JP6885145B2 - Dispersion liquid, its production method, and copper compound particles - Google Patents

Dispersion liquid, its production method, and copper compound particles Download PDF

Info

Publication number
JP6885145B2
JP6885145B2 JP2017063564A JP2017063564A JP6885145B2 JP 6885145 B2 JP6885145 B2 JP 6885145B2 JP 2017063564 A JP2017063564 A JP 2017063564A JP 2017063564 A JP2017063564 A JP 2017063564A JP 6885145 B2 JP6885145 B2 JP 6885145B2
Authority
JP
Japan
Prior art keywords
copper compound
fatty acid
fine particles
dispersion liquid
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017063564A
Other languages
Japanese (ja)
Other versions
JP2018100255A (en
Inventor
章子 緒方
章子 緒方
大橋 和彰
和彰 大橋
泰啓 小坂
泰啓 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62715024&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6885145(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Publication of JP2018100255A publication Critical patent/JP2018100255A/en
Priority to JP2021078674A priority Critical patent/JP7120382B2/en
Application granted granted Critical
Publication of JP6885145B2 publication Critical patent/JP6885145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)
  • Colloid Chemistry (AREA)

Description

本発明は、分散液及びその製造方法並びに銅化合物粒子に関するものであり、より詳細には、抗ウイルス性を有する銅化合物粒子、及びこの銅化合物粒子が分散媒中に安定に存在する分散液及びその製造方法に関する。 The present invention relates to a dispersion liquid, a method for producing the same, and copper compound particles, and more specifically, a copper compound particle having antiviral properties, a dispersion liquid in which the copper compound particles are stably present in a dispersion medium, and a dispersion liquid. Regarding the manufacturing method.

従来より、抗菌性や抗ウイルス性を有する材料には、銀イオンや銅(II)イオンが有効成分として使用されており、これらの金属イオンをゼオライトやシリカゲルなどの物質に担持させ、或いは溶媒中に分散させて成る抗ウイルス材料が種々提案されている。
しかしながら、上記金属イオンは、インフルエンザウイルスのようなエンベロープ構造を有するウイルスに対する抗ウイルス性を発現することはできるが、ノロウイルスのようなエンベロープ構造を持たないウイルスに対しては抗ウイルス性を発現することはできなかった。
Conventionally, silver ions and copper (II) ions have been used as active ingredients in materials having antibacterial and antiviral properties, and these metal ions are supported on substances such as zeolite and silica gel, or in a solvent. Various antiviral materials have been proposed which are dispersed in silica gel.
However, the above metal ion can exhibit antiviral property against a virus having an envelope structure such as influenza virus, but express antiviral property against a virus having no envelope structure such as norovirus. I couldn't.

エンベロープ構造の有無にかかわらず、抗ウイルス性を発現可能な金属化合物として一価銅化合物も知られており、例えば、下記特許文献1には、一価の銅化合物微粒子と、還元剤と、分散媒を含有し、pH6以下であることを特徴とする抗ウイルス組成物が記載されている。下記特許文献2には、BET比表面積が5〜100m/gの亜酸化銅粒子と、アルデヒド基を有する糖類と、光触媒物質とを含有することを特徴とする抗菌抗ウイルス性組成物が記載されている。下記特許文献3には、銅粒子及び銅化合物粒子の少なくともいずれか一方を酸化物粒子に担持した、平均二次粒子径が80nm〜600nmの銅担持酸化物と、平均二次粒子径が1μm〜15μmの硫酸バリウムと撥水性の樹脂バインダーとを有する抗ウイルス性塗膜が記載されている。 A monovalent copper compound is also known as a metal compound capable of exhibiting antiviral properties regardless of the presence or absence of an envelope structure. For example, in Patent Document 1 below, monovalent copper compound fine particles, a reducing agent, and dispersion are provided. An antiviral composition containing a medium and having a pH of 6 or less has been described. Patent Document 2 below describes an antibacterial and antiviral composition containing sub-copper oxide particles having a BET specific surface area of 5 to 100 m 2 / g, a saccharide having an aldehyde group, and a photocatalyst substance. Has been done. In Patent Document 3 below, a copper-supported oxide having an average secondary particle diameter of 80 nm to 600 nm in which at least one of copper particles and copper compound particles is supported on the oxide particles and an average secondary particle diameter of 1 μm to 1 μm are described. An antiviral coating with 15 μm barium sulfate and a water repellent resin binder is described.

特許第5194185号公報Japanese Patent No. 5194185 特開2013−82654号公報Japanese Unexamined Patent Publication No. 2013-82654 特開2015−205998号公報Japanese Unexamined Patent Publication No. 2015-205998

しかしながら、非水系溶媒中では、抗ウイルス性を有する一価銅化合物の微粒子は凝集しやすく、一価銅化合物を均一に分散させることは困難であり、分散液を抗ウイルス組成物として利用する場合や塗料と混合してコーティングされた抗ウイルス成型体として用いる場合において、一価銅化合物の微粒子が有する抗ウイルス性を効率よく発現することが困難であった。
また、上記特許文献で挙げられている粒子径の大きい一価銅化合物を用いた場合には、粒子表面積が小さくなり、ウイルスとの接触機会が減少することで抗ウイルス性が低下する。また、粒子径の大きい一価銅化合物がコーティングされた抗ウイルス成型体では、ヘイズや光透過率が悪化して透明性が損なわれるという問題がある。
更に、一価銅化合物の微粒子は粉砕することによっても得られるが、被膜剤や安定化剤がないため凝集しやすく、亜酸化銅から酸化銅(II)への酸化が起こりやすいといった問題もある。
However, in a non-aqueous solvent, the fine particles of the monovalent copper compound having antiviral properties tend to aggregate, and it is difficult to uniformly disperse the monovalent copper compound. When the dispersion is used as an antiviral composition. When used as an anti-virus molded product coated by mixing with a paint or a paint, it has been difficult to efficiently express the anti-virus property of the fine particles of the monovalent copper compound.
Further, when a monovalent copper compound having a large particle size listed in the above patent document is used, the surface area of the particles becomes small and the chance of contact with a virus decreases, so that the antiviral property decreases. Further, the antiviral molded product coated with a monovalent copper compound having a large particle size has a problem that haze and light transmittance are deteriorated and transparency is impaired.
Further, although the fine particles of the monovalent copper compound can be obtained by pulverization, there is a problem that they are easily aggregated because there is no coating agent or stabilizer, and oxidation of cuprous oxide to copper (II) oxide is likely to occur. ..

従って本発明の目的は、銅化合物、特に一価銅化合物の微粒子が有する抗ウイルス性を効率よく発現可能な、銅化合物の微粒子、及びこの微粒子が分散媒中に均一且つ安定的に分散する分散液、並びにこの分散液の製造方法を提供することである。 Therefore, an object of the present invention is the fine particles of a copper compound capable of efficiently expressing the antiviral property of the fine particles of a copper compound, particularly a monovalent copper compound, and the dispersion in which the fine particles are uniformly and stably dispersed in a dispersion medium. To provide a liquid and a method for producing the dispersion.

本発明よれば、非水系溶媒中に、脂肪酸で被覆された一価銅化合物微粒子と、サッカリン、サリチル酸、アスパラギン酸、クエン酸から選択される少なくとも1種である安定化剤とを含有することを特徴とする分散液が提供される。
本発明の分散液においては、
.前記一価銅化合物粒子が、更に前記脂肪酸のエステル化合物で被覆されていること、
.前記一価銅化合物が、亜酸化銅であること、
.前記非水系溶媒が、エステル系溶媒であること、
.分散剤を更に含有すること、
.前記銅化合物が、抗ウイルス性を有すること、
が好適である。
According to the present invention, a non-aqueous solvent contains fine particles of a monovalent copper compound coated with a fatty acid and a stabilizer which is at least one selected from saccharin, salicylic acid, aspartic acid, and citric acid. A characteristic dispersion is provided.
In the dispersion liquid of the present invention,
1 . The monovalent copper compound particles are further coated with the ester compound of the fatty acid.
2 . The monovalent copper compound is cuprous oxide.
3 . The non-aqueous solvent is an ester solvent.
4 . Further inclusion of dispersant,
5 . The copper compound has antiviral properties.
Is preferable.

発明によればまた、一価銅化合物微粒子表面に、脂肪酸及び該脂肪酸のエステル化合物が被覆されていることを特徴とする銅化合物微粒子が提供される。 Was Bama present invention, a monovalent copper compound fine particle surface, it Ru are provided copper compound fine particles, characterized in that ester compounds of fatty acids and the fatty acid is coated.

本発明の分散液においては、銅化合物微粒子が脂肪酸、好適には脂肪酸と該脂肪酸のエステル化合物で被覆されていることにより、非水系溶媒中に高濃度で含有されている場合にも凝集することなく均一に分散するため、銅化合物微粒子が有する優れた特性を効率よく発現することができる。特に、銅化合物が一価銅化合物であることにより、前述したとおり、エンベロープ構造を持たないウイルスに対しても抗ウイルス性を効率よく発現することが可能になる。
また本発明の分散液においては、分散液中に配合された安定化剤が、銅化合物微粒子に保護層として配位していると考えられ、これにより、安定性に劣る一価銅化合物であっても、一価の状態を安定的に維持可能であり、上記脂肪酸による被覆、更にこの脂肪酸のエステル化合物による被覆と相俟って、銅化合物微粒子が非水系溶媒中に沈降することなく均一に分散していることから、塗料組成物や樹脂組成物などの希釈溶媒として好適に使用することができ、これにより各種性能を塗膜や樹脂成形体に付与することが可能になる。
In the dispersion liquid of the present invention, since the copper compound fine particles are coated with a fatty acid, preferably a fatty acid and an ester compound of the fatty acid, they aggregate even when they are contained in a non-aqueous solvent at a high concentration. Since it is uniformly dispersed without any problem, the excellent properties of the copper compound fine particles can be efficiently exhibited. In particular, when the copper compound is a monovalent copper compound, as described above, it becomes possible to efficiently express antiviral properties even against a virus having no envelope structure.
Further, in the dispersion liquid of the present invention, it is considered that the stabilizer blended in the dispersion liquid is coordinated with the copper compound fine particles as a protective layer, whereby the monovalent copper compound is inferior in stability. However, the monovalent state can be stably maintained, and in combination with the coating with the above fatty acid and the coating with the ester compound of this fatty acid, the copper compound fine particles do not settle in the non-aqueous solvent and become uniform. Since it is dispersed, it can be suitably used as a diluting solvent for a coating composition, a resin composition, or the like, which makes it possible to impart various performances to a coating film or a resin molded body.

更に本発明の分散液の製造方法においては、高沸点溶媒中に脂肪酸銅と安定化剤を配合して加熱することにより、亜酸化銅微粒子の表面に脂肪酸、好適には脂肪酸と該脂肪酸のエステル化合物が配位された亜酸化銅微粒子を形成することが可能になり、かかる亜酸化銅微粒子は、低沸点溶媒に対して優れた親和性を有することから、亜酸化銅微粒子は高沸点溶媒から簡単な操作で効率よく低沸点溶媒に抽出され、低沸点溶媒中に亜酸化銅微粒子を高濃度で存在させることが可能になる。
特に本発明の製造方法において、高沸点溶媒分散液を調製する際、水の存在下で加熱混合を行うことによって、一価銅化合物粒子を調製することが可能になり、前述したとおり、エンベロープ構造の有無にかかわらず優れた抗ウイルス性を発現可能な一価銅化合物粒子を含有する分散液を提供することが可能になる。
尚、本明細書において、抗ウイルス性とは、ウイルスを不活性化させることを意味する。
Further, in the method for producing a dispersion liquid of the present invention, a fatty acid copper and a stabilizer are mixed in a high boiling point solvent and heated to surface a fatty acid, preferably a fatty acid and an ester of the fatty acid. Since it becomes possible to form the cuprous oxide fine particles to which the compound is coordinated, and since such the cuprous oxide fine particles have an excellent affinity for the low boiling point solvent, the cuprous oxide fine particles are separated from the high boiling point solvent. It can be efficiently extracted into a low boiling point solvent by a simple operation, and the cuprous oxide fine particles can be present in a high concentration in the low boiling point solvent.
In particular, in the production method of the present invention, when preparing a high boiling point solvent dispersion liquid, monovalent copper compound particles can be prepared by heating and mixing in the presence of water, and as described above, an envelope structure can be prepared. It becomes possible to provide a dispersion liquid containing monovalent copper compound particles capable of exhibiting excellent antiviral properties regardless of the presence or absence of the above.
In addition, in this specification, antiviral property means inactivating a virus.

実験例1のIRチャートである。It is an IR chart of Experimental Example 1. 実験例1のGC−MS測定結果(TIC)である。It is a GC-MS measurement result (TIC) of Experimental Example 1. 実験例1の粒子のX線回折プロファイルである。It is an X-ray diffraction profile of the particle of Experimental Example 1.

(分散液)
本発明の分散液は、上述したとおり、非水系溶媒中に脂肪酸で被覆された銅化合物微粒子、すなわち一価銅化合物粒子又は二価銅化合物粒子と、安定化剤とを含有することを特徴とするものである。
(Dispersion)
As described above, the dispersion liquid of the present invention is characterized by containing copper compound fine particles coated with a fatty acid in a non-aqueous solvent, that is, monovalent copper compound particles or divalent copper compound particles, and a stabilizer. It is something to do.

[銅化合物微粒子]
本発明の分散液において、抗ウイルス性を示す有効成分である銅化合物は、一価銅化合物又は二価銅化合物であり、これらはいずれもウイルスを吸着してウイルスを不活性化することが可能であるが、二価銅化合物は、エンベロープ構造を有するウイルスには抗ウイルス性を有するが、一価銅化合物はウイルスのエンベロープの有無にかかわらず抗ウイルス性を発現することができる。
銅化合物としては、酸化物、酢酸化合物、塩化物、臭化物、水酸化物、シアン化物等を例示することができ、これらの中でも、亜酸化銅であることが特に好適である。
本発明において銅化合物微粒子は表面が脂肪酸で被覆されているが、特に脂肪酸と共にこの脂肪酸のエステル化合物で被覆されていることが好ましく、これにより、銅化合物微粒子の表面活性が高まることに起因する微粒子表面の酸化が防止されると共に、微粒子の凝集を抑制することが可能になる。特に一価銅化合物粒子は表面活性が高く、酸化されやすく凝集しやすいが、脂肪酸と脂肪酸のエステル化合物で被覆されていることにより、分散液中で均一に分散し、優れた抗ウイルス性を発現できる。
更に本発明の分散液に含まれる銅化合物微粒子は、抗ウイルス性の他、抗菌性、導電性、紫外線遮蔽性、防汚性などを有している。
[Copper compound fine particles]
In the dispersion of the present invention, the copper compound which is an active ingredient exhibiting antiviral property is a monovalent copper compound or a divalent copper compound, both of which can adsorb a virus and inactivate the virus. However, the divalent copper compound has antiviral properties against a virus having an envelope structure, whereas the monovalent copper compound can express antiviral properties regardless of the presence or absence of a virus envelope.
Examples of the copper compound include oxides, acetic acid compounds, chlorides, bromides, hydroxides, cyanides and the like, and among these, cuprous oxide is particularly preferable.
In the present invention, the surface of the copper compound fine particles is coated with a fatty acid, and it is particularly preferable that the copper compound fine particles are coated with an ester compound of this fatty acid together with the fatty acid. It is possible to prevent surface oxidation and suppress the aggregation of fine particles. In particular, monovalent copper compound particles have high surface activity and are easily oxidized and aggregated. However, because they are coated with a fatty acid and an ester compound of fatty acid, they are uniformly dispersed in a dispersion liquid and exhibit excellent antiviral properties. it can.
Further, the copper compound fine particles contained in the dispersion liquid of the present invention have antibacterial properties, conductivity, ultraviolet shielding properties, antifouling properties, etc., in addition to antiviral properties.

銅化合物微粒子表面を被覆する脂肪酸としては、ミリスチン酸,ステアリン酸,オレイン酸,パルミチン酸,n−デカン酸,パラトイル酸,コハク酸,マロン酸,酒石酸,リンゴ酸,グルタル酸,アジピン酸、酢酸等を例示することができ、これらは複数種の組み合わせであってもよいが、特にステアリン酸であることが好適である。
また上記脂肪酸のエステル化合物としては、後述する高沸点溶媒とのエステル化合物であり、例えば脂肪酸がステアリン酸、高沸点溶媒としてジエチレングリコールの場合には、ジステアリン酸ジエチレングリコールやジステアリン酸エチレングリコール等が挙げられる。前述したとおり、脂肪酸による被覆と共に、この脂肪酸のエステル化合物が被覆されていることにより、脂肪酸のみが被覆されている場合よりも、上述した作用効果を顕著に得ることができる。
Fatty acids that coat the surface of copper compound fine particles include myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid, acetic acid, etc. Can be exemplified, and these may be a combination of a plurality of types, but stearic acid is particularly preferable.
Further, the ester compound of the fatty acid is an ester compound with a high boiling point solvent described later. For example, when the fatty acid is stearic acid and the high boiling point solvent is diethylene glycol, diethylene glycol distearate, ethylene glycol distearate and the like can be mentioned. As described above, by coating the ester compound of this fatty acid together with the coating with the fatty acid, the above-mentioned action and effect can be remarkably obtained as compared with the case where only the fatty acid is coated.

本発明において銅化合物微粒子の平均粒径は、1〜200nmの範囲にあることが好適であり、本発明の分散液中においては、銅化合物微粒子は高濃度であっても凝集することなく均一に分散していることから、銅微粒子が上記範囲にあることと相俟って、優れた抗ウイルス性能を効率よく発現することが可能になる。尚、本明細書でいう平均粒径とは、銅化合物微粒子と銅化合物微粒子との間に隙間がないものを一つの粒子とし、その平均をとったものをいう。
脂肪酸、好適には脂肪酸と該脂肪酸のエステル化合物の両方で表面が被覆された銅化合物微粒子が、分散液中に0.01〜2重量%、特に0.05〜1重量%の量で含有されていることが好ましい。上記範囲よりも銅化合物微粒子の量が少ない場合には上記範囲にある場合に比して、十分な抗ウイルス性能を発現することができず、一方上記範囲よりも銅化合物微粒子の量が多い場合には、上記範囲にある場合に比して経済性が劣るだけでなく、塗料組成物や樹脂組成物に使用した場合に塗工性や成形性等が損なわれるおそれがある。
In the present invention, the average particle size of the copper compound fine particles is preferably in the range of 1 to 200 nm, and in the dispersion liquid of the present invention, the copper compound fine particles are uniform without agglomeration even at a high concentration. Since the copper fine particles are dispersed, it is possible to efficiently exhibit excellent antiviral performance in combination with the fact that the copper fine particles are in the above range. The average particle size referred to in the present specification means one particle in which there is no gap between the copper compound fine particles and the copper compound fine particles, and the average of the particles is taken.
Copper compound fine particles whose surface is coated with a fatty acid, preferably both a fatty acid and an ester compound of the fatty acid, are contained in the dispersion in an amount of 0.01 to 2% by weight, particularly 0.05 to 1% by weight. Is preferable. When the amount of copper compound fine particles is smaller than the above range, sufficient antiviral performance cannot be exhibited as compared with the case of being in the above range, while the amount of copper compound fine particles is larger than the above range. In addition to being inferior in economic efficiency as compared with the case of being in the above range, there is a risk that coatability, moldability and the like may be impaired when used in a coating composition or a resin composition.

[安定化剤]
本発明の分散液においては、分散液中に安定化剤が含有されていることにより、銅化合物微粒子が一価又は二価の状態に安定に維持される。また銅化合物微粒子が脂肪酸で表面を被覆されて、酸化されにくくなっていることと相俟って、銅化合物微粒子を長期にわたって安定して分散液中に存在させることが可能になる。安定化剤は、用いる非水系溶媒によっては溶解している場合もあるが、銅化合物微粒子に配位していると考えられる。
このような安定化剤としては、サッカリン、サリチル酸、アスパラギン酸、クエン酸等を例示することができるが、サッカリンを好適に使用することができる。
安定化剤は、分散液中に0.01〜0.1重量%、特に0.02〜0.05重量%の量で含有されていることが好ましい。上記範囲よりも安定化剤の量が少ない場合には上記範囲にある場合に比して銅化合物微粒子の安定性が損なわれるおそれがあり、一方上記範囲よりも安定化剤の量が多くとも経済性に劣るだけで更なる効果は望めない。
[Stabilizer]
In the dispersion liquid of the present invention, since the dispersion liquid contains a stabilizer, the copper compound fine particles are stably maintained in a monovalent or divalent state. Further, the surface of the copper compound fine particles is coated with the fatty acid to prevent oxidation, and the copper compound fine particles can be stably present in the dispersion liquid for a long period of time. The stabilizer may be dissolved depending on the non-aqueous solvent used, but it is considered that the stabilizer is coordinated to the copper compound fine particles.
Examples of such stabilizers include saccharin, salicylic acid, aspartic acid, citric acid and the like, but saccharin can be preferably used.
The stabilizer is preferably contained in the dispersion in an amount of 0.01 to 0.1% by weight, particularly 0.02 to 0.05% by weight. When the amount of the stabilizer is smaller than the above range, the stability of the copper compound fine particles may be impaired as compared with the case where the amount of the stabilizer is in the above range. On the other hand, even if the amount of the stabilizer is larger than the above range, it is economical. It is inferior in sex and no further effect can be expected.

[非水系溶媒]
本発明の分散液における非水系溶媒としては、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ヘキサン、ヘプタン、トルエン、キシレン、シクロヘキサン等の炭化水素類、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類等の低沸点溶媒を例示することができるが、エステル系溶媒が好ましく、特に酢酸ブチルが好適である。
本発明の分散液においては、非水系溶媒が上記の低沸点溶媒であることにより、疎水性の塗料組成物や樹脂組成物の希釈剤として有効に利用することが可能になる。
[Non-aqueous solvent]
Examples of the non-aqueous solvent in the dispersion of the present invention include esters such as methyl acetate, ethyl acetate and butyl acetate, hydrocarbons such as hexane, heptane, toluene, xylene and cyclohexane, and ketones such as methyl isobutyl ketone, methyl ethyl ketone and cyclohexanone. Examples of low boiling point solvents such as the above can be exemplified, but ester-based solvents are preferable, and butyl acetate is particularly preferable.
In the dispersion liquid of the present invention, since the non-aqueous solvent is the above-mentioned low boiling point solvent, it can be effectively used as a diluent for hydrophobic coating compositions and resin compositions.

[その他]
本発明の分散液には、上述した銅化合物微粒子及び安定化剤の他、分散剤を含有していることが好適である。これにより、銅化合物微粒子を高濃度で含有する場合にも、銅化合物微粒子が均一に分散された分散液とすることが可能になる。
分散剤としては、吸着基に、1級、2級、3級アミン又はその対イオンを中和したアミン塩、カルボン酸又はカルボン酸塩、水酸基のいずれか1種類以上を有し、主鎖及び側鎖に、脂肪酸、ポリエーテル、ポリエステル、ポリウレタン、ポリアリレートを有する高分子分散剤を使用することができる。
これらの分散剤は、吸着基を有することで上記銅化合物微粒子の表面に吸着し、主鎖又は側鎖により非水系溶媒との相溶性を向上させ、高分子鎖の立体障害による斥力が生じ、銅化合物微粒子の凝集が抑制され、非水系溶媒中に均一に分散させ、経時による凝集を解消することができる。
高分子分散剤としては、主鎖のみで構成されているタイプや側鎖を有するくし型構造タイプ、星型構造を有するタイプを使用することができる。
分散剤は、分散液中に0.01〜2重量%、特に0.1〜1重量%の量で含有されていることが好ましい。上記範囲よりも分散剤の量が少ない場合には上記範囲にある場合に比して銅化合物微粒子の分散性に更なる向上が望めず、一方上記範囲よりも分散剤の量が多くとも更なる効果の向上は望めないと共に経済性にも劣るようになる。
本発明の分散液には、従来公知の添加剤、例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、染料等を従来公知の処方に従って配合することもできる。
[Other]
It is preferable that the dispersion liquid of the present invention contains a dispersant in addition to the copper compound fine particles and the stabilizer described above. This makes it possible to obtain a dispersion liquid in which the copper compound fine particles are uniformly dispersed even when the copper compound fine particles are contained in a high concentration.
As the dispersant, the adsorbent has one or more of primary, secondary and tertiary amines or amine salts obtained by neutralizing their counter ions, carboxylic acids or carboxylic acid salts, and hydroxyl groups, and has a main chain and a hydroxyl group. A polymer dispersant having a fatty acid, a polyether, a polyester, a polyurethane, or a polyarylate can be used in the side chain.
By having an adsorbing group, these dispersants are adsorbed on the surface of the copper compound fine particles, the compatibility with the non-aqueous solvent is improved by the main chain or the side chain, and repulsive force is generated due to the steric hindrance of the polymer chain. Agglomeration of copper compound fine particles is suppressed, and the agglomeration of copper compound fine particles can be uniformly dispersed in a non-aqueous solvent to eliminate agglomeration over time.
As the polymer dispersant, a type composed of only the main chain, a comb-shaped structure type having a side chain, and a type having a star-shaped structure can be used.
The dispersant is preferably contained in the dispersion in an amount of 0.01 to 2% by weight, particularly 0.1 to 1% by weight. When the amount of the dispersant is smaller than the above range, further improvement in the dispersibility of the copper compound fine particles cannot be expected as compared with the case of being in the above range, while even if the amount of the dispersant is larger than the above range, it is further improved. The effect cannot be expected to improve and the economy will be inferior.
Conventionally known additives such as antioxidants, ultraviolet absorbers, antistatic agents, dyes and the like can be blended in the dispersion liquid of the present invention according to a conventionally known formulation.

本発明の分散液は、繊維製品等を構成する樹脂組成物に希釈剤として含有させる、或いは繊維製品等に直接塗布或いは含浸させることにより、或いは繊維製品等にバインダー樹脂と分散液を混合したものを塗布させることにより、繊維製品等に抗ウイルス性を付与することが可能になる。
本発明の分散液を用いた繊維製品としては、マスク、エアコンフィルター、空気清浄機用フィルター、衣服、作業服、カーテン、カーペット、自動車用部材、シーツ、タオル、ワイパーなどの掃除用品などが挙げられる。
本発明の分散液は、塗料と混合して塗工することでコーティング加工により、フィルムやシート、金属基板上に含有させることができ、基材表面或いは外面に抗ウイルス性を付与することができる。
例えば、医療用具、医療用具の包装フィルム、廃棄容器、ゴミ袋、介護施設或いは病院や学校などの公共施設の壁材や床材、ワックスコート材、吐しゃ物の処理用具などが挙げられる。
The dispersion liquid of the present invention is contained in a resin composition constituting a textile product or the like as a diluent, or is directly applied or impregnated in a textile product or the like, or a fiber product or the like is mixed with a binder resin and a dispersion liquid. By applying the above, it becomes possible to impart antiviral properties to textile products and the like.
Examples of textile products using the dispersion liquid of the present invention include masks, air conditioner filters, air purifier filters, clothes, work clothes, curtains, carpets, automobile parts, sheets, towels, wipers and other cleaning supplies. ..
The dispersion liquid of the present invention can be contained on a film, a sheet, or a metal substrate by coating by mixing it with a paint and applying it, and can impart antiviral properties to the surface or outer surface of the base material. ..
Examples thereof include medical devices, packaging films for medical devices, waste containers, garbage bags, wall materials and floor materials for nursing care facilities or public facilities such as hospitals and schools, wax coating materials, and vomit treatment tools.

(分散液の第一の製造方法)
本発明の低沸点溶媒中に脂肪酸で被覆された酸化銅微粒子が分散された分散液の製造方法は以下の方法によって調製することができる。
(1)第一工程
脂肪酸銅と安定化剤を高沸点溶媒に添加し、これを加熱することにより、脂肪酸、好適には脂肪酸と該脂肪酸のエステル化合物の両方で表面が被覆された酸化銅微粒子が分散すると共に、安定化剤を含んで成る高沸点溶媒分散液を調製する。
この際、高沸点溶媒と共に水を含有させることによって、酸化銅微粒子を一価の亜酸化銅微粒子に調製することが可能となる。
加熱温度は、用いる脂肪酸銅の分解開始温度未満の温度であり、具体的には180〜230℃の範囲であることが好ましい。加熱混合の時間は、120〜360分であることが好適である。
脂肪酸銅の配合量は、高沸点溶媒100重量部当たり0.1〜5重量部の範囲にあることが好ましい。上記範囲よりも脂肪酸銅の量が少ない場合には、上記範囲にある場合に比して十分な抗ウイルス性を分散液に付与することができないおそれがある。一方上記範囲よりも脂肪酸銅の量が多い場合には上記範囲にある場合に比して、経済性が劣ると共に塗工性や成形性が損なわれるおそれがある。
また水の配合量は、高沸点溶媒100重量部当たり0.1〜5重量部の範囲にあることが好ましい。上記範囲よりも水の量が少ない場合には、亜酸化銅の生成量が低下し、その一方上記範囲よりも多いと、亜酸化銅の生成速度が速くなり、粒子径が大きくなってしまう。
また安定化剤の配合量は、高沸点溶媒100重量部当たり0.01〜0.1重量部の範囲にあることが好ましい。上記範囲よりも安定化剤の量が少ない場合には、上記範囲にある場合に比して酸化銅を長期にわたって安定化できないおそれがあり、一方上記範囲よりも安定化剤の量が多い場合には、上記範囲にある場合に比して酸化銅微粒子の安定性の更なる向上も得られず経済性に劣るおそれがある。
高沸点溶媒としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール等のグリコール類を挙げることができ、後述する低沸点溶媒との組み合わせで適宜選択する。
(First method for producing dispersion)
The method for producing a dispersion liquid in which fine copper oxide particles coated with fatty acid are dispersed in the low boiling point solvent of the present invention can be prepared by the following method.
(1) First step Copper oxide fine particles whose surface is coated with a fatty acid, preferably a fatty acid and an ester compound of the fatty acid, by adding fatty acid copper and a stabilizer to a high boiling point solvent and heating the solvent. Is dispersed, and a high boiling point solvent dispersion containing a stabilizer is prepared.
At this time, by containing water together with the high boiling point solvent, the copper oxide fine particles can be prepared into monovalent cuprous oxide fine particles.
The heating temperature is a temperature lower than the decomposition start temperature of the fatty acid copper used, and specifically, it is preferably in the range of 180 to 230 ° C. The heating and mixing time is preferably 120 to 360 minutes.
The blending amount of the fatty acid copper is preferably in the range of 0.1 to 5 parts by weight per 100 parts by weight of the high boiling point solvent. When the amount of fatty acid copper is smaller than the above range, it may not be possible to impart sufficient antiviral properties to the dispersion as compared with the case where the amount is within the above range. On the other hand, when the amount of fatty acid copper is larger than the above range, the economic efficiency is inferior and the coatability and moldability may be impaired as compared with the case where the amount is in the above range.
The amount of water blended is preferably in the range of 0.1 to 5 parts by weight per 100 parts by weight of the high boiling point solvent. When the amount of water is less than the above range, the amount of cuprous oxide produced decreases, while when the amount of water is more than the above range, the rate of producing cuprous oxide becomes high and the particle size becomes large.
The amount of the stabilizer compounded is preferably in the range of 0.01 to 0.1 parts by weight per 100 parts by weight of the high boiling point solvent. When the amount of stabilizer is smaller than the above range, copper oxide may not be stabilized for a long period of time as compared with the case where it is in the above range, while when the amount of stabilizer is larger than the above range. However, the stability of the copper oxide fine particles cannot be further improved as compared with the case where the copper oxide fine particles are in the above range, which may be inferior in economic efficiency.
Examples of the high boiling point solvent include glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol, which are appropriately selected in combination with a low boiling point solvent described later.

(2)第二工程
次いで、脂肪酸、好適には脂肪酸と該脂肪酸のエステル化合物で被覆された酸化銅微粒子が分散すると共に、安定化剤を含んで成る高沸点溶媒分散液と、予め分散剤を配合した低沸点溶媒とを混合し、混合液を調製する。
低沸点溶媒は、高沸点溶媒100重量部に対して10〜200重量部の量で高沸点溶媒分散液に添加することが好ましい。尚、低沸点溶媒中の分散剤の配合量は、高沸点溶媒分散液中の脂肪酸、好適には脂肪酸と該脂肪酸のエステル化合物で被覆された酸化銅微粒子の量によって異なるが、低沸点溶媒100重量部当たり0.01〜2重量部の量であることが好ましい。
低沸点溶媒としては、前述した分散液の非水系溶媒を用いることができる。低沸点溶媒は、高沸点溶媒と相溶しないことが重要であり、高沸点溶媒と低沸点溶媒の溶解度パラメータ(Sp値)の差が3以上となるように組み合わせることが好ましい。
好適には、高沸点溶媒としてジエチレングリコール(Sp値:12.6)を用いた場合には、低沸点溶媒として酢酸ブチル(Sp値:8.4)を用いることが望ましい。
(2) Second Step Next, a fatty acid, preferably a fatty acid and copper oxide fine particles coated with the ester compound of the fatty acid are dispersed, and a high boiling point solvent dispersion liquid containing a stabilizer and a dispersant are previously added. Mix with the blended low boiling point solvent to prepare a mixed solution.
The low boiling point solvent is preferably added to the high boiling point solvent dispersion in an amount of 10 to 200 parts by weight with respect to 100 parts by weight of the high boiling point solvent. The amount of the dispersant in the low boiling point solvent varies depending on the amount of the fatty acid in the high boiling point solvent dispersion, preferably the fatty acid and the copper oxide fine particles coated with the ester compound of the fatty acid, but the low boiling point solvent 100 The amount is preferably 0.01 to 2 parts by weight per part by weight.
As the low boiling point solvent, the non-aqueous solvent of the dispersion liquid described above can be used. It is important that the low boiling point solvent is incompatible with the high boiling point solvent, and it is preferable to combine the low boiling point solvent so that the difference between the solubility parameters (Sp value) of the high boiling point solvent and the low boiling point solvent is 3 or more.
Preferably, when diethylene glycol (Sp value: 12.6) is used as the high boiling point solvent, it is desirable to use butyl acetate (Sp value: 8.4) as the low boiling point solvent.

(3)第三工程
上記混合液を、0〜40℃の温度で30〜120分間静置することにより、高沸点溶媒及び低沸点溶媒を相分離させる。混合液が相分離されると、混合液中に存在していた脂肪酸、好適には脂肪酸及び該脂肪酸のエステル化合物で被覆された酸化銅微粒子が低沸点溶媒側に抽出される。特に本発明においては低沸点溶媒に分散剤が配合されていることから、分散剤の吸着基が酸化銅微粒子に配位することにより、酸化銅微粒子は低沸点溶媒へ抽出されやすくなる。
次いで、相分離された混合液から高沸点溶媒を除去することにより、低沸点溶媒中に脂肪酸、好適には脂肪酸及び該脂肪酸のエステル化合物で被覆された酸化銅微粒子が分散された分散液を得ることができる。
高沸点溶媒の除去は、単蒸留、減圧蒸留、精密蒸留、薄膜蒸留、抽出、膜分離等の、従来公知の方法によって行うことができる。
尚、前記第一工程において、高沸点溶媒に、脂肪酸銅及び安定化剤と共に、塩化ナトリウム、臭化ナトリウム等を配合することにより、分散液中に分散する銅化合物微粒子を、銅のハロゲン化物微粒子とすることができる。
(3) Third Step The high boiling point solvent and the low boiling point solvent are phase-separated by allowing the mixed solution to stand at a temperature of 0 to 40 ° C. for 30 to 120 minutes. When the mixed solution is phase-separated, the fatty acid present in the mixed solution, preferably the fatty acid and the copper oxide fine particles coated with the ester compound of the fatty acid are extracted on the low boiling point solvent side. In particular, in the present invention, since the dispersant is blended in the low boiling point solvent, the copper oxide fine particles are easily extracted into the low boiling point solvent by coordinating the adsorbing group of the dispersant with the copper oxide fine particles.
Then, by removing the high boiling point solvent from the phase-separated mixed solution, a dispersion liquid in which the fatty acid, preferably the fatty acid and the copper oxide fine particles coated with the ester compound of the fatty acid are dispersed in the low boiling point solvent is obtained. be able to.
The removal of the high boiling point solvent can be carried out by a conventionally known method such as simple distillation, vacuum distillation, precision distillation, thin film distillation, extraction and membrane separation.
In the first step, the copper compound fine particles dispersed in the dispersion liquid by blending sodium chloride, sodium bromide, etc. together with fatty acid copper and a stabilizer in the high boiling point solvent are converted into copper halide fine particles. Can be.

(分散液の第二の製造方法)
本発明の低沸点溶媒中に脂肪酸、好適には脂肪酸と該脂肪酸のエステル化合物で被覆された銅化合物微粒子が分散された分散液の製造方法は上述した製造方法の他、以下の方法によっても調製することができる。
すなわち、上述した第一の製造方法における第一の工程において、脂肪酸銅に代えて、脂肪酸及び銅化合物の組み合わせを添加する以外は第一の製造方法と同様に行う。
これにより、例えば銅化合物として酢酸銅を使用した場合は、脂肪酸、好適には脂肪酸及び該脂肪酸のエステル化合物が被覆した酢酸銅微粒子が分散した分散液を調製することができる。
この第二の製造方法においても第一の製造方法と同様に、第一の工程で高沸点溶媒と共に水を添加することによって、脂肪酸及び該脂肪酸のエステル化合物が被覆した一価の酢酸銅微粒子を低沸点溶媒中に分散させることが可能になる。
(Second method for producing dispersion)
The method for producing a dispersion in which fatty acids, preferably fatty acids and copper compound fine particles coated with the ester compound of the fatty acids are dispersed in the low boiling point solvent of the present invention is prepared by the following methods in addition to the above-mentioned production methods. can do.
That is, in the first step in the above-mentioned first production method, the same procedure as in the first production method is carried out except that a combination of a fatty acid and a copper compound is added instead of the fatty acid copper.
Thereby, for example, when copper acetate is used as the copper compound, a dispersion liquid in which fatty acids, preferably fatty acids and copper acetate fine particles coated with the ester compound of the fatty acids are dispersed can be prepared.
In this second production method as well, as in the first production method, by adding water together with a high boiling point solvent in the first step, the fatty acid and the monovalent copper acetate fine particles coated with the ester compound of the fatty acid are obtained. It can be dispersed in a low boiling point solvent.

(分散液の第三の製造方法)
本発明においては、前述した第一及び第二の製造方法における第一の工程で得られた、高沸点溶媒であるグリコール類中に、脂肪酸、好適には脂肪酸と該脂肪酸のエステル化合物で被覆された銅化合物微粒子が分散して成る分散液をそのまま使用することもできる。
すなわち、グリコール類に、脂肪酸銅とサッカリン、或いは脂肪酸と銅化合物とサッカリン、を添加し、これを加熱混合することにより、銅化合物微粒子が分散すると共にサッカリンを含有して成るグリコール分散液を調製してもよい。
この場合においても、上述した製造方法と同様に、グリコール類と共に水を存在させることにより、銅化合物微粒子を一価の銅化合物微粒子として調製することができ、優れた抗ウイルス性を発現することが可能になる。
(Third manufacturing method of dispersion liquid)
In the present invention, the glycols as the high boiling point solvent obtained in the first step in the first and second production methods described above are coated with a fatty acid, preferably a fatty acid and an ester compound of the fatty acid. It is also possible to use the dispersion liquid in which the copper compound fine particles are dispersed as it is.
That is, by adding fatty acid copper and saccharin or fatty acid and copper compound and saccharin to glycols and heating and mixing them, a glycol dispersion liquid containing saccharin as well as fine particles of the copper compound is prepared. You may.
Also in this case, similarly to the above-mentioned production method, by allowing water to be present together with the glycols, the copper compound fine particles can be prepared as monovalent copper compound fine particles, and excellent antiviral properties can be exhibited. It will be possible.

(グリコール類と相溶性を有する非水系溶媒を分散媒とする分散液の製造方法)
本発明においては、グリコール類と相溶性を有する低沸点溶媒、例えばエタノールやイソプロパノール等を分散媒とする場合には、前述した第一及び第二の製造方法により調製した分散液中の低沸点溶媒を加熱除去してペースト状にした後、上記分散媒に再分散させることにより、このような分散液を調製することができる。
前述したとおり、第一及び第二の製造方法においては二相分離により低沸点溶媒に高沸点溶媒中の銅化合物微粒子を抽出させているが、この二相分離では低沸点溶媒及び高沸点溶媒の組み合わせが重要であり、高沸点溶媒に対して相溶性を有する所望の低沸点溶媒中に銅化合物微粒子を分散させることは困難であるが、上述したように、分散液中の低沸点溶媒を除去してペースト状にすることにより、種々の低沸点溶媒に脂肪酸が被覆された酸化銅微粒子が分散した分散液を提供することが可能になる。
加熱混合条件や抽出条件などは、前述した分散液の製造方法における第一工程から第三工程と同様の条件で行うことができる。
(Method for producing a dispersion liquid using a non-aqueous solvent compatible with glycols as a dispersion medium)
In the present invention, when a low boiling point solvent compatible with glycols, for example, ethanol or isopropanol is used as the dispersion medium, the low boiling point solvent in the dispersion prepared by the above-mentioned first and second production methods is used. Such a dispersion liquid can be prepared by heat-removing the mixture to form a paste and then redispersing it in the above-mentioned dispersion medium.
As described above, in the first and second production methods, the copper compound fine particles in the high boiling point solvent are extracted into the low boiling point solvent by the two-phase separation, but in this two-phase separation, the low boiling point solvent and the high boiling point solvent are extracted. The combination is important and it is difficult to disperse the copper compound fine particles in a desired low boiling point solvent that is compatible with the high boiling point solvent, but as described above, the low boiling point solvent in the dispersion is removed. By making it into a paste, it becomes possible to provide a dispersion liquid in which copper oxide fine particles in which fatty acids are coated in various low boiling point solvents are dispersed.
The heating and mixing conditions, the extraction conditions, and the like can be performed under the same conditions as the first to third steps in the above-mentioned method for producing a dispersion liquid.

(実験例1)
ジエチレングリコールに対してステアリン酸銅2.5重量%と、サッカリン0.05重量%を加え、攪拌しながら加熱した。140℃に達した時点で蒸留水1.0重量%を加え、更に加熱し、190℃に達した時点から2時間加熱した後、ジエチレングリコール分散液を60℃まで冷却した。
次いで、分散剤であるDISPERBYK−2090(ビック・ケミー社製)1.0重量%を溶かした酢酸ブチルを加えて攪拌した。1時間程静置した後に酢酸ブチル層を採取し、亜酸化銅微粒子分散液を得た。
(Experimental Example 1)
2.5% by weight of copper stearate and 0.05% by weight of saccharin were added to diethylene glycol, and the mixture was heated with stirring. When 1.0% by weight of distilled water was added when the temperature reached 140 ° C., the mixture was further heated, and after heating for 2 hours from the time when the temperature reached 190 ° C., the diethylene glycol dispersion was cooled to 60 ° C.
Then, butyl acetate in which 1.0% by weight of DISPERBYK-2090 (manufactured by BIC Chemie) as a dispersant was dissolved was added and stirred. After allowing to stand for about 1 hour, the butyl acetate layer was collected to obtain a sub-copper oxide fine particle dispersion.

(実験例2)
加熱温度を210℃に変更した以外は実験例1と同様に分散液を作製した。
(Experimental Example 2)
A dispersion was prepared in the same manner as in Experimental Example 1 except that the heating temperature was changed to 210 ° C.

(実験例3)
サッカリンの代わりにサリチル酸を添加した以外は実験例1と同様に分散液を作製した。
(Experimental Example 3)
A dispersion was prepared in the same manner as in Experimental Example 1 except that salicylic acid was added instead of saccharin.

(実験例4)
加熱温度を170℃に変更した以外は実験例1と同様に分散液を作製した。
(Experimental Example 4)
A dispersion was prepared in the same manner as in Experimental Example 1 except that the heating temperature was changed to 170 ° C.

(実験例5)
ジエチレングリコールをグリセリンに変更した以外は実験例1と同様に分散液を作製した。
(Experimental Example 5)
A dispersion was prepared in the same manner as in Experimental Example 1 except that diethylene glycol was changed to glycerin.

(実験例6)
ジエチレングリコールを140℃まで加熱した時点で、水を加えないこと以外は実験例1と同様に分散液を作製した。
(Experimental Example 6)
When the diethylene glycol was heated to 140 ° C., a dispersion was prepared in the same manner as in Experimental Example 1 except that water was not added.

(実験例7)
酢酸ブチルに市販の亜酸化銅粉末1.0重量%を添加し、撹拌した。
(Experimental Example 7)
1.0% by weight of commercially available cuprous oxide powder was added to butyl acetate, and the mixture was stirred.

(実験例8)
酢酸ブチルに市販のステアリン酸銅粉末1.0重量%を添加し、撹拌した。
(Experimental Example 8)
1.0% by weight of commercially available copper stearate powder was added to butyl acetate, and the mixture was stirred.

(ゼータ電位評価方法)
ゼータ電位は、大塚電子(株)社製ゼータ電位・粒径・分子量測定システム ELSZ−2000ZSを用いて、測定電圧300Vで測定した。ゼータ電位の絶対値が大きいほど分散安定性が高く、ゼータ電位の絶対値が30(mV)以上であれば分散性は良好である。実験例1〜8について測定した。結果を表1に示す。
(Zeta potential evaluation method)
The zeta potential was measured at a measurement voltage of 300 V using the zeta potential / particle size / molecular weight measurement system ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd. The larger the absolute value of the zeta potential, the higher the dispersion stability, and when the absolute value of the zeta potential is 30 (mV) or more, the dispersibility is good. Measurements were made for Experimental Examples 1-8. The results are shown in Table 1.

(経時安定性評価方法)
分散液作製1週間後の状態を目視で確認した。粒子の沈殿が無ければ○(経時安定性が高い)、粒子の沈殿があれば×(経時安定性が低い)とした。実験例1〜8について確認した。結果を表1に示す。
(Method of evaluating stability over time)
The state one week after the preparation of the dispersion liquid was visually confirmed. If there was no particle precipitation, it was evaluated as ◯ (high stability over time), and if there was particle precipitation, it was evaluated as × (low stability over time). Experimental Examples 1 to 8 were confirmed. The results are shown in Table 1.

(粒子径測定方法)
得られた粒子の粒子径は、SEM画像より画像処理ソフトを用いて測定した。分散液の場合はフィルター濾過により回収した粒子を、市販品の場合は粉末を、日立ハイテクノロジーズ(株)製走査電子顕微鏡S−4800により観察し画像を得た。その画像より(株)Mountech製画像解析式粒度分布ソフトウェアMac−viewを用いて任意の数十個の粒子の平均粒子径を算出した。結果を表1に示す。
(Particle size measurement method)
The particle size of the obtained particles was measured from the SEM image using image processing software. In the case of the dispersion liquid, the particles recovered by filter filtration were observed, and in the case of the commercial product, the powder was observed with a scanning electron microscope S-4800 manufactured by Hitachi High-Technologies Corporation to obtain an image. From the image, the average particle size of several tens of arbitrary particles was calculated using the image analysis type particle size distribution software Mac-view manufactured by Moontech Co., Ltd. The results are shown in Table 1.

(溶媒中の脂肪酸エステル化合物の生成有無の確認)
実験例1の分散液において、ジエチレングリコール溶媒とステアリン酸銅から解離したステアリン酸とのエステル化合物の生成有無をIRにより確認した。結果を図1に示す。
(Confirmation of production of fatty acid ester compound in solvent)
In the dispersion liquid of Experimental Example 1, the presence or absence of the formation of an ester compound of the diethylene glycol solvent and stearic acid dissociated from copper stearate was confirmed by IR. The results are shown in FIG.

(溶媒中の脂肪酸エステル化合物の同定)
実験例1の分散液において、生成したエステル化合物の同定を、島津製作所(株)製 GC−MSQP−2010により行った。結果を図2に示す。
(Identification of fatty acid ester compounds in solvent)
The ester compound produced in the dispersion of Experimental Example 1 was identified by GC-MSQP-2010 manufactured by Shimadzu Corporation. The results are shown in FIG.

(粒子組成の確認)
実験例1の分散液に関して、X線回折を用いて銅化合物粒子の組成を確認した。結果を図3に示す。
(Confirmation of particle composition)
Regarding the dispersion liquid of Experimental Example 1, the composition of the copper compound particles was confirmed by using X-ray diffraction. The results are shown in FIG.

Figure 0006885145
Figure 0006885145

<抗ウイルス性評価>
(分散液の不織布への塗布方法)
得られた分散液90重量%と、バインダー樹脂として光硬化性アクリル系樹脂9.9重量%と、光重合開始剤0.1重量%を混合し塗工液とした。塗工液に未加工の不織布を浸漬し、取り出して余分な液をローラー式絞り機で除去した後、90℃の乾燥機で2分間乾燥した。その後UV照射を10分間行い、亜酸化銅微粒子が固定化された不織布を得た。
実験例1,7,8により得られた不織布について抗ウイルス性評価を行い、実験例1,7,8により得られた不織布について活性酸素発生量を測定した。結果を表2に併せて示す。
<Antiviral evaluation>
(Method of applying dispersion liquid to non-woven fabric)
90% by weight of the obtained dispersion liquid, 9.9% by weight of a photocurable acrylic resin as a binder resin, and 0.1% by weight of a photopolymerization initiator were mixed to prepare a coating liquid. The unprocessed non-woven fabric was immersed in the coating liquid, taken out, the excess liquid was removed with a roller type squeezer, and then dried in a dryer at 90 ° C. for 2 minutes. Then, UV irradiation was carried out for 10 minutes to obtain a non-woven fabric on which the sub-copper oxide fine particles were immobilized.
The antiviral properties of the non-woven fabrics obtained in Experimental Examples 1, 7 and 8 were evaluated, and the amount of active oxygen generated was measured in the non-woven fabrics obtained in Experimental Examples 1, 7 and 8. The results are also shown in Table 2.

(不織布の抗ウイルス性評価方法)
1.宿主細胞にウイルスを感染させ、培養後、遠心分離により細胞残渣を除去したものをウイルス懸濁液とする。
2.上記1のウイルス懸濁液を滅菌蒸留水で10倍希釈したものを試験ウイルス懸濁液とする。
3.不織布の試験片0.4gに試験ウイルス懸濁液0.2mLを接種する。
4.25℃2時間放置後、SCDLP培地20mLを加え、ボルテックスミキサーで攪拌し、検体からウイルスを洗い出す。
5.プラーク測定法にてウイルス感染価を測定し、抗ウイルス活性値を算出する。
6.抗ウイルス活性値が3.0以上であれば、そのウイルスに対して十分な抗ウイルス性があると判断できる。
(Non-woven fabric antiviral evaluation method)
1. 1. A virus suspension is obtained by infecting host cells with a virus, culturing the cells, and removing cell residues by centrifugation.
2. The virus suspension of 1 above diluted 10-fold with sterile distilled water is used as a test virus suspension.
3. 3. 0.4 g of the non-woven fabric test piece is inoculated with 0.2 mL of the test virus suspension.
4. After leaving at 25 ° C. for 2 hours, add 20 mL of SCDLP medium and stir with a vortex mixer to wash out the virus from the sample.
5. The virus infectivity titer is measured by the plaque measurement method, and the antiviral activity value is calculated.
6. If the antiviral activity value is 3.0 or more, it can be determined that the virus has sufficient antiviral properties.

(不織布の活性酸素発生量測定方法)
1.1.5mLのマイクロチューブに0.03gの不織布(1cm×15cm)を入れる。
2.蒸留水10mL、発光試薬(2−メチル−6−p−メトキシフェニルエチニルイミダゾピラジノン溶液)10μLを加え、ルミノメーター(アトー社製 AB−2270 ルミネッセンサーOcta)で発光量を測定し、活性酸素発生量とする。
(Method of measuring the amount of active oxygen generated in non-woven fabric)
1. Place 0.03 g of non-woven fabric (1 cm x 15 cm) in a 1.5 mL microtube.
2. Add 10 mL of distilled water and 10 μL of luminescent reagent (2-methyl-6-p-methoxyphenylethynyl imidazolipyrazinone solution), measure the amount of luminescence with a luminometer (AB-2270 Lumine Sensor Octa manufactured by Atto), and measure the amount of luminescence, active oxygen. Let it be the amount generated.

Figure 0006885145
Figure 0006885145

本発明の分散液に含まれる銅化合物微粒子は、抗ウイルス性、抗菌性、導電性、紫外線遮蔽性、防汚性等の特性を有し、特に銅化合物粒子が一価の場合には、ノロウイルス等のエンベロープ構造を持たないウイルスに対しても抗ウイルス性を発現することができることから、繊維製品等を構成する樹脂組成物に希釈剤として含有させる、或いは繊維製品等に直接塗布或いは含浸させることにより、繊維製品等に抗ウイルス性を付与することが可能になる。
また、衛生製品以外にも、導電膜、フィルム、金属板、ガラス板、船舶用塗料など各種用途に適用可能である。
更に、分散媒として低沸点溶媒を用いることにより、塗料組成物や樹脂組成物の希釈剤として使用することもでき、これにより塗膜や樹脂成形物に抗ウイルス性を付与することが可能になる。
The copper compound fine particles contained in the dispersion liquid of the present invention have properties such as antiviral property, antibacterial property, conductivity, ultraviolet shielding property, and antifouling property, and particularly when the copper compound particle is monovalent, norovirus. Since it is possible to exhibit antiviral properties against viruses that do not have an envelope structure such as, it is necessary to include it as a diluent in the resin composition constituting the textile product or the like, or to directly apply or impregnate the textile product or the like. This makes it possible to impart antiviral properties to textile products and the like.
In addition to sanitary products, it can be applied to various applications such as conductive films, films, metal plates, glass plates, and marine paints.
Further, by using a low boiling point solvent as the dispersion medium, it can be used as a diluent for a coating composition or a resin composition, which makes it possible to impart antiviral properties to a coating film or a resin molded product. ..

Claims (7)

非水系溶媒中に、脂肪酸で被覆された一価銅化合物微粒子と、サッカリン、サリチル酸、アスパラギン酸、クエン酸から選択される少なくとも1種である安定化剤とを含有することを特徴とする分散液。 A dispersion liquid containing monovalent copper compound fine particles coated with a fatty acid and a stabilizer which is at least one selected from saccharin, salicylic acid, aspartic acid, and citric acid in a non-aqueous solvent. .. 前記一価銅化合物粒子が、更に前記脂肪酸のエステル化合物で被覆されている請求項記載の分散液。 Wherein the monovalent copper compound particles, further dispersion of claim 1 wherein is coated with an ester compound of a fatty acid. 前記一価銅化合物が、亜酸化銅である請求項1又は2に記載の分散液。 The dispersion liquid according to claim 1 or 2 , wherein the monovalent copper compound is cuprous oxide. 前記非水系溶媒が、エステル系溶媒である請求項1〜の何れかに記載の分散液。 The dispersion liquid according to any one of claims 1 to 3 , wherein the non-aqueous solvent is an ester solvent. 分散剤を更に含有する請求項1〜の何れかに記載の分散液。 The dispersion liquid according to any one of claims 1 to 4, further containing a dispersant. 前記一価銅化合物が、抗ウイルス性を有する請求項1〜の何れかに記載の分散液。 The dispersion liquid according to any one of claims 1 to 5 , wherein the monovalent copper compound has antiviral properties. 一価銅化合物微粒子表面に、脂肪酸及び該脂肪酸のエステル化合物が被覆されていることを特徴とする銅化合物微粒子。 A copper compound fine particle characterized in that the surface of the monovalent copper compound fine particle is coated with a fatty acid and an ester compound of the fatty acid.
JP2017063564A 2016-03-28 2017-03-28 Dispersion liquid, its production method, and copper compound particles Active JP6885145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021078674A JP7120382B2 (en) 2016-03-28 2021-05-06 Method for producing copper compound fine particle-containing dispersion

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016064740 2016-03-28
JP2016064740 2016-03-28
JP2016247641 2016-12-21
JP2016247641 2016-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021078674A Division JP7120382B2 (en) 2016-03-28 2021-05-06 Method for producing copper compound fine particle-containing dispersion

Publications (2)

Publication Number Publication Date
JP2018100255A JP2018100255A (en) 2018-06-28
JP6885145B2 true JP6885145B2 (en) 2021-06-09

Family

ID=62715024

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017063564A Active JP6885145B2 (en) 2016-03-28 2017-03-28 Dispersion liquid, its production method, and copper compound particles
JP2021078674A Active JP7120382B2 (en) 2016-03-28 2021-05-06 Method for producing copper compound fine particle-containing dispersion

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021078674A Active JP7120382B2 (en) 2016-03-28 2021-05-06 Method for producing copper compound fine particle-containing dispersion

Country Status (1)

Country Link
JP (2) JP6885145B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170593A1 (en) 2016-03-28 2017-10-05 東洋製罐グループホールディングス株式会社 Dispersion liquid, method for producing same, and copper compound particles
JP6885146B2 (en) * 2016-03-28 2021-06-09 東洋製罐グループホールディングス株式会社 Antiviral molded body
WO2020204119A1 (en) * 2019-04-03 2020-10-08 東洋製罐グループホールディングス株式会社 Metal copper fine particle-containing resin composition and method for producing same
JP7461727B2 (en) * 2019-09-30 2024-04-04 東洋アルミエコープロダクツ株式会社 Antibacterial base film, antibacterial food containers and antibacterial food sheets
JP7229216B2 (en) * 2020-10-21 2023-02-27 イビデン株式会社 antiviral component
JP7229215B2 (en) * 2020-10-21 2023-02-27 イビデン株式会社 antiviral component
JP7262687B1 (en) * 2021-07-14 2023-04-21 三井金属鉱業株式会社 Copper oxide particles and antibacterial or antiviral composition containing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236907B2 (en) 2002-11-08 2009-03-11 旭化成株式会社 Method for producing cuprous oxide fine particles
JP5062506B2 (en) 2004-11-29 2012-10-31 三菱マテリアル株式会社 Extraction method of metal fine particles
JP5423053B2 (en) * 2008-02-29 2014-02-19 東洋製罐株式会社 Method for producing fatty acid-modified metal ultrafine particle dispersion
JP5227828B2 (en) * 2009-02-17 2013-07-03 株式会社日立製作所 Method for producing oxidation-resistant copper fine particles and joining method using the same
JP5311147B2 (en) * 2010-08-25 2013-10-09 株式会社豊田中央研究所 Surface-coated metal nanoparticles, production method thereof, and metal nanoparticle paste including the same
JP5848552B2 (en) * 2011-08-29 2016-01-27 日立金属株式会社 Method for producing copper fine particle dispersion, method for producing copper fine particle, copper fine particle dispersion and copper fine particle
JP5812488B2 (en) * 2011-10-12 2015-11-11 昭和電工株式会社 Antibacterial antiviral composition and method for producing the same
JP5943611B2 (en) * 2012-01-13 2016-07-05 三井金属鉱業株式会社 Cuprous oxide particles and method for producing the same
JP6133551B2 (en) 2012-05-18 2017-05-24 東洋製罐グループホールディングス株式会社 Silver ultrafine particle-containing dispersion and method for producing the same
JP5194185B1 (en) * 2012-06-20 2013-05-08 株式会社Nbcメッシュテック Antiviral composition
JP2014148732A (en) * 2013-02-04 2014-08-21 Yamagata Univ Novel coated copper fine particle and production method thereof
CN104936901B (en) * 2013-02-27 2016-10-12 松下知识产权经营株式会社 Coating agent composition and antibacterial/antiviral property component
JP6243190B2 (en) * 2013-10-30 2017-12-06 東洋製罐グループホールディングス株式会社 Antimicrobial metal ultrafine particle-containing dispersion and method for producing the same
EP3072931A4 (en) 2013-11-22 2017-07-26 Toyo Seikan Group Holdings, Ltd. Curable resin composition having antibacterial properties
JP6885146B2 (en) * 2016-03-28 2021-06-09 東洋製罐グループホールディングス株式会社 Antiviral molded body

Also Published As

Publication number Publication date
JP2021121577A (en) 2021-08-26
JP7120382B2 (en) 2022-08-17
JP2018100255A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
KR102168357B1 (en) Dispersion and its manufacturing method, and copper compound particles
JP6885145B2 (en) Dispersion liquid, its production method, and copper compound particles
JP6885146B2 (en) Antiviral molded body
JP5812488B2 (en) Antibacterial antiviral composition and method for producing the same
JP6984122B2 (en) Dispersion with antiviral properties
JP6512255B2 (en) Metal copper fine particles and method for producing the same
TWI557192B (en) Coating composition and antibacterial and antiviral components
CN108003669A (en) Automatically cleaning photocatalyst CT catalyst composite coating, coating and product
CA2967381C (en) Compositions comprising diatom frustules and applications thereof
WO2019069942A1 (en) Copper metal fine particles and method for producing same
JP2009226400A (en) Method of manufacturing dispersion of metallic ultrafine particle modified by fatty acid
WO2020204118A1 (en) Fine particle powder of metallic copper and method for manufacturing same
JP2020169387A (en) Metal copper fine particle powder and method for producing the same
JP7478138B2 (en) Metallic copper fine particle-containing resin composition and method for producing same
JP2009131756A (en) Method for producing titanium oxide-based deodorant
JP6764889B2 (en) Antibacterial and antifungal paint, algae-proof paint, antibacterial and antifungal member manufacturing method, and algae-proof member manufacturing method
JP5291980B2 (en) Core-shell mesoporous silica particles
JP2020169167A (en) Antiviral agent comprising metal copper fine particle
JP7392905B1 (en) Dispersion containing fine metal particles with antimicrobial properties and excellent stability over time
JP6743798B2 (en) Antiviral agent
JP2023152901A (en) Antimicrobial composition containing metal fine particle
KR20130041220A (en) Allergen inactivator, allergen inactivator composition, coated material, air purification filter, and allergen inactivation method
JP2005224727A (en) Modified photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150