JP6884020B2 - Non-aqueous electrolyte for batteries and lithium secondary battery - Google Patents

Non-aqueous electrolyte for batteries and lithium secondary battery Download PDF

Info

Publication number
JP6884020B2
JP6884020B2 JP2017068732A JP2017068732A JP6884020B2 JP 6884020 B2 JP6884020 B2 JP 6884020B2 JP 2017068732 A JP2017068732 A JP 2017068732A JP 2017068732 A JP2017068732 A JP 2017068732A JP 6884020 B2 JP6884020 B2 JP 6884020B2
Authority
JP
Japan
Prior art keywords
acid
group
carbonate
battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068732A
Other languages
Japanese (ja)
Other versions
JP2018170236A (en
Inventor
玄 宮田
玄 宮田
史隆 黒澤
史隆 黒澤
仁志 大西
仁志 大西
和俊 藤原
和俊 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2017068732A priority Critical patent/JP6884020B2/en
Publication of JP2018170236A publication Critical patent/JP2018170236A/en
Application granted granted Critical
Publication of JP6884020B2 publication Critical patent/JP6884020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本開示は、電池用非水電解液及びリチウム二次電池に関する。 The present disclosure relates to a non-aqueous electrolyte solution for a battery and a lithium secondary battery.

近年、リチウム二次電池は、携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く使用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。
リチウム二次電池は、例えば、リチウムを吸蔵放出可能な材料を含有する正極および負極、並びに、リチウム塩と非水溶媒とを含有する電池用非水電解液を含む。
正極に用いられる正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiFePOのようなリチウム金属酸化物が用いられる。
また、電池用非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどのカーボネート類の混合溶媒(非水溶媒)に、LiPF、LiBF、LiN(SOCF、LiN(SOCFCFのようなLi電解質を混合した溶液が用いられている。
一方、負極に用いられる負極用活物質としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金など)や炭素材料が知られており、特にリチウムを吸蔵、放出が可能なコークス、人造黒鉛、天然黒鉛を採用したリチウム二次電池が実用化されている。
In recent years, lithium secondary batteries have been widely used as power sources for electronic devices such as mobile phones and notebook computers, electric vehicles, and power storage. In particular, recently, there has been a rapid increase in demand for batteries with high capacity, high output, and high energy density that can be installed in hybrid vehicles and electric vehicles.
The lithium secondary battery includes, for example, a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, and a non-aqueous electrolyte solution for a battery containing a lithium salt and a non-aqueous solvent.
As the positive electrode active material used for the positive electrode, for example, lithium metal oxides such as LiCoO 2 , LiMnO 2 , LiNiO 2 , and LiFePO 4 are used.
The non-aqueous electrolyte solution for batteries includes LiPF 6 , LiBF 4 , and LiN (SO 2 CF 3 ) in a mixed solvent (non-aqueous solvent) of carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. 2. A solution mixed with a Li electrolyte such as LiN (SO 2 CF 2 CF 3 ) 2 is used.
On the other hand, as active materials for negative electrodes used for negative electrodes, metallic lithium, metal compounds capable of occluding and releasing lithium (single metal, oxides, alloys with lithium, etc.) and carbon materials are known, and in particular, lithium is used. A lithium secondary battery using coke, artificial graphite, and natural graphite that can be occluded and released has been put into practical use.

電池用非水電解液を含む電池(例えばリチウム二次電池)の性能を改善するために、電池用非水電解液に対し、種々の添加剤を含有させることが行われている。
例えば、充放電サイクル寿命特性及び高温放置特性が良好である二次電池を製造できる電池用非水電解液として、特定のホウ素化合物を含有する電池用非水電解液が知られている(例えば、特許文献1参照)。
また、初期充放電時の電池の膨れが抑制され、かつサイクル特性が良好な非水電解質二次電池を製造できる電池用非水電解液として、特定のカルボジイミドと、特定の硫酸エステル及び特定のホウ素化合物からなる群から選択される少なくとも1種と、を含有する電池用非水電解液が知られている(例えば、特許文献2参照)。
また、蓄電素子の膨れの少ない非水電解液として、フッ素化環状カーボネートを含有し、芳香族炭化水素を含むボロン酸エステルが添加されている非水電解液が知られている(例えば、特許文献3参照)。この特許文献3の実施例では、非水溶媒の全量に対するフッ素化環状カーボネートの含有量が10体積%又は30体積%である実施例が記載されている。
In order to improve the performance of a battery (for example, a lithium secondary battery) containing a non-aqueous electrolyte solution for a battery, various additives are added to the non-aqueous electrolyte solution for a battery.
For example, a non-aqueous electrolyte solution for a battery containing a specific boron compound is known as a non-aqueous electrolyte solution for a battery capable of producing a secondary battery having good charge / discharge cycle life characteristics and high temperature standing characteristics (for example,). See Patent Document 1).
Further, as a non-aqueous electrolyte solution for a battery capable of producing a non-aqueous electrolyte secondary battery in which swelling of the battery at the time of initial charge / discharge is suppressed and the cycle characteristics are good, a specific carbodiimide, a specific sulfate ester and a specific boron A non-aqueous electrolyte solution for a battery containing at least one selected from the group consisting of compounds is known (see, for example, Patent Document 2).
Further, as a non-aqueous electrolytic solution with less swelling of a power storage element, a non-aqueous electrolytic solution containing a fluorinated cyclic carbonate and a boronic acid ester containing an aromatic hydrocarbon is known (for example, Patent Documents). 3). Examples of Patent Document 3 describe examples in which the content of the fluorinated cyclic carbonate with respect to the total amount of the non-aqueous solvent is 10% by volume or 30% by volume.

特許第5112148号公報Japanese Patent No. 5112148 特許第5364890号公報Japanese Patent No. 5364890 特開2016−095965号公報JP-A-2016-0995965

しかし、満充電状態の電池を高温保存した場合の電池の体積変化をより抑制することが求められる場合がある。
従って、本開示の課題は、満充電状態の電池を高温保存した場合の電池の体積変化を抑制できる電池用非水電解液、及び、この電池用非水電解液を用いたリチウム二次電池を提供することである。
However, it may be required to further suppress the volume change of the battery when the fully charged battery is stored at a high temperature.
Therefore, an object of the present disclosure is a non-aqueous electrolyte solution for a battery capable of suppressing a change in the volume of a battery when a fully charged battery is stored at a high temperature, and a lithium secondary battery using this non-aqueous electrolyte solution for a battery. To provide.

上記課題を解決するための手段には、以下の態様が含まれる。
<1> 芳香族炭化水素基を有するボロン酸と、
非水溶媒の全量に対するフッ素化環状カーボネートの含有量が0体積%超8体積%以下である非水溶媒と、
を含有する電池用非水電解液。
<2> 前記ボロン酸が、下記式(A)で表される化合物(A)である<1>に記載の電池用非水電解液。
B(OH) … (A)
〔式(A)中、Rは、ハロゲン原子、炭素数1〜6の炭化水素基、及び炭素数1〜6のハロゲン化炭化水素基からなる群から選択される少なくとも1つの置換基によって置換されていてもよいアリール基を表す。〕
<3> 前記式(A)中の前記Rは、フッ素原子及びビニル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよいフェニル基を表す<2>に記載の電池用非水電解液。
<4> 前記ボロン酸の含有量が、電池用非水電解液全量に対して0.01質量%〜2.0質量%である<1>〜<3>のいずれか1つに記載の電池用非水電解液。
<5> 正極と、
金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
<1>〜<4>のいずれか1つに記載の電池用非水電解液と、
を含むリチウム二次電池。
<6> <5>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
Means for solving the above problems include the following aspects.
<1> Boronic acid having an aromatic hydrocarbon group and
A non-aqueous solvent in which the content of the fluorinated cyclic carbonate with respect to the total amount of the non-aqueous solvent is more than 0% by volume and 8% by volume or less,
A non-aqueous electrolyte solution for batteries containing.
<2> The non-aqueous electrolytic solution for a battery according to <1>, wherein the boronic acid is a compound (A) represented by the following formula (A).
R 1 B (OH) 2 ... (A)
[In the formula (A), R 1 is substituted with at least one substituent selected from the group consisting of a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, and a halogenated hydrocarbon group having 1 to 6 carbon atoms. Represents an aryl group that may be. ]
<3> The battery according to <2>, wherein the R 1 in the formula (A) represents a phenyl group which may be substituted with at least one substituent selected from the group consisting of a fluorine atom and a vinyl group. For non-aqueous electrolyte.
<4> The battery according to any one of <1> to <3>, wherein the content of the boronic acid is 0.01% by mass to 2.0% by mass with respect to the total amount of the non-aqueous electrolyte solution for the battery. For non-aqueous electrolyte.
<5> Positive electrode and
Metallic lithium, lithium-containing alloys, metals or alloys that can be alloyed with lithium, oxides that can be doped and dedoped with lithium ions, transition metal nitrogen compounds that can be doped and dedoped with lithium ions, and lithium. A negative electrode containing at least one selected from the group consisting of carbon materials capable of doping and dedoping ions as a negative electrode active material, and a negative electrode.
The non-aqueous electrolyte solution for batteries according to any one of <1> to <4>.
Lithium secondary battery including.
<6> A lithium secondary battery obtained by charging / discharging the lithium secondary battery according to <5>.

本開示によれば、満充電状態の電池を高温保存した場合の電池の体積変化を抑制できる電池用非水電解液、及び、この電池用非水電解液を用いたリチウム二次電池が提供される。 According to the present disclosure, a non-aqueous electrolyte solution for a battery capable of suppressing a change in the volume of a fully charged battery when stored at a high temperature, and a lithium secondary battery using the non-aqueous electrolyte solution for a battery are provided. To.

本開示のリチウム二次電池の一例である、ラミネート型電池の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the laminated type battery which is an example of the lithium secondary battery of this disclosure. 図1に示すラミネート型電池に収容される積層型電極体の、厚さ方向の概略断面図である。It is schematic cross-sectional view in the thickness direction of the laminated type electrode body housed in the laminated type battery shown in FIG. 本開示のリチウム二次電池の別の一例である、コイン型電池の一例を示す概略断面図である。It is the schematic cross-sectional view which shows the example of the coin type battery which is another example of the lithium secondary battery of this disclosure.

本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In the present specification, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.
In the present specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means.

〔電池用非水電解液〕
本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、
芳香族炭化水素基を有するボロン酸(以下、「特定ボロン酸」ともいう)と、
非水溶媒の全量に対するフッ素化環状カーボネートの含有量(以下、単に「フッ素化環状カーボネートの含有量」ともいう)が0体積%超8体積%以下である非水溶媒と、
を含有する。
[Non-aqueous electrolyte for batteries]
The non-aqueous electrolyte solution for batteries (hereinafter, also simply referred to as “non-aqueous electrolyte solution”) of the present disclosure is used.
Boronic acid having an aromatic hydrocarbon group (hereinafter, also referred to as "specific boronic acid") and
A non-aqueous solvent in which the content of the fluorinated cyclic carbonate with respect to the total amount of the non-aqueous solvent (hereinafter, also simply referred to as “content of the fluorinated cyclic carbonate”) is more than 0% by volume and 8% by volume or less.
Contains.

本開示の非水電解液によれば、満充電状態の電池を高温保存した場合の電池の体積変化を抑制できる。
即ち、本開示の非水電解液を含む電池を満充電状態で高温保存した場合、この電池の、高温保存による体積変化が抑制される。
According to the non-aqueous electrolyte solution of the present disclosure, it is possible to suppress a change in the volume of a fully charged battery when it is stored at a high temperature.
That is, when the battery containing the non-aqueous electrolytic solution of the present disclosure is stored at a high temperature in a fully charged state, the volume change of this battery due to the high temperature storage is suppressed.

本開示の非水電解液による上記効果(即ち、満充電状態の電池を高温保存した場合の電池の体積変化を抑制できるという効果。以下、「電池の体積変化抑制効果」ともいう。)は、特定ボロン酸と、非水溶媒の全量に対する含有量が0体積%超8体積%以下であるフッ素化環状カーボネートと、の組み合わせによって特異的に発揮される効果である。
即ち、特定ボロン酸を含有し、かつ、非水溶媒としてのフッ素化環状カーボネートを含有しない非水電解液を用いた場合(例えば、後述の比較例1)には、本開示の非水電解液を用いた場合と比較して、電池の体積変化が大きくなる。
また、特定ボロン酸及び非水溶媒としてのフッ素化環状カーボネートを含有し、かつ、非水溶媒の全量に対するフッ素化環状カーボネートの含有量が8体積%超である非水電解液を用いた場合(例えば、後述の比較例2)には、本開示の非水電解液を用いた場合と比較して、電池の体積変化が大きくなる。
The above-mentioned effect of the non-aqueous electrolyte solution of the present disclosure (that is, the effect of suppressing the volume change of the battery when the fully charged battery is stored at a high temperature; hereinafter, also referred to as "the effect of suppressing the volume change of the battery") is This effect is specifically exhibited by the combination of the specific boric acid and the fluorinated cyclic carbonate having a content of more than 0% by volume and 8% by volume or less based on the total amount of the non-aqueous solvent.
That is, when a non-aqueous electrolyte solution containing a specific boronic acid and not containing a fluorinated cyclic carbonate as a non-aqueous solvent is used (for example, Comparative Example 1 described later), the non-aqueous electrolyte solution of the present disclosure is used. Compared with the case of using, the volume change of the battery becomes large.
Further, when a non-aqueous electrolyte solution containing a specific boronic acid and a fluorinated cyclic carbonate as a non-aqueous solvent and having a fluorinated cyclic carbonate content of more than 8% by volume based on the total amount of the non-aqueous solvent is used ( For example, in Comparative Example 2) described later, the volume change of the battery becomes larger than that in the case of using the non-aqueous electrolyte solution of the present disclosure.

また、本開示の非水電解液は、フッ素化環状カーボネートの含有量が0体積%超8体積%以下である非水溶媒を含有し、かつ、特定ボロン酸を含有しない非水電解液(例えば、後述の比較例3)と比較して、電池の初期放電容量を上昇させる効果にも優れる。 Further, the non-aqueous electrolytic solution of the present disclosure contains a non-aqueous solvent having a fluorinated cyclic carbonate content of more than 0% by volume and 8% by volume or less, and does not contain a specific boronic acid (for example, a non-aqueous electrolytic solution). Compared with Comparative Example 3) described later, the effect of increasing the initial discharge capacity of the battery is also excellent.

以下、本開示の非水電解液の各成分について説明する。 Hereinafter, each component of the non-aqueous electrolytic solution of the present disclosure will be described.

<非水溶媒>
本開示の非水電解液は、フッ素化環状カーボネートの含有量(即ち、非水溶媒の全量に対するフッ素化環状カーボネートの含有量)が0体積%超8体積%以下である非水溶媒を含有する。
<Non-aqueous solvent>
The non-aqueous electrolyte solution of the present disclosure contains a non-aqueous solvent having a fluorinated cyclic carbonate content (that is, the content of the fluorinated cyclic carbonate with respect to the total amount of the non-aqueous solvent) of more than 0% by volume and 8% by volume or less. ..

(フッ素化環状カーボネート)
フッ素化環状カーボネートとしては、フルオロエチレンカーボネート(FEC)、3−トリフルオロメチルエチレンカーボネート(TFPC)、trans−ジフルオロエチレンカーボネート(DFEC)等が挙げられ、FECが特に好ましい。
(Fluorinated cyclic carbonate)
Examples of the fluorinated cyclic carbonate include fluoroethylene carbonate (FEC), 3-trifluoromethylethylene carbonate (TFPC), trans-difluoroethylene carbonate (DFEC) and the like, and FEC is particularly preferable.

フッ素化環状カーボネートの含有量は、0体積%超8体積%以下である。
前述のとおり、この範囲で、特異的に、電池の体積変化抑制効果が発揮される。
フッ素化環状カーボネートの含有量は、電池の体積変化抑制効果をより効果的に発揮させる観点から、1体積%〜8体積%がより好ましく、2体積%〜7体積%が更に好ましい。
The content of the fluorinated cyclic carbonate is more than 0% by volume and 8% by volume or less.
As described above, the effect of suppressing the volume change of the battery is specifically exhibited in this range.
The content of the fluorinated cyclic carbonate is more preferably 1% by volume to 8% by volume, further preferably 2% by volume to 7% by volume, from the viewpoint of more effectively exerting the effect of suppressing the volume change of the battery.

(その他の非水溶媒)
フッ素化環状カーボネート以外のその他の非水溶媒(本明細書では、単に「その他の非水溶媒」とも称する)としては、種々公知のものを適宜選択することができる。
その他の非水溶媒としては、環状の非プロトン性溶媒及び鎖状の非プロトン性溶媒から選ばれる少なくとも一方を用いることが好ましい。
電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。
(Other non-aqueous solvents)
As other non-aqueous solvents other than the fluorinated cyclic carbonate (also simply referred to as “other non-aqueous solvents” in the present specification), various known ones can be appropriately selected.
As the other aprotic solvent, it is preferable to use at least one selected from a cyclic aprotic solvent and a chain aprotic solvent.
When aiming to improve the flash point of the solvent in order to improve the safety of the battery, it is preferable to use a cyclic aprotic solvent as the non-aqueous solvent.

−環状の非プロトン性溶媒−
環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
本明細書において、単に「環状カーボネート」という場合は、フッ素化環状カーボネート以外の環状カーボネートを意味するものとする。
-Cyclic aprotic solvent-
As the cyclic aprotic solvent, cyclic carbonate, cyclic carboxylic acid ester, cyclic sulfone, and cyclic ether can be used.
In the present specification, the term "cyclic carbonate" is used to mean a cyclic carbonate other than the fluorinated cyclic carbonate.

環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
The cyclic aprotic solvent may be used alone or in combination of two or more.
The mixing ratio of the cyclic aprotic solvent in the non-aqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting such a ratio, the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can be increased.

環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。 Specific examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, and 2,3-pentylene carbonate. Of these, ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used. In the case of a battery using graphite as the negative electrode active material, ethylene carbonate is more preferable. Moreover, you may use these cyclic carbonates in mixture of 2 or more types.

環状カルボン酸エステルとして、具体的にはγ−ブチロラクトン、δ−バレロラクトン、あるいはメチルγ−ブチロラクトン、エチルγ−ブチロラクトン、エチルδ−バレロラクトンなどのアルキル置換体などを例示することができる。 Specific examples of the cyclic carboxylic acid ester include γ-butyrolactone, δ-valerolactone, and alkyl substituents such as methyl γ-butyrolactone, ethyl γ-butyrolactone, and ethyl δ-valerolactone.

環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、上記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。環状カルボン酸エステルの中でも、γ−ブチロラクトンが最も好ましい。 The cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, and a high dielectric constant, and can reduce the viscosity of the electrolytic solution without lowering the flash point of the electrolytic solution and the degree of dissociation of the electrolyte. Therefore, it has a feature that the conductivity of the electrolytic solution, which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolytic solution. It is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent. Among the cyclic carboxylic acid esters, γ-butyrolactone is most preferable.

また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/又は鎖状カーボネートとの混合物が挙げられる。 Further, the cyclic carboxylic acid ester is preferably used by mixing with another cyclic aprotic solvent. For example, a mixture of a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate can be mentioned.

環状スルホンの例としては、スルホラン、2−メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
環状エーテルの例としてジオキソランを挙げることができる。
Examples of cyclic sulfone include sulfolane, 2-methylsulfolane, 3-methylsulfolane, dimethylsulfone, diethylsulfone, dipropylsulfone, methylethylsulfone, methylpropylsulfone and the like.
Dioxolane can be mentioned as an example of the cyclic ether.

−鎖状の非プロトン性溶媒−
鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
-Chain aprotic solvent-
As the chain aprotic solvent, a chain carbonate, a chain carboxylic acid ester, a chain ether, a chain phosphate ester and the like can be used.

鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。 The mixing ratio of the chain aprotic solvent in the non-aqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass.

鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルメチルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。 Specifically, as the chain carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl methyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, Methylpentyl carbonate, ethylpentyl carbonate, dipentyl carbonate, methylheptyl carbonate, ethylheptyl carbonate, diheptyl carbonate, methylhexyl carbonate, ethylhexyl carbonate, dihexyl carbonate, methyloctyl carbonate, ethyloctyl carbonate, dioctyl carbonate, methyltrifluoroethyl carbonate, etc. Can be mentioned. Two or more kinds of these chain carbonates may be mixed and used.

鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
Specific examples of the chain carboxylic acid ester include methyl pivalate.
Specific examples of the chain ether include dimethoxyethane and the like.
Specific examples of the chain phosphate ester include trimethyl phosphate and the like.

−その他の非水溶媒の組み合わせ−
その他の非水溶媒は、1種類でも複数種類を混合して用いてもよい。また、環状の非プロトン性溶媒のみを1種類又は複数種類用いても、鎖状の非プロトン性溶媒のみを1種類又は複数種類用いても、又は環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
-Combination of other non-aqueous solvents-
Other non-aqueous solvents may be used alone or in admixture of a plurality of types. Further, only one or more kinds of cyclic aprotic solvents may be used, one or more kinds of chain aprotic solvents may be used, or cyclic aprotic solvents and chain protics. Solvents may be mixed and used. When it is particularly intended to improve the load characteristics and low temperature characteristics of the battery, it is preferable to use a combination of a cyclic aprotic solvent and a chain aprotic solvent as the aprotic solvent.

さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。 Further, from the viewpoint of the electrochemical stability of the electrolytic solution, it is most preferable to apply cyclic carbonate to the cyclic aprotic solvent and to apply chain carbonate to the chain aprotic solvent. Further, the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can also be enhanced by the combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.

環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。 Specific combinations of cyclic carbonate and chain carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, and propylene carbonate. Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate and diethyl carbonate. , Ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, methyl ethyl carbonate and diethyl Examples thereof include carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate.

その他の非水溶媒における環状カーボネートと鎖状カーボネートの混合割合は、体積比で表して、環状カーボネート:鎖状カーボネートが、5:95〜80:20、さらに好ましくは10:90〜70:30、特に好ましくは15:85〜55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温又は低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。 The mixing ratio of the cyclic carbonate and the chain carbonate in other non-aqueous solvents is expressed as a volume ratio, and the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30. Particularly preferably, it is 15:85 to 55:45. By setting such a ratio, it is possible to suppress an increase in the viscosity of the electrolytic solution and increase the degree of dissociation of the electrolyte, so that the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can be increased. Moreover, the solubility of the electrolyte can be further increased. Therefore, since the electrolytic solution having excellent electrical conductivity at room temperature or low temperature can be obtained, the load characteristics of the battery at room temperature to low temperature can be improved.

その他の非水溶媒としては、特許第6017697号の段落0074〜0083の記載を参照してもよい。 For other non-aqueous solvents, the description in paragraphs 0074 to 0083 of Japanese Patent No. 6017697 may be referred to.

本開示の非水電解液における非水溶媒は、環状カーボネート、鎖状カーボネート、及びフッ素化環状カーボネートを含むことが好ましい。
非水溶媒の全量に対する、環状カーボネート、鎖状カーボネート、及びフッ素化環状カーボネートの合計量は、60体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが特に好ましい。
環状カーボネート及び鎖状カーボネートの混合割合の好ましい範囲については前述のとおりである。
The non-aqueous solvent in the non-aqueous electrolyte solution of the present disclosure preferably contains a cyclic carbonate, a chain carbonate, and a fluorinated cyclic carbonate.
The total amount of the cyclic carbonate, the chain carbonate, and the fluorinated cyclic carbonate with respect to the total amount of the non-aqueous solvent is preferably 60% by volume or more, more preferably 80% by volume or more, and 90% by volume or more. It is particularly preferable to have.
The preferable range of the mixing ratio of the cyclic carbonate and the chain carbonate is as described above.

<特定ボロン酸>
本開示の非水電解液は、特定ボロン酸(即ち、芳香族炭化水素基を有するボロン酸)を少なくとも1種含有する。
本開示の非水電解液では、前述のとおり、特定ボロン酸と、フッ素化環状カーボネートの含有量が0体積%超8体積%以下である非水溶媒と、の組み合わせにより、電池の体積変化抑制効果が発揮される。
また、本開示の非水電解液では、前述のとおり、フッ素化環状カーボネートの含有量が0体積%超8体積%以下である非水溶媒を含有し、かつ、特定ボロン酸を含有しない非水電解液と比較して、電池の初期放電容量を上昇させる効果にも優れる。
<Specific boronic acid>
The non-aqueous electrolytic solution of the present disclosure contains at least one specific boronic acid (that is, boronic acid having an aromatic hydrocarbon group).
In the non-aqueous electrolytic solution of the present disclosure, as described above, the volume change of the battery is suppressed by the combination of the specific boronic acid and the non-aqueous solvent having a fluorinated cyclic carbonate content of more than 0% by volume and 8% by volume or less. The effect is exhibited.
Further, as described above, the non-aqueous electrolytic solution of the present disclosure contains a non-aqueous solvent having a fluorinated cyclic carbonate content of more than 0% by volume and 8% by volume or less, and does not contain specific boric acid. It is also excellent in the effect of increasing the initial discharge capacity of the battery as compared with the electrolytic solution.

特定ボロン酸(即ち、芳香族炭化水素基を有するボロン酸)における芳香族炭化水素基は、1価の芳香族炭化水素基(即ち、アリール基)であってもよいし、2価の芳香族炭化水素基(即ち、アリーレン基)であってもよいし、3価以上の芳香族炭化水素基であってもよい。 The aromatic hydrocarbon group in the specific boronic acid (that is, a boronic acid having an aromatic hydrocarbon group) may be a monovalent aromatic hydrocarbon group (that is, an aryl group) or a divalent aromatic group. It may be a hydrocarbon group (that is, an arylene group) or an aromatic hydrocarbon group having a valence of 3 or more.

特定ボロン酸の中でも、六員環の芳香族炭化水素基を有するボロン酸がより好ましい。
ここでいう六員環の芳香族炭化水素基は、置換基によって置換されていてもよい。
Among the specific boronic acids, boronic acid having a six-membered ring aromatic hydrocarbon group is more preferable.
The six-membered ring aromatic hydrocarbon group referred to here may be substituted with a substituent.

以下、特定ボロン酸の具体例を示すが、特定ボロン酸は以下の具体例には限定されない。
1,4−フェニレンジボロン酸、4,4’−ビフェニルジボロン酸、2−(メチルチオ)フェニルボロン酸、3−(メチルチオ)フェニルボロン酸、4−(メチルチオ)フェニルボロン酸、2−(ジメチルアミノ)フェニルボロン酸、3−(ジメチルアミノ)フェニルボロン酸、4−(ジメチルアミノ)フェニルボロン酸、2−ホルミルフェニルボロン酸、3−ホルミルフェニルボロン酸、4−ホルミルフェニルボロン酸、2−ヒドロキシフェニルボロン酸、3−ヒドロキシフェニルボロン酸、4−ヒドロキシフェニルボロン酸、2−メトキシフェニルボロン酸、3−メトキシフェニルボロン酸、4−メトキシフェニルボロン酸、2−シアノフェニルボロン酸、3−シアノフェニルボロン酸、4−シアノフェニルボロン酸、2−(トリメチルシリル)フェニルボロン酸、3−(トリメチルシリル)フェニルボロン酸、4−(トリメチルシリル)フェニルボロン酸、2−アセチルフェニルボロン酸、3−アセチルフェニルボロン酸、4−アセチルフェニルボロン酸、4−フェノキシフェニルボロン酸、2,3−ジメトキシフェニルボロン酸、2,4−ジメトキシロフェニルボロン酸、2,5−ジメトキシフェニルボロン酸、3,4−ジメトキシフェニルボロン酸、3,5−ジメトキシフェニルボロン酸、3,6−ジメトキシフェニルボロン酸、
Hereinafter, specific examples of the specific boronic acid will be shown, but the specific boronic acid is not limited to the following specific examples.
1,4-Phenylboronic acid, 4,4'-biphenyldiboronic acid, 2- (methylthio) phenylboronic acid, 3- (methylthio) phenylboronic acid, 4- (methylthio) phenylboronic acid, 2- (dimethyl) Amino) phenylboronic acid, 3- (dimethylamino) phenylboronic acid, 4- (dimethylamino) phenylboronic acid, 2-formylphenylboronic acid, 3-formylphenylboronic acid, 4-formylphenylboronic acid, 2-hydroxy Phenylboronic acid, 3-hydroxyphenylboronic acid, 4-hydroxyphenylboronic acid, 2-methoxyphenylboronic acid, 3-methoxyphenylboronic acid, 4-methoxyphenylboronic acid, 2-cyanophenylboronic acid, 3-cyanophenyl Boronic acid, 4-cyanophenylboronic acid, 2- (trimethylsilyl) phenylboronic acid, 3- (trimethylsilyl) phenylboronic acid, 4- (trimethylsilyl) phenylboronic acid, 2-acetylphenylboronic acid, 3-acetylphenylboronic acid , 4-Acetylphenylboronic acid, 4-Phenoxyphenylboronic acid, 2,3-dimethoxyphenylboronic acid, 2,4-dimethoxylophenylboronic acid, 2,5-dimethoxyphenylboronic acid, 3,4-dimethoxyphenylboronic acid Acid, 3,5-dimethoxyphenylboronic acid, 3,6-dimethoxyphenylboronic acid,

2−(メチルスルホニル)フェニルボロン酸、3−(メチルスルホニル)フェニルボロン酸、4−(メチルスルホニル)フェニルボロン酸、2−エトキシフェニルボロン酸、3−エトキシフェニルボロン酸、4−エトキシフェニルボロン酸、2−プロポキシフェニルボロン酸、3−プロポキシフェニルボロン酸、4−プロポキシフェニルボロン酸、2−イソプロポキシフェニルボロン酸、3−イソプロポキシフェニルボロン酸、4−イソプロポキシフェニルボロン酸、2−ヒドロキシメチルフェニルボロン酸、3−ヒドロキシメチルフェニルボロン酸、4−ヒドロキシメチルフェニルボロン酸、2−(トリフルオロメトキシ)フェニルボロン酸、3−(トリフルオロメトキシ)メチルフェニルボロン酸、4−(トリフルオロメトキシ)メチルフェニルボロン酸、2−シアノ−3−フルオロフェニルボロン酸、2−シアノ−4−フルオロフェニルボロン酸、2−シアノ−5−フルオロフェニルボロン酸、2−シアノ−6−フルオロフェニルボロン酸、3−シアノ−2−フルオロフェニルボロン酸、3−シアノ−4−フルオロフェニルボロン酸、3−シアノ−5−フルオロフェニルボロン酸、3−シアノ−6−フルオロフェニルボロン酸、4−シアノ−3−フルオロフェニルボロン酸、 2- (Methylsulfonyl) phenylboronic acid, 3- (methylsulfonyl) phenylboronic acid, 4- (methylsulfonyl) phenylboronic acid, 2-ethoxyphenylboronic acid, 3-ethoxyphenylboronic acid, 4-ethoxyphenylboronic acid , 2-propoxyphenylboronic acid, 3-propoxyphenylboronic acid, 4-propoxyphenylboronic acid, 2-isopropoxyphenylboronic acid, 3-isopropoxyphenylboronic acid, 4-isopropoxyphenylboronic acid, 2-hydroxymethyl Phenylboronic acid, 3-hydroxymethylphenylboronic acid, 4-hydroxymethylphenylboronic acid, 2- (trifluoromethoxy) phenylboronic acid, 3- (trifluoromethoxy) methylphenylboronic acid, 4- (trifluoromethoxy) Methylphenylboronic acid, 2-cyano-3-fluorophenylboronic acid, 2-cyano-4-fluorophenylboronic acid, 2-cyano-5-fluorophenylboronic acid, 2-cyano-6-fluorophenylboronic acid, 3 -Cyano-2-fluorophenylboronic acid, 3-cyano-4-fluorophenylboronic acid, 3-cyano-5-fluorophenylboronic acid, 3-cyano-6-fluorophenylboronic acid, 4-cyano-3-fluoro Phenylboronic acid,

2−フルオロ−3−メトキシフェニルボロン酸、2−フルオロ−4−メトキシフェニルボロン酸、2−フルオロ−5−メトキシフェニルボロン酸、2−フルオロ−6−メトキシフェニルボロン酸、3−フルオロ−2−メトキシフェニルボロン酸、3−フルオロ−4−メトキシフェニルボロン酸、3−フルオロ−5−メトキシフェニルボロン酸、3−フルオロ−6−メトキシフェニルボロン酸、4−フルオロ−3−メトキシフェニルボロン酸、2−クロロ−3−メトキシフェニルボロン酸、2−クロロ−4−メトキシフェニルボロン酸、2−クロロ−5−メトキシフェニルボロン酸、2−クロロ−6−メトキシフェニルボロン酸、3−クロロ−2−メトキシフェニルボロン酸、3−クロロ−4−メトキシフェニルボロン酸、3−クロロ−5−メトキシフェニルボロン酸、3−クロロ−6−メトキシフェニルボロン酸、4−クロロ−3−メトキシフェニルボロン酸、2−ニトロフェニルボロン酸、3−ニトロフェニルボロン酸、4−ニトロフェニルボロン酸、2−カルボキシフェニルボロン酸、3−カルボキシフェニルボロン酸、4−カルボキシフェニルボロン酸、2−カルバモイルフェニルボロン酸、3−カルバモイルシフェニルボロン酸、4−カルバモイルフェニルボロン酸、 2-Fluoro-3-methoxyphenylboronic acid, 2-fluoro-4-methoxyphenylboronic acid, 2-fluoro-5-methoxyphenylboronic acid, 2-fluoro-6-methoxyphenylboronic acid, 3-fluoro-2- Methoxyphenylboronic acid, 3-fluoro-4-methoxyphenylboronic acid, 3-fluoro-5-methoxyphenylboronic acid, 3-fluoro-6-methoxyphenylboronic acid, 4-fluoro-3-methoxyphenylboronic acid, 2 -Chloro-3-methoxyphenylboronic acid, 2-chloro-4-methoxyphenylboronic acid, 2-chloro-5-methoxyphenylboronic acid, 2-chloro-6-methoxyphenylboronic acid, 3-chloro-2-methoxy Phenylboronic acid, 3-chloro-4-methoxyphenylboronic acid, 3-chloro-5-methoxyphenylboronic acid, 3-chloro-6-methoxyphenylboronic acid, 4-chloro-3-methoxyphenylboronic acid, 2- Nitrophenylboronic acid, 3-nitrophenylboronic acid, 4-nitrophenylboronic acid, 2-carboxyphenylboronic acid, 3-carboxyphenylboronic acid, 4-carboxyphenylboronic acid, 2-carbamoylphenylboronic acid, 3-carbamoyl Siphenylboronic acid, 4-carbamoylphenylboronic acid,

2−(メトキシカルボニル)フェニルボロン酸、3−(メトキシカルボニル)フェニルボロン酸、4−(メトキシカルボニル)フェニルボロン酸、2−(エトキシカルボニル)フェニルボロン酸、3−(エトキシカルボニル)フェニルボロン酸、4−(エトキシカルボニル)フェニルボロン酸、2−メトキシ−3−メチルフェニルボロン酸、2−メトキシ−4−メチルフェニルボロン酸、2−メトキシ−5−メチルフェニルボロン酸、2−メトキシ−6−メチルフェニルボロン酸、3−メトキシ−2−メチルフェニルボロン酸、3−メトキシ−4−メチルフェニルボロン酸、3−メトキシ−5−メチルフェニルボロン酸、3−メトキシ−6−メチルフェニルボロン酸、4−メトキシ−3−メチルフェニルボロン酸、4−メトキシ−2、6−ジメチルフェニルボロン酸、2−(ジメチルカルバモイル)フェニルボロン酸、3−(ジメチルカルバモイル)シフェニルボロン酸、4−(ジメチルカルバモイル)フェニルボロン酸、 2- (methoxycarbonyl) phenylboronic acid, 3- (methoxycarbonyl) phenylboronic acid, 4- (methoxycarbonyl) phenylboronic acid, 2- (ethoxycarbonyl) phenylboronic acid, 3- (ethoxycarbonyl) phenylboronic acid, 4- (ethoxycarbonyl) phenylboronic acid, 2-methoxy-3-methylphenylboronic acid, 2-methoxy-4-methylphenylboronic acid, 2-methoxy-5-methylphenylboronic acid, 2-methoxy-6-methyl Phenylboronic acid, 3-methoxy-2-methylphenylboronic acid, 3-methoxy-4-methylphenylboronic acid, 3-methoxy-5-methylphenylboronic acid, 3-methoxy-6-methylphenylboronic acid, 4- Methoxy-3-methylphenylboronic acid, 4-methoxy-2, 6-dimethylphenylboronic acid, 2- (dimethylcarbamoyl) phenylboronic acid, 3- (dimethylcarbamoyl) siphenylboronic acid, 4- (dimethylcarbamoyl) phenyl Phenylboronic acid,

2−ベンジロキシフェニルボロン酸、3−ベンジロキシシフェニルボロン酸、4−ベンジロキシフェニルボロン酸、2−アセトアミドフェニルボロン酸、3−アセトアミドシフェニルボロン酸、4−アセトアミドフェニルボロン酸、2−ホルミル−3−メトキシフェニルボロン酸、2−ホルミル−4−メトキシフェニルボロン酸、2−ホルミル−5−メトキシフェニルボロン酸、2−ホルミル−6−メトキシフェニルボロン酸、3−ホルミル−2−メトキシフェニルボロン酸、3−ホルミル−4−メトキシフェニルボロン酸、3−ホルミル−5−メトキシフェニルボロン酸、3−ホルミル−6−メトキシフェニルボロン酸、4−ホルミル−3−メトキシフェニルボロン酸、2−メチル−3−ニトロフェニルボロン酸、2−メチル−4−ニトロフェニルボロン酸、2−メチル−5−ニトロフェニルボロン酸、2−メチル−6−ニトロフェニルボロン酸、3−メチル−2−ニトロフェニルボロン酸、3−メチル−4−ニトロフェニルボロン酸、3−メチル−5−ニトロフェニルボロン酸、3−メチル−6−ニトロフェニルボロン酸、4−メチル−3−ニトロフェニルボロン酸、2−ベンジロキシ−3−フルオロフェニルボロン酸、2−ベンジロキシ−4−フルオロフェニルボロン酸、2−ベンジロキシ−5−フルオロフェニルボロン酸、2−ベンジロキシ−6−フルオロフェニルボロン酸、3−ベンジロキシ−2−フルオロフェニルボロン酸、3−ベンジロキシ−4−フルオロフェニルボロン酸、3−ベンジロキシ−5−フルオロフェニルボロン酸、3−ベンジロキシ−6−フルオロフェニルボロン酸、4−ベンジロキシ−3−フルオロフェニルボロン酸、3,4−(メチレンジオキシ) フェニルボロン酸。 2-Benzyloxyphenylboronic acid, 3-benziroxyphenylboronic acid, 4-benzyloxyphenylboronic acid, 2-acetamidophenylboronic acid, 3-acetamidosiphenylboronic acid, 4-acetamidophenylboronic acid, 2-formyl -3-methoxyphenylboronic acid, 2-formyl-4-methoxyphenylboronic acid, 2-formyl-5-methoxyphenylboronic acid, 2-formyl-6-methoxyphenylboronic acid, 3-formyl-2-methoxyphenylboronic acid Acid, 3-formyl-4-methoxyphenylboronic acid, 3-formyl-5-methoxyphenylboronic acid, 3-formyl-6-methoxyphenylboronic acid, 4-formyl-3-methoxyphenylboronic acid, 2-methyl- 3-Nitrophenylboronic acid, 2-methyl-4-nitrophenylboronic acid, 2-methyl-5-nitrophenylboronic acid, 2-methyl-6-nitrophenylboronic acid, 3-methyl-2-nitrophenylboronic acid , 3-Methyl-4-nitrophenylboronic acid, 3-methyl-5-nitrophenylboronic acid, 3-methyl-6-nitrophenylboronic acid, 4-methyl-3-nitrophenylboronic acid, 2-benzyloxy-3 -Fluorophenylboronic acid, 2-benzyloxy-4-fluorophenylboronic acid, 2-benzyloxy-5-fluorophenylboronic acid, 2-benzyloxy-6-fluorophenylboronic acid, 3-benzyloxy-2-fluorophenylboronic acid, 3-Benzyloxy-4-fluorophenylboronic acid, 3-benzyloxy-5-fluorophenylboronic acid, 3-benzyloxy-6-fluorophenylboronic acid, 4-benzyloxy-3-fluorophenylboronic acid, 3,4- (methylene) Dioxy) Phenylboronic acid.

また、特定ボロン酸としては、下記式(A)で表される化合物(A)が好ましい。 Further, as the specific boronic acid, the compound (A) represented by the following formula (A) is preferable.

B(OH) … (A) R 1 B (OH) 2 ... (A)

式(A)中、Rは、ハロゲン原子、炭素数1〜6の炭化水素基、及び炭素数1〜6のハロゲン化炭化水素基からなる群から選択される少なくとも1つの置換基によって置換されていてもよいアリール基を表す。 In formula (A), R 1 is substituted with at least one substituent selected from the group consisting of halogen atoms, hydrocarbon groups with 1 to 6 carbon atoms, and halogenated hydrocarbon groups with 1 to 6 carbon atoms. Represents an aryl group that may be present.

式(A)における上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が特に好ましい。 As the halogen atom in the formula (A), a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom, a chlorine atom, or a bromine atom is more preferable, a fluorine atom or a chlorine atom is further preferable, and a fluorine atom. Is particularly preferable.

式(A)における炭素数1〜6の炭化水素基としては、炭素数1〜6のアルキル基又は炭素数1〜6のアルケニル基が好ましく、ビニル基が特に好ましい。 As the hydrocarbon group having 1 to 6 carbon atoms in the formula (A), an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 1 to 6 carbon atoms is preferable, and a vinyl group is particularly preferable.

式(A)中のRは、フッ素原子及びビニル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよいフェニル基を表すことが特に好ましい。 It is particularly preferable that R 1 in the formula (A) represents a phenyl group which may be substituted with at least one substituent selected from the group consisting of a fluorine atom and a vinyl group.

以下、化合物(A)の具体例を示すが、化合物(A)は、以下の具体例には限定されない。
フェニルボロン酸、1−ナフタレンボロン酸、2−ナフタレンボロン酸、2−フルオロフェニルボロン酸、2−ブロモフェニルボロン酸、2−クロロフェニルボロン酸、2−ヨードフェニルボロン酸、3−フルオロフェニルボロン酸、3−ブロモフェニルボロン酸、3−クロロフェニルボロン酸、3−ヨードフェニルボロン酸、4−フルオロフェニルボロン酸、4−ブロモフェニルボロン酸、4−クロロフェニルボロン酸、4−ヨードフェニルボロン酸、
Hereinafter, specific examples of compound (A) will be shown, but compound (A) is not limited to the following specific examples.
Phenylboronic acid, 1-naphthalenboronic acid, 2-naphthalenboronic acid, 2-fluorophenylboronic acid, 2-bromophenylboronic acid, 2-chlorophenylboronic acid, 2-iodophenylboronic acid, 3-fluorophenylboronic acid, 3-Bromophenylboronic acid, 3-chlorophenylboronic acid, 3-iodophenylboronic acid, 4-fluorophenylboronic acid, 4-bromophenylboronic acid, 4-chlorophenylboronic acid, 4-iodophenylboronic acid,

2,3−ジフルオロフェニルボロン酸、2,4−ジフルオロフェニルボロン酸、2,5−ジフルオロフェニルボロン酸、3,4−ジフルオロフェニルボロン酸、3,5−ジフルオロフェニルボロン酸、3,6−ジフルオロフェニルボロン酸、2,3−ジブロモフェニルボロン酸、2,4−ジブロモフェニルボロン酸、2,5−ジブロモフェニルボロン酸、3,4−ジブロモフェニルボロン酸、3,5−ジブロモフェニルボロン酸、3、6−ジブロモフェニルボロン酸、2,3−ジクロロフェニルボロン酸、2,4−ジクロロフェニルボロン酸、2,5−ジクロロフェニルボロン酸、3,4−ジクロロフェニルボロン酸、3,5−ジクロロフェニルボロン酸、3,6−ジクロロフェニルボロン酸、2,3−ジヨードフェニルボロン酸、2,4−ジヨードロフェニルボロン酸、2,5−ジヨードフェニルボロン酸、3,4−ジヨードフェニルボロン酸、3,5−ジヨードフェニルボロン酸、3,6−ジヨードフェニルボロン酸、 2,3-Difluorophenylboronic acid, 2,4-difluorophenylboronic acid, 2,5-difluorophenylboronic acid, 3,4-difluorophenylboronic acid, 3,5-difluorophenylboronic acid, 3,6-difluoro Phenylboronic acid, 2,3-dibromophenylboronic acid, 2,4-dibromophenylboronic acid, 2,5-dibromophenylboronic acid, 3,4-dibromophenylboronic acid, 3,5-dibromophenylboronic acid, 3 , 6-Dibromophenylboronic acid, 2,3-dichlorophenylboronic acid, 2,4-dichlorophenylboronic acid, 2,5-dichlorophenylboronic acid, 3,4-dichlorophenylboronic acid, 3,5-dichlorophenylboronic acid, 3, 6-Dichlorophenylboronic acid, 2,3-diiodophenylboronic acid, 2,4-diiodrophenylboronic acid, 2,5-diiodophenylboronic acid, 3,4-diiodophenylboronic acid, 3,5 − Diiodophenylboronic acid, 3,6-diiodophenylboronic acid,

2,4,6−トリフルオロフェニルボロン酸、2,4,6−トリブロモフェニルボロン酸、2,4,6−トリクロロフェニルボロン酸、2,4,6−トリヨードフェニルボロン酸、ヘキサフルオロフェニルボロン酸、ヘキサブロモフェニルボロン酸、ヘキサクロロフェニルボロン酸、ヘキサヨードフェニルボロン酸、 2,4,6-trifluorophenylboronic acid, 2,4,6-tribromophenylboronic acid, 2,4,6-trichlorophenylboronic acid, 2,4,6-triiodophenylboronic acid, hexafluorophenyl Boronic acid, hexabromophenylboronic acid, hexachlorophenylboronic acid, hexaiodophenylboronic acid,

2−メチルフェニルボロン酸、3−メチルフェニルボロン酸、4−メチルフェニルボロン酸、2−エチルフェニルボロン酸、3−エチルフェニルボロン酸、4−エチルフェニルボロン酸、2−プロピルフェニルボロン酸、3−プロピルフェニルボロン酸、4−プロピルフェニルボロン酸、2−イソプロピルフェニルボロン酸、3−イソプロピルフェニルボロン酸、4−イソプロピルフェニルボロン酸、 2-Methylphenylboronic acid, 3-methylphenylboronic acid, 4-methylphenylboronic acid, 2-ethylphenylboronic acid, 3-ethylphenylboronic acid, 4-ethylphenylboronic acid, 2-propylphenylboronic acid, 3 -Propylphenylboronic acid, 4-propylphenylboronic acid, 2-isopropylphenylboronic acid, 3-isopropylphenylboronic acid, 4-isopropylphenylboronic acid,

2,3−ジメチルフェニルボロン酸、2,4−ジメチルロフェニルボロン酸、2,5−ジメチルフェニルボロン酸、3,4−ジメチルフェニルボロン酸、3,5−ジメチルフェニルボロン酸、3,6−ジメチルフェニルボロン酸、2,4,6−トリメチルフェニルボロン酸、2,3−ジエチルフェニルボロン酸、2,4−ジエチルロフェニルボロン酸、2,5−ジエチルフェニルボロン酸、3,4−ジエチルフェニルボロン酸、3,5−ジエチルフェニルボロン酸、3,6−ジエチルフェニルボロン酸、2,4,6−トリエチルフェニルボロン酸、2,3−ジプロピルフェニルボロン酸、2,4−ジプロピルロフェニルボロン酸、2,5−ジプロピルフェニルボロン酸、3,4−ジプロピルフェニルボロン酸、3,5−ジプロピルフェニルボロン酸、3,6−ジプロピルフェニルボロン酸、2,4,6−トリプロピルフェニルボロン酸、2,3−ジイソプロピルフェニルボロン酸、2,4−ジイソプロピルロフェニルボロン酸、2,5−ジイソプロピルフェニルボロン酸、3,4−ジイソプロピルフェニルボロン酸、3,5−ジイソプロピルフェニルボロン酸、3,6−ジイソプロピルフェニルボロン酸、2,4,6−トリイソプロピルフェニルボロン酸、 2,3-Dimethylphenylboronic acid, 2,4-dimethyllophenylboronic acid, 2,5-dimethylphenylboronic acid, 3,4-dimethylphenylboronic acid, 3,5-dimethylphenylboronic acid, 3,6- Dimethylphenylboronic acid, 2,4,6-trimethylphenylboronic acid, 2,3-diethylphenylboronic acid, 2,4-diethyllophenylboronic acid, 2,5-diethylphenylboronic acid, 3,4-diethylphenyl Boronic acid, 3,5-diethylphenylboronic acid, 3,6-diethylphenylboronic acid, 2,4,6-triethylphenylboronic acid, 2,3-dipropylphenylboronic acid, 2,4-dipropyllophenylboronic acid Acid, 2,5-dipropylphenylboronic acid, 3,4-dipropylphenylboronic acid, 3,5-dipropylphenylboronic acid, 3,6-dipropylphenylboronic acid, 2,4,6-tripropyl Phenylboronic acid, 2,3-diisopropylphenylboronic acid, 2,4-diisopropyllophenylboronic acid, 2,5-diisopropylphenylboronic acid, 3,4-diisopropylphenylboronic acid, 3,5-diisopropylphenylboronic acid, 3,6-diisopropylphenylboronic acid, 2,4,6-triisopropylphenylboronic acid,

2−クロロ−3−フルオロフェニルボロン酸、2−クロロ−4−フルオロフェニルボロン酸、2−クロロ−5−フルオロフェニルボロン酸、2−クロロ−6−フルオロフェニルボロン酸、3−クロロ−2−フルオロフェニルボロン酸、3−クロロ−4−フルオロフェニルボロン酸、3−クロロ−5−フルオロフェニルボロン酸、3−クロロ−6−フルオロフェニルボロン酸、4−クロロ−3−フルオロフェニルボロン酸、2−フルオロ−3−メチルフェニルボロン酸、2−フルオロ−4−メチルフェニルボロン酸、2−フルオロ−5−メチルフェニルボロン酸、2−フルオロ−6−メチルフェニルボロン酸、3−フルオロ−2−メチルフェニルボロン酸、3−フルオロ−4−メチルフェニルボロン酸、3−フルオロ−5−メチルフェニルボロン酸、3−フルオロ−6−メチルフェニルボロン酸、4−フルオロ−3−メチルフェニルボロン酸、 2-Chloro-3-fluorophenylboronic acid, 2-chloro-4-fluorophenylboronic acid, 2-chloro-5-fluorophenylboronic acid, 2-chloro-6-fluorophenylboronic acid, 3-chloro-2- Fluorophenylboronic acid, 3-chloro-4-fluorophenylboronic acid, 3-chloro-5-fluorophenylboronic acid, 3-chloro-6-fluorophenylboronic acid, 4-chloro-3-fluorophenylboronic acid, 2 -Fluoro-3-methylphenylboronic acid, 2-fluoro-4-methylphenylboronic acid, 2-fluoro-5-methylphenylboronic acid, 2-fluoro-6-methylphenylboronic acid, 3-fluoro-2-methyl Phenylboronic acid, 3-fluoro-4-methylphenylboronic acid, 3-fluoro-5-methylphenylboronic acid, 3-fluoro-6-methylphenylboronic acid, 4-fluoro-3-methylphenylboronic acid,

2−(トリフルオロメタン)フェニルボロン酸、3−(トリフルオロメタン)フェニルボロン酸、4−(トリフルオロメタン)フェニルボロン酸、2−ビニルフェニルボロン酸、3−ビニルフェニルボロン酸、4−ビニルフェニルボロン酸、2−(ブロモメチル)フェニルボロン酸、3−(ブロモメチル)フェニルボロン酸、4−(ブロモメチル)フェニルボロン酸、2−クロロ−3−メチルフェニルボロン酸、2−クロロ−4−メチルフェニルボロン酸、2−クロロ−5−メチルフェニルボロン酸、2−クロロ−6−メチルフェニルボロン酸、3−クロロ−2−メチルフェニルボロン酸、3−クロロ−4−メチルフェニルボロン酸、3−クロロ−5−メチルフェニルボロン酸、3−クロロ−6−メチルフェニルボロン酸、4−クロロ−3−メチルフェニルボロン酸、 2- (Trifluoromethane) phenylboronic acid, 3- (trifluoromethane) phenylboronic acid, 4- (trifluoromethane) phenylboronic acid, 2-vinylphenylboronic acid, 3-vinylphenylboronic acid, 4-vinylphenylboronic acid , 2- (Bromomethyl) Phenylboronic Acid, 3- (Bromomethyl) Phenylboronic Acid, 4- (Bromomethyl) Phenylboronic Acid, 2-Chloro-3-methylphenylboronic Acid, 2-Chloro-4-methylphenylboronic Acid, 2-Chloro-5-methylphenylboronic acid, 2-chloro-6-methylphenylboronic acid, 3-chloro-2-methylphenylboronic acid, 3-chloro-4-methylphenylboronic acid, 3-chloro-5- Methylphenylboronic acid, 3-chloro-6-methylphenylboronic acid, 4-chloro-3-methylphenylboronic acid,

2,3−ビス(トリフルオロメチル)フェニルボロン酸、2,4−ビス(トリフルオロメチル)フェニルボロン酸、2,5−ビス(トリフルオロメチル)フェニルボロン酸、3,4−ビス(トリフルオロメチル)フェニルボロン酸、3,5−ビス(トリフルオロメチル)フェニルボロン酸、3,6−ビス(トリフルオロメチル)フェニルボロン酸、2−ビフェニルフェニルボロン酸、3−ビフェニルフェニルボロン酸、4−ビフェニルフェニルボロン酸、2−フルオロ−3−(トリフルオロメチル)フェニルボロン酸、2−フルオロ−4−(トリフルオロメチル)フェニルボロン酸、2−フルオロ−5−(トリフルオロメチル)フェニルボロン酸、2−フルオロ−6−(トリフルオロメチル)フェニルボロン酸、3−フルオロ−2−(トリフルオロメチル)フェニルボロン酸、3−フルオロ−4−(トリフルオロメチル)フェニルボロン酸、3−フルオロ−5−(トリフルオロメチル)フェニルボロン酸、3−フルオロ−6−(トリフルオロメチル)フェニルボロン酸、4−フルオロ−3−(トリフルオロメチル)フェニルボロン酸、2−クロロ−3−(トリフルオロメチル)フェニルボロン酸、2−クロロ−4−(トリフルオロメチル)フェニルボロン酸、2−クロロ−5−(トリフルオロメチル)フェニルボロン酸、2−クロロ−6−(トリフルオロメチル)フェニルボロン酸、3−クロロ−2−(トリフルオロメチル)フェニルボロン酸、3−クロロ−4−(トリフルオロメチル)フェニルボロン酸、3−クロロ−5−(トリフルオロメチル)フェニルボロン酸、3−クロロ−6−(トリフルオロメチル)フェニルボロン酸、4−クロロ−3−(トリフルオロメチル)フェニルボロン酸、2−フルオロ−3−ビフェニルボロン酸、2−フルオロ−4−ビフェニルボロン酸、2−フルオロ−5−ビフェニルボロン酸、2−フルオロ−6−ビフェニルボロン酸、3−フルオロ−2−ビフェニルボロン酸、3−フルオロ−4−ビフェニルボロン酸、3−フルオロ−5−ビフェニルボロン酸、3−フルオロ−6−ビフェニルボロン酸、4−フルオロ−3−ビフェニルボロン酸。 2,3-bis (trifluoromethyl) phenylboronic acid, 2,4-bis (trifluoromethyl) phenylboronic acid, 2,5-bis (trifluoromethyl) phenylboronic acid, 3,4-bis (trifluoromethyl) Methyl) phenylboronic acid, 3,5-bis (trifluoromethyl) phenylboronic acid, 3,6-bis (trifluoromethyl) phenylboronic acid, 2-biphenylphenylboronic acid, 3-biphenylphenylboronic acid, 4- Biphenylphenylboronic acid, 2-fluoro-3- (trifluoromethyl) phenylboronic acid, 2-fluoro-4- (trifluoromethyl) phenylboronic acid, 2-fluoro-5- (trifluoromethyl) phenylboronic acid, 2-Fluoro-6- (trifluoromethyl) phenylboronic acid, 3-fluoro-2- (trifluoromethyl) phenylboronic acid, 3-fluoro-4- (trifluoromethyl) phenylboronic acid, 3-fluoro-5 -(Trifluoromethyl) phenylboronic acid, 3-fluoro-6- (trifluoromethyl) phenylboronic acid, 4-fluoro-3- (trifluoromethyl) phenylboronic acid, 2-chloro-3- (trifluoromethyl) ) Phenylboronic acid, 2-chloro-4- (trifluoromethyl) phenylboronic acid, 2-chloro-5- (trifluoromethyl) phenylboronic acid, 2-chloro-6- (trifluoromethyl) phenylboronic acid, 3-Chloro-2- (trifluoromethyl) phenylboronic acid, 3-chloro-4- (trifluoromethyl) phenylboronic acid, 3-chloro-5- (trifluoromethyl) phenylboronic acid, 3-chloro-6 -(Trifluoromethyl) phenylboronic acid, 4-chloro-3- (trifluoromethyl) phenylboronic acid, 2-fluoro-3-biphenylboronic acid, 2-fluoro-4-biphenylboronic acid, 2-fluoro-5 -Biphenylboronic acid, 2-fluoro-6-biphenylboronic acid, 3-fluoro-2-biphenylboronic acid, 3-fluoro-4-biphenylboronic acid, 3-fluoro-5-biphenylboronic acid, 3-fluoro-6 -Biphenylboronic acid, 4-fluoro-3-biphenylboronic acid.

上記具体例の中でも、化合物(A)としては、フェニルボロン酸、3、5−ジフルオロフェニルボロン酸、4−ビニルフェニルボロン酸、2−フルオロフェニルボロン酸、3−フルオロフェニルボロン酸、4−フルオロフェニルボロン酸、2,3−ジフルオロフェニルボロン酸、2,4−ジフルオロフェニルボロン酸、2,5−ジフルオロフェニルボロン酸、3,4−ジフルオロフェニルボロン酸、3,6−ジフルオロフェニルボロン酸、2−ビニルフェニルボロン酸、又は3−ビニルフェニルボロン酸が特に好ましい。 Among the above specific examples, examples of the compound (A) include phenylboronic acid, 3,5-difluorophenylboronic acid, 4-vinylphenylboronic acid, 2-fluorophenylboronic acid, 3-fluorophenylboronic acid, and 4-fluoro. Phenylboronic acid, 2,3-difluorophenylboronic acid, 2,4-difluorophenylboronic acid, 2,5-difluorophenylboronic acid, 3,4-difluorophenylboronic acid, 3,6-difluorophenylboronic acid, 2 -Vinylphenylboronic acid or 3-vinylphenylboronic acid is particularly preferred.

本開示の非水電解液は、特定ボロン酸を1種のみ含有していてもよいし、2種以上含有していてもよい。
本開示の非水電解液における特定ボロン酸の含有量(2種以上である場合には総含有量)は、非水電解液の全量に対し、0.01質量%〜2.0質量%が好ましく、0.05質量%〜1.5質量%がより好ましく、0.1質量%〜1.0質量%が特に好ましい。
The non-aqueous electrolytic solution of the present disclosure may contain only one type of specific boronic acid, or may contain two or more types of specific boronic acid.
The content of the specific boronic acid in the non-aqueous electrolyte solution of the present disclosure (total content in the case of two or more types) is 0.01% by mass to 2.0% by mass with respect to the total amount of the non-aqueous electrolyte solution. Preferably, 0.05% by mass to 1.5% by mass is more preferable, and 0.1% by mass to 1.0% by mass is particularly preferable.

なお、実際に電池を解体して採取した非水電解液を分析しても、特定ボロン酸の量が、非水電解液への添加量と比較して減少している場合がある。従って、電池から取り出した非水電解液中に少量でも特定ボロン酸が検出できる場合には、本開示の非水電解液の範囲に含まれる。
また、非水電解液から特定ボロン酸が検出できない場合であっても、非水電解液中や電極の被膜中に、特定ボロン酸の分解物由来の化合物が検出される場合も、本開示の非水電解液の範囲に含まれるとみなされる。
これらの取り扱いは、非水電解液に含有され得る特定ボロン酸以外の添加剤についても同様である。
Even when the non-aqueous electrolytic solution actually collected by disassembling the battery is analyzed, the amount of the specific boronic acid may be reduced as compared with the amount added to the non-aqueous electrolytic solution. Therefore, when the specific boronic acid can be detected even in a small amount in the non-aqueous electrolytic solution taken out from the battery, it is included in the range of the non-aqueous electrolytic solution of the present disclosure.
Further, even when the specific boronic acid cannot be detected in the non-aqueous electrolyte solution, the compound derived from the decomposition product of the specific boronic acid is detected in the non-aqueous electrolyte solution or in the coating film of the electrode. It is considered to be included in the range of non-aqueous electrolytes.
These treatments are the same for additives other than the specific boronic acid that can be contained in the non-aqueous electrolytic solution.

<その他の添加剤>
本開示の非水電解液は、特定ボロン酸以外のその他の添加剤(本明細書中では「その他の添加剤」とも称する)を含有してもよい。
本開示の非水電解液がその他の添加剤を含有する場合、含有されるその他の添加剤は、1種のみであってもよいし、2種以上であってもよい。
その他の添加剤としては、炭素−炭素不飽和結合を有するカーボネート化合物、フルオロリン酸化合物、オキサラト化合物、環状スルトン化合物、式(C)で表される化合物、式(D)で表される化合物、及び環状硫酸エステル化合物からなる群から選ばれる少なくとも1種が好ましい。
<Other additives>
The non-aqueous electrolyte solution of the present disclosure may contain other additives other than the specified boronic acid (also referred to as "other additives" in the present specification).
When the non-aqueous electrolytic solution of the present disclosure contains other additives, the other additives contained may be only one kind or two or more kinds.
Examples of other additives include carbonate compounds having a carbon-carbon unsaturated bond, fluorophosphate compounds, oxalate compounds, cyclic sulton compounds, compounds represented by the formula (C), and compounds represented by the formula (D). And at least one selected from the group consisting of cyclic sulfate ester compounds are preferred.

(炭素−炭素不飽和結合を有するカーボネート化合物)
炭素−炭素不飽和結合を有するカーボネート化合物としては、メチルビニルカーボネート、エチルビニルカーボネート、ジビニルカーボネート、メチルプロピニルカーボネート、エチルプロピニルカーボネート、ジプロピニルカーボネート、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネートなどの鎖状カーボネート類;ビニレンカーボネート、メチルビニレンカーボネート、4,4−ジメチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、エチニルエチレンカーボネート、4,4−ジエチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、プロピニルエチレンカーボネート、4,4−ジプロピニルエチレンカーボネート、4,5−ジプロピニルエチレンカーボネートなどの環状カーボネート類;などが挙げられる。これらのうち、好ましくは、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネートであり、より好ましくは、ビニレンカーボネート、ビニルエチレンカーボネートである。
(Carbon-carbon unsaturated bond carbonate compound)
Examples of the carbonate compound having a carbon-carbon unsaturated bond include a chain such as methyl vinyl carbonate, ethyl vinyl carbonate, divinyl carbonate, methylpropynyl carbonate, ethylpropynyl carbonate, dipropynyl carbonate, methylphenyl carbonate, ethylphenyl carbonate, and diphenyl carbonate. Carbonates; vinylene carbonate, methylvinylene carbonate, 4,4-dimethylvinylene carbonate, 4,5-dimethylvinylene carbonate, vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, ethynylethylene carbonate, Cyclic carbonates such as 4,4-dietinylethylene carbonate, 4,5-dietinylethylene carbonate, propynylethylene carbonate, 4,4-dipropynylethylene carbonate, and 4,5-dipropynylethylene carbonate; and the like. Of these, methylphenyl carbonate, ethylphenyl carbonate, diphenyl carbonate, vinylene carbonate, vinylethylene carbonate, 4,5-divinylethylene carbonate, and 4,5-divinylethylene carbonate are preferable, and vinylene carbonate, more preferably. It is vinylethylene carbonate.

(フルオロリン酸化合物)
フルオロリン酸化合物としては、ジフルオロリン酸リチウム、モノフルオロリン酸リチウム、ジフルオロリン酸、モノフルオロリン酸、ジフルオロリン酸メチル、ジフルオロリン酸エチル、フルオロリン酸ジメチル、フルオロリン酸ジエチルなどが挙げられる。これらのうち、好ましくはジフルオロリン酸リチウム、モノフルオロリン酸リチウムである。
(Fluorophosphoric acid compound)
Examples of the fluorophosphate compound include lithium difluorophosphate, lithium monofluorophosphate, difluorophosphate, monofluorophosphate, methyl difluorophosphate, ethyl difluorophosphate, dimethyl fluorophosphate, diethyl fluorophosphate and the like. .. Of these, lithium difluorophosphate and lithium monofluorophosphate are preferable.

(オキサラト化合物)
オキサラト化合物としては、ジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、トリス(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、ビス(オキサラト)ホウ酸リチウムなどが挙げられる。これらのうち、好ましくはジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、ビス(オキサラト)ホウ酸リチウムである。
(Oxalate compound)
Examples of the oxalate compound include lithium difluorobis (oxalate) phosphate, lithium tetrafluoro (oxalate) phosphate, lithium tris (oxalate) phosphate, lithium difluoro (oxalate) borate, and lithium bis (oxalate) borate. .. Of these, lithium difluorobis (oxalate) phosphate, lithium tetrafluoro (oxalate) phosphate, and lithium bis (oxalate) borate are preferable.

(環状スルトン化合物)
環状スルトン化合物としては、1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロペンスルトン、1−メチル−1,3−プロペンスルトン、2−メチル−1,3−プロペンスルトン、3−メチル−1,3−プロペンスルトン等のスルトン類が挙げられる。これらのうち、好ましくは、1,3−プロパンスルトン、1,3−プロペンスルトンである。
(Cyclic sultone compound)
Cyclic sultone compounds include 1,3-propane sultone, 1,4-butane sultone, 1,3-propensultone, 1-methyl-1,3-propensultone, 2-methyl-1,3-propensultone, 3-. Examples thereof include sultones such as methyl-1,3-propensultone. Of these, 1,3-propane sultone and 1,3-propene sultone are preferable.

(式(C)で表される化合物) (Compound represented by formula (C))

Figure 0006884020
Figure 0006884020

式(C)中、Rは、少なくとも1つのフッ素原子で置換された炭素数1〜6の炭化水素基、少なくとも1つのフッ素原子で置換された炭素数1〜6の炭化水素オキシ基、又はフッ素原子を表す。 In formula (C), R 1 is a hydrocarbon group having 1 to 6 carbon atoms substituted with at least one fluorine atom, a hydrocarbon oxy group having 1 to 6 carbon atoms substituted with at least one fluorine atom, or Represents a fluorine atom.

式(C)中、Rにおける上記炭化水素基としては、アルキル基又はアルケニル基が好ましく、アルキル基がより好ましい。
式(C)中、Rにおける上記炭化水素基は、少なくとも1つのフッ素原子で置換されていればよいが、パーフルオロ炭化水素基であることが好ましい。
式(C)中、Rにおける上記炭化水素基の炭素数は、1〜3が好ましく、1又は2がより好ましく、1が特に好ましい。
In the formula (C), as the hydrocarbon group in R 1 , an alkyl group or an alkenyl group is preferable, and an alkyl group is more preferable.
In the formula (C), the hydrocarbon group in R 1 may be substituted with at least one fluorine atom, but is preferably a perfluorohydrocarbon group.
Wherein (C), the carbon number of the hydrocarbon group for R 1 is 1 to 3, more preferably 1 or 2, 1 is particularly preferred.

式(C)中、Rにおける上記炭化水素オキシ基としては、アルコキシ基又はアルケニルオキシ基が好ましく、アルコキシ基がより好ましい。
式(C)中、Rにおける上記炭化水素オキシ基は、少なくとも1つのフッ素原子で置換されていればよいが、パーフルオロ炭化水素オキシ基であることが好ましい。
式(C)中、Rにおける上記炭化水素オキシ基の炭素数は、1〜3が好ましく、1又は2がより好ましく、1が特に好ましい。
In the formula (C), as the hydrocarbon oxy group in R 1 , an alkoxy group or an alkenyloxy group is preferable, and an alkoxy group is more preferable.
In the formula (C), the hydrocarbon oxy group in R 1 may be substituted with at least one fluorine atom, but is preferably a perfluorohydrocarbon oxy group.
In the formula (C), the number of carbon atoms of the hydrocarbon oxy group in R 1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.

式(C)中、Rとしては、少なくとも1つのフッ素原子で置換された炭素数1〜6の炭化水素基が好ましく、少なくとも1つのフッ素原子で置換された炭素数1〜6のアルキル基がより好ましく、炭素数1〜6のパーフルオロアルキル基が更に好ましく、パーフルオロメチル基(別名:トリフルオロメチル基)又はパーフルオロエチル基(別名:ペンタフルオロエチル基)が更に好ましく、パーフルオロメチル基(別名:トリフルオロメチル基)が特に好ましい。 Wherein (C), as the R 1, at least one hydrocarbon group having 1 to 6 carbon atoms substituted with fluorine atoms are preferable, an alkyl group having 1 to 6 carbon atoms which is substituted with at least one fluorine atom More preferably, a perfluoroalkyl group having 1 to 6 carbon atoms is further preferable, a perfluoromethyl group (also known as a trifluoromethyl group) or a perfluoroethyl group (also known as a pentafluoroethyl group) is further preferable, and a perfluoromethyl group is more preferable. (Also known as: trifluoromethyl group) is particularly preferable.

式(C)で表される化合物としては、トリフルオロメチルスルホン酸リチウム又はペンタフルオロエチルスルホン酸リチウムが好ましく、トリフルオロメチルスルホン酸リチウムを含むことが特に好ましい。 As the compound represented by the formula (C), lithium trifluoromethylsulfonate or lithium pentafluoroethylsulfonate is preferable, and lithium trifluoromethylsulfonate is particularly preferable.

(式(D)で表される化合物) (Compound represented by formula (D))

Figure 0006884020
Figure 0006884020

式(D)中、Rは、少なくとも1つのフッ素原子によって置換されていてもよい炭素数1〜6の炭化水素基、又は、フッ素原子を表す。 In formula (D), R 1 represents a hydrocarbon group having 1 to 6 carbon atoms which may be substituted with at least one fluorine atom, or a fluorine atom.

式(D)中、Rにおける上記炭化水素基としては、アルキル基又はアルケニル基が好ましく、アルキル基がより好ましい。
式(D)中、Rにおける上記炭化水素基は、少なくとも1つのフッ素原子で置換されていればよいが、パーフルオロ炭化水素基であることが好ましい。
式(D)中、Rにおける上記炭化水素基の炭素数は、1〜3が好ましく、1又は2がより好ましく、1が特に好ましい。
Wherein (D), examples of the hydrocarbon group of R 1, an alkyl group or alkenyl group and more preferably an alkyl group.
In the formula (D), the hydrocarbon group in R 1 may be substituted with at least one fluorine atom, but is preferably a perfluorohydrocarbon group.
Wherein (D), the carbon number of the hydrocarbon group for R 1 is 1 to 3, more preferably 1 or 2, 1 is particularly preferred.

式(D)中、Rとしては、フッ素原子で置換されてもよい炭素数1〜6のアルキル基が好ましく、フッ素原子で置換されてもよい炭素数1〜3のアルキル基がより好ましく、メチル基、エチル基、プロピル基、又はトリフルオロメチル基が特に好ましい。 Wherein (D), as the R 1, an alkyl group having 1 to 6 carbon atoms are preferable be substituted by fluorine atoms, more preferably an alkyl group having 1 to 3 carbon atoms substituted with fluorine atoms, Methyl, ethyl, propyl, or trifluoromethyl groups are particularly preferred.

式(D)で表される化合物としては、メタンスルホニルフルオリド、エタンスルホニルフルオリド、プロパンスルホニルフルオリド、2−プロパンスルホニルフルオリド、ブタンスルホニルフルオリド、2−ブタンスルホニルフルオリド、ヘキサンスルホニルフルオリド、トリフルオロメタンスルホニルフルオリド、パーフルオロエタンスルホニルフルオリド、パーフルオロプロパンスルホニルフルオリド、パーフルオロブタンスルホニルフルオリド、エテンスルホニルフルオリド、1−プロペン−1−スルホニルフルオリド、2−プロペン−1−スルホニルフルオリド等が挙げられる。
式(D)で表される化合物としては、メタンスルホニルフルオリドが特に好ましい。
Examples of the compound represented by the formula (D) include methanesulfonyl fluoride, ethanesulfonyl fluoride, propanesulfonyl fluoride, 2-propanesulfonyl fluoride, butanesulfonyl fluoride, 2-butanesulfonyl fluoride, and hexanesulfonyl fluoride. , Trifluoromethanesulfonyl fluoride, perfluoroethanesulfonyl fluoride, perfluoropropanesulfonyl fluoride, perfluorobutane sulfonyl fluoride, ethanesulfonyl fluoride, 1-propene-1-sulfonyl fluoride, 2-propen-1-sulfonyl Examples include fluoride.
As the compound represented by the formula (D), methanesulfonyl fluoride is particularly preferable.

(環状硫酸エステル化合物)
環状硫酸エステル化合物としては、下記式(I)で表される化合物が好ましい。
(Cyclic sulfate compound)
As the cyclic sulfuric acid ester compound, a compound represented by the following formula (I) is preferable.

Figure 0006884020
Figure 0006884020

式(I)中、R及びRが、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、フェニル基、式(II)で表される基若しくは式(III)で表される基を表すか、又は、R及びRが一体となって、Rが結合する炭素原子及びRが結合する炭素原子と共に、ベンゼン環若しくはシクロヘキシル環を形成する基を表す。
式(II)中、Rは、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のハロゲン化アルキル基、炭素数1〜6のアルコキシ基、又は式(IV)で表される基を表す。式(II)、式(III)、および式(IV)における波線は、結合位置を表す。
式(I)で表される化合物中に、式(II)で表される基が2つ含まれる場合、2つの式(II)で表される基は、同一であっても互いに異なっていてもよい。
In formula (I), R 1 and R 2 are independently represented by a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a group represented by formula (II), or a group represented by formula (III). It represents a group, or represents a group in which R 1 and R 2 are united to form a benzene ring or a cyclohexyl ring together with a carbon atom to which R 1 is bonded and a carbon atom to which R 2 is bonded.
In formula (II), R 3 is represented by a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkyl halide group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or the formula (IV). Represents a group. The wavy lines in equations (II), (III), and (IV) represent the coupling positions.
When the compound represented by the formula (I) contains two groups represented by the formula (II), the groups represented by the two formulas (II) are different from each other even if they are the same. May be good.

式(II)中、「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が具体例として挙げられる。
ハロゲン原子としては、フッ素原子が好ましい。
Specific examples of the "halogen atom" in the formula (II) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
As the halogen atom, a fluorine atom is preferable.

式(I)及び(II)中、「炭素数1〜6のアルキル基」とは、炭素数が1以上6以下である直鎖又は分岐鎖のアルキル基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、2−メチルブチル基、1−メチルペンチル基、ネオペンチル基、1−エチルプロピル基、ヘキシル基、3,3−ジメチルブチル基などが具体例として挙げられる。
炭素数1〜6のアルキル基としては、炭素数1〜3のアルキル基がより好ましい。
In the formulas (I) and (II), the "alkyl group having 1 to 6 carbon atoms" is a linear or branched alkyl group having 1 or more and 6 or less carbon atoms, and is a methyl group, an ethyl group, or a propyl group. Group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2-methylbutyl group, 1-methylpentyl group, neopentyl group, 1-ethylpropyl group, hexyl group, 3,3 -A specific example is a dimethylbutyl group.
As the alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 3 carbon atoms is more preferable.

式(II)中、「炭素数1〜6のハロゲン化アルキル基」とは、炭素数が1〜6である直鎖又は分岐鎖のハロゲン化アルキル基であり、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロイソプロピル基、パーフルオロイソブチル基、クロロメチル基、クロロエチル基、クロロプロピル基、ブロモメチル基、ブロモエチル基、ブロモプロピル基、ヨウ化メチル基、ヨウ化エチル基、ヨウ化プロピル基などが具体例として挙げられる。
炭素数1〜6のハロゲン化アルキル基としては、炭素数1〜3のハロゲン化アルキル基がより好ましい。
In the formula (II), the "alkyl halide group having 1 to 6 carbon atoms" is a linear or branched alkyl halide group having 1 to 6 carbon atoms, and is a fluoromethyl group, a difluoromethyl group, or the like. Trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroisopropyl group, perfluoroisobutyl group , Chloromethyl group, chloroethyl group, chloropropyl group, bromomethyl group, bromoethyl group, bromopropyl group, methyl iodide group, ethyl iodide group, propyl iodide group and the like can be mentioned as specific examples.
As the alkyl halide group having 1 to 6 carbon atoms, an alkyl halide group having 1 to 3 carbon atoms is more preferable.

式(II)中、「炭素数1〜6のアルコキシ基」とは、炭素数が1以上6以下である直鎖又は分岐鎖のアルコキシ基であり、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、2−メチルブトキシ基、1−メチルペンチルオキシ基、ネオペンチルオキシ基、1−エチルプロポキシ基、ヘキシルオキシ基、3,3−ジメチルブトキシ基などが具体例として挙げられる。
炭素数1〜6のアルコキシ基としては、炭素数1〜3のアルコキシ基がより好ましい。
In the formula (II), the "alkoxy group having 1 to 6 carbon atoms" is a linear or branched alkoxy group having 1 or more and 6 or less carbon atoms, and is a methoxy group, an ethoxy group, a propoxy group, or an isopropoxy. Group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, 2-methylbutoxy group, 1-methylpentyloxy group, neopentyloxy group, 1-ethylpropoxy group, hexyloxy group, Specific examples include 3,3-dimethylbutoxy groups.
As the alkoxy group having 1 to 6 carbon atoms, an alkoxy group having 1 to 3 carbon atoms is more preferable.

式(I)における好ましい態様は、Rが、式(II)で表される基(式(II)において、Rは、フッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は式(IV)で表される基であることが好ましい。)若しくは式(III)で表される基であり、かつ、Rが、水素原子、炭素数1〜3のアルキル基、式(II)で表される基、若しくは式(III)で表される基であるか、又は、R及びRが一体となって、Rが結合する炭素原子及びRが結合する炭素原子と共に、ベンゼン環若しくはシクロヘキシル環を形成する基である態様である。 In a preferred embodiment of the formula (I), R 1 is a group represented by the formula (II) (in the formula (II), R 3 is a fluorine atom, an alkyl group having 1 to 3 carbon atoms, and 1 to 3 carbon atoms. The alkyl halide group, the alkoxy group having 1 to 3 carbon atoms, or the group represented by the formula (IV) is preferable.) Or the group represented by the formula (III), and R 2 is , A hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the formula (II), or a group represented by the formula (III), or R 1 and R 2 are integrated. This is a group that forms a benzene ring or a cyclohexyl ring together with a carbon atom to which R 1 is bonded and a carbon atom to which R 2 is bonded.

式(I)中のRとして、より好ましくは、水素原子、炭素数1〜3のアルキル基、式(II)で表される基(式(II)において、Rは、フッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は、式(IV)で表される基であることがさらに好ましい。)、又は式(III)で表される基であり、さらに好ましくは水素原子又はメチル基である。 R 2 in the formula (I) is more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, and a group represented by the formula (II) (in the formula (II), R 3 is a fluorine atom and carbon. It is more preferably an alkyl group having the number 1 to 3, an alkyl halide group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV)), or the formula. It is a group represented by (III), more preferably a hydrogen atom or a methyl group.

式(I)中のRが式(II)で表される基である場合、式(II)中のRは前述のとおり、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のハロゲン化アルキル基、炭素数1〜6のアルコキシ基、又は式(IV)で表される基であるが、Rとしてより好ましくは、フッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は、式(IV)で表される基であり、更に好ましくは、フッ素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、又は、式(IV)で表される基である。
式(I)中のRが式(II)で表される基である場合、式(II)中のRの好ましい範囲については、式(I)中のRが式(II)で表される基である場合におけるRの好ましい範囲と同様である。
When R 1 in the formula (I) is a group represented by the formula (II), R 3 in the formula (II) is a halogen atom, an alkyl group having 1 to 6 carbon atoms, and a carbon number of 1 as described above. 6 halogenated alkyl group, an alkoxy group having 1 to 6 carbon atoms, or a group represented by formula (IV), is more preferably R 3, a fluorine atom, an alkyl group having 1 to 3 carbon atoms, An alkyl halide group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV), more preferably a fluorine atom, a methyl group, an ethyl group, or a trifluoromethyl group. A group, a methoxy group, an ethoxy group, or a group represented by the formula (IV).
When R 2 in the formula (I) is a group represented by the formula (II), for a preferable range of R 3 in the formula (II), R 1 in the formula (I) is the formula (II). the same as the preferred ranges of R 3 in the case of a group represented.

式(I)におけるR及びRの好ましい組み合わせとしては、Rが、式(II)で表される基(式(II)中、Rはフッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は式(IV)で表される基であることが好ましい)、又は式(III)で表される基であり、Rが、水素原子、炭素数1〜3のアルキル基、式(II)で表される基(式(II)中、Rはフッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は式(IV)で表される基であることが好ましい。)、又は式(III)で表される基である組み合わせである。
式(I)におけるR及びRのより好ましい組み合わせとしては、Rが式(II)で表される基(式(II)中、Rはフッ素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、又は式(IV)で表される基であることが好ましい)又は式(III)で表される基であり、Rが水素原子又はメチル基である組み合わせである。
As a preferable combination of R 1 and R 2 in the formula (I) , R 1 is a group represented by the formula (II) (in the formula (II), R 3 is a fluorine atom and an alkyl group having 1 to 3 carbon atoms). , An alkyl halide group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV)), or a group represented by the formula (III). , R 2 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, and a group represented by the formula (II) (in the formula (II), R 3 is a fluorine atom, an alkyl group having 1 to 3 carbon atoms, and the number of carbon atoms. It is preferably an alkyl halide group of 1 to 3, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV)), or a combination of groups represented by the formula (III). is there.
As a more preferable combination of R 1 and R 2 in the formula (I) , R 1 is a group represented by the formula (II) (in the formula (II), R 3 is a fluorine atom, a methyl group, an ethyl group, a trifluoro). A methyl group, a methoxy group, an ethoxy group, or a group represented by the formula (IV)) or a group represented by the formula (III), in which R 2 is a hydrogen atom or a methyl group. is there.

式(I)で表される化合物については、国際公開第2012/053644号の段落0040〜0070の記載を適宜参照できる。 For the compound represented by the formula (I), the description in paragraphs 0040 to 0070 of International Publication No. 2012/053644 can be referred to as appropriate.

上述したその他の添加剤は、ビニレンカーボネート、ビニルエチレンカーボネート、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム、ビス(オキサラト)ホウ酸リチウム、1,3−プロパンスルトン、1,3−プロペンスルトン、トリフルオロメチルスルホン酸リチウム、メタンスルホニルフルオリド、及び式(I)で表される化合物からなる群から選ばれる少なくとも1種であることが特に好ましい。 Other additives mentioned above include vinylene carbonate, vinylethylene carbonate, lithium monofluorophosphate, lithium difluorophosphate, lithium bis (oxalate) borate, 1,3-propane sultone, 1,3-propensultone, and trifluoro. It is particularly preferable that it is at least one selected from the group consisting of lithium methylsulfonate, methanesulfonyl fluoride, and the compound represented by the formula (I).

本開示の非水電解液がその他の添加剤を含有する場合、含有されるその他の添加剤は、1種のみであっても、2種以上であってもよい。
本開示の非水電解液がその他の添加剤を含有する場合、その含有量(2種以上である場合には総含有量)には特に制限はないが、本開示の効果がより効果的に奏される観点から、非水電解液の全量に対し、0.001質量%〜10質量%であることが好ましく、0.05質量%〜5質量%であることがより好ましく、0.1質量%〜4質量%であることが更に好ましく、0.1質量%〜2質量%であることが更に好ましく、0.1質量%〜1質量%であることが特に好ましい。
When the non-aqueous electrolytic solution of the present disclosure contains other additives, the other additives contained may be only one type or two or more types.
When the non-aqueous electrolyte solution of the present disclosure contains other additives, the content thereof (the total content when there are two or more kinds) is not particularly limited, but the effect of the present disclosure is more effective. From the viewpoint of playing, it is preferably 0.001% by mass to 10% by mass, more preferably 0.05% by mass to 5% by mass, and 0.1% by mass, based on the total amount of the non-aqueous electrolyte solution. It is more preferably% to 4% by mass, further preferably 0.1% by mass to 2% by mass, and particularly preferably 0.1% by mass to 1% by mass.

<電解質>
本開示の非水電解液は、一般的に、電解質を含有する。
電解質としては、上記その他の添加剤の例示中に含まれるリチウム塩以外のリチウム塩(以下、「特定リチウム塩」ともいう)が好ましい。
電解質としての特定リチウム塩は、1種のみであってもよいし、2種以上であってもよい。
<Electrolyte>
The non-aqueous electrolyte solution of the present disclosure generally contains an electrolyte.
As the electrolyte, a lithium salt other than the lithium salt contained in the examples of the other additives (hereinafter, also referred to as “specific lithium salt”) is preferable.
The specific lithium salt as the electrolyte may be only one kind or two or more kinds.

特定リチウム塩の具体例としては、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)などのリチウム塩が挙げられる。
また、次の一般式で表されるリチウム塩も使用することができる。
Examples of specific lithium salts, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, Li 2 SiF 6, LiPF n [C k F (2k + 1)] (6-n) (n = 1~5, k = Lithium salts such as (integer of 1 to 8) can be mentioned.
Further, a lithium salt represented by the following general formula can also be used.

LiC(SO27)(SO28)(SO29)、LiN(SOOR30)(SOOR31)、LiN(SO32)(SO33)(ここでR27〜R33は互いに同一でも異なっていてもよく、炭素数1〜8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。 LiC (SO 2 R 27 ) (SO 2 R 28 ) (SO 2 R 29 ), LiN (SO 2 OR 30 ) (SO 2 OR 31 ), LiN (SO 2 R 32 ) (SO 2 R 33 ) (here R 27 to R 33 may be the same or different from each other and are perfluoroalkyl groups having 1 to 8 carbon atoms). These electrolytes may be used alone or in combination of two or more.

特定リチウム塩は、LiPF及びLiBFの少なくとも一方を含むことが好ましく、LiPFを含むことがより好ましい。
特定リチウム塩がLiPFを含む場合、特定リチウム塩中に占めるLiPFの比率は、10質量%〜100質量%が好ましく、50質量%〜100質量%がより好ましく、70質量%〜100質量%が特に好ましい。
The specific lithium salt preferably contains at least one of LiPF 6 and LiBF 4 , and more preferably contains LiPF 6.
If a particular lithium salt containing LiPF 6, the proportion of LiPF 6 occupied in particular the lithium salt is preferably from 10 wt% to 100 wt%, more preferably from 50 wt% to 100 wt%, 70 wt% to 100 wt% Is particularly preferable.

非水電解液中における電解質の濃度は、0.1mol/L〜3mol/Lであることが好ましく、0.5mol/L〜2mol/Lであることがより好ましい。 The concentration of the electrolyte in the non-aqueous electrolyte solution is preferably 0.1 mol / L to 3 mol / L, and more preferably 0.5 mol / L to 2 mol / L.

本開示の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。 The non-aqueous electrolyte solution of the present disclosure is not only suitable as a non-aqueous electrolyte solution for a lithium secondary battery, but also a non-aqueous electrolyte solution for a primary battery, a non-aqueous electrolyte solution for an electrochemical capacitor, and an electric double layer capacitor. , Can also be used as an electrolytic solution for aluminum electrolytic capacitors.

〔リチウム二次電池〕
本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液と、を含む。
[Lithium secondary battery]
The lithium secondary battery of the present disclosure includes a positive electrode, a negative electrode, and a non-aqueous electrolytic solution of the present disclosure.

(負極)
負極は、負極活物質及び負極集電体を含んでもよい。
負極における負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
(Negative electrode)
The negative electrode may include a negative electrode active material and a negative electrode current collector.
Examples of the negative electrode active material in the negative electrode include metallic lithium, lithium-containing alloys, metals or alloys that can be alloyed with lithium, oxides that can be doped / dedoped with lithium ions, and lithium ions that can be doped / dedoped. At least one selected from the group consisting of transition metal nitridants and carbon materials capable of doping and dedoping lithium ions (may be used alone, or a mixture containing two or more of these may be used. Good) can be used.
Examples of the metal or alloy that can be alloyed with lithium (or lithium ion) include silicon, a silicon alloy, tin, and a tin alloy. Further, lithium titanate may be used.
Among these, a carbon material capable of doping and dedoping lithium ions is preferable. Examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like. The form of the carbon material may be fibrous, spherical, potato-like, or flake-like.

上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
Specific examples of the amorphous carbon material include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or lower, and mesophase pitch carbon fiber (MCF).
Examples of the graphite material include natural graphite and artificial graphite. As the artificial graphite, graphitized MCMB, graphitized MCF and the like are used. Further, as the graphite material, a material containing boron or the like can also be used. Further, as the graphite material, a material coated with a metal such as gold, platinum, silver, copper or tin, a material coated with amorphous carbon, or a mixture of amorphous carbon and graphite can also be used.

これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
These carbon materials may be used alone or in admixture of two or more.
As the carbon material, a carbon material having a surface spacing d (002) of the (002) plane measured by X-ray analysis of 0.340 nm or less is particularly preferable. Further, as the carbon material, graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having a property close to that of graphite is also preferable. When the carbon material as described above is used, the energy density of the battery can be further increased.

負極における負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
The material of the negative electrode current collector in the negative electrode is not particularly limited, and any known material can be used.
Specific examples of the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Of these, copper is particularly preferable from the viewpoint of ease of processing.

(正極)
正極は、正極活物質及び正極集電体を含んでもよい。
正極における正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1−X)〔0<X<1〕、α−NaFeO型結晶構造を有するLi1+αMe1−α(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1−α)≦1.6)、LiNiCoMn〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3等)、LiFePO、LiMnPOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
(Positive electrode)
The positive electrode may include a positive electrode active material and a positive electrode current collector.
Examples of the positive electrode active material in the positive electrode include transition metal oxides or transition metal sulfides such as MoS 2 , TiS 2 , MnO 2 , and V 2 O 5 , LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , and LiNi X Co. (1-X) O 2 [0 <X <1], Li 1 + α Me 1-α O 2 having an α-NaFeO type 2 crystal structure (Me is a transition metal element containing Mn, Ni and Co, 1.0. ≦ (1 + α) / ( 1-α) ≦ 1.6), LiNi x Co y Mn z O 2 [x + y + z = 1,0 < x <1,0 <y <1,0 <z <1 ] (e.g., LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 etc.), LiFePO 4 , LiMnPO 4 and other composite oxides consisting of lithium and transition metals, Examples thereof include conductive polymer materials such as polyaniline, polythiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiaizole, and polyaniline complex. Among these, a composite oxide composed of lithium and a transition metal is particularly preferable. When the negative electrode is a lithium metal or a lithium alloy, a carbon material can also be used as the positive electrode. Further, as the positive electrode, a mixture of a composite oxide of lithium and a transition metal and a carbon material can also be used.
The positive electrode active material may be used alone or in combination of two or more. When the positive electrode active material has insufficient conductivity, it can be used together with a conductive auxiliary agent to form a positive electrode. Examples of the conductive auxiliary agent include carbon materials such as carbon black, amorphous whiskers, and graphite.

正極における正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
The material of the positive electrode current collector in the positive electrode is not particularly limited, and any known material can be used.
Specific examples of the positive electrode current collector include metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium, and tantalum; carbon materials such as carbon cloth and carbon paper; and the like.

(セパレータ)
本開示のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(Separator)
The lithium secondary battery of the present disclosure preferably contains a separator between the negative electrode and the positive electrode.
The separator is a membrane that electrically insulates the positive electrode and the negative electrode and allows lithium ions to pass through, and examples thereof include a porous membrane and a polymer electrolyte.
As the porous film, a microporous polymer film is preferably used, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester and the like.
In particular, porous polyolefin is preferable, and specifically, a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film can be exemplified. The porous polyolefin film may be coated with another resin having excellent thermal stability.
Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer inflated with an electrolytic solution, and the like.
The non-aqueous electrolyte solution of the present disclosure may be used for the purpose of swelling a polymer to obtain a polymer electrolyte.

(電池の構成)
本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。
なお、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
(Battery configuration)
The lithium secondary battery of the present disclosure can take various known shapes, and can be formed into a cylindrical type, a coin type, a square type, a laminated type, a film type, or any other shape.
The basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.

本開示のリチウム二次電池の例として、ラミネート型電池が挙げられる。
図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。
上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。
しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。例えば、ラミネート外装体1に収容される積層型電極体は、1枚の正極板5と1枚の負極板6とが1枚のセパレータ7を介して積層された積層型電極体であってもよい。
An example of the lithium secondary battery of the present disclosure is a laminated battery.
FIG. 1 is a schematic perspective view showing an example of a laminated battery which is an example of the lithium secondary battery of the present disclosure, and FIG. 2 is a thickness of a laminated electrode body housed in the laminated battery shown in FIG. It is a schematic sectional view of a direction.
The laminated battery shown in FIG. 1 contains a non-aqueous electrolytic solution (not shown in FIG. 1) and a laminated electrode body (not shown in FIG. 1), and the peripheral edge thereof is sealed. A laminated exterior body 1 whose inside is hermetically sealed is provided. As the laminated exterior body 1, for example, a laminated exterior body made of aluminum is used.
As shown in FIG. 2, the laminated electrode body housed in the laminated exterior body 1 is a laminated body in which a positive electrode plate 5 and a negative electrode plate 6 are alternately laminated via a separator 7, and a laminated body of the laminated body. A separator 8 that surrounds the periphery is provided. The positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8 are impregnated with the non-aqueous electrolytic solution of the present disclosure.
The plurality of positive electrode plates 5 in the laminated electrode body are all electrically connected to the positive electrode terminal 2 via the positive electrode tab (not shown), and a part of the positive electrode terminal 2 is the laminated exterior body 1. It protrudes outward from the peripheral end (Fig. 1). A portion of the peripheral end of the laminated exterior body 1 on which the positive electrode terminal 2 protrudes is sealed with an insulating seal 4.
Similarly, the plurality of negative electrode plates 6 in the laminated electrode body are all electrically connected to the negative electrode terminal 3 via the negative electrode tab (not shown), and a part of the negative electrode terminal 3 is the laminated exterior. It protrudes outward from the peripheral end of the body 1 (FIG. 1). A portion of the peripheral end of the laminated exterior body 1 from which the negative electrode terminal 3 protrudes is sealed with an insulating seal 4.
In the laminated battery according to the above example, the number of positive electrode plates 5 is 5 and the number of negative electrode plates 6 is 6, and the positive electrode plate 5 and the negative electrode plate 6 are located on both sides of the battery via the separator 7. The outer layers are all laminated so as to be the negative electrode plate 6.
However, it goes without saying that the number of positive electrode plates, the number of negative electrode plates, and the arrangement of the laminated battery are not limited to this example, and various changes may be made. For example, the laminated electrode body housed in the laminated exterior body 1 may be a laminated electrode body in which one positive electrode plate 5 and one negative electrode plate 6 are laminated via one separator 7. Good.

本開示のリチウム二次電池の別の一例として、コイン型電池も挙げられる。
図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いることができる。
Another example of the lithium secondary battery of the present disclosure is a coin-type battery.
FIG. 3 is a schematic perspective view showing an example of a coin-type battery, which is another example of the lithium secondary battery of the present disclosure.
In the coin-type battery shown in FIG. 3, a disk-shaped negative electrode 12, a separator 15 injected with a non-aqueous electrolyte solution, a disk-shaped positive electrode 11, and, if necessary, spacer plates 17 and 18 made of stainless steel or aluminum are arranged in this order. In a laminated state, it is stored between the positive electrode can 13 (hereinafter, also referred to as “battery can”) and the sealing plate 14 (hereinafter, also referred to as “battery can lid”). The positive electrode can 13 and the sealing plate 14 are caulked and sealed via the gasket 16.
In this example, the non-aqueous electrolytic solution of the present disclosure can be used as the non-aqueous electrolytic solution to be injected into the separator 15.

なお、本開示のリチウム二次電池は、負極と、正極と、上記本開示の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
即ち、本開示のリチウム二次電池は、まず、負極と、正極と、上記本開示の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
The lithium secondary battery of the present disclosure is obtained by charging / discharging a lithium secondary battery (lithium secondary battery before charging / discharging) containing a negative electrode, a positive electrode, and the non-aqueous electrolyte solution of the present disclosure. It may be a lithium secondary battery.
That is, as the lithium secondary battery of the present disclosure, first, a lithium secondary battery before charging / discharging containing a negative electrode, a positive electrode, and the non-aqueous electrolyte solution of the present disclosure is prepared, and then the lithium secondary battery before charging / discharging is prepared. It may be a lithium secondary battery (charged / discharged lithium secondary battery) manufactured by charging / discharging the lithium secondary battery one or more times.

本開示のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。 The use of the lithium secondary battery of the present disclosure is not particularly limited, and it can be used for various known uses. For example, laptops, mobile computers, mobile phones, headphone stereos, video movies, LCD TVs, handy cleaners, electronic organizers, calculators, radios, backup power supplies, motors, automobiles, electric vehicles, bikes, electric bikes, bicycles, electric It can be widely used regardless of whether it is a small portable device or a large device such as a bicycle, a lighting device, a game machine, a clock, an electric tool, or a camera.

以下、本開示の実施例を示すが、本開示は以下の実施例によって制限されるものではない。
なお、以下の実施例において、「添加量」とは、最終的に得られる非水電解液全量に対する含有量を表す。
Hereinafter, examples of the present disclosure will be shown, but the present disclosure is not limited to the following examples.
In the following examples, the "addition amount" represents the content with respect to the total amount of the non-aqueous electrolytic solution finally obtained.

〔実施例1〕
以下の手順にて、リチウム二次電池であるラミネート型電池(試験用電池)を作製した。
[Example 1]
A laminated battery (test battery), which is a lithium secondary battery, was produced by the following procedure.

<負極の作製>
人造黒鉛98質量部、カルボキシメチルセルロース1質量部及びSBRラテックス1質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
次に、この負極合剤スラリーを厚さ10μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層とからなるシート状の負極を得た。このときの負極活物質層の塗布密度は12mg/cmであり、充填密度は1.5g/mlであった。
<Manufacturing of negative electrode>
98 parts by mass of artificial graphite, 1 part by mass of carboxymethyl cellulose and 1 part by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry.
Next, this negative electrode mixture slurry is applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm, dried, and then compressed by a roll press to form a sheet composed of the negative electrode current collector and the negative electrode active material layer. A negative electrode was obtained. At this time, the coating density of the negative electrode active material layer was 12 mg / cm 2 , and the packing density was 1.5 g / ml.

<正極の作製>
LiCoOを97質量部、アセチレンブラック1.8質量部及びポリフッ化ビニリデン1.2質量部を、N−メチルピロリジノンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は25mg/cmであり、充填密度は3.6g/mlであった。
<Preparation of positive electrode>
97 parts by mass of LiCoO 2 , 1.8 parts by mass of acetylene black and 1.2 parts by mass of polyvinylidene fluoride were kneaded with N-methylpyrrolidinone as a solvent to prepare a paste-like positive electrode mixture slurry.
Next, this positive electrode mixture slurry is applied to a positive electrode current collector of a strip-shaped aluminum foil having a thickness of 20 μm, dried, and then compressed by a roll press to form a sheet-shaped positive electrode composed of a positive electrode current collector and a positive electrode active material layer. Got At this time, the coating density of the positive electrode active material layer was 25 mg / cm 2 , and the packing density was 3.6 g / ml.

<非水電解液の調製>
エチレンカーボネート(EC)とフルオロエチレンカーボネート(FEC)とエチルメチルカーボネート(EMC)とを、体積比25:5:70(EC:FEC:EMC)の割合で混合することにより、非水溶媒を得た。
ここで、フルオロエチレンカーボネート(FEC)は、フッ素化環状カーボネートの一例であり、非水溶媒全量に対するフッ素化環状カーボネート(FEC)の含有量は5体積%である。
得られた非水溶媒中に、電解質としてのLiPFを、最終的に得られる非水電解液中における電解質濃度が1.2モル/リットルとなるように溶解させた。
上記で得られた溶液に対して、特定ボロン酸としてのフェニルボロン酸(PHBA)(添加量0.5質量%)を添加し、非水電解液を得た。
<Preparation of non-aqueous electrolyte solution>
A non-aqueous solvent was obtained by mixing ethylene carbonate (EC), fluoroethylene carbonate (FEC), and ethyl methyl carbonate (EMC) in a volume ratio of 25: 5: 70 (EC: FEC: EMC). ..
Here, fluoroethylene carbonate (FEC) is an example of fluorinated cyclic carbonate, and the content of fluorinated cyclic carbonate (FEC) is 5% by volume with respect to the total amount of the non-aqueous solvent.
LiPF 6 as an electrolyte was dissolved in the obtained non-aqueous solvent so that the electrolyte concentration in the finally obtained non-aqueous electrolyte solution was 1.2 mol / liter.
Phenylboronic acid (PHBA) (addition amount: 0.5% by mass) as a specific boronic acid was added to the solution obtained above to obtain a non-aqueous electrolytic solution.

<ラミネート型電池の作製>
上述のシート状の負極をタテ42mm、ヨコ31mmで、上述のシート状の正極をタテ40mm、ヨコ29mmで、それぞれ打ち抜き、矩形状の負極板及び矩形状の正極板をそれぞれ得た。また、厚さ20μmの微多孔性ポリエチレンフィルムをタテ45mm、ヨコ35mmに打ち抜き、矩形状のセパレータを得た。
次に、負極板に負極タブを取り付け、正極板に正極タブを取り付けた。
負極タブを取り付けた負極板と正極タブを取り付けた正極板とを、セパレータを介し、負極タブ及び正極タブが同一の一辺に配置されるようにして積層させ、積層電極体を得た。
次に、積層電極体をアルミニウム製のラミネート外装体に収容し、正極タブ及び負極タブが配置された側のラミネート外装体の一辺を熱融着した。このとき、正極タブの一部及び負極タブの一部が、ラミネート外装体の周端部から突出するようにした。正極タブ及び負極タブが突出する部分は、それぞれ、絶縁シールによってシールした。
次に、ラミネート外装体の残りの3辺のうちの2辺を熱融着した。
次に、ラミネート外装体の熱融着していない1辺側からラミネート外装体内に上記非水電解液250μLを注入し、上記非水電解液を、各正極板、各負極板、及び各セパレータに含浸させた。次いで、上記熱融着していない1辺を熱融着することにより、ラミネート外装体を密封した。
以上により、ラミネート型電池(試験用電池)を得た。
<Manufacturing of laminated batteries>
The sheet-shaped negative electrode was punched with a length of 42 mm and a width of 31 mm, and the sheet-shaped positive electrode was punched with a length of 40 mm and a width of 29 mm, respectively, to obtain a rectangular negative electrode plate and a rectangular positive electrode plate, respectively. Further, a microporous polyethylene film having a thickness of 20 μm was punched into a length of 45 mm and a width of 35 mm to obtain a rectangular separator.
Next, the negative electrode tab was attached to the negative electrode plate, and the positive electrode tab was attached to the positive electrode plate.
A negative electrode plate to which the negative electrode tab was attached and a positive electrode plate to which the positive electrode tab was attached were laminated with the negative electrode tab and the positive electrode tab arranged on the same side via a separator to obtain a laminated electrode body.
Next, the laminated electrode body was housed in an aluminum laminated outer body, and one side of the laminated outer body on the side where the positive electrode tab and the negative electrode tab were arranged was heat-sealed. At this time, a part of the positive electrode tab and a part of the negative electrode tab were made to protrude from the peripheral end portion of the laminated exterior body. The protruding portions of the positive electrode tab and the negative electrode tab were each sealed with an insulating seal.
Next, two of the remaining three sides of the laminated exterior were heat-sealed.
Next, 250 μL of the non-aqueous electrolytic solution is injected into the laminated exterior from one side of the laminated exterior that is not heat-sealed, and the non-aqueous electrolytic solution is applied to each positive electrode plate, each negative electrode plate, and each separator. Impregnated. Next, the laminated exterior body was sealed by heat-sealing one side that was not heat-sealed.
From the above, a laminated battery (test battery) was obtained.

<高温保存による電池の体積変化量>
満充電状態の電池を高温保存した場合の体積変化を評価するために、以下のようにして、高温保存による電池の体積変化量を測定した。
上記で作製されたラミネート型電池の体積を測定し、「高温保存前の体積」とした。
高温保存前の体積を測定したラミネート型電池を初期充放電した後、定電圧4.2Vで充電し、満充電状態とした。ここで、初期充放電は、0.5Cで4.2Vまで充電した後、0.5Cで3Vまで放電することにより行った。
次に、上記満充電状態としたラミネート型電池を60℃の恒温槽内で30日間保存した(以下、この操作を「高温保存」ともいう)。
次に、高温保存後のラミネート型電池の体積を測定し、「高温保存後の体積」とした。 高温保存前の体積及び高温保存後の体積に基づき、下記式により、高温保存による体積変化量を求めた。
<Amount of change in battery volume due to high temperature storage>
In order to evaluate the volume change when the fully charged battery is stored at a high temperature, the volume change amount of the battery due to the high temperature storage was measured as follows.
The volume of the laminated battery produced above was measured and used as the "volume before high temperature storage".
After the laminated battery whose volume was measured before storage at high temperature was initially charged and discharged, it was charged at a constant voltage of 4.2 V to bring it into a fully charged state. Here, the initial charge / discharge was performed by charging to 4.2 V at 0.5 C and then discharging to 3 V at 0.5 C.
Next, the fully charged laminated battery was stored in a constant temperature bath at 60 ° C. for 30 days (hereinafter, this operation is also referred to as “high temperature storage”).
Next, the volume of the laminated battery after high temperature storage was measured and used as "volume after high temperature storage". Based on the volume before high-temperature storage and the volume after high-temperature storage, the amount of volume change due to high-temperature storage was determined by the following formula.

高温保存による電池の体積変化量(cm
=高温保存後の体積(cm)−高温保存前の体積(cm
Battery volume change due to high temperature storage (cm 3 )
= Volume after high temperature storage (cm 3 ) -Volume before high temperature storage (cm 3 )

後述の比較例1においても同様にして、高温保存による電池の体積変化量を求めた。 In Comparative Example 1 described later, the amount of change in the volume of the battery due to high temperature storage was determined in the same manner.

表1に、高温保存による電池の体積変化量を示す。
表1において、高温保存による電池の体積変化量は、比較例1の結果を100%とした場合の相対値(%)で表した。
高温保存による電池の体積変化量は、値が小さいほど、満充電状態の電池を高温保存した場合の体積変化が抑制されていることを意味する。
Table 1 shows the amount of change in battery volume due to high temperature storage.
In Table 1, the amount of change in the volume of the battery due to high temperature storage is represented by a relative value (%) when the result of Comparative Example 1 is taken as 100%.
The smaller the value of the volume change of the battery due to high temperature storage, the more the volume change when the fully charged battery is stored at high temperature is suppressed.

〔比較例1及び2〕
非水電解液の調製において、非水溶媒の種類及び体積比を、表1に示すように変更したこと以外は実施例1と同様の操作を行った。
結果を表1に示す。
[Comparative Examples 1 and 2]
In the preparation of the non-aqueous electrolyte solution, the same operation as in Example 1 was carried out except that the type and volume ratio of the non-aqueous solvent were changed as shown in Table 1.
The results are shown in Table 1.

Figure 0006884020
Figure 0006884020

表1に示すように、特定ボロン酸と、フッ素化環状カーボネートの含有量が0体積%超8体積%以下である非水溶媒と、を含有する非水電解液を用いた実施例1では、高温保存による電池の体積変化量が低減されていた(即ち、満充電状態の電池を高温保存した場合の体積変化が抑制されていた)。
実施例1に対し、
特定ボロン酸を含有し、かつ、非水溶媒としてのフッ素化環状カーボネートを含有しない非水電解液を用いた比較例1、及び、
特定ボロン酸と非水溶媒としてのフッ素化環状カーボネートとを含有し、かつ、非水溶媒全量に対するフッ素化環状カーボネートの含有量が8体積%超である非水電解液を用いた比較例2では、
いずれも、高温保存による電池の体積変化量が上昇した。
As shown in Table 1, in Example 1 using a non-aqueous electrolytic solution containing a specific boric acid and a non-aqueous solvent having a fluorinated cyclic carbonate content of more than 0% by volume and 8% by volume or less, The amount of change in the volume of the battery due to high-temperature storage was reduced (that is, the volume change when the fully charged battery was stored at high temperature was suppressed).
For Example 1
Comparative Example 1 using a non-aqueous electrolytic solution containing a specific boronic acid and not containing a fluorinated cyclic carbonate as a non-aqueous solvent, and
In Comparative Example 2 using a non-aqueous electrolytic solution containing a specific boronic acid and a fluorinated cyclic carbonate as a non-aqueous solvent and having a fluorinated cyclic carbonate content of more than 8% by volume based on the total amount of the non-aqueous solvent. ,
In both cases, the amount of change in battery volume due to high-temperature storage increased.

<初期放電容量>
実施例1のラミネート型電池について、初期充放電(0.5Cで4.2Vまで充電した後、0.5Cで3Vまで放電する操作)において0.5Cで3Vまで放電した時の放電容量を測定し、初期放電容量(mAh)とした。
以下の比較例3のラミネート電池についても同様にして、初期放電容量(mAh)を測定した。
<Initial discharge capacity>
For the laminated battery of Example 1, the discharge capacity when discharged to 3V at 0.5C in the initial charge / discharge (operation of charging to 4.2V at 0.5C and then discharging to 3V at 0.5C) is measured. Then, the initial discharge capacity (mAh) was used.
The initial discharge capacity (mAh) was measured in the same manner for the laminated battery of Comparative Example 3 below.

表2に、初期放電容量を示す。
表2において、実施例1の初期放電容量は、比較例3の初期放電容量を100%とした場合の相対値(%)で表した。
Table 2 shows the initial discharge capacity.
In Table 2, the initial discharge capacity of Example 1 is represented by a relative value (%) when the initial discharge capacity of Comparative Example 3 is 100%.

〔比較例3〕
非水電解液の調製において、特定ボロン酸を添加しなかったこと以外は実施例1と同様にしてラミネート型電池を作製した。
得られたラミネート型電池について、実施例1と同様にして初期放電容量を測定した。
結果を表2に示す。
[Comparative Example 3]
A laminated battery was produced in the same manner as in Example 1 except that the specific boronic acid was not added in the preparation of the non-aqueous electrolytic solution.
The initial discharge capacity of the obtained laminated battery was measured in the same manner as in Example 1.
The results are shown in Table 2.

Figure 0006884020
Figure 0006884020

表2に示すように、特定ボロン酸と、非水溶媒の全量に対するフッ素化環状カーボネートの含有量が0体積%超8体積%以下である非水溶媒とを、含有する非水電解液を用いた場合(実施例1)、特定ボロン酸を含まない非水電解液を用いた場合(比較例3)と比較して、初期放電容量が大きいことがわかる。 As shown in Table 2, a non-aqueous electrolyte solution containing the specific boronic acid and a non-aqueous solvent in which the content of the fluorinated cyclic carbonate with respect to the total amount of the non-aqueous solvent is more than 0% by volume and 8% by volume or less is used. It can be seen that the initial discharge capacity is larger than that in the case (Example 1) when a non-aqueous electrolyte solution containing no specific boronic acid is used (Comparative Example 3).

1 ラミネート外装体
2 正極端子
3 負極端子
4 絶縁シール
5 正極板
6 負極板
7、8 セパレータ
11 正極
12 負極
13 正極缶
14 封口板
15 セパレータ
16 ガスケット
17、18 スペーサー板
1 Laminated exterior 2 Positive electrode terminal 3 Negative electrode terminal 4 Insulation seal 5 Positive electrode plate 6 Negative electrode plate 7, 8 Separator 11 Positive electrode 12 Negative electrode 13 Positive electrode can 14 Seal plate 15 Separator 16 Gasket 17, 18 Spacer plate

Claims (5)

芳香族炭化水素基を有するボロン酸と、
非水溶媒の全量に対するフッ素化環状カーボネートの含有量が0体積%超8体積%以下である非水溶媒と、
を含有する電池用非水電解液であって、
前記ボロン酸が、下記式(A)で表される化合物(A)である電池用非水電解液。
B(OH) … (A)
〔式(A)中、R は、ハロゲン原子及び炭素数1〜6の炭化水素基からなる群から選択される少なくとも1つの置換基によって置換されていてもよいフェニル基を表す。〕
Boronic acid having an aromatic hydrocarbon group and
A non-aqueous solvent in which the content of the fluorinated cyclic carbonate with respect to the total amount of the non-aqueous solvent is more than 0% by volume and 8% by volume or less,
A battery for a non-aqueous electrolyte containing,
A non-aqueous electrolytic solution for a battery in which the boronic acid is a compound (A) represented by the following formula (A).
R 1 B (OH) 2 ... (A)
[In formula (A), R 1 represents a phenyl group that may be substituted with at least one substituent selected from the group consisting of halogen atoms and hydrocarbon groups having 1 to 6 carbon atoms. ]
前記式(A)中の前記Rは、フッ素原子及びビニル基からなる群から選択される少なくとも1つの置換基によって置換されていてもよいフェニル基を表す請求項1に記載の電池用非水電解液。 The non-aqueous battery for a battery according to claim 1, wherein R 1 in the formula (A) represents a phenyl group which may be substituted with at least one substituent selected from the group consisting of a fluorine atom and a vinyl group. Electrolyte. 前記式(A)で表される化合物(A)が、フェニルボロン酸である請求項1又は請求項2に記載の電池用非水電解液。 The non-aqueous electrolytic solution for a battery according to claim 1 or 2, wherein the compound (A) represented by the formula (A) is phenylboronic acid. 前記ボロン酸の含有量が、電池用非水電解液全量に対して0.01質量%〜2.0質量%である請求項1〜請求項3のいずれか1項に記載の電池用非水電解液。 The non-water for batteries according to any one of claims 1 to 3, wherein the content of the boronic acid is 0.01% by mass to 2.0% by mass with respect to the total amount of the non-aqueous electrolyte solution for batteries. Electrolyte. 正極と、
金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
請求項1〜請求項4のいずれか1項に記載の電池用非水電解液と、
を含むリチウム二次電池。
With the positive electrode
Metallic lithium, lithium-containing alloys, metals or alloys that can be alloyed with lithium, oxides that can be doped and dedoped with lithium ions, transition metal nitrogen compounds that can be doped and dedoped with lithium ions, and lithium. A negative electrode containing at least one selected from the group consisting of carbon materials capable of doping and dedoping ions as a negative electrode active material, and a negative electrode.
The non-aqueous electrolyte solution for a battery according to any one of claims 1 to 4.
Lithium secondary battery including.
JP2017068732A 2017-03-30 2017-03-30 Non-aqueous electrolyte for batteries and lithium secondary battery Active JP6884020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017068732A JP6884020B2 (en) 2017-03-30 2017-03-30 Non-aqueous electrolyte for batteries and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068732A JP6884020B2 (en) 2017-03-30 2017-03-30 Non-aqueous electrolyte for batteries and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2018170236A JP2018170236A (en) 2018-11-01
JP6884020B2 true JP6884020B2 (en) 2021-06-09

Family

ID=64018860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068732A Active JP6884020B2 (en) 2017-03-30 2017-03-30 Non-aqueous electrolyte for batteries and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6884020B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778679B (en) * 2020-12-31 2023-09-29 苏州市新广益电子股份有限公司 High-strength and high-thermal-stability poly-4-methyl-1-pentene microporous membrane and preparation method thereof
CN115051030B (en) * 2022-05-18 2023-04-11 湖南大学 Battery electrolyte and lithium ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5112148B2 (en) * 2008-03-31 2013-01-09 三洋電機株式会社 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery
JP5364890B2 (en) * 2009-03-27 2013-12-11 三井化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP6165162B2 (en) * 2012-11-07 2017-07-19 三洋化成工業株式会社 Electrode protective film forming agent, electrode, electrolytic solution, lithium secondary battery, lithium ion capacitor, and method for producing electrode protective film
KR101749186B1 (en) * 2013-09-11 2017-07-03 삼성에스디아이 주식회사 Electrolyte for lithium battery, lithium battery including the same, and method for manufacturing electrolyte for lithium battery
KR20150040448A (en) * 2013-10-07 2015-04-15 주식회사 엘지화학 The Method of Preparing Electrodes for Secondary Battery and the Electrodes Prepared by Using the Same
JP2016095965A (en) * 2014-11-13 2016-05-26 株式会社Gsユアサ Nonaqueous electrolyte and power storage device including the same, and power storage apparatus having power storage device

Also Published As

Publication number Publication date
JP2018170236A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US11652237B2 (en) Nonaqueous electrolyte solution including boron compound additive having higher reductive decomposition potential than additional additive and lithium secondary battery including the same
JP6368501B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6913159B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7247112B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2016066481A (en) Nonaqueous electrolyte for battery, and lithium secondary battery
JP2017045724A (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP2016213015A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
EP3675268A1 (en) Lithium secondary battery and nonaqueous electrolyte solution
JP2022126851A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JP2019175577A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2019153443A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
WO2020022452A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP2017045723A (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6884020B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP6879799B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP7160461B2 (en) Method for manufacturing lithium secondary battery
CN113646931B (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2017045722A (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6894751B2 (en) Non-aqueous electrolyte for batteries, additives for batteries, and lithium secondary batteries
JP2021022525A (en) Non-aqueous electrolyte for battery and lithium secondary battery
JP2016201185A (en) Additive for nonaqueous electrolyte for battery, nonaqueous electrolyte for battery, and lithium secondary battery
JP2023132195A (en) Nonaqueous electrolyte for battery, lithium secondary battery precursor, lithium secondary battery, and manufacturing method for lithium secondary battery
JP2021096913A (en) Nonaqueous electrolyte for battery and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210511

R150 Certificate of patent or registration of utility model

Ref document number: 6884020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250