JP6172814B2 - Method for producing yeast exhibiting high ribonucleic acid yield - Google Patents

Method for producing yeast exhibiting high ribonucleic acid yield Download PDF

Info

Publication number
JP6172814B2
JP6172814B2 JP2015100154A JP2015100154A JP6172814B2 JP 6172814 B2 JP6172814 B2 JP 6172814B2 JP 2015100154 A JP2015100154 A JP 2015100154A JP 2015100154 A JP2015100154 A JP 2015100154A JP 6172814 B2 JP6172814 B2 JP 6172814B2
Authority
JP
Japan
Prior art keywords
strain
rna
yeast
yield
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015100154A
Other languages
Japanese (ja)
Other versions
JP2016214104A (en
Inventor
幸一郎 飯田
幸一郎 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Corp
Original Assignee
Yamasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Corp filed Critical Yamasa Corp
Priority to JP2015100154A priority Critical patent/JP6172814B2/en
Publication of JP2016214104A publication Critical patent/JP2016214104A/en
Application granted granted Critical
Publication of JP6172814B2 publication Critical patent/JP6172814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、高いリボ核酸収量を示す酵母の製造方法に関するものである。   The present invention relates to a method for producing yeast exhibiting a high ribonucleic acid yield.

RNA(リボ核酸)は、旨味調味料、機能性食品や医薬品の原料として使用され、RNAを効率よく製造する技術は、産業上重要である。   RNA (ribonucleic acid) is used as a raw material for umami seasonings, functional foods and pharmaceuticals, and technology for efficiently producing RNA is industrially important.

RNAを製造するには、酵母を炭素源、窒素源、リン源を含む培地で培養し、酵母菌体からRNAを抽出する方法が一般的に用いられている。RNAを効率よく製造する試みは以前から多く見られ、例えば、酵母菌体のRNA含量を高める方法や、得られた酵母菌体内のRNAを効率よく抽出する方法などである。   In order to produce RNA, a method is generally used in which yeast is cultured in a medium containing a carbon source, a nitrogen source, and a phosphorus source, and RNA is extracted from yeast cells. There have been many attempts to efficiently produce RNA, such as a method for increasing the RNA content of yeast cells and a method for efficiently extracting RNA in the yeast cells obtained.

前者の例としては、実用的には菌株の育種が主に行われており、塩化カリウムに感受性を示す変異株を取得する方法(非特許文献1)、低温環境下で生育が著しく阻害される変異株を探索する方法(特許文献1)、チアジン・オキサジン系色素、およびアクリジン系色素に対する耐性を有する変異株を探索する方法(特許文献2)、Rrn10欠損株で生育のよい株に対して、Rrn10遺伝子を再導入する方法(特許文献3)、FOB1遺伝子を欠損された株を得る方法(特許文献4)などが挙げられる。 As an example of the former, breeding of strains is mainly carried out practically, and a method of obtaining a mutant strain sensitive to potassium chloride (Non-patent Document 1), the growth is significantly inhibited in a low-temperature environment. A method for searching for mutants (Patent Document 1), a method for searching for mutants having resistance to thiazine / oxazine dyes and acridine dyes (Patent Document 2), Examples thereof include a method for reintroducing the Rrn10 gene (Patent Document 3) and a method for obtaining a strain lacking the FOB1 gene (Patent Document 4).

後者としては、界面活性剤とともに酵母菌体を加熱する方法(特許文献5)、苛性ソーダなどのアルカリ溶液中で抽出する、もしくはアルカリで前処理して酸で中和して生成する塩の存在下で加温抽出する方法(特許文献6)などが知られているが、廉価で、高品質なRNAを取得する手法として、弱酸性条件下、40〜60℃にて処理された菌体を中和し、塩水を加えて、95℃加熱抽出する方法があげられ(特許文献7)、工業規模の生産では本法がよく採用されている。
ただし、酵母菌体からのRNAの抽出は、使用する菌株の種類や培地成分、酵母菌体の状態によって抽出収量が大きく異なるという難点があった。
Examples of the latter include a method of heating yeast cells together with a surfactant (Patent Document 5), extraction in an alkaline solution such as caustic soda, or the presence of a salt produced by pretreatment with alkali and neutralization with an acid. As a method for obtaining low-cost and high-quality RNA, a cell treated at 40 to 60 ° C. under mildly acidic conditions is known. There is a method of heating, extracting at 95 ° C. by adding salt water (Patent Document 7), and this method is often adopted in industrial scale production.
However, RNA extraction from yeast cells has a drawback that the extraction yield varies greatly depending on the type of strain used, medium components, and the state of yeast cells.

一方、RNAを得るための工業的酵母培養法としては、回分培養や流加培養、連続培養などの手法が用いられるが、コスト面や設備の規模の面から、連続培養を選択する場合が多い。したがって、連続培養を行う上で、安定的に高い収量でRNAを取得できる酵母株を取得することは、RNAの安定的な工業生産を行う上で重要と考えられるが、そのような酵母株の取得方法については知られていなかった。 On the other hand, as an industrial yeast culture method for obtaining RNA, batch culture, fed-batch culture, continuous culture, and the like are used, but continuous culture is often selected from the viewpoint of cost and equipment scale. . Therefore, obtaining a yeast strain that can stably obtain RNA at a high yield in continuous culture is considered important for stable industrial production of RNA. The acquisition method was not known.

特公昭56−46824号JP-B 56-46824 特公昭48−32350号JP-B 48-32350 特開2009−50247号JP 2009-50247 A 特開2007−75013号JP 2007-75013 A 特公昭45−33657号No.45-33657 特公昭38−8140号Japanese Examined Sho 38-8140 特公昭52−18200号Japanese Patent Publication No.52-18200

土井等, 日農化講演要旨、P347(1974)Doi et al., Abstracts of Nikko Kagaku Lecture, P347

したがって本発明の課題は、高RNA収量を有する酵母、中でも工業的RNA生産に適した酵母菌株の取得法を確立することにある。   Therefore, an object of the present invention is to establish a method for obtaining a yeast having a high RNA yield, particularly a yeast strain suitable for industrial RNA production.

発明者らは、上記のような課題を解決すべく、酵母を用いたRNAの製造方法を検討する中で、マクロライド系抗生物質耐性を有する酵母変異株を選抜することで、高いRNA収量を示す株を効率的に取得することができ、しかも当該取得した変異株は、連続培養においてとくに高いRNA収量となることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the inventors have studied a method for producing RNA using yeast, and by selecting yeast mutants having resistance to macrolide antibiotics, a high RNA yield can be obtained. It has been found that the strains shown can be efficiently obtained, and that the obtained mutant strains have a particularly high RNA yield in continuous culture, and the present invention has been completed.

本発明の方法によれば、親株に比べて高いRNA収量を示す酵母変異株を効率的に取得することができる。とくに、本発明の方法によって取得された高RNA収量を示す株は、連続培養に用いたときにきわめて高いRNA収量を示すため、工業的なRNA生産にきわめて適した株となる。 According to the method of the present invention, a yeast mutant exhibiting a higher RNA yield than the parent strain can be efficiently obtained. In particular, a strain exhibiting a high RNA yield obtained by the method of the present invention exhibits a very high RNA yield when used in continuous culture, and thus is a strain that is extremely suitable for industrial RNA production.

本明細書において、RNA収量とは、抽出されたRNA量を、元の培養液あたりの重量濃度で示した値(g/L)をいう。   In this specification, RNA yield means the value (g / L) which showed the amount of extracted RNA by the weight concentration per original culture solution.

本発明の酵母変異株は、親株に比べて1.05〜3倍のRNA収量を示し、とくに連続培養に用いたときには親株の1.2〜3倍のRNA収量を示す。このため、工業的RNA生産にきわめて適した変異株である。   The yeast mutant of the present invention shows an RNA yield of 1.05 to 3 times that of the parent strain, and particularly 1.2 to 3 times that of the parent strain when used in continuous culture. For this reason, it is a very suitable mutant for industrial RNA production.

酵母としては、食品や医薬品原料の製造に通常用いることが可能な任意のものを用いることができ、たとえばキャンディダ属、サッカロマイセス属、ピキア属、シゾサッカロマイセス属などに属する酵母が挙げられる。さらなる具体例としては、キャンディダ属の例としてキャンディダ・ユティリス(Candida utilis)やキャンディダ・トロピカリス(Candida tropicalis)、サッカロマイセス属の例としてサッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、ピキア属の例としてピキア・パストリス(Pichia pastoris)、シゾサッカロマイセス属の例としてシゾサッカロマイセス・ポンベ(Schizosaccharomyce pombe)などを挙げることができる。中でも、RNAの製造に用いられることの多いキャンディダ属に属する酵母が好ましい。   As the yeast, any one that can be usually used for the production of foods and pharmaceutical raw materials can be used, and examples include yeast belonging to the genus Candida, Saccharomyces, Pichia, Schizosaccharomyces, and the like. Further specific examples include Candida utilis and Candida tropicalis as examples of the genus Candida, Saccharomyces cerevisiae as an example of the genus Saccharomyces, and Pichia as an example of the Pichia genus As examples of the genus Pichia pastoris and Schizosaccharomyces, there can be mentioned Schizosaccharomyces pombe. Among these, yeast belonging to the genus Candida which is often used for the production of RNA is preferable.

本発明は(1)酵母に変異原処理を行う工程、(2)マクロライド系抗生物質耐性を有する酵母変異株を選抜する工程、(3)選抜された株の中から、親株よりもRNA収量の高い株を取得する工程を含む、高RNA収量を有する酵母変異株の取得方法に関するものである。   The present invention includes (1) a step of treating a yeast with a mutagen, (2) a step of selecting a yeast mutant having resistance to macrolide antibiotics, and (3) an RNA yield higher than that of the parent strain among the selected strains. The present invention relates to a method for obtaining a yeast mutant strain having a high RNA yield, comprising a step of obtaining a strain having a high strain.

(1)の変異原処理の方法はとくに限定されないが、紫外線や電離放射線などによる物理的な方法や、亜硝酸、ニトロソグアニジン、メタンスルホン酸メチルを用いた化学的な方法など、公知の方法を用いればよい。   The mutagen treatment method of (1) is not particularly limited, but a known method such as a physical method using ultraviolet rays or ionizing radiation or a chemical method using nitrous acid, nitrosoguanidine, or methyl methanesulfonate is used. Use it.

(2)のマクロライド系抗生物質に対する耐性を有する変異株を選抜する方法としては、たとえば、0.02ppm以上のマクロライド系抗生物質を含む寒天培地上に酵母を播種し、生存する株を選抜すればよい。マクロライド系抗生物質とは大環状ラクトンを有する抗生物質であり、例としてラパマイシン、レイナマイシン、ランカシディンC、タクロリムス(FK506)などを挙げることができる。   As a method for selecting mutant strains having resistance to macrolide antibiotics in (2), for example, yeast is seeded on an agar medium containing 0.02 ppm or more of macrolide antibiotics, and surviving strains are selected. do it. The macrolide antibiotic is an antibiotic having a macrocyclic lactone, and examples thereof include rapamycin, reinamycin, lankacidin C, tacrolimus (FK506) and the like.

なお工程(1)と(2)は、(1)(2)の順に実施することもでき、または同時に行うこともできる。(1)(2)を同時に行う際には、マクロライド系抗生物質を含有する寒天培地に酵母の親株を播種し、寒天培地上の当該親株に対して紫外線照射を行うなどして変異原処理を行えばよい。その後、培地上にコロニーを形成する株を選抜することで、マクロライド系抗生物質耐性を有する変異株を選抜することができる。   In addition, process (1) and (2) can also be implemented in order of (1) and (2), or can also be performed simultaneously. (1) When performing (2) at the same time, inoculate the parent strain of yeast on an agar medium containing a macrolide antibiotic and irradiate the parent strain on the agar medium with ultraviolet irradiation, etc. Can be done. Then, the mutant which has a macrolide type antibiotic resistance can be selected by selecting the strain | stump | stock which forms a colony on a culture medium.

(3)のRNA抽出収量の高い株を取得する方法としては、たとえば複数の耐性変異株をフラスコ内で小スケール培養し、酵母菌体から所定の方法でRNA抽出を行い、HPLC等の手法によりRNAを定量して、親株より収量の高い株を選抜すればよい。   As a method for obtaining a strain with a high RNA extraction yield in (3), for example, a plurality of resistant mutant strains are cultured in a small scale in a flask, RNA is extracted from yeast cells by a predetermined method, and a method such as HPLC is used. RNA may be quantified and a strain having a higher yield than the parent strain may be selected.

本発明の方法によれば、単に酵母に変異原処理を行い、高RNA収量を示す株を選抜するだけの方法や、公知の高RNA含量を示す株の取得方法(たとえば、塩化カリウム感受性株を取得する方法(非特許文献1))に比べて、きわめて効率よく高RNA収量を示す株を取得することができる。また、本発明の方法によって取得された変異株は、単にRNA収量が高いだけでなく、連続培養に用いたときに、さらに高いRNA収量を示す。   According to the method of the present invention, a method of simply performing a mutagen treatment on yeast and selecting a strain exhibiting a high RNA yield, or a method for obtaining a known strain exhibiting a high RNA content (for example, a potassium chloride sensitive strain) Compared with the acquisition method (Non-patent Document 1)), a strain exhibiting a high RNA yield can be obtained very efficiently. Moreover, the mutant strain obtained by the method of the present invention not only has a high RNA yield, but also exhibits a higher RNA yield when used in continuous culture.

本発明では、さらに取得した酵母変異株を好気培養し、培養した酵母よりRNAを抽出することによるRNAの製造法が提供される。RNA製造においては、前述の方法で得られたマクロライド系抗生物質耐性変異株を炭素源、窒素源および無機塩等を含む培地で好気的に培養すればよい。   The present invention further provides a method for producing RNA by aerobically cultivating the obtained yeast mutant and extracting RNA from the cultured yeast. In RNA production, the macrolide antibiotic-resistant mutant obtained by the above-described method may be aerobically cultured in a medium containing a carbon source, a nitrogen source, an inorganic salt, and the like.

菌株を培養する培地組成としては、炭素源として通常の微生物の培養に利用されるグルコース、蔗糖、酢酸、エタノール、糖蜜および亜硫酸パルプ廃液等からなる群より選抜される、1種または2種以上が用いられ、窒素源としては硝酸およびその塩、尿素、アンモニア、およびその塩、およびコーンスティープリカー、カゼイン、酵母エキスもしくはペプトン等の含窒素有機物等からなる群より選ばれる1あるいは2種以上が使用される。さらに、リン酸成分、カリウム成分、マグネシウム成分を培地に添加してもよく、これらとしてはリン酸一アンモニウム、リン酸、過リン酸石灰、水酸化カリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウム等の工業用原料でよい。その他、亜鉛、銅、マンガン、鉄イオン等の無機イオンを添加してもよい。さらに、ビタミン、核酸関連物質等を添加してもよい。   As a medium composition for culturing the strain, one or more selected from the group consisting of glucose, sucrose, acetic acid, ethanol, molasses, sulfite pulp waste liquid, etc., which are used as a carbon source for culturing ordinary microorganisms, Used as the nitrogen source is one or more selected from the group consisting of nitric acid and its salts, urea, ammonia and its salts, and nitrogen-containing organic substances such as corn steep liquor, casein, yeast extract or peptone Is done. Further, a phosphate component, a potassium component, and a magnesium component may be added to the medium. These include monoammonium phosphate, phosphoric acid, lime perphosphate, potassium hydroxide, potassium chloride, magnesium chloride, magnesium sulfate, etc. Industrial raw materials may be used. In addition, inorganic ions such as zinc, copper, manganese, and iron ions may be added. Furthermore, vitamins, nucleic acid-related substances and the like may be added.

培養形式としては、回分培養、流加培養あるいは連続培養のいずれでもよい。中でも連続培養であれば、本発明の酵母の特性によって、より効率よくRNAを取得することが可能となり、好ましい。   The culture format may be batch culture, fed-batch culture or continuous culture. Above all, continuous culture is preferable because RNA can be obtained more efficiently due to the characteristics of the yeast of the present invention.

培養温度は一般的な酵母の培養条件に従えばよく、たとえば20℃〜40℃、望ましくは25℃〜35℃がよく、pHについては2.5〜8.0、望ましくは2.8〜6.0がよい。   The culture temperature may be according to general yeast culture conditions, for example, 20 ° C to 40 ° C, preferably 25 ° C to 35 ° C, and the pH is 2.5 to 8.0, preferably 2.8 to 6 .0 is good.

RNAの抽出方法についても、公知の方法に従えばよい。たとえば、培養液を遠心分離して菌体を濃縮した後、塩酸等による酸性条件下で加熱処理する。その後、上清を除き、沈殿物に水を加えて濃縮スラリーを調製し、アルカリで中和させた後、塩化ナトリウム等の塩を加えて加熱処理する。得られた加熱処理物を遠心分離に供し、上清を回収することによりRNA抽出液を得ることができる。   The RNA extraction method may be a known method. For example, the culture solution is centrifuged to concentrate the bacterial cells, and then heated under acidic conditions such as hydrochloric acid. Thereafter, the supernatant is removed, water is added to the precipitate to prepare a concentrated slurry, neutralized with alkali, and then a salt such as sodium chloride is added and heat-treated. An RNA extract can be obtained by subjecting the obtained heat-treated product to centrifugation and collecting the supernatant.

以下、本発明を実施例を挙げて説明する。本発明はこれら実施例により限定されるものではない。   Hereinafter, the present invention will be described with reference to examples. The present invention is not limited by these examples.

(実施例1)変異株の取得
親株として、製品評価技術基盤機構に寄託されているキャンディダ・ユティリスNBRC0988株およびヤマサ醤油保有菌株であるM25−150株を用いた。当該親株を、YM培地(0.6%酵母エキス、0.6%麦芽エキス、1%バクトトリプトン、2%グルコース、2%寒天)を含む試験管にて1昼夜培養した。培養した菌体を回収し、2ppmのラパマイシンを含む、グルコースを唯一の炭素源とした寒天培地に播種し、紫外線照射(UVランプ:Panasonic GL−15、波長253.7nm)により、致死率70−80%となるような条件で変異処理を行った。変異処理した寒天培地を3昼夜30℃で培養し、耐性株のコロニー形成を確認した。
(Example 1) Acquisition of mutant strains As parent strains, Candida utilis NBRC0988 strain deposited with Product Evaluation Technology Infrastructure and M25-150 strain which is a Yamasa soy sauce-containing strain were used. The parent strain was cultured overnight in a test tube containing YM medium (0.6% yeast extract, 0.6% malt extract, 1% bactotryptone, 2% glucose, 2% agar). The cultured cells were collected, seeded on an agar medium containing 2 ppm rapamycin and containing glucose as the sole carbon source, and a lethality of 70 − was obtained by ultraviolet irradiation (UV lamp: Panasonic GL-15, wavelength 253.7 nm). Mutation treatment was performed under the condition of 80%. The mutation-treated agar medium was cultured at 30 ° C. for 3 days and nights, and colony formation of resistant strains was confirmed.

NBRC0988株系統より得られた480株の耐性株およびM25−150株系統より得られた1040株の耐性株を小規模で培養し、得られた菌体をHCl存在下pH2〜3.5にて60℃にて10分前処理したのち、95℃で4時間加熱して得られた抽出液中のRNA含量が親株に比べて高い株を選抜することによって、NBRC0988株系統よりNR−7、NR−21、NR−22の3株、M25−150株からOR−39、OR−40の3株をそれぞれ取得した。 480 resistant strains obtained from the NBRC0988 strain strain and 1040 resistant strains obtained from the M25-150 strain strain were cultured on a small scale, and the resulting cells were cultured at pH 2 to 3.5 in the presence of HCl. By selecting a strain having an RNA content higher than that of the parent strain after pretreatment at 60 ° C. for 10 minutes and heating at 95 ° C. for 4 hours, NR-7, NR from the NBRC0988 strain line Three strains of OR-21 and OR-40 were obtained from -21 and NR-22 strains and M25-150 strain, respectively.

(実施例2)回分培養におけるRNA製造および収量の比較
親株であるNBRC0988株、M25−150株および実施例1で取得した変異株6株を、あらかじめフラスコ内で種培養しておき、3Lファーメンターへ植菌して回分培養を行った。
培地組成は4.2%グルコース、0.2%塩化カリウム、600ppm 硫酸マグネシウム・7水和物、8ppm 塩化鉄(III)・6水和物、6ppm 塩化マンガン4水和物、0.5ppm 硫酸銅・5水和物、10ppm硫酸亜鉛・7水和物、2.2g/L リン酸一アンモニウム、 5g/L 硫酸アンモニウム、0.025% Adekanol LG−109とした。培養条件は、培地液量1.5L、液温30℃、攪拌回転速度1000rpm、通気1.3vvmとし、溶存酸素量が0.2mg/Lを下回らないように、状況に応じて酸素ガスを通気した。また、pH3.2以上を維持するように14%のアンモニア水を滴下し、pHを維持した。
(Example 2) Comparison of RNA production and yield in batch culture The parent strains NBRC0988 strain, M25-150 strain and 6 mutant strains obtained in Example 1 were seeded in advance in a flask, and then 3L fermenter A batch culture was performed after inoculation.
Medium composition: 4.2% glucose, 0.2% potassium chloride, 600 ppm magnesium sulfate heptahydrate, 8 ppm iron (III) chloride hexahydrate, 6 ppm manganese chloride tetrahydrate, 0.5 ppm copper sulfate -Pentahydrate, 10 ppm zinc sulfate, heptahydrate, 2.2 g / L monoammonium phosphate, 5 g / L ammonium sulfate, 0.025% Adekanol LG-109. The culture conditions are 1.5 L of medium solution, 30 ° C. temperature, 1000 rpm stirring speed, 1.3 vvm aeration, and oxygen gas is vented depending on the situation so that the dissolved oxygen amount does not fall below 0.2 mg / L. did. Further, 14% ammonia water was added dropwise so as to maintain the pH of 3.2 or higher to maintain the pH.

得られた培養液を、乾燥菌体重量が10〜15%となるように遠心分離で菌体を濃縮した後、60℃に加温し、pH2.0〜3.5となるよう塩酸を添加して10分間加熱処理を行った。その後、遠心分離上清を除き、沈殿物に対して水を加えて、もとの培養液の15%量にけん濁液を調製した。けん濁液を塩化ナトリウム水溶液で中和した後、食塩を4%となるよう添加し、95℃にて4時間加熱処理した。得られた加熱処理物を遠心分離に供し、上清を回収した。沈殿物に対して、加熱処理液と等量の水を加えて再けん濁させ、再度遠心分離に供して上清を回収した。回収した上清をあわせ、これをRNA抽出液とした。 The obtained culture solution is concentrated by centrifugation so that the dry cell weight becomes 10 to 15%, and then heated to 60 ° C., and hydrochloric acid is added so that the pH becomes 2.0 to 3.5. Then, heat treatment was performed for 10 minutes. Thereafter, the supernatant of centrifugation was removed, and water was added to the precipitate to prepare a suspension in an amount of 15% of the original culture solution. The suspension was neutralized with an aqueous sodium chloride solution, sodium chloride was added to 4%, and the mixture was heated at 95 ° C. for 4 hours. The obtained heat-treated product was subjected to centrifugation, and the supernatant was collected. The precipitate was resuspended by adding an amount of water equal to that of the heat treatment solution, and centrifuged again to recover the supernatant. The collected supernatants were combined and used as an RNA extract.

得られたRNA抽出液を適当に希釈し、ゲル浸潤高圧液体クロマトグラフィー(以下GPC−HPLC)に供した。HPLCカラムはTSKgel G3000PWXLを用い、移動層として7M 尿素、50mM Tris−HCl(pH7.5)を含む溶液を使用し、高分子領域における260 nm紫外光吸収物質を検出した。あらかじめシュミット・タンホイザー・シュナイダーの方法[J.Biol.Chem.1946、164、747](以下STS法)により定量しておいたRNA溶液を同様の分析に供し、その紫外吸収ピーク面積から、抽出液中のRNA収量を定量した。 The obtained RNA extract was appropriately diluted and subjected to gel infiltration high pressure liquid chromatography (hereinafter GPC-HPLC). TSKgel G3000PW XL was used as the HPLC column, and a solution containing 7M urea and 50 mM Tris-HCl (pH 7.5) was used as the moving bed, and a 260 nm ultraviolet light absorbing substance in the polymer region was detected. The method of Schmitt Tanhauser Schneider [J. Biol. Chem. 1946, 164, 747] (hereinafter referred to as STS method) was subjected to the same analysis, and the RNA yield in the extract was quantified from the ultraviolet absorption peak area.

それぞれの菌株培養液より得られた抽出液中のRNA収量は表1および2のとおりであった。本発明によりNBRC0988株から得られた3株は、安定して高いRNA収量を示した。M25−150株については、NBRC0988株よりも比較的安定して高いRNA収量が得られる株であるが、本発明によりM25−150株から得られた2株はそれにも増して高収量でRNAを抽出可能であった。 The RNA yield in the extract obtained from each strain culture solution was as shown in Tables 1 and 2. Three strains obtained from NBRC0988 strain according to the present invention showed stable and high RNA yield. The M25-150 strain is a strain that provides a relatively stable and higher RNA yield than the NBRC0988 strain. However, the two strains obtained from the M25-150 strain according to the present invention have higher yields of RNA. Extraction was possible.

Figure 0006172814
Figure 0006172814

Figure 0006172814
Figure 0006172814

(実施例3)公知のスクリーニング方法との比較
本発明の方法と、RNA含量の高い株を取得する方法として公知である塩化カリウム(KCl)感受性株を取得する方法(以下「KCl法」と表記する場合がある)のそれぞれについて比較した。
KCl感受性株を取得する方法を行う際には、親株としてキャンディダ・ユティリスNBRC0988株を用いた。当該親株を、YM培地(0.6%酵母エキス、0.6%麦芽エキス、1%バクトトリプトン、2%グルコース、2%寒天)を含む試験管にて1昼夜培養した。培養した菌体を回収し、グルコースを唯一の炭素源とした寒天培地に播種した上で、紫外線照射(UVランプ:Panasonic GL−15、波長253.7nm)により、致死率70−80%となるような条件で変異処理を行った。
(Example 3) Comparison with known screening method The method of the present invention and a method for obtaining a potassium chloride (KCl) sensitive strain known as a method for obtaining a strain having a high RNA content (hereinafter referred to as "KCl method") Each of which may be compared).
When performing the method of obtaining a KCl sensitive strain, Candida utilis NBRC0988 strain was used as a parent strain. The parent strain was cultured overnight in a test tube containing YM medium (0.6% yeast extract, 0.6% malt extract, 1% bactotryptone, 2% glucose, 2% agar). The cultured cells are collected and seeded on an agar medium containing glucose as the only carbon source, and then the lethality is 70-80% by UV irradiation (UV lamp: Panasonic GL-15, wavelength 253.7 nm). Mutation treatment was performed under such conditions.

UV照射処理によって得られた変異株コロニーを採取し、先述の寒天培地ならびにそれに8% KClを添加した寒天培地上にて菌を生育させ、KClを含まない培地でのみ良好な生育を示す株を選ぶという手法により、680株のKCl感受性株を得た。その中から、親株であるNBRC0988株より1割以上RNA収量が向上している変異株を探索したところ、最もRNA収量の高かった株でもRNA収量は親株の1.08倍であり、1割以上RNA収量の向上した変異株を発見することはできなかった。   A mutant colony obtained by UV irradiation treatment was collected, and the strain was grown on the agar medium described above and an agar medium supplemented with 8% KCl, and a strain showing good growth only in a medium not containing KCl. By the method of selection, 680 KCl sensitive strains were obtained. Among them, when searching for a mutant strain having an RNA yield of 10% or more higher than that of the parent strain NBRC0988, the strain with the highest RNA yield had an RNA yield of 1.08 times that of the parent strain. No mutant strain with improved RNA yield could be found.

一方、本発明の方法では、実施例1および2に記載したように、NBRC0988株を親株として得た480株のラパマイシン耐性株のうち、親株よりも1割以上RNA収量が向上している株が3株得られた(実施例2および表1を参照)。   On the other hand, in the method of the present invention, as described in Examples 1 and 2, among the 480 rapamycin resistant strains obtained from the NBRC0988 strain as a parent strain, a strain having an RNA yield improved by 10% or more than the parent strain was obtained. Three strains were obtained (see Example 2 and Table 1).

以上の結果から、本発明の方法は、公知の高RNA含有株の取得方法であるKCl法と比較して、RNA収量の大きく向上した株を効率的に取得できる方法であることが明らかになった。   From the above results, it is clear that the method of the present invention is a method capable of efficiently obtaining strains with greatly improved RNA yields compared to the KCl method, which is a known method for obtaining strains containing high RNA. It was.

(実施例4)連続培養におけるRNA製造および収量の比較
本発明の方法で得られた酵母変異株およびその親株について、連続培養に用いたときのRNA収量を検討した。
実施例1で取得した変異株およびその親株として、NBRC0988株、NR−7、NR−22、M25−150、OR−39およびOR−40を、あらかじめフラスコ内で種培養しておき、3Lファーメンターへ植菌して連続培養を行った。培地組成は、5.25% グルコース、0.2%塩化カリウム、600ppm 硫酸マグネシウム・7水和物、8ppm 塩化鉄(III)・6水和物、6ppm 塩化マンガン4水和物、0.5ppm 硫酸銅・5水和物、10ppm硫酸亜鉛・7水和物、2.2g/L リン酸一アンモニウムとした。培養条件は、培地液量1.5L、液温30℃、攪拌回転速度1000rpm、通気1.3vvmとし、溶存酸素量が0.2mg/Lを下回らないように、状況に応じて酸素ガスを通気した。培養中はpH3.2以上を維持するように14%のアンモニア水を滴下し、pHを維持した。連続培養の通液速度は、NBRC0988株およびその変異株であるNR−7、NR−22では希釈率D=0.36 h−1、M25−150株およびその変異株であるOR−39、OR−40ではD=0.28 h−1にて行った。
(Example 4) Comparison of RNA production and yield in continuous culture For the yeast mutant obtained by the method of the present invention and its parent strain, the RNA yield when used in continuous culture was examined.
The NBRC0988 strain, NR-7, NR-22, M25-150, OR-39 and OR-40 were seeded in advance in a flask as the mutant strain obtained in Example 1 and its parent strain, and then a 3L fermenter. The cells were inoculated and continuously cultured. Medium composition is 5.25% glucose, 0.2% potassium chloride, 600 ppm magnesium sulfate heptahydrate, 8 ppm iron (III) chloride hexahydrate, 6 ppm manganese chloride tetrahydrate, 0.5 ppm sulfuric acid Copper pentahydrate, 10 ppm zinc sulfate.7 hydrate, 2.2 g / L monoammonium phosphate. The culture conditions are 1.5 L of medium solution, 30 ° C. temperature, 1000 rpm stirring speed, 1.3 vvm aeration, and oxygen gas is vented depending on the situation so that the dissolved oxygen amount does not fall below 0.2 mg / L. did. During the cultivation, 14% ammonia water was dropped to maintain pH of 3.2 or more to maintain pH. The flow rate of continuous culture was as follows: NBRC0988 strain and its mutant strains NR-7 and NR-22, dilution rate D = 0.36 h −1 , M25-150 strain and its mutant strains OR-39, OR In -40, it was carried out at D = 0.28 h- 1 .

液出口より培養液を回収し、実施例2の方法に従い、培養液当たりのRNA収量を求めた結果、表3および4のとおりであった。結果、親株であるNBRC0988およびM25−150では、回分培養と連続培養においてRNA収量に大きな違いはなかったのに対し、変異株では連続培養においてとくにRNA収量がよく増加していた。
The culture broth was collected from the liquid outlet, and the RNA yield per culture broth was determined according to the method of Example 2, and the results were as shown in Tables 3 and 4. As a result, in the parent strains NBRC0988 and M25-150, there was no significant difference in RNA yield between batch culture and continuous culture, whereas in the mutant strain, RNA yield was particularly increased in continuous culture.

Figure 0006172814
Figure 0006172814

Figure 0006172814
Figure 0006172814

一方、KCl法において取得された中で、最もRNA収量の高かった変異株(回分培養においてRNA収量が親株の1.08倍)についても同様に、連続培養したときのRNA収量を検討した。その結果、連続培養時における当該変異株のRNA収量は、親株であるNBRC0988株のRNA収量とほぼ同等(約1.0倍)であった。
したがってKCl法において取得された変異株では、連続培養に用いたとき、とくにRNA収量は増加していなかった。
On the other hand, among the mutant strains obtained by the KCl method and having the highest RNA yield (the RNA yield in batch culture was 1.08 times that of the parent strain), the RNA yield when continuously cultured was similarly examined. As a result, the RNA yield of the mutant strain during continuous culture was almost the same as that of the parent strain NBRC0988 (about 1.0 times).
Therefore, in the mutant strain obtained by the KCl method, the RNA yield was not particularly increased when used for continuous culture.

以上の結果から、NBRC0988およびM25−150のいずれを親株に用いた場合であっても、本発明の方法によって取得されたすべての変異株は、単に親株に比べてRNA収量が高いだけでなく、とくに連続培養時においてきわめて高いRNA収量を示すという、RNAの実用生産にきわめて適した性質をもつ菌株であることが明らかになった。

From the above results, all mutant strains obtained by the method of the present invention not only have a higher RNA yield than the parent strain, regardless of whether NBRC0988 or M25-150 is used as the parent strain, In particular, it has been clarified that the strain has a very high RNA yield during continuous culture and has a very suitable property for practical production of RNA.

Claims (3)

下記(1)〜(3)の工程を含む取得方法によって、連続培養に用いたとき、親株に比べて1.2倍〜3.0倍のRNA収量を示す酵母変異株を取得する方法。
(1)酵母に変異原処理を行う工程、
(2)変異原処理した酵母菌株の中から、ラパマイシン耐性を有する変異株を選抜する工程、
(3)選抜された株の中から、親株よりもRNA収量の高い株を取得する工程。
The method of acquiring the yeast mutant which shows the RNA yield of 1.2 times -3.0 times compared with a parent strain, when used for continuous culture by the acquisition method containing the process of following (1)-(3).
(1) A step of performing a mutagen treatment on yeast,
(2) a step of selecting a mutant having rapamycin resistance from among the yeast strains treated with mutagen,
(3) A step of obtaining a strain having a higher RNA yield than the parent strain from among the selected strains.
酵母がキャンディダ属に属するものである、請求項1に記載の取得方法。 The acquisition method according to claim 1, wherein the yeast belongs to the genus Candida. 請求項1または2に記載の方法で得られた酵母変異株を好気的に連続培養し、培養した酵母よりRNAを抽出することによる、RNAの製造方法。 A method for producing RNA by continuously aerobically culturing a yeast mutant obtained by the method according to claim 1 or 2 and extracting RNA from the cultured yeast.
JP2015100154A 2015-05-15 2015-05-15 Method for producing yeast exhibiting high ribonucleic acid yield Active JP6172814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015100154A JP6172814B2 (en) 2015-05-15 2015-05-15 Method for producing yeast exhibiting high ribonucleic acid yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015100154A JP6172814B2 (en) 2015-05-15 2015-05-15 Method for producing yeast exhibiting high ribonucleic acid yield

Publications (2)

Publication Number Publication Date
JP2016214104A JP2016214104A (en) 2016-12-22
JP6172814B2 true JP6172814B2 (en) 2017-08-02

Family

ID=57577611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015100154A Active JP6172814B2 (en) 2015-05-15 2015-05-15 Method for producing yeast exhibiting high ribonucleic acid yield

Country Status (1)

Country Link
JP (1) JP6172814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6886191B2 (en) * 2018-12-14 2021-06-16 ヤマサ醤油株式会社 Yeast showing high yield of ribonucleic acid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832350B1 (en) * 1965-09-02 1973-10-05
JPS4818483B1 (en) * 1968-09-18 1973-06-06
JPS5290684A (en) * 1976-01-19 1977-07-30 Kohjin Co Ltd Preparation of ribonucleic acid-rich yeast
WO1988005267A1 (en) * 1987-01-22 1988-07-28 Kohjin Co., Ltd. Yeast extract and process for its preparation
JP4620405B2 (en) * 2004-08-02 2011-01-26 アサヒビール株式会社 Yeast mutant, method for producing yeast having high glutathione content, culture thereof, fraction thereof, yeast extract, and food and drink containing glutathione
JP5637507B2 (en) * 2008-03-31 2014-12-10 興人ライフサイエンス株式会社 Yeast mutants and yeast extracts

Also Published As

Publication number Publication date
JP2016214104A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
CN107267576B (en) Method for producing N-acetyl-D-glucosamine and/or D-glucosamine salt by microbial fermentation
WO2017150304A1 (en) Fermentation product of ergothioneine
CN110591990A (en) High-riboflavin-yield engineering strain and application thereof
JP5102076B2 (en) A Saccharomyces cerevisiae mutant and a method for producing a yeast with a high RNA content using the mutant.
Ugbenyen et al. Flocculating properties of a bioflocculant produced by Bacillus sp. isolated from a marine environment in South Africa
JP6181972B2 (en) Method for producing aromatic compound
JP6172814B2 (en) Method for producing yeast exhibiting high ribonucleic acid yield
US8530186B2 (en) Method for producing glucuronic acid by glucuronic acid fermentation
KR101167345B1 (en) Mutant yeast, method of producing glutathione-rich yeast, culture thereof, fraction thereof, yeast extract and glutathione-containing foods and drinks
CN115605603A (en) Method for producing sulfated polysaccharide and method for producing PAPS
JP6886191B2 (en) Yeast showing high yield of ribonucleic acid
KR100344017B1 (en) 5'-Xanthylic acid producing microorganism
JP4620405B2 (en) Yeast mutant, method for producing yeast having high glutathione content, culture thereof, fraction thereof, yeast extract, and food and drink containing glutathione
JP5551354B2 (en) Method for producing sugar alcohol
JP6524114B2 (en) Method of producing a lactone from a strain of Aureobasidium pullulans (AUREOBASIDIUM PULLULANS)
JP6418628B2 (en) Method for producing pyruvic acid using halomonas bacteria
CN1260004A (en) Strain producing remarkable amount of epsilon-poly-L-Lysine and process for producing same
JP2017529858A (en) Microorganism producing L-glutamine and method for producing L-glutamine using the same
JP2016202073A (en) Method for producing fumarate
JP6181971B2 (en) Method for producing aromatic compound
JP5667365B2 (en) A Saccharomyces cerevisiae mutant and a method for producing a high sulfur-containing compound yeast using the mutant.
WO2018221482A1 (en) Production method of filamentous fungus pellet
JP6222647B2 (en) Method for producing 1,3-β galactosyl-N-acetylhexosamine phosphorylase
JP2004208563A (en) New bacterium, water-soluble polysaccharide and method for producing the same
JP6827242B2 (en) Method for producing oxaloacetate using Halomonas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170630

R150 Certificate of patent or registration of utility model

Ref document number: 6172814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250