JP6886191B2 - Yeast showing high yield of ribonucleic acid - Google Patents

Yeast showing high yield of ribonucleic acid Download PDF

Info

Publication number
JP6886191B2
JP6886191B2 JP2018233950A JP2018233950A JP6886191B2 JP 6886191 B2 JP6886191 B2 JP 6886191B2 JP 2018233950 A JP2018233950 A JP 2018233950A JP 2018233950 A JP2018233950 A JP 2018233950A JP 6886191 B2 JP6886191 B2 JP 6886191B2
Authority
JP
Japan
Prior art keywords
strain
rna
yeast
yield
mutant strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018233950A
Other languages
Japanese (ja)
Other versions
JP2020092671A (en
Inventor
拓也 岸本
拓也 岸本
聖人 太田
聖人 太田
和也 石毛
和也 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Corp
Original Assignee
Yamasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Corp filed Critical Yamasa Corp
Priority to JP2018233950A priority Critical patent/JP6886191B2/en
Publication of JP2020092671A publication Critical patent/JP2020092671A/en
Application granted granted Critical
Publication of JP6886191B2 publication Critical patent/JP6886191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、リボ核酸高収量を示す酵母に関するものである。 The present invention relates to yeasts that exhibit high yields of ribonucleic acid.

RNA(リボ核酸)は、旨味調味料、機能性食品や医薬品の原料として使用されている。そのため、RNAを効率よく製造する技術は、産業上重要である。 RNA (ribonucleic acid) is used as a raw material for umami seasonings, functional foods and pharmaceuticals. Therefore, a technique for efficiently producing RNA is industrially important.

RNAを製造するには、酵母を炭素源、窒素源、リン源を含む培地で培養し、酵母菌体からRNAを抽出する方法が一般的に用いられている。RNAを効率よく製造する試みは以前から多く見られ、例えば、酵母菌体のRNA含量を高める方法や、得られた酵母菌体内のRNAを効率よく抽出する方法などである。 In order to produce RNA, a method of culturing yeast in a medium containing a carbon source, a nitrogen source and a phosphorus source and extracting RNA from yeast cells is generally used. Many attempts have been made to efficiently produce RNA, such as a method for increasing the RNA content of yeast cells and a method for efficiently extracting the obtained RNA in yeast cells.

前者の例としては、実用的には菌株の育種が主に行われており、ラパマイシンに耐性を有する変異株を取得する方法(特許文献1)、塩化カリウムに感受性を示す変異株を取得する方法(非特許文献1)、低温環境下で生育が著しく阻害される変異株を探索する方法(特許文献2)、チアジン・オキサジン系色素、およびアクリジン系色素に対する耐性を有する変異株を探索する方法(特許文献3)、Rrn10欠損株で生育のよい株に対して、Rrn10遺伝子を再導入する方法(特許文献4)、FOB1遺伝子を欠損された株を得る方法(特許文献5)などが挙げられる。 As an example of the former, in practice, strains are mainly bred, and a method for obtaining a mutant strain resistant to rapamycin (Patent Document 1) and a method for obtaining a mutant strain sensitive to potassium chloride. (Non-Patent Document 1), a method for searching for a mutant strain whose growth is significantly inhibited in a low temperature environment (Patent Document 2), a method for searching for a mutant strain having resistance to a thiazine / oxazine dye and an acrydin dye (Patent Document 2). Patent Document 3), a method of reintroducing the Rrn10 gene into a strain that grows well with an Rrn10-deficient strain (Patent Document 4), a method of obtaining a strain lacking the FOB1 gene (Patent Document 5), and the like can be mentioned.

後者としては、界面活性剤とともに酵母菌体を加熱する方法(特許文献6)、苛性ソーダなどのアルカリ溶液中で抽出する、もしくはアルカリで前処理して酸で中和して生成する塩の存在下で加温抽出する方法(特許文献7)などが知られているが、廉価で、高品質なRNAを取得する手法として、弱酸性条件下、40〜60℃にて処理された菌体を中和し、塩水を加えて、95℃加熱抽出する方法があげられ(特許文献8)、工業規模の生産では本法がよく採用されている。 The latter includes a method of heating yeast cells together with a surfactant (Patent Document 6), extraction in an alkaline solution such as caustic soda, or pretreatment with alkali and neutralization with acid in the presence of a salt produced. (Patent Document 7) and the like are known, but as a method for obtaining high-quality RNA at a low cost, cells treated at 40 to 60 ° C. under weakly acidic conditions are neutralized. A method of adding salt water to the mixture and heating and extracting at 95 ° C. is mentioned (Patent Document 8), and this method is often adopted in industrial scale production.

特開2016−214104号JP-A-2016-214104 特公昭56−46824号Tokukousho 56-46824 特公昭48−32350号Tokukousho No. 48-32350 特開2009−50247号JP-A-2009-50247 特開2007−75013号JP-A-2007-75013 特公昭45−33657号Tokukousho No. 45-33657 特公昭38−8140号Tokukousho 38-8140 特公昭52−18200号Tokukousho 52-18200

土井等,日農化講演要旨、P347(1974)Doi et al., Abstract of Nihon Agricultural Chemistry, P347 (1974)

前述した公知の菌株育種方法においては、親株と比較してRNA高収量を示す酵母の選抜効率は十分でなく、目的の株を取得するまでに多大な労力及び時間が必要だという問題点があった。
したがって、本発明の課題は、RNA高収量を示す酵母の効率的な選抜法を確立し、することにある。
In the above-mentioned known strain breeding method, there is a problem that the selection efficiency of yeast showing high RNA yield is not sufficient as compared with the parent strain, and a great deal of labor and time are required to obtain the target strain. It was.
Therefore, an object of the present invention is to establish and establish an efficient selection method for yeast showing high RNA yield.

発明者らは、上記のような課題を解決すべく、酵母を用いたRNAの製造方法を検討する中で、バニリン耐性を有する酵母変異株を選抜することで、RNA高収量を示す株を効率的に取得することができることを見出し、本発明を完成するに至った。 In order to solve the above problems, the inventors are studying a method for producing RNA using yeast, and by selecting a yeast mutant strain having vanillin resistance, a strain showing a high RNA yield is efficiently produced. We have found that it can be obtained as a target, and have completed the present invention.

本発明の方法によれば、親株に比べてRNA高収量を示す酵母変異株を、既存の変異株取得方法と比較して極めて高い効率で取得することができる。さらに、本発明によって取得されたRNA高収量を示す株は、培養のスケールを大きくしても安定してRNA高収量を示すことから、工業的なRNA生産に好適である。 According to the method of the present invention, a yeast mutant strain showing a higher RNA yield than the parent strain can be obtained with extremely high efficiency as compared with the existing mutant strain acquisition method. Furthermore, the strain exhibiting high RNA yield obtained by the present invention is suitable for industrial RNA production because it stably exhibits high RNA yield even when the scale of culture is increased.

本明細書においてRNA収量とは、抽出されたRNA量を元の培養液あたりの重量濃度で示した値(g/L)をいう。 In the present specification, the RNA yield refers to a value (g / L) indicating the amount of extracted RNA in terms of weight concentration per original culture medium.

酵母としては、食品や医薬品原料の製造に通常用いることが可能なキャンディダ属酵母が挙げられる。さらなる具体例としては、キャンディダ属の例としてキャンディダ・ユティリス(Candida utilis)やキャンディダ・トロピカリス(Candida tropicalis)、などを挙げることができる。 Examples of yeast include Candida yeast that can be usually used in the production of food and pharmaceutical raw materials. As a further specific example, examples of the genus Candida include Candida utilis and Candida tropicalis.

本発明に用いる親株としては、供与株や一般的な野生株に加え、公知の育種法にて取得されたRNA高収量の株を用いることができる。公知の育種法としては、前述の通りラパマイシンに耐性を有する変異株を取得する方法、塩化カリウムに感受性を示す変異株を取得する方法、低温環境下で生育が著しく阻害される変異株を探索する方法、チアジン・オキサジン系色素、およびアクリジン系色素に対する耐性を有する変異株を探索する方法、Rrn10欠損株で生育のよい株に対してRrn10遺伝子を再導入する方法、FOB1遺伝子を欠損された株を得る方法、などを挙げることができるが、当然これらに限定されない。
親株は、上記の育種法のうち1つを用いて取得された株でもよいし、複数の方法を組み合わせて複数の選抜を経た株でもよい。
As the parent strain used in the present invention, in addition to the donor strain and a general wild strain, a strain having a high RNA yield obtained by a known breeding method can be used. As a known breeding method, as described above, a method for obtaining a mutant strain resistant to rapamycin, a method for obtaining a mutant strain sensitive to potassium chloride, and a mutant strain whose growth is significantly inhibited in a low temperature environment are searched for. Method, method for searching for mutant strains resistant to thiazine / oxazine dyes, and aclysine dyes, method for reintroducing the Rrn10 gene into a strain that grows well with an Rrn10-deficient strain, and a strain lacking the FOB1 gene. The method of obtaining, etc. can be mentioned, but of course, the method is not limited to these.
The parent strain may be a strain obtained by using one of the above breeding methods, or may be a strain that has undergone a plurality of selections by combining a plurality of methods.

本発明は(1)酵母に変異原処理を行う工程、(2)バニリン耐性を有する酵母変異株を選抜する工程、(3)選抜された株の中から、親株よりもRNA収量の高い株を取得する工程、を含む、高いRNA収量を示す酵母変異株の取得方法によって取得されるキャンディダ属酵母変異株に関するものである。
なお、高いRNA収量を示す酵母変異株とは、親株と比較したときにRNA収量が1.10倍以上である変異株のことをいう。
In the present invention, a strain having a higher RNA yield than the parent strain is selected from (1) a step of subjecting yeast to a mutagen treatment, (2) a step of selecting a yeast mutant strain having vanillin resistance, and (3) a selected strain. It relates to a yeast mutant of the genus Candida obtained by a method for obtaining a yeast mutant showing a high RNA yield, which comprises a step of obtaining.
The yeast mutant strain showing a high RNA yield is a mutant strain having an RNA yield of 1.10 times or more as compared with the parent strain.

(1)の変異原処理の方法は、特に限定されないが、紫外線や電離放射線などによる物理的な方法や、亜硝酸、ニトロソグアニジン、メタンスルホン酸メチルを用いた化学的な方法など、公知の方法を用いればよい。 The method of mutagen treatment of (1) is not particularly limited, but is known, such as a physical method using ultraviolet rays or ionizing radiation, or a chemical method using nitrite, nitrosoguanidine, or methyl methanesulfonate. Should be used.

(2)のバニリンに対する耐性を有する変異株を選抜する方法としては、バニリンを含む寒天培地上に酵母を播種し、生存する株を選抜すればよい。このバニリンの濃度としては、500ppm以上2000ppm以下であればよく、750ppm以上1500ppm以下が好ましく、1000ppm以上1500ppm以下がさらに好ましい。 As a method for selecting a mutant strain having resistance to vanillin in (2), yeast may be sown on an agar medium containing vanillin and a surviving strain may be selected. The concentration of vanillin may be 500 ppm or more and 2000 ppm or less, preferably 750 ppm or more and 1500 ppm or less, and more preferably 1000 ppm or more and 1500 ppm or less.

工程(1)と(2)は、(1)(2)の順に実施することもでき、または同時に行うこともできる。(1)(2)を同時に行う際には、バニリンを含有する寒天培地に酵母の親株を播種し、寒天培地上の当該親株に対して紫外線照射を行うなどして変異原処理を行えばよい。その後、培地上にコロニーを形成する株を選抜することで、バニリン耐性を有する変異株を選抜することができる。 Steps (1) and (2) can be carried out in the order of (1) and (2), or can be carried out at the same time. When performing (1) and (2) at the same time, the parent strain of yeast may be sown on an agar medium containing vanillin, and the parent strain on the agar medium may be irradiated with ultraviolet rays to perform mutagen treatment. .. Then, by selecting a strain that forms a colony on the medium, a mutant strain having vanillin resistance can be selected.

(3)のRNA収量の高い株を取得する方法としては、特に限定されないが、たとえばバニリン耐性変異株をフラスコ内で小スケール培養し、酵母菌体から所定の方法でRNA抽出を行い、HPLC等の手法によりRNAを定量するなどして、親株よりRNA収量の高い株を選抜することができる。 The method for obtaining the strain having a high RNA yield in (3) is not particularly limited, but for example, a vanillin-resistant mutant strain is cultured on a small scale in a flask, RNA is extracted from yeast cells by a predetermined method, HPLC or the like. A strain having a higher RNA yield than the parent strain can be selected by quantifying RNA by the above method.

RNAの抽出方法については、公知の方法に従えばよい。たとえば、培養液を遠心分離して菌体を濃縮した後、塩酸等による酸性条件下で加熱処理する。その後、上清を除き、沈殿物に水を加えて濃縮スラリーを調製し、アルカリで中和させた後、塩化ナトリウム等の塩を加えて加熱処理する。得られた加熱処理物を遠心分離に供し、上清を回収することによりRNA抽出液を得ることができる。 As for the method of extracting RNA, a known method may be followed. For example, the culture solution is centrifuged to concentrate the cells, and then heat-treated under acidic conditions such as hydrochloric acid. Then, the supernatant is removed, water is added to the precipitate to prepare a concentrated slurry, neutralized with alkali, and then a salt such as sodium chloride is added for heat treatment. An RNA extract can be obtained by subjecting the obtained heat-treated product to centrifugation and collecting the supernatant.

取得したRNA抽出液におけるRNA量は、HPLC等の公知の方法により、定量することができる。
RNA量を定量し、元の培養液あたりの重量濃度で表すことで、RNA収量を算出することができる。
The amount of RNA in the obtained RNA extract can be quantified by a known method such as HPLC.
The RNA yield can be calculated by quantifying the amount of RNA and expressing it by the weight concentration per original culture medium.

この方法によれば、単に酵母に変異原処理を行い、RNA高収量を示す株を選抜するだけの方法や、公知のRNA高含量を示す株の取得方法(たとえば、ラパマイシン耐性株を取得する方法(特許文献1))に比べて、極めて効率よくRNA高収量を示す株を取得することができる。 According to this method, a method of simply performing mutagen treatment on yeast and selecting a strain showing a high RNA yield, or a method of obtaining a strain showing a known high RNA content (for example, a method of obtaining a rapamycin-resistant strain). Compared with (Patent Document 1)), it is possible to obtain a strain showing a high RNA yield extremely efficiently.

本発明では、さらに取得した酵母変異株を好気培養し、培養した酵母よりRNAを抽出することによるRNAの製造法が提供される。RNA製造においては、前述の方法で得られたバニリン耐性変異株を炭素源、窒素源および無機塩等を含む培地で好気的に培養すればよい。 The present invention provides a method for producing RNA by further aerobically culturing the obtained yeast mutant strain and extracting RNA from the cultured yeast. In RNA production, the vanillin-resistant mutant strain obtained by the above method may be aerobically cultured in a medium containing a carbon source, a nitrogen source, an inorganic salt and the like.

菌株を培養する培地組成としては、炭素源として通常の微生物の培養に利用されるグルコース、蔗糖、酢酸、エタノール、糖蜜および亜硫酸パルプ廃液等からなる群より選抜される、1種または2種以上が用いられ、窒素源としては硝酸およびその塩、尿素、アンモニア、およびその塩、およびコーンスティープリカー、カゼイン、酵母エキスもしくはペプトン等の含窒素有機物等からなる群より選ばれる1あるいは2種以上が使用される。さらに、リン酸成分、カリウム成分、マグネシウム成分を培地に添加してもよく、これらとしてはリン酸一アンモニウム、リン酸、過リン酸石灰、水酸化カリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム等の工業用原料でよい。その他、亜鉛、銅、マンガン、鉄イオン等の無機イオンを添加してもよい。さらに、ビタミン、核酸関連物質等を添加してもよい。 As the medium composition for culturing the strain, one or more selected from the group consisting of glucose, corn steep liquor, acetic acid, ethanol, sugar honey, sulfite pulp waste liquid, etc., which are used for culturing ordinary microorganisms as a carbon source, are used. As the nitrogen source, one or more selected from the group consisting of nitrate and its salt, urea, ammonia, and its salt, and nitrogen-containing organic substances such as corn steep liquor, casein, yeast extract, and peptone are used. Will be done. Further, a phosphoric acid component, a potassium component, and a magnesium component may be added to the medium, such as monoammonium phosphate, phosphoric acid, lime superphosphate, potassium hydroxide, potassium chloride, magnesium chloride, magnesium sulfate, and the like. It may be an industrial raw material. In addition, inorganic ions such as zinc, copper, manganese, and iron ions may be added. Further, vitamins, nucleic acid-related substances and the like may be added.

培養形式としては、特に限定されず、回分培養、流加培養あるいは連続培養のいずれであってもよい。
培養装置としては、公知のものを制限なく用いることができるが、工業的にRNA生産を行う際には、そのスケールや利便性から、ファーメンターを用いて培養を行うことが好ましい。
The culture form is not particularly limited, and may be any of batch culture, fed-batch culture, and continuous culture.
As the culturing apparatus, known ones can be used without limitation, but when RNA is produced industrially, it is preferable to cultivate using a fermenter because of its scale and convenience.

培養温度は一般的な酵母の培養条件に従えばよく、たとえば20〜40℃、望ましくは25〜35℃がよく、pHについては2.5〜8.0、望ましくは2.8〜6.0がよい。 The culturing temperature may be in accordance with general yeast culturing conditions, for example, 20 to 40 ° C., preferably 25 to 35 ° C., and the pH is 2.5 to 8.0, preferably 2.8 to 6.0. Is good.

以下に実施例を挙げて、本発明を説明する。なお、本発明はこれら実施例により限定されるものではない。 The present invention will be described below with reference to examples. The present invention is not limited to these examples.

(実施例1)バニリン耐性を指標とした変異株の取得
キャンディダ・ユティリスNBRC0988株を親株に用いて、以下の方法により、変異株の取得を行った。
当該親株を、YM培地(0.3%酵母エキス、0.3%麦芽エキス、0.5%カゼインペプトン、1%グルコース、2%寒天)を含むフラスコにて1昼夜培養した。培養した菌体を回収し、1000ppmまたは1500ppmのバニリンを含む、グルコースを唯一の炭素源とした寒天培地に播種し、紫外線照射(UVランプ:Panasonic GL−15、波長253.7nm)により、致死率70−80%となるような条件で変異処理を行った。変異処理した寒天培地を1500ppmのバニリン含有培地で3〜7昼夜30℃で培養し、耐性株のコロニー形成を確認した。
(Example 1) Acquisition of mutant strain using vanillin resistance as an index Using the Candida Utilis NBRC0988 strain as a parent strain, a mutant strain was acquired by the following method.
The parent strain was cultured day and night in a flask containing YM medium (0.3% yeast extract, 0.3% malt extract, 0.5% casein peptone, 1% glucose, 2% agar). The cultured cells are collected, seeded on an agar medium containing 1000 ppm or 1500 ppm of vanillin and using glucose as the sole carbon source, and subjected to ultraviolet irradiation (UV lamp: Panasonic GL-15, wavelength 253.7 nm) to cause lethality. Mutation treatment was performed under conditions of 70-80%. The mutant-treated agar medium was cultured in a 1500 ppm vanillin-containing medium at 30 ° C. for 3 to 7 days and nights, and colony formation of resistant strains was confirmed.

NBRC0988株より得られた100株の耐性株を、40mLのYM培地を含む500mLフラスコで培養し、得られた菌体培養液酵母を培養して得られた培養液から、乾燥菌体重量が10〜15%となるように遠心分離で菌体を濃縮した後、50±10℃に加温し、pH2.0〜3.5となるよう塩酸を添加して加熱処理を行った。遠心分離上清を除き、沈殿物に対して水を加えて、もとの培養液の15%量にけん濁液を調製した。けん濁液に30%水酸化ナトリウム水溶液を加えてpH6.5〜7.0に中和した後、食塩を4%となるよう添加し、90±5℃にて加熱処理した。得られた加熱処理物を遠心分離に供し、上清を回収した。沈殿物に対して、加熱処理液と等量の水を加えて再けん濁させ、再度遠心分離に供して上清を回収した。回収した上清をあわせることで、RNA抽出液を取得した。 100 resistant strains obtained from the NBRC0988 strain were cultured in a 500 mL flask containing 40 mL of YM medium, and the obtained bacterial cell culture solution yeast was cultured to obtain a dry cell weight of 10 from the culture solution. After concentrating the cells by centrifugation to a concentration of ~ 15%, the cells were heated to 50 ± 10 ° C., and hydrochloric acid was added to a pH of 2.0 to 3.5 for heat treatment. Centrifugation supernatant was removed and water was added to the precipitate to prepare a turbid solution in 15% of the original culture solution. A 30% aqueous sodium hydroxide solution was added to the turbid solution to neutralize the pH to 6.5 to 7.0, salt was added to a concentration of 4%, and the mixture was heat-treated at 90 ± 5 ° C. The obtained heat-treated product was subjected to centrifugation and the supernatant was collected. The precipitate was resuspended by adding an equal amount of water to the heat treatment solution, and subjected to centrifugation again to recover the supernatant. The RNA extract was obtained by combining the collected supernatants.

得られたRNA抽出液を適当に希釈し、ゲル浸潤高圧液体クロマトグラフィー(以下GPC−HPLC)に供した。HPLCカラムにはTSKgel G3000PWXLを、移動層として7M 尿素・50mM Tris−HCl(pH7.5)溶液を用いた。高分子領域における260nm紫外光吸収物質を検出する。あらかじめシュミット・タンホイザー・シュナイダーの方法[J.Biol.Chem.1946、164、747](以下STS法)により定量しておいたRNA溶液を同様の分析に供することで、その紫外吸収ピーク面積から、抽出液中のRNA量を定量した。
上記方法によって、取得された変異株のRNA収量を算出し、RNA収量が親株に比べて高い株を選抜した。
The obtained RNA extract was appropriately diluted and subjected to gel infiltration high performance liquid chromatography (hereinafter referred to as GPC-HPLC). TSKgel G3000PW XL was used as the HPLC column, and a 7M urea / 50 mM Tris-HCl (pH 7.5) solution was used as the moving layer. A 260 nm ultraviolet light absorbing substance in the polymer region is detected. Schmidt Tannhäuser Schneider's method [J. Biol. Chem. The RNA solution quantified by 1946, 164, 747] (hereinafter referred to as the STS method) was subjected to the same analysis, and the amount of RNA in the extract was quantified from the area of the ultraviolet absorption peak.
The RNA yield of the obtained mutant strain was calculated by the above method, and a strain having a higher RNA yield than the parent strain was selected.

本実施例1の結果、親株であるNBRC0988株から、収量が1.10倍以上に向上した株を14株取得した。 As a result of this Example 1, 14 strains whose yield was improved by 1.10 times or more were acquired from the parent strain NBRC0988.

(実施例2)公知のスクリーニング方法との比較
本発明の方法と、公知のRNA高収量を示す変異株取得方法とを比較した。比較対象として、KCl法、ラパマイシン法を選択した。
KCl法及びラパマイシン法については、それぞれ非特許文献1又は特許文献1に記載の方法に従って変異株取得を行った。KCl法では680株のKCl耐性変異株を、ラパマイシン法では560株のラパマイシン耐性変異株を取得した。
(Example 2) Comparison with a known screening method The method of the present invention was compared with a known method for obtaining a mutant strain showing high RNA yield. The KCl method and the rapamycin method were selected as comparison targets.
For the KCl method and the rapamycin method, mutant strains were obtained according to the methods described in Non-Patent Document 1 or Patent Document 1, respectively. The KCl method obtained 680 KCl-resistant mutants, and the rapamycin method obtained 560 rapamycin-resistant mutants.

NBRC0988株より得られた各耐性変異株を、40mLのYM培地を含む500mLフラスコで培養し、得られた菌体培養液酵母を培養して得られた培養液から、乾燥菌体重量が10〜15%となるように遠心分離で菌体を濃縮した後、50±10℃に加温し、pH2.0〜3.5となるよう塩酸を添加して加熱処理を行った。遠心分離上清を除き、沈殿物に対して水を加えて、もとの培養液の15%量にけん濁液を調製した。けん濁液に30%水酸化ナトリウム水溶液を加えてpH6.5〜7.0に中和した後、食塩を4%となるよう添加し、90±5℃にて加熱処理した。得られた加熱処理物を遠心分離に供し、上清を回収した。沈殿物に対して、加熱処理液と等量の水を加えて再けん濁させ、再度遠心分離に供して上清を回収した。回収した上清をあわせることで、RNA抽出液を取得した。 Each resistant mutant strain obtained from the NBRC0988 strain was cultured in a 500 mL flask containing 40 mL of YM medium, and the obtained bacterial cell culture solution yeast was cultured to obtain a culture solution having a dry cell weight of 10 to 10. After concentrating the cells by centrifugation to 15%, the cells were heated to 50 ± 10 ° C., and hydrochloric acid was added to adjust the pH to 2.0 to 3.5 for heat treatment. Centrifugation supernatant was removed and water was added to the precipitate to prepare a turbid solution in 15% of the original culture solution. A 30% aqueous sodium hydroxide solution was added to the turbid solution to neutralize the pH to 6.5 to 7.0, salt was added to a concentration of 4%, and the mixture was heat-treated at 90 ± 5 ° C. The obtained heat-treated product was subjected to centrifugation and the supernatant was collected. The precipitate was resuspended by adding an equal amount of water to the heat treatment solution, and subjected to centrifugation again to recover the supernatant. The RNA extract was obtained by combining the collected supernatants.

得られたRNA抽出液を適当に希釈し、ゲル浸潤高圧液体クロマトグラフィー(以下GPC−HPLC)に供した。HPLCカラムにはTSKgel G3000PWXLを、移動層として7M 尿素・50mM Tris−HCl(pH7.5)溶液を用いた。高分子領域における260nm紫外光吸収物質を検出する。あらかじめシュミット・タンホイザー・シュナイダーの方法[J.Biol.Chem.1946、164、747](以下STS法)により定量しておいたRNA溶液を同様の分析に供することで、その紫外吸収ピーク面積から、抽出液中のRNA量を定量した。
上記方法によって、実施例1と同様それぞれ取得された変異株のRNA収量を算出し、RNA収量が親株に比べて高い株を選抜した。
The obtained RNA extract was appropriately diluted and subjected to gel infiltration high performance liquid chromatography (hereinafter referred to as GPC-HPLC). TSKgel G3000PW XL was used as the HPLC column, and a 7M urea / 50 mM Tris-HCl (pH 7.5) solution was used as the moving layer. A 260 nm ultraviolet light absorbing substance in the polymer region is detected. Schmidt Tannhäuser Schneider's method [J. Biol. Chem. The RNA solution quantified by 1946, 164, 747] (hereinafter referred to as the STS method) was subjected to the same analysis, and the amount of RNA in the extract was quantified from the area of the ultraviolet absorption peak.
By the above method, the RNA yields of the obtained mutant strains were calculated in the same manner as in Example 1, and strains having a higher RNA yield than the parent strain were selected.

上記の各変異株取得方法を用いてRNA高収量を示す変異株を選抜した結果を、表1に示す。 Table 1 shows the results of selecting mutant strains showing high RNA yield using each of the above mutant strain acquisition methods.

Figure 0006886191
Figure 0006886191

KCl法では、取得した680株の中に、RNA収量が親株の1.10倍以上に向上した株は存在しなかった。
ラパマイシン法では、取得した560株の中に、RNA収量が親株の1.10倍以上に向上した株が3株存在した。
In the KCl method, none of the 680 strains obtained had an RNA yield improved by 1.10 times or more of that of the parent strain.
In the rapamycin method, among the 560 strains obtained, there were 3 strains in which the RNA yield was improved to 1.10 times or more of that of the parent strain.

以上の結果から、本発明の方法は、RNA高収量を示す酵母変異株を、公知のRNA高含量を示す株の取得方法であるKCl法及びラパマイシン法の10倍以上の効率で取得できることが明らかになった。 From the above results, it is clear that the method of the present invention can obtain a yeast mutant strain showing a high RNA yield with an efficiency of 10 times or more that of the KCl method and the rapamycin method, which are methods for obtaining a strain showing a known high RNA content. Became.

(実施例3)本願発明により取得された変異株を用いた工業的RNA生産検討
工業的RNA生産を行う際には、小スケールにおいてはRNA高収量を示すが、スケールアップを行った際にはRNA収量が低下する株が見出され、しばしば問題となる。
そこで、本実施例3においては、実施例1で取得した変異株を用いた工業的なRNA生産の実現可能性を検討するために、培養をスケールアップし、ファーメンターを用いて回分培養を行った。
(Example 3) Examination of industrial RNA production using the mutant strain obtained by the present invention When industrial RNA production is performed, RNA yield is high on a small scale, but when scale-up is performed, the RNA yield is high. Strains with reduced RNA yields have been found and are often problematic.
Therefore, in this Example 3, in order to examine the feasibility of industrial RNA production using the mutant strain obtained in Example 1, the culture was scaled up and batch culture was performed using a fermenter. It was.

検討には、実施例1にて取得したRNA高収量変異株であるNV−9(実施例1におけるRNA収量:親株比1.11倍)と、NV−42(実施例1におけるRNA収量:親株比1.16倍)と、NV−46(実施例1におけるRNA収量:親株比1.12倍)の3株を用いた。上記3株をあらかじめフラスコ内で種培養しておき、3Lファーメンターへ植菌して回分培養を行った。
培地組成は4.2%グルコース、0.2%塩化カリウム、600ppm 硫酸マグネシウム・7水和物、8.3ppm 塩化鉄(III)・6水和物、6.3ppm 塩化マンガン4水和物、0.5ppm 硫酸銅・5水和物、10ppm硫酸亜鉛・7水和物、2.2g/L リン酸一アンモニウム、 5g/L 硫酸アンモニウム、0.025% Adekanol LG−109とした。培養条件は、培地液量1.5L、液温30℃、攪拌回転速度1000rpm、通気1.3vvmとし、溶存酸素量が0.2mg/Lを下回らないように、状況に応じて酸素ガスを通気した。また、pH3.2以上を維持するように14%のアンモニア水を滴下し、pHを維持した。
得られた培養液から、前述の方法によってRNA抽出液を得て、RNA収量を算出した。
For examination, NV-9 (RNA yield in Example 1: 1.11 times the parent strain ratio) and NV-42 (RNA yield in Example 1: parent strain), which are RNA high-yield mutants obtained in Example 1, were examined. Three strains of NV-46 (RNA yield in Example 1: 1.12 times the parent strain ratio) were used. The above three strains were seed-cultured in a flask in advance, inoculated into a 3 L fermenter, and subjected to batch culture.
The medium composition is 4.2% glucose, 0.2% potassium chloride, 600ppm magnesium sulfate heptahydrate, 8.3ppm iron (III) chloride hexahydrate, 6.3ppm manganese chloride tetrahydrate, 0 .5 ppm copper sulphate / pentahydrate, 10 ppm zinc sulphate / heptahydrate, 2.2 g / L monoammonium phosphate, 5 g / L ammonium sulphate, 0.025% Adekanol LG-109. The culture conditions were medium liquid volume 1.5 L, liquid temperature 30 ° C., stirring rotation speed 1000 rpm, aeration 1.3 vvm, and oxygen gas was aerated depending on the situation so that the dissolved oxygen amount did not fall below 0.2 mg / L. did. In addition, 14% aqueous ammonia was added dropwise to maintain the pH at 3.2 or higher.
From the obtained culture broth, an RNA extract was obtained by the above-mentioned method, and the RNA yield was calculated.

本実施例の結果、それぞれの菌株培養液より得られた抽出液中の、親株RNA収量に対する変異株RNA収量比は、表2のとおりであった。 As a result of this example, the ratio of the mutant RNA yield to the parent RNA yield in the extract obtained from each strain culture solution was as shown in Table 2.

Figure 0006886191
Figure 0006886191

本発明によりNBRC0988株から得られた3株は、いずれも安定して、小スケールと同等の親株比1.10倍以上のRNA高収量を示した。
本実施例の結果から、本発明によって選抜された変異株は、ファーメンター培養においても、安定してRNA高収量を示すことが明らかとなった。
All three strains obtained from the NBRC0988 strain according to the present invention were stable and showed a high RNA yield of 1.10 times or more as compared with the parent strain, which was equivalent to that of the small scale.
From the results of this example, it was clarified that the mutant strain selected by the present invention stably showed high RNA yield even in fermenter culture.

以上より、本発明によって、親株に比べてRNA高収量を示す酵母変異株を、既存の変異株取得方法と比較して極めて高い効率で取得することができることが明らかとなった。
加えて、本発明によって取得されたRNA高収量を示す株は、培養のスケールを大きくしても安定してRNA高収量を示すことから、工業的なRNA生産に好適であることが明らかとなった。
From the above, it was clarified that according to the present invention, a yeast mutant strain showing a higher RNA yield than the parent strain can be obtained with extremely high efficiency as compared with the existing mutant strain acquisition method.
In addition, the strain showing high RNA yield obtained by the present invention stably shows high RNA yield even when the scale of culture is increased, and thus it is clear that it is suitable for industrial RNA production. It was.

Claims (2)

下記(1)〜(3)の工程を含む親株に比べてRNA収量が向上したキャンディダ属酵母変異株の取得方法
(1)酵母に変異原処理を行う工程、
(2)変異原処理した酵母菌株の中から、バニリン耐性を有する変異株を選抜する工程、
(3)選抜された株の中から、親株よりもRNA収量の高い株を取得する工程。
A method for obtaining a Candida yeast mutant strain, which comprises the following steps (1) to (3) and has an improved RNA yield as compared with the parent strain.
(1) Step of mutagen treatment of yeast,
(2) A step of selecting a mutant strain having vanillin resistance from the yeast strains treated with mutagens.
(3) A step of obtaining a strain having a higher RNA yield than the parent strain from the selected strains.
請求項1に記載の方法で酵母変異株を取得する工程、
取得した酵母変異株を好気的に培養する工程、
培養した酵母よりRNAを抽出する工程、
を含むことを特徴とする、RNAの製造方法。
The step of obtaining a yeast mutant strain by the method according to claim 1.
Step of aerobically culturing the acquired yeast mutant strain,
The process of extracting RNA from cultured yeast,
A method for producing RNA, which comprises.
JP2018233950A 2018-12-14 2018-12-14 Yeast showing high yield of ribonucleic acid Active JP6886191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233950A JP6886191B2 (en) 2018-12-14 2018-12-14 Yeast showing high yield of ribonucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233950A JP6886191B2 (en) 2018-12-14 2018-12-14 Yeast showing high yield of ribonucleic acid

Publications (2)

Publication Number Publication Date
JP2020092671A JP2020092671A (en) 2020-06-18
JP6886191B2 true JP6886191B2 (en) 2021-06-16

Family

ID=71083878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233950A Active JP6886191B2 (en) 2018-12-14 2018-12-14 Yeast showing high yield of ribonucleic acid

Country Status (1)

Country Link
JP (1) JP6886191B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299078A4 (en) * 1987-01-22 1989-09-11 Kohjin Co Yeast extract and process for its preparation.
JP5637507B2 (en) * 2008-03-31 2014-12-10 興人ライフサイエンス株式会社 Yeast mutants and yeast extracts
ES2715894T3 (en) * 2014-04-14 2019-06-06 Toray Industries Procedure for the production of chemical substances by continuous fermentation
JP6172814B2 (en) * 2015-05-15 2017-08-02 ヤマサ醤油株式会社 Method for producing yeast exhibiting high ribonucleic acid yield

Also Published As

Publication number Publication date
JP2020092671A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
CN110591990B (en) High-riboflavin-yield engineering strain and application thereof
DK2258831T3 (en) GERMMUTANT AND Yeast extract
CN107267576A (en) The method that microbial fermentation produces N acetyl D Glucosamines and/or D glucosamine salts
WO2017150304A1 (en) Fermentation product of ergothioneine
WO1988005267A1 (en) Yeast extract and process for its preparation
JP3519572B2 (en) Yeast extract composition and yeast mutant for obtaining the same
JP5102076B2 (en) A Saccharomyces cerevisiae mutant and a method for producing a yeast with a high RNA content using the mutant.
KR101167345B1 (en) Mutant yeast, method of producing glutathione-rich yeast, culture thereof, fraction thereof, yeast extract and glutathione-containing foods and drinks
JP6886191B2 (en) Yeast showing high yield of ribonucleic acid
WO2008020595A1 (en) Novel method for utilization of microbial mutant
JP6172814B2 (en) Method for producing yeast exhibiting high ribonucleic acid yield
JP4620404B2 (en) Yeast mutant, method for producing yeast having high glutathione content, culture thereof, fraction thereof, yeast extract, and food and drink containing glutathione
CN109321508A (en) Produce genetic engineering bacterium and its application of heparosan
CN108841765A (en) Steady bacillus and its application in conversion sweet potato stalk production biological flocculant
JPH11196859A (en) Mutant
JP4620405B2 (en) Yeast mutant, method for producing yeast having high glutathione content, culture thereof, fraction thereof, yeast extract, and food and drink containing glutathione
JP2007244222A (en) Method for producing carotenoids by fermenting method
JP5667365B2 (en) A Saccharomyces cerevisiae mutant and a method for producing a high sulfur-containing compound yeast using the mutant.
JP4887764B2 (en) Novel microorganism and method for producing lycopene using the same
JP6181971B2 (en) Method for producing aromatic compound
CN113493750B (en) Marine actinomycetes and application thereof
CN112961817B (en) Method for screening high-yield Macrolactins marine bacillus by using osmotic pressure stress of sea salt
JP2019088247A (en) Nucleic acid high content bread yeast and production method of yeast extract
JP6970101B2 (en) Mutant filamentous fungus and a method for producing a C4 dicarboxylic acid using the mutant filamentous fungus.
JP2009213469A (en) Method of producing s-adenosylmethionine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210507

R150 Certificate of patent or registration of utility model

Ref document number: 6886191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150