母材内部の結晶状態が変態して加工部分に残留応力が発生し、これを起因として時効割れを引き起こすおそれがある。また、フェライト系のステンレス材は、クロムを多く含んで硬いため、曲げ加工や拡管加工が必要な給油管本体への適用には向いていない。さらに、ステンレス材は、鋼材に比べて材料コストが嵩んでしまう。 However, when the refueling pipe body is made of austenitic stainless steel, when the refueling pipe body is bent or expanded, the crystal state inside the base metal is transformed and residual stress is generated in the processed part, which is caused by this. May cause aging cracks. Further, since ferritic stainless steel contains a large amount of chromium and is hard, it is not suitable for application to a refueling pipe main body that requires bending or expansion. Further, the material cost of the stainless steel material is higher than that of the steel material.

これらの加工性及びコスト面の問題を解決するために、外周面及び内周面に犠牲防食作用を有する亜鉛メッキ層や亜鉛系合金メッキ層が設けられた鋼管を用いて給油管本体を形成するか、或いは、外周面及び内周面にニッケルメッキ層が設けられた鋼管を用いて給油管本体を形成することが考えられる。 In order to solve these problems in terms of workability and cost, the main body of the refueling pipe is formed by using a steel pipe provided with a zinc-plated layer or a zinc-based alloy-plated layer having a sacrificial anticorrosion effect on the outer peripheral surface and the inner peripheral surface. Alternatively, it is conceivable to form the oil supply pipe main body by using a steel pipe provided with a nickel plating layer on the outer peripheral surface and the inner peripheral surface.

しかし、前者の場合、給油管本体の内周面に亜鉛メッキ層や亜鉛系合金メッキ層を設けると、バイオ燃料による腐食によってメッキ鋼管の内周面に付着する亜鉛メッキ層や亜鉛系合金メッキ層から亜鉛が溶出し、溶出した亜鉛が不完全燃焼生成物になって内燃機関における始動不具合等を引き起こしてしまうおそれがある。 However, in the former case, if a zinc-plated layer or a zinc-based alloy-plated layer is provided on the inner peripheral surface of the refueling pipe body, the zinc-plated layer or the zinc-based alloy-plated layer adheres to the inner peripheral surface of the plated steel pipe due to corrosion by biofuel. Zinc is eluted from the zinc, and the eluted zinc becomes an incomplete combustion product, which may cause a start failure in the internal combustion engine.

また、後者の場合、ニッケルメッキ層は犠牲防食作用を有しないので、車両走行時におけるチッピング等の影響によって給油管本体の外周面に設けられたニッケルメッキ層に僅かにでも傷が発生し、当該部分において腐食が始まると、その腐食の進行を止めることができないという問題がある。 Further, in the latter case, since the nickel-plated layer does not have a sacrificial anticorrosive effect, the nickel-plated layer provided on the outer peripheral surface of the refueling pipe main body is slightly scratched due to the influence of chipping or the like when the vehicle is running. When corrosion starts in a part, there is a problem that the progress of the corrosion cannot be stopped.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、腐食に対する耐性が高く、時効割れや亜鉛の溶出による不具合を避けることができ、さらには、加工がし易い低コストな燃料給油管を提供することにある。 The present invention has been made in view of these points, and an object of the present invention is that it has high resistance to corrosion, can avoid defects due to aging cracking and elution of zinc, and is easy to process. The purpose is to provide low-cost fuel refueling pipes.

上記の目的を達成するために、本発明は、給油管本体を鋼管から形成するとともに、給油管本体の外周面及び内周面に設ける層の組み合わせに工夫を凝らしたことを特徴とする。 In order to achieve the above object, the present invention is characterized in that the refueling pipe main body is formed of a steel pipe and the combination of layers provided on the outer peripheral surface and the inner peripheral surface of the refueling pipe main body is devised.

すなわち、第1の発明では、一端側に短い筒状のリテーナが取り付けられ、且つ、他端が燃料タンクに接続された鋼材からなる円筒状の給油管本体を備え、該給油管本体の外周面及び内周面には、それぞれニッケルメッキ層が設けられ、上記給油管本体の外周面に設けられたニッケルメッキ層の表面には、ジンクリッチ塗装層が設けられていることを特徴とする。 That is, in the first invention, a cylindrical refueling pipe main body made of a steel material having a short tubular retainer attached to one end side and the other end connected to a fuel tank is provided, and the outer peripheral surface of the refueling pipe main body is provided. A nickel-plated layer is provided on each of the inner peripheral surfaces, and a zinc-rich coating layer is provided on the surface of the nickel-plated layer provided on the outer peripheral surface of the oil supply pipe main body.

第2の発明では、第1の発明において、一端が上記給油管本体の一端側に接続され、且つ、他端が上記燃料タンクに接続された鋼材からなる細い円筒状のブリーザチューブを備え、上記ニッケルメッキ層は、上記ブリーザチューブの外周面及び内周面にも設けられ、上記ジンクリッチ塗装層は、上記ブリーザチューブの外周面に設けられたニッケルメッキ層の表面にも設けられていることを特徴とする。 In the second invention, in the first invention, a thin cylindrical breather tube made of a steel material having one end connected to one end side of the refueling pipe main body and the other end connected to the fuel tank is provided. The nickel plating layer is also provided on the outer peripheral surface and the inner peripheral surface of the breather tube, and the zinc rich coating layer is also provided on the surface of the nickel plating layer provided on the outer peripheral surface of the breather tube. It is a feature.

第3の発明では、第2の発明において、上記ブリーザチューブの一端には、当該ブリーザチューブの外周面と上記給油管本体の外周面とを接続する溶接部が設けられ、上記ジンクリッチ塗装層は、上記溶接部の表面にも設けられていることを特徴とする。 In the third invention, in the second invention, one end of the breather tube is provided with a welded portion connecting the outer peripheral surface of the breather tube and the outer peripheral surface of the oil supply pipe main body, and the zinc rich coating layer is formed. It is characterized in that it is also provided on the surface of the welded portion.

第1の発明では、給油管本体の外周面側には、ニッケルメッキ層とジンクリッチ塗装層とが順に重ねて設けられるとともに、最外層にジンクリッチ塗装層が位置しているので、もし仮にニッケルメッキ層に傷がついたとしても、ジンクリッチ塗装層内に含まれる亜鉛によって犠牲防食が起こり、給油管本体の外周面側に発生する腐食の進行を遅くすることができる。また、給油管本体の内周面側には、ニッケルメッキ層が設けられているので、給油管本体の内周面側の腐食に対する耐性を高くすることができるとともに、もし仮に腐食が発生したとしても、給油管本体の内周面に亜鉛メッキ層や亜鉛系合金メッキ層を設けた場合のように亜鉛が溶出するといったことが無く、亜鉛が溶出することによる不具合の発生を防ぐことができる。さらに、給油管本体を鋼材から形成するので、給油管本体をステンレス材で形成する場合に比べて曲げ加工や拡管加工が行い易くなり、時効割れの不具合を避けることができるだけでなく、部品コストも低く抑えることができる。 In the first invention, the nickel plating layer and the zinc rich coating layer are sequentially provided on the outer peripheral surface side of the refueling pipe main body, and the zinc rich coating layer is located on the outermost layer. Even if the plating layer is damaged, the zinc contained in the zinc-rich coating layer causes sacrificial corrosion protection, which can slow down the progress of corrosion generated on the outer peripheral surface side of the refueling pipe main body. Further, since the nickel plating layer is provided on the inner peripheral surface side of the refueling pipe main body, it is possible to increase the resistance to corrosion on the inner peripheral surface side of the refueling pipe main body, and if corrosion occurs, it is possible to increase the resistance. However, unlike the case where a zinc plating layer or a zinc-based alloy plating layer is provided on the inner peripheral surface of the oil supply pipe main body, zinc does not elute, and it is possible to prevent the occurrence of problems due to the elution of zinc. Furthermore, since the refueling pipe body is made of steel, it is easier to perform bending and expansion compared to the case where the refueling pipe body is made of stainless steel, which not only avoids the problem of aging cracking, but also reduces the cost of parts. It can be kept low.

第2の発明では、給油管本体だけでなく、ブリーザチューブの外周面及び内周面においても給油管本体と同様に腐食に対する耐性を高くすることができる。また、ブリーザチューブにおいても、加工が行い易くなるとともに、時効割れの不具合をさけることができ、さらには、コストをかけずに形成することが可能となる。 In the second invention, not only the oil supply pipe main body but also the outer peripheral surface and the inner peripheral surface of the breather tube can be made highly resistant to corrosion as in the oil supply pipe main body. Further, the breather tube can be easily processed, can avoid the problem of age cracking, and can be formed at no cost.

第3の発明では、給油管本体の外周面とブリーザチューブの外周面とにそれぞれニッケルメッキ層を設けた状態でブリーザチューブを給油管本体に接合すると、ニッケルの沸点が鉄の融点より高いので、溶接部内にニッケルガスが巻き込まれてブローホールになるといった不具合が発生しない。したがって、給油管本体の外周面とブリーザチューブの外周面とにそれぞれ亜鉛メッキ層か亜鉛系合金メッキ層を設けた燃料給油管のように、ブリーザチューブを給油管本体に接合したときに、亜鉛ガスが溶接部内に巻き込まれてブローホールになるといったような不具合を防ぐことができ、給油管本体とブリーザチューブとを強固に繋ぐことができる。また、溶接部の表面にジンクリッチ塗装層が設けられるので、ジンクリッチ塗装層内に含まれる亜鉛による犠牲防食作用によって溶接部の腐食に対する耐性を高くすることができる。 In the third invention, when the breather tube is joined to the oil supply pipe body with nickel-plated layers provided on the outer peripheral surface of the oil supply pipe main body and the outer peripheral surface of the breather tube, the boiling point of nickel is higher than that of iron. There is no problem that nickel gas is caught in the welded part and becomes a blow hole. Therefore, when the breather tube is joined to the oil supply pipe body like a fuel oil supply pipe in which a zinc plating layer or a zinc-based alloy plating layer is provided on the outer peripheral surface of the oil supply pipe main body and the outer peripheral surface of the breather tube, respectively, zinc gas is produced. It is possible to prevent problems such as being caught in the welded portion and forming a blow hole, and the refueling pipe body and the breather tube can be firmly connected. Further, since the zinc rich coating layer is provided on the surface of the welded portion, the resistance to corrosion of the welded portion can be enhanced by the sacrificial anticorrosion action of zinc contained in the zinc rich coating layer.

本発明の実施形態に係る燃料給油管、及び、燃料給油管が繋がる燃料タンクの斜視図である。It is a perspective view of the fuel refueling pipe which concerns on embodiment of this invention, and the fuel tank which connects the fuel refueling pipe. 図1のII−II線における断面図である。FIG. 5 is a cross-sectional view taken along the line II-II of FIG. 図2のIII部拡大図である。It is an enlarged view of Part III of FIG. 図1のIV−IV線における断面図である。FIG. 5 is a cross-sectional view taken along the line IV-IV of FIG. 本発明の実施形態に係る燃料給油管の外周面側の防錆力を調査した結果を示す図である。It is a figure which shows the result of having investigated the rust preventive force on the outer peripheral surface side of the fuel oil supply pipe which concerns on embodiment of this invention. 本発明の実施形態に係る燃料給油管の内周面側の防錆力を調査した結果を示す図である。It is a figure which shows the result of having investigated the rust preventive force on the inner peripheral surface side of the fuel oil supply pipe which concerns on embodiment of this invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiment is essentially merely an example.

図1及び図2は、本発明の実施形態に係る燃料給油管1を示す。該燃料給油管1は、バイオ燃料により動く車両における燃料タンク10に対してバイオ燃料を給油する際の通路となるものであり、鋼管(STKM11A相当)から形成された円筒状の給油管本体2と、該給油管本体2に並設され、鋼管から形成された細い円筒状のブリーザチューブ3とを備えている。 1 and 2 show a fuel refueling pipe 1 according to an embodiment of the present invention. The fuel refueling pipe 1 serves as a passage for refueling the fuel tank 10 in a vehicle driven by biofuel, and has a cylindrical refueling pipe main body 2 formed of a steel pipe (equivalent to STKM11A). , A thin cylindrical breather tube 3 formed from a steel pipe is provided in parallel with the oil supply pipe main body 2.

上記給油管本体2の一端側には、短い筒状のリテーナ4がレーザ溶接により取り付けられ、上記給油管本体2の他端は、上記燃料タンク10に接続されている。 A short tubular retainer 4 is attached to one end side of the refueling pipe main body 2 by laser welding, and the other end of the refueling pipe main body 2 is connected to the fuel tank 10.

上記リテーナ4の開口部分は、給油口4aを構成しており、該給油口4aは、給油キャップ7で旋蓋されるようになっている。 The opening portion of the retainer 4 constitutes a refueling port 4a, and the refueling port 4a is swiveled by a refueling cap 7.

上記給油管本体2の外周面及び内周面には、図3に示すように、それぞれニッケルメッキ層5が設けられている。 As shown in FIG. 3, nickel-plated layers 5 are provided on the outer peripheral surface and the inner peripheral surface of the oil supply pipe main body 2, respectively.

該ニッケルメッキ層5は、厚みが約3μmであり、電気メッキ処理により形成されたものである。 The nickel-plated layer 5 has a thickness of about 3 μm and is formed by electroplating.

上記給油管本体2の外周面に設けられたニッケルメッキ層5の表面には、ジンクリッチ塗装層6が設けられ、該ジンクリッチ塗装層6の厚みは、約40μmとなっている。 A zinc-rich coating layer 6 is provided on the surface of the nickel-plated layer 5 provided on the outer peripheral surface of the oil supply pipe main body 2, and the thickness of the zinc-rich coating layer 6 is about 40 μm.

上記ジンクリッチ塗装層6は、VOC(揮発性有機化合物の略称)の発生量が少なく、しかも、スプレー塗装や浸漬塗装よりも厚塗りが容易で耐チッピング性能を高めることができる粉体塗装によって形成されている。 The zinc rich coating layer 6 is formed by powder coating, which generates a small amount of VOC (abbreviation of volatile organic compound), is easier to apply thickly than spray coating or dip coating, and can improve chipping resistance. Has been done.

上記ブリーザチューブ3は、バイオ燃料を給油する際において、気化したバイオ燃料を含む空気を上記燃料タンク10から上記給油管本体2の一端側に抜くためのものである。 The breather tube 3 is for removing air containing vaporized biofuel from the fuel tank 10 to one end side of the refueling pipe main body 2 when refueling the biofuel.

上記ブリーザチューブ3の外周面及び内周面には、図3に示すように、上記ニッケルメッキ層5が設けられている。 As shown in FIG. 3, the nickel-plated layer 5 is provided on the outer peripheral surface and the inner peripheral surface of the breather tube 3.

また、上記ブリーザチューブ3の外周面に設けられたニッケルメッキ層5の表面には、上記ジンクリッチ塗装層6が設けられている。 Further, the zinc rich coating layer 6 is provided on the surface of the nickel plating layer 5 provided on the outer peripheral surface of the breather tube 3.

上記ブリーザチューブ3の一端には、図4に示すように、当該ブリーザチューブ3の外周面と上記給油管本体2の外周面とを接続する溶接部3aが設けられ、上記ブリーザチューブ3の他端は、上記燃料タンク10に接続されている。 As shown in FIG. 4, one end of the breather tube 3 is provided with a welded portion 3a for connecting the outer peripheral surface of the breather tube 3 and the outer peripheral surface of the refueling pipe main body 2, and the other end of the breather tube 3. Is connected to the fuel tank 10.

上記溶接部3aは、外周面及び内周面にニッケルメッキ層5が設けられたブリーザチューブ3の一端を外周面及び内周面にニッケルメッキ層5が設けられた給油管本体2の外周面に当接させるとともにMIGロウ付けで接合することによって形成されたものであり、その表面には、ジンクリッチ塗装層6が設けられている。 In the welded portion 3a, one end of the breather tube 3 provided with the nickel-plated layer 5 on the outer peripheral surface and the inner peripheral surface is placed on the outer peripheral surface of the oil supply pipe main body 2 provided with the nickel-plated layer 5 on the outer peripheral surface and the inner peripheral surface. It is formed by abutting and joining by MIG brazing, and a zinc rich coating layer 6 is provided on the surface thereof.

尚、図3及び図4では、便宜上、ニッケルメッキ層5及びジンクリッチ塗装層6の厚みを誇張して記載している。 In addition, in FIGS. 3 and 4, for convenience, the thicknesses of the nickel plating layer 5 and the zinc rich coating layer 6 are exaggerated.

次に、本発明の実施形態に係る燃料給油管1の外周面側の防錆力を評価した結果について説明する。 Next, the result of evaluating the rust preventive force on the outer peripheral surface side of the fuel oil supply pipe 1 according to the embodiment of the present invention will be described.

(防錆試験1)
試験片1〜5を用いて複合腐食試験(JASO M609−91法)を行った。
<試験条件>
下記(1)〜(3)を1サイクルとして300サイクル繰り返した。
(1)35℃の条件下において、試験片に対して塩水(5%の塩化ナトリウム水溶液)を2時間続けて噴霧する。
(2)60℃の乾燥状態において試験片を4時間放置する。
(3)50℃で、且つ、湿度が95%以上の状態において試験片を2時間放置する。
<試験片>
板厚1.2mmの鋼板を120mm×100mmに切り出すとともに、その外周部分をマスキングテープで覆ったものを使用した。
試験片1:鋼板の表面に約12μmの亜鉛メッキ層を設けるとともに亜鉛メッキ層の表面にエポキシ系粉体塗装層を設けたもの。
試験片2:鋼板の表面に約3μmの電気ニッケルメッキ層を設けるとともに電気ニッケルメッキ層の表面にエポキシ系粉体塗装層を設けたもの。
試験片3:鋼板の表面に約3μmの電気ニッケルメッキ層を設けるとともに電気ニッケルメッキ層の表面にジンクリッチ塗装層を設けたもの(本発明の実施形態と同じ構成)。
試験片4:鋼板の表面に約12μmの亜鉛メッキ層を設けただけのもの(塗装なし)。
試験片5:鋼板の表面に約3μmの電気ニッケルメッキ層を設けただけのもの(塗装なし)。
<評価方法>
100サイクル毎に各試験片を取り出して腐食深度を測定し、試験片の板厚が元の板厚に対して100〜85%であった場合を◎、84〜70%であった場合を○、69%以下であった場合を×とした。
<評価結果>
図5に示すように、亜鉛メッキ層及び電気ニッケルメッキ層の表面に塗装層を設けないと防錆力が大きく下がってしまうことが分かった。一方、亜鉛メッキ層及び電気ニッケルメッキ層の表面に塗装層を設けると、防錆力が高まり、特に、電気ニッケルメッキ層の表面にジンクリッチ塗装層を設けると、高い防錆力が得られることが分かった。これは、ジンクリッチ塗装層内に含まれる亜鉛によって犠牲防食が起こるからだと考えられる。
(Rust prevention test 1)
A combined corrosion test (JASO M609-91 method) was performed using the test pieces 1 to 5.
<Test conditions>
The following (1) to (3) were set as one cycle, and 300 cycles were repeated.
(1) Under the condition of 35 ° C., salt water (5% sodium chloride aqueous solution) is continuously sprayed on the test piece for 2 hours.
(2) The test piece is left to stand for 4 hours in a dry state at 60 ° C.
(3) The test piece is left for 2 hours at 50 ° C. and at a humidity of 95% or more.
<Test piece>
A steel plate having a thickness of 1.2 mm was cut out to a size of 120 mm × 100 mm, and the outer peripheral portion thereof was covered with masking tape.
Test piece 1: A steel sheet provided with a zinc-plated layer of about 12 μm on the surface and an epoxy-based powder coating layer on the surface of the zinc-plated layer.
Test piece 2: A steel sheet provided with an electro-nickel plating layer of about 3 μm on the surface and an epoxy powder coating layer on the surface of the electro-nickel plating layer.
Test piece 3: A steel sheet provided with an electro-nickel plating layer of about 3 μm and a zinc-rich coating layer on the surface of the electro-nickel plating layer (same configuration as the embodiment of the present invention).
Specimen 4: A steel sheet provided with a zinc-plated layer of about 12 μm on the surface (without coating).
Specimen 5: A steel sheet provided with an electro-nickel plating layer of about 3 μm on the surface (without coating).
<Evaluation method>
Each test piece was taken out every 100 cycles and the corrosion depth was measured. When the plate thickness of the test piece was 100 to 85% of the original plate thickness, it was ⊚, and when it was 84 to 70%, it was ○. , The case where it was 69% or less was evaluated as x.
<Evaluation result>
As shown in FIG. 5, it was found that the rust preventive power was greatly reduced unless the coating layer was provided on the surfaces of the zinc plating layer and the electronickel plating layer. On the other hand, if a coating layer is provided on the surfaces of the zinc plating layer and the electro-nickel plating layer, the rust preventive power is enhanced. I understood. It is considered that this is because the zinc contained in the zinc rich coating layer causes sacrificial corrosion protection.

次に、本発明の実施形態に係る燃料給油管1の内周面側の防錆力を評価した結果について説明する。 Next, the result of evaluating the rust preventive force on the inner peripheral surface side of the fuel oil supply pipe 1 according to the embodiment of the present invention will be described.

(防錆試験2)
バイオ燃料を模した試験液に試験片6,7を浸して亜鉛メッキ層又はニッケルメッキ層から溶出される金属の濃度を調べた。
<試験条件>
試験片が試験液に約50%浸される状態となるように容器内に試験片及び試験液を入れて容器を密閉するとともに、容器を60℃の恒温槽に1000時間放置した。使用する試験液は、バイオ燃料において一般的に使用される機会の多いバイオエタノール混合ガソリンと同等の成分を有するものにした。具体的には、JIS K2202に規定されているレギュラーガソリンに対し、ギ酸、酢酸及びJASO M361に規定されているバイオエタノールを10質量%添加して模擬的な劣化ガソリンを生成し、さらに腐食性を高めることを目的として、純水にギ酸、酢酸及び塩素を添加した腐食水を生成してこの腐食水を上記劣化ガソリンに10質量%添加したものを試験液とした。
<試験片>
板厚1.2mmの鋼板を120mm×100mmに切り出したものを使用した。
試験片6:鋼板の表面に約12μmの亜鉛メッキ層を設けただけのもの。
試験片7:鋼板の表面に約3μmの電気ニッケルメッキ層を設けただけのもの。
<評価方法>
試験終了後に容器内から各試験片を取り出すとともに容器内の試験液に含まれる溶出した金属の濃度を測定した。そして、試験片6の測定値に対して試験片7の測定値が小さい場合を◎、大きい場合を×とした。
<評価結果>
図6に示すように、亜鉛メッキ層からは多くの亜鉛が溶出するが、電気ニッケルメッキ層からはニッケルがほとんど溶出しないことが分かった。
(Rust prevention test 2)
The test pieces 6 and 7 were immersed in a test solution imitating biofuel, and the concentration of the metal eluted from the galvanized layer or the nickel-plated layer was examined.
<Test conditions>
The test piece and the test solution were placed in the container so that the test piece was immersed in the test solution by about 50%, the container was sealed, and the container was left in a constant temperature bath at 60 ° C. for 1000 hours. The test solution used was one having the same components as bioethanol mixed gasoline, which is often used in biofuels. Specifically, formic acid, acetic acid and bioethanol specified in JASO M361 are added in an amount of 10% by mass to regular gasoline specified in JIS K2202 to generate simulated deteriorated gasoline, which further makes it corrosive. For the purpose of increasing the amount, corroded water obtained by adding formic acid, acetic acid and chlorine to pure water was generated, and 10% by mass of this corroded water was added to the deteriorated gasoline as a test solution.
<Test piece>
A steel plate having a thickness of 1.2 mm cut out to a size of 120 mm × 100 mm was used.
Specimen 6: A steel sheet provided with a zinc-plated layer of approximately 12 μm on the surface.
Specimen 7: A steel plate provided with an electro-nickel plating layer of approximately 3 μm on the surface.
<Evaluation method>
After the test was completed, each test piece was taken out from the container and the concentration of the eluted metal contained in the test solution in the container was measured. Then, the case where the measured value of the test piece 7 was smaller than the measured value of the test piece 6 was marked with ⊚, and the case where the measured value was larger was marked with x.
<Evaluation result>
As shown in FIG. 6, it was found that a large amount of zinc was eluted from the galvanized layer, but almost no nickel was eluted from the electronickel plated layer.

以上より、本発明の実施形態によると、給油管本体2の外周面側には、ニッケルメッキ層5とジンクリッチ塗装層6とが順に重ねて設けられるとともに、最外層にジンクリッチ塗装層6が位置しているので、もし仮にニッケルメッキ層5に傷がついたとしても、ジンクリッチ塗装層6内に含まれる亜鉛によって犠牲防食が起こり、給油管本体2の外周面側に発生する腐食の進行を遅くすることができる。 From the above, according to the embodiment of the present invention, the nickel plating layer 5 and the zinc rich coating layer 6 are sequentially provided on the outer peripheral surface side of the oil supply pipe main body 2, and the zinc rich coating layer 6 is provided on the outermost layer. Since it is located, even if the nickel plating layer 5 is damaged, sacrificial corrosion protection occurs due to the zinc contained in the zinc rich coating layer 6, and the progress of corrosion that occurs on the outer peripheral surface side of the refueling pipe main body 2. Can be slowed down.

また、給油管本体2の内周面側には、ニッケルメッキ層5が設けられているので、給油管本体2の内周面側の腐食に対する耐性を高くすることができるとともに、もし仮に腐食が発生したとしても、給油管本体2の内周面に亜鉛メッキ層や亜鉛系合金メッキ層を設けた場合のように亜鉛が溶出するといったことが無く、亜鉛が溶出することによる不具合の発生を防ぐことができる。 Further, since the nickel plating layer 5 is provided on the inner peripheral surface side of the refueling pipe main body 2, the resistance to corrosion on the inner peripheral surface side of the refueling pipe main body 2 can be increased, and if corrosion occurs. Even if it occurs, zinc does not elute as in the case where a zinc plating layer or a zinc-based alloy plating layer is provided on the inner peripheral surface of the oil supply pipe main body 2, and the occurrence of problems due to the elution of zinc is prevented. be able to.

さらに、給油管本体2を鋼管から形成するので、給油管本体2をステンレス材で形成する場合に比べて曲げ加工や拡管加工が行い易くなり、時効割れの不具合を避けることができるだけでなく、部品コストも低く抑えることができる。 Further, since the refueling pipe main body 2 is formed from a steel pipe, it is easier to perform bending and expansion processing as compared with the case where the refueling pipe main body 2 is made of stainless steel, and it is possible to avoid the problem of aging cracking as well as parts. The cost can also be kept low.

また、給油管本体2だけでなく、ブリーザチューブ3の外周面及び内周面においてもニッケルメッキ層5及びジンクリッチ塗装層6によって給油管本体2と同様に腐食に対する耐性を高くすることができる。また、ブリーザチューブ3においても、加工が行い易くなるとともに、時効割れの不具合をさけることができ、さらには、コストをかけずに形成することが可能となる。 Further, not only the oil supply pipe main body 2 but also the outer peripheral surface and the inner peripheral surface of the breather tube 3 can be made highly resistant to corrosion by the nickel plating layer 5 and the zinc rich coating layer 6 as well as the oil supply pipe main body 2. Further, the breather tube 3 can be easily processed, can avoid the problem of age cracking, and can be formed at no cost.

また、給油管本体2の外周面とブリーザチューブ3の外周面とにそれぞれニッケルメッキ層5を設けた状態でブリーザチューブ3を給油管本体2に接合すると、ニッケルの沸点が鉄の融点より高いので、溶接部3a内にニッケルガスが巻き込まれてブローホールになるといった不具合が発生しない。したがって、給油管本体2の外周面とブリーザチューブ3の外周面とにそれぞれ亜鉛メッキ層か亜鉛系合金メッキ層を設けた燃料給油管1のように、ブリーザチューブ3を給油管本体2に接合したときに、亜鉛ガスが溶接部3a内に巻き込まれてブローホールになるといったような不具合を防ぐことができ、給油管本体2とブリーザチューブ3とを強固に繋ぐことができる。また、溶接部3aの表面にジンクリッチ塗装層6が設けられるので、ジンクリッチ塗装層6内に含まれる亜鉛による犠牲防食作用によって溶接部3aの腐食に対する耐性を高くすることができる。 Further, when the breather tube 3 is joined to the refueling pipe main body 2 with the nickel plating layer 5 provided on the outer peripheral surface of the refueling pipe main body 2 and the outer peripheral surface of the breather tube 3, the boiling point of nickel is higher than the melting point of iron. , There is no problem that nickel gas is caught in the welded portion 3a and becomes a blow hole. Therefore, the breather tube 3 is joined to the refueling pipe main body 2 like the fuel refueling pipe 1 in which the outer peripheral surface of the refueling pipe main body 2 and the outer peripheral surface of the breather tube 3 are provided with a zinc plating layer or a zinc-based alloy plating layer, respectively. Occasionally, it is possible to prevent problems such as zinc gas being caught in the welded portion 3a and forming a blow hole, and the refueling pipe main body 2 and the breather tube 3 can be firmly connected. Further, since the zinc rich coating layer 6 is provided on the surface of the welded portion 3a, the resistance to corrosion of the welded portion 3a can be increased by the sacrificial anticorrosion action of zinc contained in the zinc rich coating layer 6.

尚、本発明の実施形態では、ニッケルメッキ層5の厚みを約3μmとしているが、0.25〜10μmであればよい。 In the embodiment of the present invention, the thickness of the nickel plating layer 5 is about 3 μm, but it may be 0.25 to 10 μm.

また、本発明の実施形態では、ジンクリッチ塗装層6の厚みを40μmとしているが、20〜80μmであればよい。 Further, in the embodiment of the present invention, the thickness of the zinc rich coating layer 6 is 40 μm, but it may be 20 to 80 μm.

また、本発明の実施形態では、給油管本体2とブリーザチューブ3とをMIGロウ付けによる溶接部3aで接続しているが、レーザロウ付けによる溶接部で接続してもよい。 Further, in the embodiment of the present invention, the oil supply pipe main body 2 and the breather tube 3 are connected by a welded portion 3a by MIG brazing, but they may be connected by a welded portion by laser brazing.

尚、上記給油管本体2及びブリーザチューブ3は、電気ニッケルメッキ処理か、或いは、無電解ニッケルメッキ処理によって両面にニッケルメッキ層5が設けられた鋼板を電縫管にし、各種加工を行った後、電縫管の外周面側に設けられたニッケルメッキ層5の表面にジンクリッチ塗装層6を設けるような製造手順であってもよいし、メッキ処理が施されていない鋼管に無電解ニッケルメッキ処理を行って外周面及び内周面にニッケルメッキ層5が設けた後、外周面側のニッケルメッキ層5の表面にジンクリッチ塗装層6を設けるような製造手順であってもよい。 The oil supply pipe main body 2 and the breather tube 3 are subjected to various processing by forming a steel plate having nickel plating layers 5 on both sides by electro-nickel plating treatment or electroless nickel plating treatment into an electric sewing pipe. , The manufacturing procedure may be such that the zinc rich coating layer 6 is provided on the surface of the nickel plating layer 5 provided on the outer peripheral surface side of the electrosewn pipe, or electroless nickel plating is applied to the unplated steel pipe. The manufacturing procedure may be such that the nickel plating layer 5 is provided on the outer peripheral surface and the inner peripheral surface after the treatment, and then the zinc rich coating layer 6 is provided on the surface of the nickel plating layer 5 on the outer peripheral surface side.

本発明は、車両の燃料タンクに燃料を給油する際の通路となる燃料給油管に適している。 The present invention is suitable for a fuel refueling pipe that serves as a passage for refueling a fuel tank of a vehicle.

1 燃料給油管
2 給油管本体
3 ブリーザチューブ
3a 溶接部
4 リテーナ
5 ニッケルメッキ層
6 ジンクリッチ塗装層
10 燃料タンク
1 Fuel refueling pipe 2 Refueling pipe body 3 Breather tube 3a Welded part 4 Retainer 5 Nickel plating layer 6 Zinc rich coating layer 10 Fuel tank

Claims (3)

自動車の燃料タンクに燃料を給油する際の通路となる燃料給油管であって、
一端側に短い筒状のリテーナが取り付けられ、且つ、他端が燃料タンクに接続された鋼材からなる円筒状の給油管本体を備え、
該給油管本体の外周面及び内周面には、それぞれニッケルメッキ層が設けられ、
上記給油管本体の外周面に設けられたニッケルメッキ層の表面には、ジンクリッチ塗装層が設けられていることを特徴とする燃料給油管。
A fuel refueling pipe that serves as a passage for refueling the fuel tank of an automobile.
A short cylindrical retainer is attached to one end side, and a cylindrical fuel pipe body made of steel material with the other end connected to a fuel tank is provided.
Nickel plating layers are provided on the outer peripheral surface and the inner peripheral surface of the oil supply pipe body, respectively.
A fuel refueling pipe characterized in that a zinc rich coating layer is provided on the surface of a nickel-plated layer provided on the outer peripheral surface of the refueling pipe main body.
請求項1に記載の燃料給油管において、
一端が上記給油管本体の一端側に接続され、且つ、他端が上記燃料タンクに接続された鋼材からなる細い円筒状のブリーザチューブを備え、
上記ニッケルメッキ層は、上記ブリーザチューブの外周面及び内周面にも設けられ、
上記ジンクリッチ塗装層は、上記ブリーザチューブの外周面に設けられたニッケルメッキ層の表面にも設けられていることを特徴とする燃料給油管。
In the fuel refueling pipe according to claim 1,
A thin cylindrical breather tube made of a steel material having one end connected to one end side of the fuel pipe body and the other end connected to the fuel tank is provided.
The nickel-plated layer is also provided on the outer peripheral surface and the inner peripheral surface of the breather tube.
The fuel refueling pipe is characterized in that the zinc rich coating layer is also provided on the surface of the nickel plating layer provided on the outer peripheral surface of the breather tube.
請求項2に記載の燃料給油管において、
上記ブリーザチューブの一端には、当該ブリーザチューブの外周面と上記給油管本体の外周面とを接続する溶接部が設けられ、
上記ジンクリッチ塗装層は、上記溶接部の表面にも設けられていることを特徴とする燃料給油管。
In the fuel refueling pipe according to claim 2.
At one end of the breather tube, a welded portion for connecting the outer peripheral surface of the breather tube and the outer peripheral surface of the oil supply pipe main body is provided.
The fuel oil supply pipe is characterized in that the zinc rich coating layer is also provided on the surface of the welded portion.
JP2016132722A 2016-07-04 2016-07-04 Fuel refueling pipe Active JP6886676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132722A JP6886676B2 (en) 2016-07-04 2016-07-04 Fuel refueling pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132722A JP6886676B2 (en) 2016-07-04 2016-07-04 Fuel refueling pipe

Publications (2)

Publication Number Publication Date
JP2018002002A JP2018002002A (en) 2018-01-11
JP6886676B2 true JP6886676B2 (en) 2021-06-16

Family

ID=60945282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132722A Active JP6886676B2 (en) 2016-07-04 2016-07-04 Fuel refueling pipe

Country Status (1)

Country Link
JP (1) JP6886676B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313611B2 (en) * 2018-01-25 2023-07-25 木田精工株式会社 High corrosion resistance plating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685110B2 (en) * 1991-09-27 1997-12-03 川崎製鉄株式会社 Surface-treated thick steel plate
MX2012003184A (en) * 2009-09-18 2012-07-03 Toyo Kohan Co Ltd Steel sheet used to manufacture pipe and having corrosion-resistant properties against fuel vapors, and pipe and fuel supply pipe that use same.
JP2013184499A (en) * 2012-03-06 2013-09-19 Asteer Co Ltd Fuel feed pipe

Also Published As

Publication number Publication date
JP2018002002A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP4014907B2 (en) Stainless steel fuel tank and fuel pipe made of stainless steel with excellent corrosion resistance
US7843298B2 (en) Power distribution transformer and tank therefor
TWI586836B (en) Steel plate for fuel tank
JP2009127126A (en) Steel sheet for fuel tank and its manufacturing method
JP5145897B2 (en) Corrosion resistant steel for cargo oil tanks
WO2012011384A1 (en) Steel fuel conveying pipe
JP6886676B2 (en) Fuel refueling pipe
JP2017115872A (en) Automobile member
TWI592516B (en) Fuel tank steel plate
US7473308B2 (en) Gel containing phosphate salts for passivation
WO2023021896A1 (en) Main metal fitting and spark plug
JP5392717B2 (en) Oiling pipe
JP5375798B2 (en) Steel plate for fuel tank and manufacturing method thereof
JP2006037220A (en) High chromium steel having excellent coating film adhesion and corrosion resistance under coating
JPS6160896A (en) Steel plate for vessel for alcohol or alcohol-containing fuel
JP2020193387A (en) Method for manufacturing metal component and metal component
JP2009113066A (en) Electric resistance welded steel pipe for oil supply pipe
JP4654714B2 (en) Manufacturing method of steel plate for fuel tank
RU196347U1 (en) STEEL OIL FIELD PIPE
JP7552245B2 (en) Paint-resistant welded joints and structures
Karthikeyan et al. Corrosion resistance improvement by aluminizing and heat resistance coating on mild steel as an alternate material to automotive exhaust components
Duran Combining Thermal Spray Zinc and Hot-Dip Galvanizing to Achieve an All-Metallic Zinc Coating System
RU74682U1 (en) PIPE WITH INTERNAL ANTI-CORROSION COATING
JP2023145267A (en) Welding member
JP5000103B2 (en) Automotive fuel tank or fuel pipe with excellent durability in salt damage environments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210205

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6886676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250