JP2017045723A - Nonaqueous electrolyte for battery and lithium secondary battery - Google Patents

Nonaqueous electrolyte for battery and lithium secondary battery Download PDF

Info

Publication number
JP2017045723A
JP2017045723A JP2016156796A JP2016156796A JP2017045723A JP 2017045723 A JP2017045723 A JP 2017045723A JP 2016156796 A JP2016156796 A JP 2016156796A JP 2016156796 A JP2016156796 A JP 2016156796A JP 2017045723 A JP2017045723 A JP 2017045723A
Authority
JP
Japan
Prior art keywords
group
general formula
battery
carbonate
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016156796A
Other languages
Japanese (ja)
Inventor
将敬 宮里
Masatoshi Miyasato
将敬 宮里
敏弘 田中
Toshihiro Tanaka
敏弘 田中
後藤 謙一
Kenichi Goto
謙一 後藤
林 剛史
Takashi Hayashi
剛史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JP2017045723A publication Critical patent/JP2017045723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte for a battery, capable of reducing battery resistance while containing a lithium salt with a specific structure including a boron atom or a phosphorus atom.SOLUTION: A nonaqueous electrolyte for a battery contains a compound represented by the following general formula (A), the content of a copper element relative to the total amount of the nonaqueous electrolyte for a battery being 0.001 mass ppm or more and less than 5 mass ppm, [in the general formula (A), M represents a boron atom or a phosphorus atom, X represents a halogen atom, R represents a 1-10C alkylene group, a 1-10C halogenated alkylene group, a 6-20C arylene group, or a 6-20C halogenated arylene group (these groups may contain a substituent or a hetero atom in a structure.), m represents an integer of 1-3, n represents an integer of 0-4, and q represents 0 or 1].SELECTED DRAWING: None

Description

本発明は、電池用非水電解液、並びに、携帯電子機器の電源、車載、及び電力貯蔵などに利用される充放電可能なリチウム二次電池に関する。   The present invention relates to a non-aqueous electrolyte for a battery, and a chargeable / dischargeable lithium secondary battery used for a power source of a portable electronic device, a vehicle-mounted device, and power storage.

近年、リチウム二次電池は、携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く使用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。
リチウム二次電池は、例えば、リチウムを吸蔵放出可能な材料を含有する正極および負極、並びに、リチウム塩と非水溶媒とを含有する電池用非水電解液を含む。
正極に用いられる正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiFePOのようなリチウム金属酸化物が用いられる。
また、電池用非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどのカーボネート類の混合溶媒(非水溶媒)に、LiPF、LiBF、LiN(SOCF、LiN(SOCFCFのようなLi電解質を混合した溶液が用いられている。
一方、負極に用いられる負極用活物質としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金など)や炭素材料が知られており、特にリチウムを吸蔵、放出が可能なコークス、人造黒鉛、天然黒鉛を採用したリチウム二次電池が実用化されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as electronic devices such as mobile phones and laptop computers, electric vehicles, and power storage sources. In particular, recently, there has been a rapid increase in demand for batteries with high capacity, high output, and high energy density that can be mounted on hybrid vehicles and electric vehicles.
The lithium secondary battery includes, for example, a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, and a non-aqueous electrolyte for a battery containing a lithium salt and a non-aqueous solvent.
As the positive electrode active material used for the positive electrode, for example, lithium metal oxides such as LiCoO 2 , LiMnO 2 , LiNiO 2 , and LiFePO 4 are used.
Moreover, as a non-aqueous electrolyte for batteries, a mixed solvent (non-aqueous solvent) of carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2. A solution in which a Li electrolyte such as LiN (SO 2 CF 2 CF 3 ) 2 is mixed is used.
On the other hand, negative electrode active materials used for negative electrodes include metal lithium, metal compounds capable of occluding and releasing lithium (metal simple substance, oxide, alloy with lithium, etc.) and carbon materials, particularly lithium. Lithium secondary batteries using coke, artificial graphite, and natural graphite that can be occluded and released have been put into practical use.

電池用非水電解液を含む電池(例えばリチウム二次電池)の性能を改善するために、電池用非水電解液に対し、種々の添加剤を含有させることが行われている。
例えば、電池用非水電解液に含有される耐熱性及び耐加水分解性に優れた電解質として、ホウ素原子又はリン原子を含む特定構造のリチウム塩が知られている(例えば、特許文献1参照)。
また、金属不純物を捕捉することにより、デンドライトの発生を抑え、内部短絡の発生を抑制できる非水電解液二次電池として、β−ジケトン部分構造を有する化合物と、β−ジケトンの鉄、ニッケル、銅、コバルト及び亜鉛の中から選ばれる少なくとも一種類以上の金属錯体と、を含む非水電解液を具備する非水電解液二次電池が知られている(例えば、特許文献2参照)。
In order to improve the performance of a battery (for example, a lithium secondary battery) containing a battery non-aqueous electrolyte, various additives are added to the battery non-aqueous electrolyte.
For example, a lithium salt having a specific structure containing a boron atom or a phosphorus atom is known as an electrolyte excellent in heat resistance and hydrolysis resistance contained in a nonaqueous electrolytic solution for batteries (see, for example, Patent Document 1). .
Moreover, as a non-aqueous electrolyte secondary battery capable of suppressing the generation of dendrites and suppressing the occurrence of internal short circuits by capturing metal impurities, a compound having a β-diketone partial structure, and iron, nickel of β-diketone, A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution containing at least one metal complex selected from copper, cobalt and zinc is known (for example, see Patent Document 2).

特許3722685号公報Japanese Patent No. 3722585 特開2006−172726号公報JP 2006-172726 A

しかし、本発明者らの検討により、ホウ素原子又はリン原子を含む特定構造のリチウム塩を含有する電池用非水電解液を含む電池では、電池抵抗が上昇する場合があることが判明した。
従って、本発明の目的は、ホウ素原子又はリン原子を含む特定構造のリチウム塩を含有する電池用非水電解液でありながら、電池抵抗を低減できる電池用非水電解液、及び、この電池用非水電解液を含むリチウム二次電池を提供することである。
However, as a result of studies by the present inventors, it has been found that the battery resistance may increase in a battery including a nonaqueous electrolyte for a battery containing a lithium salt having a specific structure containing a boron atom or a phosphorus atom.
Accordingly, an object of the present invention is to provide a battery non-aqueous electrolyte capable of reducing battery resistance while containing a lithium salt having a specific structure containing a boron atom or a phosphorus atom, and a battery for this battery. To provide a lithium secondary battery containing a non-aqueous electrolyte.

本発明者らは鋭意検討した結果、ホウ素原子又はリン原子を含む特定構造のリチウム塩を含有する電池用非水電解液を含む電池では電池抵抗が上昇する場合があること、及び、上記電池中の上記電池用非水電解液における銅元素の含有量を0.001質量ppm以上5質量ppm未満に制限することにより電池抵抗を低減できることを見出し、本発明を完成させた。
即ち、前記課題を解決するための手段は以下のとおりである。
As a result of intensive studies, the present inventors have found that battery resistance may increase in a battery containing a nonaqueous electrolyte for a battery containing a lithium salt having a specific structure containing a boron atom or a phosphorus atom, and in the battery The present inventors have found that the battery resistance can be reduced by limiting the content of copper element in the non-aqueous electrolyte for batteries to 0.001 mass ppm or more and less than 5 mass ppm.
That is, the means for solving the above problems are as follows.

<1> 下記一般式(A)で表される化合物を含有し、電池用非水電解液全量に対する銅元素の含有量が0.001質量ppm以上5質量ppm未満である電池用非水電解液。 <1> A nonaqueous electrolytic solution for a battery containing a compound represented by the following general formula (A), wherein the content of copper element relative to the total amount of the nonaqueous electrolytic solution for a battery is 0.001 mass ppm or more and less than 5 mass ppm. .

〔一般式(A)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、Rは、炭素数1〜10のアルキレン基、炭素数1〜10のハロゲン化アルキレン基、炭素数6〜20のアリーレン基、又は炭素数6〜20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよい。)を表し、mは、1〜3の整数を表し、nは、0〜4の整数を表し、qは0又は1を表す。〕 [In General Formula (A), M represents a boron atom or a phosphorus atom, X represents a halogen atom, R represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, An arylene group having 6 to 20 carbon atoms or a halogenated arylene group having 6 to 20 carbon atoms (these groups may contain a substituent or a hetero atom in the structure), m is 1 Represents an integer of ˜3, n represents an integer of 0 to 4, and q represents 0 or 1. ]

<2> 前記一般式(A)で表される化合物の含有量が、電池用非水電解液全量に対し、0.001質量%〜5質量%である<1>に記載の電池用非水電解液。
<3> 前記一般式(A)で表される化合物が、ジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、及びビス(オキサラト)ホウ酸リチウムからなる群から選択される少なくとも1種を含む<1>又は<2>に記載の電池用非水電解液。
<4> 更に、下記一般式(I)で表される環状硫酸エステル化合物を含有する<1>〜<3>のいずれか1項に記載の電池用非水電解液。
<2> Nonaqueous battery for battery according to <1>, wherein the content of the compound represented by the general formula (A) is 0.001% by mass to 5% by mass with respect to the total amount of the nonaqueous electrolytic solution for battery. Electrolytic solution.
<3> The compound represented by the general formula (A) is difluorobis (oxalato) lithium phosphate, tetrafluoro (oxalato) lithium phosphate, difluoro (oxalato) lithium borate, and bis (oxalato) lithium borate. The nonaqueous electrolytic solution for a battery according to <1> or <2>, comprising at least one selected from the group consisting of:
<4> The nonaqueous electrolytic solution for a battery according to any one of <1> to <3>, further containing a cyclic sulfate compound represented by the following general formula (I).

〔一般式(I)中、R及びRが、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、フェニル基、一般式(II)で表される基若しくは式(III)で表される基を表すか、又は、R及びRが一体となって、Rが結合する炭素原子及びRが結合する炭素原子と共に、ベンゼン環若しくはシクロヘキシル環を形成する基を表す。
一般式(II)中、Rは、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のハロゲン化アルキル基、炭素数1〜6のアルコキシ基、又は式(IV)で表される基を表す。一般式(II)、式(III)、及び式(IV)における波線は、結合位置を表す。
一般式(I)で表される環状硫酸エステル化合物中に、一般式(II)で表される基が2つ含まれる場合、2つの一般式(II)で表される基は、同一であっても互いに異なっていてもよい。〕
[In General Formula (I), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a group represented by General Formula (II), or Formula (III). or a group represented by or, R 1 and R 2 together, with the carbon atom to the carbon atom and R 2 wherein R 1 is bonded are bonded, represents a group forming a benzene ring or a cyclohexyl ring.
In general formula (II), R 3 is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a formula (IV). Represents a group. The wavy line in general formula (II), formula (III), and formula (IV) represents a bonding position.
When the cyclic sulfate ester compound represented by the general formula (I) includes two groups represented by the general formula (II), the two groups represented by the general formula (II) are the same. Or they may be different from each other. ]

<5> 正極と、銅元素を含有する負極集電体、並びに、負極活物質としての、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種の物質を含む負極と、<1>〜<4>のいずれか1項に記載の電池用非水電解液と、を含むリチウム二次電池。
<6> <5>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
<5> Positive electrode, negative electrode current collector containing copper element, and metal negative electrode, lithium-containing alloy, metal or alloy capable of alloying with lithium, and doping / de-doping of lithium ions as negative electrode active material A negative electrode comprising at least one substance selected from the group consisting of oxides capable of being doped, transition metal nitrides capable of doping and undoping lithium ions, and carbon materials capable of doping and undoping lithium ions; A non-aqueous electrolyte for a battery according to any one of <1> to <4>, and a lithium secondary battery.
<6> A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to <5>.

本発明によれば、ホウ素原子又はリン原子を含む特定構造のリチウム塩を含有する電池用非水電解液でありながら、電池抵抗を低減できる電池用非水電解液、及び、この電池用非水電解液を含むリチウム二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, although it is a nonaqueous electrolyte for batteries containing the lithium salt of the specific structure containing a boron atom or a phosphorus atom, the nonaqueous electrolyte for batteries which can reduce battery resistance, and this nonaqueous electrolyte for batteries A lithium secondary battery including an electrolytic solution is provided.

本発明のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the laminate type battery which is an example of the lithium secondary battery of this invention. 図1に示すラミネート型電池に収容される積層型電極体の、厚さ方向の概略断面図である。It is a schematic sectional drawing of the thickness direction of the laminated electrode body accommodated in the laminate type battery shown in FIG.

以下、本発明の電池用非水電解液及びリチウム二次電池について、詳細に説明する。   Hereinafter, the non-aqueous electrolyte for batteries and the lithium secondary battery of the present invention will be described in detail.

〔電池用非水電解液〕
本発明の電池用非水電解液(以下、単に「非水電解液」ともいう)は、後述する一般式(A)で表される化合物を含有し、電池用非水電解液全量に対する銅元素(以下、「Cu元素」ともいう)の含有量が0.001質量ppm以上5質量ppm未満である。
[Non-aqueous electrolyte for batteries]
The non-aqueous electrolyte for batteries of the present invention (hereinafter also simply referred to as “non-aqueous electrolyte”) contains a compound represented by the general formula (A) described later, and contains copper element relative to the total amount of the non-aqueous electrolyte for batteries. The content of (hereinafter, also referred to as “Cu element”) is 0.001 mass ppm or more and less than 5 mass ppm.

前述のとおり、従来の電池用非水電解液(非水電解液)として、ホウ素原子又はリン原子を含む特定構造のリチウム塩を含有する非水電解液(例えば、特許文献1参照)、β−ジケトン部分構造を有する化合物と、β−ジケトンの鉄、ニッケル、銅、コバルト及び亜鉛の中から選ばれる少なくとも一種類以上の金属錯体と、を含む非水電解液(例えば、特許文献2参照)、等が知られている。
特に、特許文献2の段落0048(表2)には、β−ジケトンとしてのアセチルアセトンの銅錯体を用いた実施例として、「実施例の電池15」及び「実施例の電池19」が開示されている。これらの電池では、エチレンカーボネート1容量部に対してエチルメチルカーボネート3容量部を混合した溶媒に1.25mol/dmの濃度となるように六フッ化リン酸リチウムを添加した溶液(基本電解液;同文献段落0044参照)に対し、アセチルアセトン及びアセチルアセトンの銅錯体をそれぞれ0.01mol/dmの濃度となるように添加した非水電解液が用いられている。ここで、エチレンカーボネートの比重を1.32とし、エチルメチルカーボネートの比重を1.01とし、銅元素の原子量を63.5とし、アセチルアセトンの分子量を100とし、六フッ化リン酸リチウムの分子量を152として計算すると、計算上、上記「実施例の電池15」及び「実施例の電池19」の非水電解液には、いずれも500質量ppm程度のCu元素が含有されている。
As described above, as a conventional battery non-aqueous electrolyte (non-aqueous electrolyte), a non-aqueous electrolyte containing a lithium salt having a specific structure containing a boron atom or a phosphorus atom (see, for example, Patent Document 1), β- A non-aqueous electrolyte solution containing a compound having a diketone partial structure and at least one metal complex selected from iron, nickel, copper, cobalt, and zinc of β-diketone (see, for example, Patent Document 2), Etc. are known.
In particular, paragraph 0048 (Table 2) of Patent Document 2 discloses “battery 15 of example” and “battery 19 of example” as examples using a copper complex of acetylacetone as a β-diketone. Yes. In these batteries, a solution obtained by adding lithium hexafluorophosphate to a solvent in which 3 parts by volume of ethyl methyl carbonate is mixed with 1 part by volume of ethylene carbonate so as to have a concentration of 1.25 mol / dm 3 (basic electrolyte solution). ; See paragraph 0044 of the same document), a nonaqueous electrolyte solution in which acetylacetone and a copper complex of acetylacetone are added to a concentration of 0.01 mol / dm 3 is used. Here, the specific gravity of ethylene carbonate is 1.32, the specific gravity of ethyl methyl carbonate is 1.01, the atomic weight of copper element is 63.5, the molecular weight of acetylacetone is 100, and the molecular weight of lithium hexafluorophosphate is When calculated as 152, the non-aqueous electrolytes of the “battery 15 of the example” and “battery 19 of the example” both contain about 500 mass ppm of Cu element.

一方、本発明者らの検討により、ホウ素原子又はリン原子を含む特定構造のリチウム塩(具体的には、後述する一般式(A)で表される化合物)を含有する電池用非水電解液を含む電池では、電池抵抗が上昇する場合があることが判明した。
この電池抵抗上昇の理由は明らかではないが、以下のように推測される。
一般式(A)で表される化合物を含有する非水電解液を含む電池では、負極集電体に含まれるCu元素が、非水電解液中の一般式(A)で表される化合物との相互作用により、非水電解液に溶出すると考えられる。即ち、このCu元素の溶出により、負極集電体の表面に変化が生じ、この表面において非水電解液中の非水溶媒の分解反応が起こり易くなると考えられる。その結果、負極集電体の表面に非水溶媒の分解物が堆積し、電池抵抗が上昇すると考えられる。
On the other hand, according to the study by the present inventors, a non-aqueous electrolyte for a battery containing a lithium salt having a specific structure containing a boron atom or a phosphorus atom (specifically, a compound represented by the general formula (A) described later). It has been found that the battery resistance may increase in a battery containing.
The reason for this increase in battery resistance is not clear, but is presumed as follows.
In a battery including a non-aqueous electrolyte containing a compound represented by the general formula (A), the Cu element contained in the negative electrode current collector is a compound represented by the general formula (A) in the non-aqueous electrolyte. It is thought that it elutes into the non-aqueous electrolyte due to the interaction. That is, it is considered that the elution of this Cu element causes a change in the surface of the negative electrode current collector, and the decomposition reaction of the nonaqueous solvent in the nonaqueous electrolytic solution easily occurs on this surface. As a result, it is considered that the decomposition product of the nonaqueous solvent is deposited on the surface of the negative electrode current collector, and the battery resistance is increased.

本発明者らは、更なる検討の結果、一般式(A)で表される化合物を含有する非水電解液を含む電池中の上記非水電解液におけるCu元素の含有量を、上記非水電解液全量に対して0.001質量ppm以上5質量ppm未満の範囲に制限することにより、上記電池の抵抗を低減できることを見出し、本発明を完成させた。
即ち、本発明の非水電解液は、ホウ素原子又はリン原子を含む特定構造のリチウム塩(具体的には、上記一般式(A)で表される化合物)を含有する非水電解液でありながら、電池抵抗の上昇を抑制できる非水電解液である。
従って、本発明の非水電解液には、電池の寿命を延ばす効果を有することが期待される。
As a result of further studies, the present inventors have determined the content of the Cu element in the non-aqueous electrolyte in the battery including the non-aqueous electrolyte containing the compound represented by the general formula (A) as the non-aqueous electrolyte. The inventors have found that the resistance of the battery can be reduced by limiting the amount to 0.001 mass ppm or more and less than 5 mass ppm with respect to the total amount of the electrolytic solution, and completed the present invention.
That is, the nonaqueous electrolytic solution of the present invention is a nonaqueous electrolytic solution containing a lithium salt having a specific structure containing a boron atom or a phosphorus atom (specifically, a compound represented by the general formula (A)). However, it is a non-aqueous electrolyte that can suppress an increase in battery resistance.
Therefore, the nonaqueous electrolytic solution of the present invention is expected to have an effect of extending the life of the battery.

本発明の非水電解液において、「Cu元素の含有量」とは、本発明の非水電解液を電池の電解液として用いた場合における、上記電池中の上記電解液全量に対するCu元素の含有量を意味する。
即ち、本発明の非水電解液は、言い換えれば、一般式(A)で表される化合物を含有する非水電解液であって、電池(好ましくは、正極と、Cu元素を含有する負極集電体を含む負極と、電解液と、を含む電池。より好ましくは後述の本発明のリチウム二次電池。)の電解液として用いた場合に、上記電池中の上記電解液全量に対するCu元素の含有量が0.001質量ppm以上5質量ppm未満である非水電解液である。
例えば、電池の作製に用いる非水電解液(即ち、電池に組み込む前の非水電解液;以下、「原料非水電解液」ともいう)にCu元素が添加されており、かつ、この非水電解液を組み込んだ電池において、負極集電体のCu元素の一部が非水電解液中に溶出している場合には、上記「Cu元素の含有量」は、原料非水電解液に添加されていたCu元素の量と、負極集電体から非水電解液中に溶出したCu元素の量と、の合計量となる。
In the non-aqueous electrolyte of the present invention, “content of Cu element” means the content of Cu element with respect to the total amount of the electrolyte in the battery when the non-aqueous electrolyte of the present invention is used as the battery electrolyte. Means quantity.
That is, the non-aqueous electrolyte solution of the present invention is, in other words, a non-aqueous electrolyte solution containing a compound represented by the general formula (A), and a battery (preferably, a positive electrode and a negative electrode collector containing a Cu element). A battery including a negative electrode including an electric body and an electrolytic solution, more preferably a lithium secondary battery of the present invention described later.) When used as an electrolytic solution, the amount of Cu element relative to the total amount of the electrolytic solution in the battery It is a nonaqueous electrolytic solution whose content is 0.001 mass ppm or more and less than 5 mass ppm.
For example, a Cu element is added to a non-aqueous electrolyte used for manufacturing a battery (that is, a non-aqueous electrolyte before being incorporated into a battery; hereinafter, also referred to as “raw material non-aqueous electrolyte”), and this non-aqueous electrolyte When a part of the Cu element of the negative electrode current collector is eluted in the non-aqueous electrolyte in the battery incorporating the electrolyte, the above “content of Cu element” is added to the raw non-aqueous electrolyte. This is the total amount of the amount of Cu element that has been removed and the amount of Cu element that has eluted from the negative electrode current collector into the non-aqueous electrolyte.

上述のとおり、本明細書中において、Cu元素の含有量は、特に断りがないかぎり、上記電池中の非水電解液におけるCu元素の含有量を意味する。
一方、本明細書中において、非水電解液中におけるCu元素以外の各成分の含有量は、特に断りがないかぎり、上記原料非水電解液における各成分の含有量を意味する。
As described above, in the present specification, the content of the Cu element means the content of the Cu element in the nonaqueous electrolytic solution in the battery unless otherwise specified.
On the other hand, in the present specification, the content of each component other than the Cu element in the nonaqueous electrolytic solution means the content of each component in the raw material nonaqueous electrolytic solution unless otherwise specified.

<一般式(A)で表される化合物>
本発明の非水電解液は、一般式(A)で表される化合物を含有する。
<Compound represented by formula (A)>
The nonaqueous electrolytic solution of the present invention contains a compound represented by the general formula (A).

一般式(A)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、Rは、炭素数1〜10のアルキレン基、炭素数1〜10のハロゲン化アルキレン基、炭素数6〜20のアリーレン基、又は炭素数6〜20のハロゲン化アリーレン基(これらの基は、構造中に置換基又はヘテロ原子を含んでいてもよい。)を表し、mは、1〜3の整数を表し、nは、0〜4の整数を表し、qは0又は1を表す。   In general formula (A), M represents a boron atom or a phosphorus atom, X represents a halogen atom, R represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, carbon Represents an arylene group having 6 to 20 carbon atoms or a halogenated arylene group having 6 to 20 carbon atoms (these groups may include a substituent or a hetero atom in the structure), and m represents 1 to 3 N represents an integer of 0 to 4, and q represents 0 or 1.

一般式(A)中、Xで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が具体例として挙げられ、フッ素原子が特に好ましい。   In the general formula (A), examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is particularly preferable.

一般式(A)中、Rは、炭素数1〜10のアルキレン基、炭素数1〜10のハロゲン化アルキレン基、炭素数6〜20のアリーレン基、又は炭素数6〜20のハロゲン化アリーレン基を表す。
Rで表されるこれらの基(即ち、炭素数1〜10のアルキレン基、炭素数1〜10のハロゲン化アルキレン基、炭素数6〜20のアリーレン基、及び炭素数6〜20のハロゲン化アリーレン基)は、構造中に置換基又はヘテロ原子を含んでいてもよい。
具体的には、これらの基の水素原子の代わりに、置換基として、ハロゲン原子、鎖状若しくは環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、又は水酸基を含んでいてもよい。
また、これらの基の炭素元素の代わりに、ヘテロ原子として、窒素原子、硫黄原子、又は酸素原子が導入された構造であってもよい。
また、qが1でmが2〜4であるときには、m個のRはそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。
In general formula (A), R is an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms. Represents.
These groups represented by R (that is, an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, and a halogenated arylene group having 6 to 20 carbon atoms) Group) may contain a substituent or a heteroatom in the structure.
Specifically, in place of the hydrogen atom of these groups, as a substituent, a halogen atom, a chain or cyclic alkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, a sulfonyl group, an amino group, a cyano group , A carbonyl group, an acyl group, an amide group, or a hydroxyl group.
Further, instead of the carbon element of these groups, a structure in which a nitrogen atom, a sulfur atom, or an oxygen atom is introduced as a hetero atom may be used.
When q is 1 and m is 2 to 4, m Rs may be bonded to each other. Examples thereof include a ligand such as ethylenediaminetetraacetic acid.

Rにおける、炭素数1〜10のアルキレン基の炭素数としては、1〜6が好ましく、1〜3がより好ましく、1が特に好ましい。なお、炭素数1のアルキレン基は、メチレン基(即ち、−CH−基)である。
Rにおける、炭素数1〜10のハロゲン化アルキレン基とは、炭素数1〜10のアルキレン基に含まれる水素原子の少なくとも1つをハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、又はヨウ素原子、好ましくはフッ素原子)に置き換えた基を意味する。
炭素数1〜10のハロゲン化アルキレン基の炭素数としては、1〜6が好ましく、1〜3がより好ましく、1が特に好ましい。
Rにおける、炭素数6〜20のアリーレン基の炭素数としては、6〜12が好ましい。
Rにおける、炭素数6〜20のハロゲン化アリーレン基とは、炭素数6〜20のアリーレン基に含まれる水素原子の少なくとも1つをハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、又はヨウ素原子、好ましくはフッ素原子)に置き換えた基を意味する。
炭素数6〜20のハロゲン化アリーレン基の炭素数としては、6〜12が好ましい。
As carbon number of a C1-C10 alkylene group in R, 1-6 are preferable, 1-3 are more preferable, and 1 is especially preferable. Note that the alkylene group having 1 carbon atom is a methylene group (that is, a —CH 2 — group).
The halogenated alkylene group having 1 to 10 carbon atoms in R is a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom) at least one hydrogen atom contained in the alkylene group having 1 to 10 carbon atoms. Atom, preferably a fluorine atom).
As carbon number of a C1-C10 halogenated alkylene group, 1-6 are preferable, 1-3 are more preferable, and 1 is especially preferable.
The carbon number of the arylene group having 6 to 20 carbon atoms in R is preferably 6 to 12.
The halogenated arylene group having 6 to 20 carbon atoms in R is a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom) at least one of hydrogen atoms contained in the arylene group having 6 to 20 carbon atoms. Atom, preferably a fluorine atom).
As carbon number of a C6-C20 halogenated arylene group, 6-12 are preferable.

Rとしては、炭素数1〜10のアルキレン基が好ましく、炭素数1〜6のアルキレン基がより好ましく、炭素数1〜3のアルキレン基が更に好ましく、炭素数1のアルキレン基(即ち、メチレン基)が特に好ましい。   R is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, still more preferably an alkylene group having 1 to 3 carbon atoms, and an alkylene group having 1 carbon atom (that is, a methylene group). Is particularly preferred.

一般式(A)中、mは、1〜3の整数を表し、nは、0〜4の整数を表し、qは0又は1を表す。
一般式(A)中のqが0である化合物は、具体的には、下記一般式(A2)で表されるオキサラト化合物である。
In general formula (A), m represents an integer of 1 to 3, n represents an integer of 0 to 4, and q represents 0 or 1.
The compound in which q in general formula (A) is 0 is specifically an oxalato compound represented by the following general formula (A2).

一般式(A2)中、M、X、m、及びnは、それぞれ、一般式(A)中、M、X、m、及びnと同義である。   In general formula (A2), M, X, m, and n are synonymous with M, X, m, and n in general formula (A), respectively.

一般式(A)で表される化合物(一般式(A2)で表される化合物である場合を含む。以下同じ。)の具体例としては、
ジフルオロビス(オキサラト)リン酸リチウム、
テトラフルオロ(オキサラト)リン酸リチウム、
トリス(オキサラト)リン酸リチウム、
ジフルオロ(オキサラト)ホウ酸リチウム、
ビス(オキサラト)ホウ酸リチウムなどのオキサラト化合物(qが0である化合物)、
ジフルオロビス(マロネート)リン酸リチウム、
テトラフルオロ(マロネート)リン酸リチウム、
トリス(マロネート)リン酸リチウム、
ジフルオロ(マロネート)ホウ酸リチウム、
ビス(マロネート)ホウ酸リチウムなどのマロネート化合物(qが1であり、Rがメチレン基である化合物);
等が挙げられる。
Specific examples of the compound represented by the general formula (A) (including the case of the compound represented by the general formula (A2); the same shall apply hereinafter)
Lithium difluorobis (oxalato) phosphate,
Lithium tetrafluoro (oxalato) phosphate,
Tris (oxalato) lithium phosphate,
Lithium difluoro (oxalato) borate,
Oxalate compounds (compounds in which q is 0) such as lithium bis (oxalato) borate,
Difluorobis (malonate) lithium phosphate,
Tetrafluoro (malonate) lithium phosphate,
Tris (malonate) lithium phosphate,
Difluoro (malonate) lithium borate,
Malonate compounds such as bis (malonate) lithium borate (compounds where q is 1 and R is a methylene group);
Etc.

本発明の非水電解液は、一般式(A)で表される化合物を、1種のみ含有していてもよいし、2種以上含有していてもよい。
本発明の非水電解液中における一般式(A)で表される化合物の含有量(2種である場合には総含有量。以下同じ。)には特に制限はないが、本発明の効果がより効果的に奏される観点から、0.001質量%〜5質量%であることが好ましく、0.05質量%〜5質量%の範囲であることがより好ましい。
The nonaqueous electrolytic solution of the present invention may contain only one type of compound represented by the general formula (A), or may contain two or more types.
The content of the compound represented by the general formula (A) in the nonaqueous electrolytic solution of the present invention (the total content in the case of two types; the same shall apply hereinafter) is not particularly limited, but the effect of the present invention Is more preferably 0.001% by mass to 5% by mass, and more preferably 0.05% by mass to 5% by mass.

なお、一般式(A)で表される化合物は、非水電解液として実際に二次電池作製に供すると、その電池を解体して再び非水電解液を取り出しても、その中の含有量が変化している場合がある。そのため、一般式(A)で表される化合物を所定量にて非水電解液に含有させてなる電池である場合、該電池から抜き出した非水電解液から、少なくとも一般式(A)で表される化合物が検出できる場合には、非水電解液に一般式(A)で表される化合物が含まれるとみなすことができる。後述の他の添加剤についても同様である。
本明細書中において、「添加剤の含有量」との用語及び「添加剤の添加量」との用語は、いずれも、非水電解液の全量に対する添加剤の含有量を意味する。
In addition, the compound represented by the general formula (A) can be used as a non-aqueous electrolyte for actual production of a secondary battery, even if the battery is disassembled and the non-aqueous electrolyte is taken out again. May have changed. Therefore, in the case of a battery in which the compound represented by the general formula (A) is contained in a non-aqueous electrolyte in a predetermined amount, the battery is represented by at least the general formula (A) from the non-aqueous electrolyte extracted from the battery. When the compound to be detected can be detected, it can be considered that the compound represented by the general formula (A) is contained in the nonaqueous electrolytic solution. The same applies to other additives described later.
In this specification, the terms “content of additive” and “addition amount of additive” both mean the content of the additive with respect to the total amount of the non-aqueous electrolyte.

<Cu元素>
本発明の非水電解液は、電池の電解液として用いた場合に、上記電池中の上記電解液全体に対するCu元素の含有量が、0.001質量ppm以上5質量ppm未満である。
この場合において、「電解液全量に対するCu元素の含有量」とは、非水電解液に溶解しているCu元素の量を意味する。
本発明では、上記電池の負極集電体からのCu元素の溶出が抑制され、その結果、電池中の非水電解液におけるCu元素の含有量が5質量ppm未満に制限される。これにより、電池抵抗が低減される。また、Cu元素の含有量が5質量ppm未満であると、デンドライトの形成が抑制される効果が期待される。
Cu元素の含有量の下限(0.001質量ppm)は、非水電解液又は電池の生産性(製造適性)の観点からみた下限である。
<Cu element>
When the nonaqueous electrolytic solution of the present invention is used as an electrolytic solution for a battery, the content of Cu element with respect to the entire electrolytic solution in the battery is 0.001 mass ppm or more and less than 5 mass ppm.
In this case, the “content of Cu element with respect to the total amount of the electrolytic solution” means the amount of Cu element dissolved in the nonaqueous electrolytic solution.
In the present invention, elution of Cu element from the negative electrode current collector of the battery is suppressed, and as a result, the content of Cu element in the non-aqueous electrolyte in the battery is limited to less than 5 ppm by mass. Thereby, battery resistance is reduced. Further, when the content of the Cu element is less than 5 ppm by mass, an effect of suppressing the formation of dendrite is expected.
The lower limit (0.001 mass ppm) of the content of Cu element is a lower limit from the viewpoint of productivity (manufacturability) of the non-aqueous electrolyte or battery.

上記電池中の上記電解液全体に対するCu元素の含有量は、電池抵抗低減の観点から、4質量ppm以下であることが好ましく、3質量ppm以下であることがより好ましく、2質量ppm以下であることが更に好ましい。
上記電池中の上記電解液全体に対するCu元素の含有量は、非水電解液又は電池の生産性(製造適性)の観点から、0.01質量ppm以上であることが好ましく、0.1質量ppm以上であることがより好ましく、0.5質量ppm以上であることが更に好ましい。
The content of the Cu element with respect to the entire electrolyte solution in the battery is preferably 4 mass ppm or less, more preferably 3 mass ppm or less from the viewpoint of reducing battery resistance, and 2 mass ppm or less. More preferably.
The content of the Cu element with respect to the entire electrolytic solution in the battery is preferably 0.01 mass ppm or more from the viewpoint of productivity (manufacturability) of the nonaqueous electrolytic solution or the battery, and is 0.1 mass ppm. More preferably, it is more preferably 0.5 mass ppm or more.

本明細書中において、非水電解液中のCu元素の含有量は、誘導結合プラズマ質量分析法によって測定された値を意味する。   In the present specification, the content of Cu element in the non-aqueous electrolyte means a value measured by inductively coupled plasma mass spectrometry.

本発明では、結果として、電池中の非水電解液におけるCu元素の含有量が0.001質量ppm以上5質量ppm未満の範囲に制限されていればよく、Cu元素の含有量を上記範囲に制限するための具体的手段には特に制限はない。要するに、結果として、負極集電体からのCu元素の溶出が抑制され、電池中の非水電解液におけるCu元素の含有量が0.001質量ppm以上5質量ppm未満の範囲に制限されていればよい。   In the present invention, as a result, the Cu element content in the non-aqueous electrolyte in the battery may be limited to a range of 0.001 mass ppm or more and less than 5 mass ppm, and the Cu element content is within the above range. There are no particular restrictions on the specific means for limiting. In short, as a result, the elution of Cu element from the negative electrode current collector is suppressed, and the content of Cu element in the non-aqueous electrolyte in the battery is limited to a range of 0.001 mass ppm to less than 5 mass ppm. That's fine.

原料非水電解液に、予め、微量のCu元素を含有させておく態様は、負極集電体からのCu元素の溶出を抑制し電解液中のCu元素の含有量を0.001質量ppm以上5質量ppm未満の範囲に維持できる点で好ましい。この場合において、原料非水電解液全量に対するCu元素の含有量は、0.001質量ppm以上5質量ppm未満が好ましい。
原料非水電解液中のCu元素の含有量は、4質量ppm以下であることがより好ましく、3質量ppm以下であることが更に好ましく、2質量ppm以下であることが更に好ましく、1質量ppm以下であることが更に好ましい。
原料非水電解液中のCu元素の含有量は、原料非水電解液の全量に対し、0.01質量ppm以上であることが好ましく、0.1質量ppm以上であることがより好ましく、0.2質量ppm以上であることが更に好ましい。
原料非水電解液に、予め、微量のCu元素を含有させておく態様としては、原料非水電解液に、予め、後述の銅化合物(以下、「Cu化合物」ともいう)を含有させておく態様が好ましい。
In an embodiment in which a trace amount of Cu element is contained in the raw material non-aqueous electrolyte in advance, the elution of Cu element from the negative electrode current collector is suppressed, and the content of Cu element in the electrolyte is 0.001 mass ppm or more. It is preferable at the point which can maintain in the range of less than 5 mass ppm. In this case, the content of the Cu element with respect to the total amount of the raw material nonaqueous electrolytic solution is preferably 0.001 mass ppm or more and less than 5 mass ppm.
The content of Cu element in the raw material non-aqueous electrolyte is more preferably 4 mass ppm or less, further preferably 3 mass ppm or less, further preferably 2 mass ppm or less, and 1 mass ppm. More preferably, it is as follows.
The content of Cu element in the raw material non-aqueous electrolyte is preferably 0.01 mass ppm or more, more preferably 0.1 mass ppm or more, based on the total amount of the raw material non-aqueous electrolyte. More preferably, it is 2 ppm by mass or more.
As a mode in which a trace amount of Cu element is contained in the raw material non-aqueous electrolyte in advance, a copper compound (hereinafter also referred to as “Cu compound”) described later is contained in the raw material non-aqueous electrolyte in advance. Embodiments are preferred.

<Cu化合物>
本発明の非水電解液は、Cu元素を含む化合物として、Cu化合物を含有すること(即ち、Cu化合物を含有し、かつ、Cu元素の含有量が非水電解液全量に対し0.001質量ppm以上5質量ppm未満であること)が好ましい。
Cu化合物としては、Cu元素の酸化数が+1又は+2であるイオン性化合物が好ましい。
<Cu compound>
The nonaqueous electrolytic solution of the present invention contains a Cu compound as a compound containing a Cu element (that is, the Cu compound is contained and the content of the Cu element is 0.001 mass relative to the total amount of the nonaqueous electrolytic solution). It is preferably not less than ppm and less than 5 mass ppm.
As the Cu compound, an ionic compound in which the oxidation number of the Cu element is +1 or +2 is preferable.

Cu化合物としては、リン酸銅(II)、硫酸銅(II)、硝酸銅(II)、酢酸銅(I)、酢酸銅(II)、炭酸銅(II)、シアン化銅(I)、シュウ酸銅(II)、クエン酸銅(II)、グルコン酸銅(II)、過塩素酸銅(II)、フッ化銅(II)、塩化銅(I)、塩化銅(II)、水酸化銅(II)、ヘキサフルオロリン酸テトラキス(アセトニトリル)銅(I)、ヘキサフルオロリン酸銅(II)、テトラフルオロホウ酸テトラキス(アセトニトリル)銅(I)、テトラフルオロホウ酸銅(II)、トリフルオロメタンスルホン酸銅(I)、トリフルオロメタンスルホン酸銅(II)、ジフルオロリン酸銅(II)、モノフルオロリン酸銅(II)、ビス(エトキシド)銅(II)、アセチルアセトナート銅(I)、ビス(アセチルアセトナート)銅(II)などが挙げられる。
これらの中でも、入手及び取扱いの容易さの観点から、ヘキサフルオロリン酸テトラキス(アセトニトリル)銅(I)、テトラフルオロホウ酸テトラキス(アセトニトリル)銅(I)、トリフルオロメタンスルホン酸銅(II)、又はビス(アセチルアセトナート)銅(II)が好ましい。
Cu compounds include copper phosphate (II), copper sulfate (II), copper nitrate (II), copper acetate (I), copper acetate (II), copper carbonate (II), copper cyanide (I), Shu Copper (II) citrate, Copper (II) citrate, Copper (II) gluconate, Copper (II) perchlorate, Copper fluoride (II), Copper chloride (I), Copper chloride (II), Copper hydroxide (II), tetrakis (acetonitrile) copper (I) hexafluorophosphate, copper (II) hexafluorophosphate, tetrakis (acetonitrile) copper (I) tetrafluoroborate, copper (II) tetrafluoroborate, trifluoromethane Copper (I) sulfonate, copper (II) trifluoromethanesulfonate, copper (II) difluorophosphate, copper (II) monofluorophosphate, copper (II) bis (ethoxide), copper (I) acetylacetonate, Bis (acetylacetonate) copper (II) and the like can be mentioned.
Among these, from the viewpoint of easy availability and handling, tetrakis (acetonitrile) copper (I) hexafluorophosphate, tetrakis (acetonitrile) copper (I) tetrafluoroborate, copper (II) trifluoromethanesulfonate, or Bis (acetylacetonate) copper (II) is preferred.

本発明の非水電解液がCu化合物を含有する場合、含有されるCu化合物は、1種のみであっても2種以上であってもよい。
本発明の非水電解液中におけるCu化合物の含有量(2種である場合には総含有量。以下同じ。)には特に制限はないが、本発明の効果がより効果的に奏される観点から、0.001質量ppm〜15質量ppmであることが好ましく、0.05質量ppm〜15質量ppmであることがより好ましい。
When the nonaqueous electrolytic solution of the present invention contains a Cu compound, the contained Cu compound may be only one kind or two or more kinds.
The content of the Cu compound in the nonaqueous electrolytic solution of the present invention (the total content in the case of two types; the same applies hereinafter) is not particularly limited, but the effect of the present invention is more effectively achieved. From a viewpoint, it is preferable that it is 0.001 mass ppm-15 mass ppm, and it is more preferable that it is 0.05 mass ppm-15 mass ppm.

上記Cu化合物の含有量は、電池抵抗をより低減させる観点から、10質量ppm以下であることがより好ましく、5.0質量ppm以下であることが更に好ましい。
上記Cu化合物の含有量は、0.01質量ppm以上であることがより好ましく、0.1質量ppm以上であることが更に好ましく、0.5質量ppm以上であることが特に好ましい。
From the viewpoint of further reducing battery resistance, the content of the Cu compound is more preferably 10 mass ppm or less, and further preferably 5.0 mass ppm or less.
The content of the Cu compound is more preferably 0.01 mass ppm or more, still more preferably 0.1 mass ppm or more, and particularly preferably 0.5 mass ppm or more.

<その他の添加剤>
また、本発明の非水電解液は、上記以外のその他の添加剤を含有していてもよい。
その他の添加剤としては、炭素−炭素不飽和結合を有するカーボネート化合物;フッ素原子で置換されたカーボネート化合物;フルオロリン酸化合物;環状硫酸エステル化合物;等が挙げられる。
本発明の非水電解液がその他の添加剤を含有する場合、含有されるその他の添加剤は、1種のみであっても2種以上であってもよい。
その他の添加剤としては、環状硫酸エステル化合物が好ましく、後述の一般式(I)で表される環状硫酸エステル化合物(以下、「一般式(I)で表される化合物」ともいう)が特に好ましい。
<Other additives>
Moreover, the nonaqueous electrolytic solution of the present invention may contain other additives other than those described above.
Examples of other additives include a carbonate compound having a carbon-carbon unsaturated bond; a carbonate compound substituted with a fluorine atom; a fluorophosphate compound; a cyclic sulfate compound;
When the nonaqueous electrolytic solution of the present invention contains other additives, the other additives contained may be only one type or two or more types.
As other additives, cyclic sulfate compounds are preferable, and cyclic sulfate compounds represented by the general formula (I) described later (hereinafter also referred to as “compounds represented by the general formula (I)”) are particularly preferable. .

(炭素−炭素不飽和結合を有するカーボネート化合物)
炭素−炭素不飽和結合を有するカーボネート化合物としては、メチルビニルカーボネート、エチルビニルカーボネート、ジビニルカーボネート、メチルプロピニルカーボネート、エチルプロピニルカーボネート、ジプロピニルカーボネート、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネートなどの鎖状カーボネート類;ビニレンカーボネート、メチルビニレンカーボネート、4,4−ジメチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、エチニルエチレンカーボネート、4,4−ジエチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、プロピニルエチレンカーボネート、4,4−ジプロピニルエチレンカーボネート、4,5−ジプロピニルエチレンカーボネートなどの環状カーボネート類;などが挙げられる。これらのうち、好ましくは、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネートであり、より好ましくは、ビニレンカーボネート、ビニルエチレンカーボネートである。
(Carbonate compound having a carbon-carbon unsaturated bond)
Examples of the carbonate compound having a carbon-carbon unsaturated bond include methyl vinyl carbonate, ethyl vinyl carbonate, divinyl carbonate, methyl propynyl carbonate, ethyl propynyl carbonate, dipropynyl carbonate, methyl phenyl carbonate, ethyl phenyl carbonate, diphenyl carbonate, and the like. Carbonates; vinylene carbonate, methyl vinylene carbonate, 4,4-dimethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, vinyl ethylene carbonate, 4,4-divinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, ethynyl ethylene carbonate, 4,4-diethynyl ethylene carbonate, 4,5-diethynyl ethylene carbonate, propylene Le ethylene carbonate, 4,4-propynyl carbonate, cyclic carbonates such as 4,5-di-propynyl carbonate; and the like. Among these, preferably, methyl phenyl carbonate, ethyl phenyl carbonate, diphenyl carbonate, vinylene carbonate, vinyl ethylene carbonate, 4,4-divinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, more preferably vinylene carbonate, Vinyl ethylene carbonate.

(フッ素原子を有するカーボネート化合物)
フッ素原子を有するカーボネート化合物としては、メチルトリフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート、ビス(トリフルオロメチル)カーボネート、メチル(2,2,2−トリフルオロエチル)カーボネート、エチル(2,2,2−トリフルオロエチル)カーボネート、ビス(2,2,2−トリフルオロエチル)カーボネートなどの鎖状カーボネート類;4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−トリフルオロメチルエチレンカーボネートなどの環状カーボネート類;などが挙げられる。これらのうち、好ましくは、4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネートである。
(Carbonate compound having fluorine atom)
Examples of the carbonate compound having a fluorine atom include methyl trifluoromethyl carbonate, ethyl trifluoromethyl carbonate, bis (trifluoromethyl) carbonate, methyl (2,2,2-trifluoroethyl) carbonate, ethyl (2,2,2). -Chain carbonates such as trifluoroethyl) carbonate and bis (2,2,2-trifluoroethyl) carbonate; 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4 -Cyclic carbonates such as trifluoromethylethylene carbonate; Of these, 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, and 4,5-difluoroethylene carbonate are preferable.

(フルオロリン酸化合物)
フルオロリン酸化合物としては、ジフルオロリン酸、モノフルオロリン酸、ジフルオロリン酸メチル、ジフルオロリン酸エチル、フルオロリン酸ジメチル、フルオロリン酸ジエチル、ジフルオロリン酸塩(例えばジフルオロリン酸リチウム)、モノフルオロリン酸塩(例えばモノフルオロリン酸リチウム)、などが挙げられる。
(Fluorophosphate compound)
Examples of the fluorophosphate compound include difluorophosphate, monofluorophosphate, methyl difluorophosphate, ethyl difluorophosphate, dimethyl fluorophosphate, diethyl fluorophosphate, difluorophosphate (eg, lithium difluorophosphate), monofluoro And phosphates (for example, lithium monofluorophosphate).

(環状硫酸エステル化合物)
環状硫酸エステル化合物としては、下記一般式(I)で表される硫酸エステル化合物(以下、「一般式(I)で表される化合物」ともいう)が好ましい。
(Cyclic sulfate compound)
As the cyclic sulfate compound, a sulfate compound represented by the following general formula (I) (hereinafter also referred to as “compound represented by the general formula (I)”) is preferable.

一般式(I)中、R及びRが、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、フェニル基、一般式(II)で表される基若しくは式(III)で表される基を表すか、又は、R及びRが一体となって、Rが結合する炭素原子及びRが結合する炭素原子と共に、ベンゼン環若しくはシクロヘキシル環を形成する基を表す。
一般式(II)中、Rは、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のハロゲン化アルキル基、炭素数1〜6のアルコキシ基、又は式(IV)で表される基を表す。一般式(II)、式(III)、および式(IV)における波線は、結合位置を表す。
一般式(I)で表される環状硫酸エステル化合物中に、一般式(II)で表される基が2つ含まれる場合、2つの一般式(II)で表される基は、同一であっても互いに異なっていてもよい。
In general formula (I), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a group represented by general formula (II), or a group represented by formula (III). R 1 and R 2 together represent a group that forms a benzene ring or a cyclohexyl ring together with the carbon atom to which R 1 is bonded and the carbon atom to which R 2 is bonded.
In general formula (II), R 3 is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a formula (IV). Represents a group. The wavy line in general formula (II), formula (III), and formula (IV) represents the bonding position.
When the cyclic sulfate ester compound represented by the general formula (I) includes two groups represented by the general formula (II), the two groups represented by the general formula (II) are the same. Or they may be different from each other.

前記一般式(II)中、「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が具体例として挙げられる。
ハロゲン原子としては、フッ素原子が好ましい。
Specific examples of the “halogen atom” in the general formula (II) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
As the halogen atom, a fluorine atom is preferable.

前記一般式(I)及び(II)中、「炭素数1〜6のアルキル基」とは、炭素数が1以上6以下である直鎖又は分岐鎖のアルキル基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、2−メチルブチル基、1−メチルペンチル基、ネオペンチル基、1−エチルプロピル基、ヘキシル基、3,3−ジメチルブチル基などが具体例として挙げられる。
炭素数1〜6のアルキル基としては、炭素数1〜3のアルキル基がより好ましい。
In the general formulas (I) and (II), the “alkyl group having 1 to 6 carbon atoms” is a linear or branched alkyl group having 1 to 6 carbon atoms, methyl group, ethyl group Propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2-methylbutyl group, 1-methylpentyl group, neopentyl group, 1-ethylpropyl group, hexyl group, 3 Specific examples include a 1,3-dimethylbutyl group and the like.
As a C1-C6 alkyl group, a C1-C3 alkyl group is more preferable.

前記一般式(II)中、「炭素数1〜6のハロゲン化アルキル基」とは、炭素数が1〜6である直鎖又は分岐鎖のハロゲン化アルキル基であり、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロイソプロピル基、パーフルオロイソブチル基、クロロメチル基、クロロエチル基、クロロプロピル基、ブロモメチル基、ブロモエチル基、ブロモプロピル基、ヨウ化メチル基、ヨウ化エチル基、ヨウ化プロピル基などが具体例として挙げられる。
炭素数1〜6のハロゲン化アルキル基としては、炭素数1〜3のハロゲン化アルキル基がより好ましい。
In the general formula (II), the “halogenated alkyl group having 1 to 6 carbon atoms” is a linear or branched halogenated alkyl group having 1 to 6 carbon atoms, such as a fluoromethyl group and a difluoromethyl group. Group, trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroisopropyl group, perfluoro Specific examples include isobutyl, chloromethyl, chloroethyl, chloropropyl, bromomethyl, bromoethyl, bromopropyl, methyl iodide, ethyl iodide, propyl iodide and the like.
As the halogenated alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms is more preferable.

前記一般式(II)中、「炭素数1〜6のアルコキシ基」とは、炭素数が1以上6以下である直鎖又は分岐鎖のアルコキシ基であり、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、2−メチルブトキシ基、1−メチルペンチルオキシ基、ネオペンチルオキシ基、1−エチルプロポキシ基、ヘキシルオキシ基、3,3−ジメチルブトキシ基などが具体例として挙げられる。
炭素数1〜6のアルコキシ基としては、炭素数1〜3のアルコキシ基がより好ましい。
In the general formula (II), the “C1-C6 alkoxy group” is a linear or branched alkoxy group having 1 to 6 carbon atoms, and includes a methoxy group, an ethoxy group, a propoxy group, Isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, 2-methylbutoxy group, 1-methylpentyloxy group, neopentyloxy group, 1-ethylpropoxy group, hexyloxy Specific examples include a group and a 3,3-dimethylbutoxy group.
As a C1-C6 alkoxy group, a C1-C3 alkoxy group is more preferable.

前記一般式(I)における好ましい態様は、Rが、一般式(II)で表される基(一般式(II)において、Rは、フッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は式(IV)で表される基であることが好ましい。)若しくは式(III)で表される基であり、かつ、Rが、水素原子、炭素数1〜3のアルキル基、一般式(II)で表される基、若しくは式(III)で表される基であるか、又は、R及びRが一体となって、Rが結合する炭素原子及びRが結合する炭素原子と共に、ベンゼン環若しくはシクロヘキシル環を形成する基である態様である。 In a preferred embodiment of the general formula (I), R 1 is a group represented by the general formula (II) (in the general formula (II), R 3 is a fluorine atom, an alkyl group having 1 to 3 carbon atoms, carbon A halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by formula (IV).) Or a group represented by formula (III), and , R 2 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the general formula (II), or a group represented by the formula (III), or R 1 and R 2 are It is an embodiment that is a group that forms a benzene ring or a cyclohexyl ring together with the carbon atom to which R 1 is bonded and the carbon atom to which R 2 is bonded.

前記一般式(I)中のRとして、より好ましくは、水素原子、炭素数1〜3のアルキル基、前記一般式(II)で表される基(一般式(II)において、Rは、フッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は、式(IV)で表される基であることがさらに好ましい。)、又は前記式(III)で表される基であり、さらに好ましくは水素原子又はメチル基である。 R 2 in the general formula (I) is more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a group represented by the general formula (II) (in the general formula (II), R 3 is And a fluorine atom, an alkyl group having 1 to 3 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV). Or a group represented by the formula (III), more preferably a hydrogen atom or a methyl group.

前記一般式(I)中のRが前記一般式(II)で表される基である場合、前記一般式(II)中のRは前述のとおり、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のハロゲン化アルキル基、炭素数1〜6のアルコキシ基、又は式(IV)で表される基であるが、Rとしてより好ましくは、フッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は、式(IV)で表される基であり、更に好ましくは、フッ素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、又は、式(IV)で表される基である。
前記一般式(I)中のRが前記一般式(II)で表される基である場合、一般式(II)中のRの好ましい範囲については、前記一般式(I)中のRが前記一般式(II)で表される基である場合におけるRの好ましい範囲と同様である。
When R 1 in the general formula (I) is a group represented by the general formula (II), R 3 in the general formula (II) is a halogen atom, having 1 to 6 carbon atoms as described above. An alkyl group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the formula (IV), R 3 is more preferably a fluorine atom or a carbon number of 1 Or an alkyl group having 1 to 3, a halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV), and more preferably a fluorine atom, a methyl group, An ethyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, or a group represented by the formula (IV).
When R 2 in the general formula (I) is a group represented by the general formula (II), a preferable range of R 3 in the general formula (II) is as follows. This is the same as the preferred range of R 3 when 1 is a group represented by the general formula (II).

前記一般式(I)におけるR及びRの好ましい組み合わせとしては、Rが、前記一般式(II)で表される基(前記一般式(II)中、Rはフッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は前記式(IV)で表される基であることが好ましい)、又は前記式(III)で表される基であり、Rが、水素原子、炭素数1〜3のアルキル基、前記一般式(II)で表される基(前記一般式(II)中、Rはフッ素原子、炭素数1〜3のアルキル基、炭素数1〜3のハロゲン化アルキル基、炭素数1〜3のアルコキシ基、又は前記式(IV)で表される基であることが好ましい。)、又は前記式(III)で表される基である組み合わせである。
前記一般式(I)におけるR及びRのより好ましい組み合わせとしては、Rが前記一般式(II)で表される基(前記一般式(II)中、Rはフッ素原子、メチル基、エチル基、トリフルオロメチル基、メトキシ基、エトキシ基、又は前記式(IV)で表される基であることが好ましい)又は前記式(III)で表される基であり、Rが水素原子又はメチル基である組み合わせである。
As a preferable combination of R 1 and R 2 in the general formula (I), R 1 is a group represented by the general formula (II) (in the general formula (II), R 3 is a fluorine atom, a carbon number An alkyl group having 1 to 3 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV)), or the formula (III R 2 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the general formula (II) (in the general formula (II), R 3 is a fluorine atom) Or an alkyl group having 1 to 3 carbon atoms, a halogenated alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IV)). A combination which is a group represented by the formula (III).
As a more preferable combination of R 1 and R 2 in the general formula (I), R 1 is a group represented by the general formula (II) (in the general formula (II), R 3 is a fluorine atom, a methyl group) , An ethyl group, a trifluoromethyl group, a methoxy group, an ethoxy group, or a group represented by the formula (IV)) or a group represented by the formula (III), and R 2 is hydrogen. A combination that is an atom or a methyl group.

一般式(I)で表される環状硫酸エステル化合物としては、例えば、カテコールサルフェート、1,2−シクロヘキシルサルフェート、及び下記例示化合物1〜30で示される化合物が挙げられる。但し、一般式(I)で表される環状硫酸エステル化合物は、これらに限られない。
下記例示化合物の構造中、「Me」はメチル基を、「Et」はエチル基を、「Pr」はプロピル基を、「iPr」はイソプロピル基を、「Bu」はブチル基を、「tBu」はターシャリーブチル基を、「Pent」はペンチル基を、「Hex」はヘキシル基を、「OMe」はメトキシ基を、「OEt」はエトキシ基を、「OPr」はプロポキシ基を、「OBu」はブトキシ基を、「OPent」はペンチルオキシ基を、「OHex」はヘキシルオキシ基を、それぞれ表す。また、R〜Rにおける「波線」は、結合位置を表す。
なお、2,2−ジオキソ−1,3,2−ジオキサチオラン環の4位及び5位の置換基に由来する立体異性体が生じる場合があるが、両者とも本発明に含まれる化合物である。
また、前記一般式(I)で表される硫酸エステル化合物のうち、分子内に2個以上の不斉炭素が存在する場合はそれぞれ立体異性体(ジアステレオマー)が存在するが、特に記載しない限りは,対応するジアステレオマーの混合物である。
Examples of the cyclic sulfate compound represented by the general formula (I) include catechol sulfate, 1,2-cyclohexyl sulfate, and compounds represented by the following exemplified compounds 1 to 30. However, the cyclic sulfate compound represented by the general formula (I) is not limited thereto.
In the structures of the following exemplary compounds, “Me” represents a methyl group, “Et” represents an ethyl group, “Pr” represents a propyl group, “iPr” represents an isopropyl group, “Bu” represents a butyl group, and “tBu” Is a tertiary butyl group, “Pent” is a pentyl group, “Hex” is a hexyl group, “OMe” is a methoxy group, “OEt” is an ethoxy group, “OPr” is a propoxy group, “OBu” Represents a butoxy group, “OPent” represents a pentyloxy group, and “OHex” represents a hexyloxy group. Further, the “wavy line” in R 1 to R 3 represents a coupling position.
In some cases, stereoisomers derived from the substituents at the 4-position and 5-position of the 2,2-dioxo-1,3,2-dioxathiolane ring may be formed, and both are compounds included in the present invention.
Further, among the sulfate ester compounds represented by the general formula (I), when two or more asymmetric carbons are present in the molecule, stereoisomers (diastereomers) exist, but are not particularly described. To the extent it is a mixture of the corresponding diastereomers.

一般式(I)で表される環状硫酸エステル化合物のうち、分子内に2個以上の不斉炭素が存在する場合はそれぞれ立体異性体(ジアステレオマー)が存在するが、特に記載しない限りは、対応するジアステレオマーの混合物である。   Among the cyclic sulfate compounds represented by the general formula (I), when two or more asymmetric carbons exist in the molecule, stereoisomers (diastereomers) exist, respectively, unless otherwise specified. , A mixture of the corresponding diastereomers.

一般式(I)で表される環状硫酸エステル化合物を合成する方法には特に制限はないが、例えば、国際公開第2012/053644号の段落0062〜0068に記載の合成方法によって合成することができる。   Although there is no restriction | limiting in particular in the method to synthesize | combine the cyclic sulfate ester compound represented by general formula (I), For example, it can synthesize | combine by the synthesis method of Paragraphs 0062-0068 of international publication 2012/053644. .

上記その他の添加剤としては、ビニレンカーボネート、ビニルエチレンカーボネート、4−フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、及び環状硫酸エステル化合物(特に好ましくは一般式(I)で表される環状硫酸エステル化合物)からなる群から選ばれる少なくとも1種であることが特に好ましい。   Examples of the other additives include vinylene carbonate, vinyl ethylene carbonate, 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, and cyclic sulfate compounds (particularly preferably represented by the general formula (I It is particularly preferable that it is at least one selected from the group consisting of:

本発明の非水電解液が上記その他の添加剤を含有する場合、含有されるその他の添加剤は、1種のみであっても、2種以上であってもよい。
本発明の非水電解液が上記その他の添加剤を含有する場合、その含有量(2種以上である場合には総含有量。以下同じ。)には特に制限はないが、上述した本発明の効果がより効果的に奏される観点から、非水電解液の全量に対し、0.001質量%〜10質量%であることが好ましく、0.05質量%〜5質量%の範囲であることがより好ましく、0.1質量%〜4質量%の範囲であることが更に好ましく、0.1質量%〜2質量%の範囲であることが更に好ましく、0.1質量%〜1質量%の範囲であることが特に好ましい。
When the nonaqueous electrolytic solution of the present invention contains the other additive, the other additive contained may be only one kind or two or more kinds.
When the non-aqueous electrolyte of the present invention contains the above-mentioned other additives, there is no particular limitation on the content thereof (the total content when there are two or more kinds; the same applies hereinafter), but the above-described present invention. From the viewpoint of more effectively exerting the above effect, it is preferably 0.001% by mass to 10% by mass and is in the range of 0.05% by mass to 5% by mass with respect to the total amount of the nonaqueous electrolytic solution. More preferably, the range is from 0.1% by weight to 4% by weight, still more preferably from 0.1% by weight to 2% by weight, and further from 0.1% by weight to 1% by weight. It is particularly preferable that the range is

次に、非水電解液の他の成分について説明する。
非水電解液は、一般的には、電解質と非水溶媒とを含有する。
Next, other components of the nonaqueous electrolytic solution will be described.
The nonaqueous electrolytic solution generally contains an electrolyte and a nonaqueous solvent.

<非水溶媒>
非水溶媒としては、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び鎖状の非プロトン性溶媒から選ばれる少なくとも一方を用いることが好ましい。
<Non-aqueous solvent>
Various known solvents can be appropriately selected as the non-aqueous solvent, but at least one selected from a cyclic aprotic solvent and a chain aprotic solvent is preferably used.

電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。   In order to improve the safety of the battery, when aiming to improve the flash point of the solvent, it is preferable to use a cyclic aprotic solvent as the non-aqueous solvent.

(環状の非プロトン性溶媒)
環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
(Cyclic aprotic solvent)
As the cyclic aprotic solvent, cyclic carbonate, cyclic carboxylic acid ester, cyclic sulfone, and cyclic ether can be used.

環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
The cyclic aprotic solvent may be used alone or in combination of two or more.
The mixing ratio of the cyclic aprotic solvent in the non-aqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting it as such a ratio, the electroconductivity of the electrolyte solution relating to the charge / discharge characteristics of the battery can be increased.

環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、2,3−ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。   Specific examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used. In the case of a battery using graphite as the negative electrode active material, ethylene carbonate is more preferable. Moreover, you may use these cyclic carbonates in mixture of 2 or more types.

環状カルボン酸エステルとして、具体的にはγ−ブチロラクトン、δ−バレロラクトン、あるいはメチルγ−ブチロラクトン、エチルγ−ブチロラクトン、エチルδ−バレロラクトンなどのアルキル置換体などを例示することができる。   Specific examples of the cyclic carboxylic acid ester include γ-butyrolactone, δ-valerolactone, alkyl substitution products such as methyl γ-butyrolactone, ethyl γ-butyrolactone, and ethyl δ-valerolactone.

環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、前記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。環状カルボン酸エステルの中でも、γ−ブチロラクトンが最も好ましい。   The cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, a high dielectric constant, and can lower the viscosity of the electrolytic solution without lowering the degree of dissociation between the flash point of the electrolytic solution and the electrolyte. For this reason, since it has the feature that the conductivity of the electrolytic solution, which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolytic solution, when aiming to improve the flash point of the solvent, It is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent. Of the cyclic carboxylic acid esters, γ-butyrolactone is most preferred.

また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/又は鎖状カーボネートとの混合物が挙げられる。   The cyclic carboxylic acid ester is preferably used by mixing with another cyclic aprotic solvent. For example, a mixture of a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate can be mentioned.

環状スルホンの例としては、スルホラン、2−メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
環状エーテルの例としてジオキソランを挙げることができる。
Examples of the cyclic sulfone include sulfolane, 2-methylsulfolane, 3-methylsulfolane, dimethyl sulfone, diethyl sulfone, dipropyl sulfone, methylethyl sulfone, methylpropyl sulfone and the like.
An example of a cyclic ether is dioxolane.

(鎖状の非プロトン性溶媒)
鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
(Chain aprotic solvent)
As the chain aprotic solvent, a chain carbonate, a chain carboxylic acid ester, a chain ether, a chain phosphate, or the like can be used.

鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%〜100質量%、さらに好ましくは20質量%〜90質量%、特に好ましくは30質量%〜80質量%である。   The mixing ratio of the chain aprotic solvent in the non-aqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass.

鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。   Specific examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Examples include ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, and methyltrifluoroethyl carbonate. These chain carbonates may be used as a mixture of two or more.

鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
Specific examples of the chain carboxylic acid ester include methyl pivalate.
Specific examples of the chain ether include dimethoxyethane.
Specific examples of the chain phosphate ester include trimethyl phosphate.

(溶媒の組み合わせ)
本発明の非水電解液で使用する非水溶媒は、1種類でも複数種類を混合して用いてもよい。また、環状の非プロトン性溶媒のみを1種類又は複数種類用いても、鎖状の非プロトン性溶媒のみを1種類又は複数種類用いても、又は環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
(Solvent combination)
The nonaqueous solvent used in the nonaqueous electrolytic solution of the present invention may be used alone or in combination. Further, only one or more types of cyclic aprotic solvents may be used, or only one or more types of chain aprotic solvents may be used, or cyclic aprotic solvents and chain proticity may be used. You may mix and use a solvent. When the load characteristics and low temperature characteristics of the battery are particularly intended to be improved, it is preferable to use a combination of a cyclic aprotic solvent and a chain aprotic solvent as the nonaqueous solvent.

さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。   Furthermore, in view of the electrochemical stability of the electrolytic solution, it is most preferable to apply a cyclic carbonate to the cyclic aprotic solvent and a chain carbonate to the chain aprotic solvent. Further, the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can be increased by a combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.

環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。   As a combination of cyclic carbonate and chain carbonate, specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate Diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.

環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95〜80:20、さらに好ましくは10:90〜70:30、特に好ましくは15:85〜55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温又は低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。   The mixing ratio of the cyclic carbonate and the chain carbonate is expressed by mass ratio, and the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ~ 55: 45. By setting it as such a ratio, since the raise of the viscosity of electrolyte solution can be suppressed and the dissociation degree of electrolyte can be raised, the conductivity of the electrolyte solution in connection with the charge / discharge characteristic of a battery can be raised. In addition, the solubility of the electrolyte can be further increased. Therefore, since it can be set as the electrolyte solution excellent in the electrical conductivity in normal temperature or low temperature, the load characteristic of the battery from normal temperature to low temperature can be improved.

環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせの例として、具体的には、γ−ブチロラクトンとエチレンカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとプロピレンカーボネート、γ−ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ−ブチロラクトンとスルホラン、γ−ブチロラクトンとエチレンカーボネートとスルホラン、γ−ブチロラクトンとプロピレンカーボネートとスルホラン、γ−ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ−ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。   Specific examples of combinations of cyclic carboxylic acid esters and cyclic carbonates and / or chain carbonates include γ-butyrolactone and ethylene carbonate, γ-butyrolactone and ethylene carbonate and dimethyl carbonate, and γ-butyrolactone and ethylene carbonate and methylethyl. Carbonate, γ-butyrolactone and ethylene carbonate and diethyl carbonate, γ-butyrolactone and propylene carbonate, γ-butyrolactone and propylene carbonate and dimethyl carbonate, γ-butyrolactone and propylene carbonate and methyl ethyl carbonate, γ-butyrolactone and propylene carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, γ-butyrolactone, Tylene carbonate and propylene carbonate and dimethyl carbonate, γ-butyrolactone and ethylene carbonate, propylene carbonate and methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, ethylene carbonate And professional Ren carbonate, dimethyl carbonate and methyl ethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, γ-butyrolactone, ethylene carbonate, propylene carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone and ethylene carbonate Propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone and sulfolane, γ-butyrolactone and ethylene carbonate and sulfolane, γ-butyrolactone and propylene carbonate and sulfolane, γ-butyrolactone, ethylene carbonate, propylene carbonate and sulfolane, γ -Butyrolactone and sul Such as orchids and dimethyl carbonate.

(その他の溶媒)
非水溶媒としては、上記以外のその他の溶媒も挙げられる。
その他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル−N,N−ジメチルカーバメートなどの鎖状カーバメート、N−メチルピロリドンなどの環状アミド、N,N−ジメチルイミダゾリジノンなどの環状ウレア、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリオクチル、ホウ酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
HO(CHCHO)
HO[CHCH(CH)O]
CHO(CHCHO)
CHO[CHCH(CH)O]
CHO(CHCHO)CH
CHO[CHCH(CH)O]CH
19PhO(CHCHO)[CH(CH)O]CH
(Phはフェニル基)
CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
前記式中、a〜fは、5〜250の整数、g〜jは2〜249の整数、5≦g+h≦250、5≦i+j≦250である。
(Other solvents)
Examples of the non-aqueous solvent include other solvents other than those described above.
Specific examples of other solvents include amides such as dimethylformamide, chain carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone, and the like. Examples thereof include boron compounds such as cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
HO (CH 2 CH 2 O) a H
HO [CH 2 CH (CH 3 ) O] b H
CH 3 O (CH 2 CH 2 O) c H
CH 3 O [CH 2 CH (CH 3 ) O] d H
CH 3 O (CH 2 CH 2 O) e CH 3
CH 3 O [CH 2 CH (CH 3 ) O] f CH 3
C 9 H 19 PhO (CH 2 CH 2 O) g [CH (CH 3) O] h CH 3
(Ph is a phenyl group)
CH 3 O [CH 2 CH (CH 3 ) O] i CO [OCH (CH 3 ) CH 2 ] j OCH 3
In the above formula, a to f are integers of 5 to 250, g to j are integers of 2 to 249, 5 ≦ g + h ≦ 250, and 5 ≦ i + j ≦ 250.

<電解質>
本発明の非水電解液は、種々公知の電解質を含有することができる。電解質としては、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
<Electrolyte>
The nonaqueous electrolytic solution of the present invention can contain various known electrolytes. Any electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte.

電解質の具体例としては、前述のフルオロリン酸リチウムを除く、アルカリ金属塩が挙げられる。さらに、電解質の具体例としては、(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)(k=1〜8の整数)、(CNPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)などのテトラアルキルアンモニウム塩、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)などのリチウム塩が挙げられる。また、次の一般式で表されるリチウム塩も使用することができる。 Specific examples of the electrolyte include alkali metal salts excluding the above-mentioned lithium fluorophosphate. Furthermore, specific examples of the electrolyte include (C 2 H 5 ) 4 NPF 6 , (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NAsF 6 , ( C 2 H 5 ) 4 N 2 SiF 6 , (C 2 H 5 ) 4 NOSO 2 C k F (2k + 1) (k = 1 to 8), (C 2 H 5 ) 4 NPF n [C k F ( 2k + 1) ] (6-n) (integers of n = 1-5, k = 1-8), LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C Lithium salts such as k F (2k + 1) (k = 1 to 8), LiPF n [C k F (2k + 1) ] (6-n) (n = 1 to 5, k = 1 to 8) Can be mentioned. Moreover, the lithium salt represented by the following general formula can also be used.

LiC(SO27)(SO28)(SO29)、LiN(SOOR30)(SOOR31)、LiN(SO32)(SO33)(ここでR27〜R33は互いに同一でも異なっていてもよく、炭素数1〜8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。 LiC (SO 2 R 27) ( SO 2 R 28) (SO 2 R 29), LiN (SO 2 OR 30) (SO 2 OR 31), LiN (SO 2 R 32) (SO 2 R 33) ( where R 27 to R 33 may be the same as or different from each other, and are a C 1-8 perfluoroalkyl group). These electrolytes may be used alone or in combination of two or more.

これらのうち、特にリチウム塩が望ましく、さらには、LiPF、LiBF、LiOSO(2k+1)(k=1〜8の整数)、LiClO、LiAsF、LiNSO[C(2k+1)(k=1〜8の整数)、LiPF[C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)が好ましい。 Of these, lithium salts are particularly desirable, and LiPF 6 , LiBF 4 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiClO 4 , LiAsF 6 , LiNSO 2 [C k F ( 2k + 1)] 2 (k = 1~8 integer), LiPF n [C k F (2k + 1)] (6-n) (n = 1~5, k = 1~8 integer) are preferred.

電解質は、通常は、非水電解液中に0.1mol/L〜3mol/L、好ましくは0.5mol/L〜2mol/Lの濃度で含まれることが好ましい。   The electrolyte is usually preferably contained in the nonaqueous electrolytic solution at a concentration of 0.1 mol / L to 3 mol / L, preferably 0.5 mol / L to 2 mol / L.

非水電解液において、非水溶媒として、γ−ブチロラクトンなどの環状カルボン酸エステルを併用する場合には、特にLiPFを含有することが望ましい。LiPFは、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。LiPFは単独で使用してもよいし、LiPFとそれ以外の電解質を使用してもよい。それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前述のリチウム塩の具体例のうちLiPF以外のリチウム塩が好ましい(前述のフルオロリン酸リチウムを除く)。 In the nonaqueous electrolytic solution, when a cyclic carboxylic acid ester such as γ-butyrolactone is used in combination as the nonaqueous solvent, it is particularly desirable to contain LiPF 6 . Since LiPF 6 has a high degree of dissociation, the conductivity of the electrolytic solution can be increased, and the reductive decomposition reaction of the electrolytic solution on the negative electrode can be suppressed. LiPF 6 may be used alone, or LiPF 6 and other electrolytes may be used. Any other electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte, but lithium salts other than LiPF 6 are preferred among the specific examples of the lithium salts described above. (Excluding the above-mentioned lithium fluorophosphate).

具体例としては、LiPFとLiBF、LiPFとLiN[SO(2k+1)(k=1〜8の整数)、LiPFとLiBFとLiN[SO(2k+1)](k=1〜8の整数)などが例示される。 Specific examples include LiPF 6 and LiBF 4 , LiPF 6 and LiN [SO 2 C k F (2k + 1) ] 2 (k = 1 to 8), LiPF 6 , LiBF 4 and LiN [SO 2 C k F ( 2k + 1) ] (k = 1 to 8).

リチウム塩中に占めるLiPFの比率は、1質量%〜100質量%、好ましくは10質量%〜100質量%、さらに好ましくは50質量%〜100質量%が望ましい。このような電解質は、0.1mol/L〜3mol/L、好ましくは0.5mol/L〜2mol/Lの濃度で非水電解液中に含まれることが好ましい。 The ratio of LiPF 6 in the lithium salt is 1% by mass to 100% by mass, preferably 10% by mass to 100% by mass, and more preferably 50% by mass to 100% by mass. Such an electrolyte is preferably contained in the nonaqueous electrolytic solution at a concentration of 0.1 mol / L to 3 mol / L, preferably 0.5 mol / L to 2 mol / L.

また、本発明の非水電解液は、過充電防止剤を含有することもできる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル(o−、m−、p−体)、ターフェニル(o−、m−、p−体)の部分水素化体(例えば、1,2−ジシクロヘキシルベンゼン、2−フェニルビシクロヘキシル、1,2−ジフェニルシクロヘキサン、o−シクロヘキシルビフェニル)、シクロヘキシルベンゼン、t−ブチルベンゼン、1,3−ジ−t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;フルオロトルエン(o−、m−、p−体)、ジフルオロトルエン、トリフルオロトルエン、テトラフルオロトルエン、ペンタフルオロトルエン、フルオロベンゼン、ジフルオロベンゼン(o−、m−、p−体)、1−フルオロ−4−t−ブチルベンゼン、2−フルオロビフェニル、フルオロシクロヘキシルベンゼン(例えば、1−フルオロ−2−シクロヘキシルベンゼン、1−フルオロ−3−シクロヘキシルベンゼン、1−フルオロ−4−シクロヘキシルベンゼン)等の芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。
中でも、上記で例示した芳香族化合物が好ましい。
また、過充電防止剤は、1種を単独で用いても、2種以上を併用してもよい。
2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
Moreover, the non-aqueous electrolyte of the present invention can also contain an overcharge inhibitor.
As the overcharge preventing agent, biphenyl, alkylbiphenyl, terphenyl (o-, m-, p-isomer), partially hydrogenated terphenyl (o-, m-, p-isomer) (for example, 1, 2) -Dicyclohexylbenzene, 2-phenylbicyclohexyl, 1,2-diphenylcyclohexane, o-cyclohexylbiphenyl), cyclohexylbenzene, t-butylbenzene, 1,3-di-t-butylbenzene, t-amylbenzene, diphenylether, dibenzofuran Aromatic compounds such as fluorotoluene (o-, m-, p-isomer), difluorotoluene, trifluorotoluene, tetrafluorotoluene, pentafluorotoluene, fluorobenzene, difluorobenzene (o-, m-, p-isomer) ), 1-fluoro-4-t-butylbenzene, 2-fluoro Partially fluorinated products of aromatic compounds such as phenyl and fluorocyclohexylbenzene (for example, 1-fluoro-2-cyclohexylbenzene, 1-fluoro-3-cyclohexylbenzene, 1-fluoro-4-cyclohexylbenzene); 2,4-difluoro Examples thereof include fluorine-containing anisole compounds such as anisole, 2,5-difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole.
Among these, the aromatic compounds exemplified above are preferable.
Moreover, an overcharge inhibitor may be used individually by 1 type, or may use 2 or more types together.
When two or more kinds are used in combination, in particular, a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene, biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, Using at least one selected from aromatic compounds not containing oxygen, such as t-amylbenzene, and at least one selected from oxygen-containing aromatic compounds such as diphenyl ether, dibenzofuran, and the like is an overcharge prevention property and a high temperature storage property. From the standpoint of balance.

本発明の非水電解液が過充電防止剤を含有する場合、過充電防止剤の含有量には特に制限はないが、例えば0.1質量%以上、好ましくは0.2質量%以上、更に好ましくは0.3質量%以上、特に好ましくは0.5質量%以上である。
また、上記過充電防止剤の含有量は、例えば10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。
When the non-aqueous electrolyte of the present invention contains an overcharge inhibitor, the content of the overcharge inhibitor is not particularly limited, but for example 0.1% by mass or more, preferably 0.2% by mass or more, and Preferably it is 0.3 mass% or more, Most preferably, it is 0.5 mass% or more.
Moreover, content of the said overcharge inhibitor is 10 mass% or less, for example, Preferably it is 5 mass% or less, More preferably, it is 3 mass% or less, More preferably, it is 2 mass% or less.

本発明の非水電解液は、本発明の目的を妨げない範囲で、上述した化合物以外の他の化合物を添加剤として少なくとも1種含有していてもよい。
他の化合物として具体的には、硫酸ジメチル、硫酸ジエチル、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ペンテン、硫酸ビニレン等の硫酸エステル類;並びにスルホラン、3−スルホレン、ジビニルスルホン等のイオウ系化合物、を挙げることができる。
これらの化合物は単独で用いてもよく、2種類以上を併用してもよい。
これらのうち、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ペンテンが好ましい。
The nonaqueous electrolytic solution of the present invention may contain at least one compound other than the above-mentioned compounds as an additive as long as the object of the present invention is not hindered.
Specific examples of other compounds include sulfate esters such as dimethyl sulfate, diethyl sulfate, ethylene sulfate, propylene sulfate, butene sulfate, pentene sulfate and vinylene sulfate; and sulfur compounds such as sulfolane, 3-sulfolene and divinyl sulfone, Can be mentioned.
These compounds may be used alone or in combination of two or more.
Of these, ethylene sulfate, propylene sulfate, butene sulfate, and pentene sulfate are preferred.

本発明の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。   The non-aqueous electrolyte of the present invention is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, and an electric double layer capacitor. It can also be used as an electrolytic solution for aluminum electrolytic capacitors.

〔リチウム二次電池〕
本発明のリチウム二次電池は、正極と、Cu元素を含有する負極集電体を含む負極と、非水電解液と、を含み、上記非水電解液が、上記一般式(A)で表される化合物と、非水電解液全量に対する含有量が0.001質量ppm以上5質量ppm未満であるCu元素と、を含有するリチウム二次電池である。
本発明のリチウム二次電池中の非水電解液は、上述した本発明の非水電解液である。
本発明のリチウム二次電池中の非水電解液の好ましい態様は、上述した本発明の非水電解液の好ましい態様と同様である。
[Lithium secondary battery]
The lithium secondary battery of the present invention includes a positive electrode, a negative electrode including a negative electrode current collector containing Cu element, and a non-aqueous electrolyte, and the non-aqueous electrolyte is represented by the general formula (A). And a Cu element having a content of 0.001 mass ppm to less than 5 mass ppm with respect to the total amount of the non-aqueous electrolyte.
The non-aqueous electrolyte in the lithium secondary battery of the present invention is the above-described non-aqueous electrolyte of the present invention.
The preferred embodiment of the non-aqueous electrolyte in the lithium secondary battery of the present invention is the same as the preferred embodiment of the non-aqueous electrolyte of the present invention described above.

<負極>
本発明における負極は、負極活物質を含む。
負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
<Negative electrode>
The negative electrode in the present invention contains a negative electrode active material.
Negative electrode active materials include metallic lithium, lithium-containing alloys, metals or alloys that can be alloyed with lithium, oxides that can be doped / undoped with lithium ions, and transition metals that can be doped / undoped with lithium ions At least one selected from the group consisting of nitrides and carbon materials capable of doping and undoping lithium ions (may be used alone or a mixture containing two or more of these may be used) Can be used.
Examples of metals or alloys that can be alloyed with lithium (or lithium ions) include silicon, silicon alloys, tin, and tin alloys. Further, lithium titanate may be used.
Among these, carbon materials that can be doped / undoped with lithium ions are preferable. Examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like. The form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.

上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
Specific examples of the amorphous carbon material include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or less, and mesophase pitch carbon fiber (MCF).
Examples of the graphite material include natural graphite and artificial graphite. As artificial graphite, graphitized MCMB, graphitized MCF, and the like are used. Further, as the graphite material, a material containing boron can be used. As the graphite material, those coated with a metal such as gold, platinum, silver, copper and tin, those coated with amorphous carbon, and those obtained by mixing amorphous carbon and graphite can be used.

これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
These carbon materials may be used alone or in combination of two or more.
As the carbon material, a carbon material having a (002) plane distance d (002) of 0.340 nm or less as measured by X-ray analysis is particularly preferable. Further, as the carbon material, graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having properties close thereto is also preferable. When the carbon material as described above is used, the energy density of the battery can be further increased.

本発明における負極は、Cu元素を含有する負極集電体を含む。
負極集電体は、Cu元素以外の元素を含有していてもよい。
負極集電体は、例えば、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料等を含有していてもよい。
The negative electrode in the present invention includes a negative electrode current collector containing a Cu element.
The negative electrode current collector may contain an element other than the Cu element.
The negative electrode current collector may contain, for example, a metal material such as nickel, stainless steel, or nickel-plated steel.

<正極>
正極における正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1−X)〔0<X<1〕、α−NaFeO型結晶構造を有するLi1+αMe1−α(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1−α)≦1.6)、LiNiCoMn〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3等)、LiFePO、LiMnPOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
<Positive electrode>
As the positive electrode active material in the positive electrode, transition metal oxides or transition metal sulfides such as MoS 2 , TiS 2 , MnO 2 , V 2 O 5 , LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi X Co (1-X) O 2 [0 <X <1], Li 1 + α Me 1-α O 2 having an α-NaFeO 2 type crystal structure (Me is a transition metal element containing Mn, Ni and Co, 1.0 ≦ (1 + α) / (1−α) ≦ 1.6), LiNi x Co y Mn z O 2 [x + y + z = 1, 0 <x <1, 0 <y <1, 0 <z <1] (for example, LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2, etc.), LiFePO 4 , LiMnPO 4 and other complex oxides composed of lithium and transition metals, Polyaniline, Li thiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazoles, conductive polymer materials such as polyaniline complex thereof. Among these, a composite oxide composed of lithium and a transition metal is particularly preferable. When the negative electrode is lithium metal or a lithium alloy, a carbon material can be used as the positive electrode. In addition, a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
A positive electrode active material may be used by 1 type, and may mix and use 2 or more types. When the positive electrode active material has insufficient conductivity, it can be used together with a conductive auxiliary agent to constitute a positive electrode. Examples of the conductive assistant include carbon materials such as carbon black, amorphous whiskers, and graphite.

正極における正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
具体例としては、アルミニウム、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
There is no restriction | limiting in particular in the material of the positive electrode electrical power collector in a positive electrode, A well-known thing can be used arbitrarily.
Specific examples include metal materials such as aluminum, stainless steel, nickel, titanium, and tantalum; carbon materials such as carbon cloth and carbon paper;

<セパレータ>
本発明のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
本発明の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
<Separator>
The lithium secondary battery of the present invention preferably includes a separator between the negative electrode and the positive electrode.
The separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
A microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
In particular, porous polyolefin is preferable. Specifically, a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film can be exemplified. On the porous polyolefin film, other resin excellent in thermal stability may be coated.
Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like.
The nonaqueous electrolytic solution of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.

<電池の構成>
本発明のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
<Battery configuration>
The lithium secondary battery of the present invention can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a laminate shape, a film shape, or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.

本発明のリチウム二次電池(非水電解液二次電池)の例として、ラミネート型電池が挙げられる。
図1は、本発明のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本発明の非水電解液が含浸されている。
上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。
As an example of the lithium secondary battery (non-aqueous electrolyte secondary battery) of the present invention, a laminate type battery can be mentioned.
FIG. 1 is a schematic perspective view showing an example of a laminated battery as an example of the lithium secondary battery of the present invention, and FIG. 2 shows the thickness of the laminated electrode body accommodated in the laminated battery shown in FIG. It is a schematic sectional drawing of a direction.
The laminate type battery shown in FIG. 1 contains a non-aqueous electrolyte (not shown in FIG. 1) and a laminated electrode body (not shown in FIG. 1) inside, and the periphery is sealed. The laminate outer package 1 is sealed inside. As the laminate exterior body 1, for example, an aluminum laminate exterior body is used.
As shown in FIG. 2, the laminated electrode body accommodated in the laminate outer package 1 includes a laminated body in which positive plates 5 and negative plates 6 are alternately laminated with separators 7 interposed therebetween. And a separator 8 surrounding the periphery. The positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8 are impregnated with the non-aqueous electrolyte of the present invention.
The plurality of positive electrode plates 5 in the laminated electrode body are all electrically connected to the positive electrode terminal 2 via a positive electrode tab (not shown), and a part of the positive electrode terminal 2 is part of the laminate outer package 1. It protrudes outward from the peripheral end (FIG. 1). The portion where the positive electrode terminal 2 protrudes at the peripheral end of the laminate outer package 1 is sealed with an insulating seal 4.
Similarly, each of the plurality of negative electrode plates 6 in the laminated electrode body is electrically connected to the negative electrode terminal 3 through a negative electrode tab (not shown), and a part of the negative electrode terminal 3 is part of the laminate exterior. It protrudes outward from the peripheral edge of the body 1 (FIG. 1). The portion where the negative electrode terminal 3 protrudes at the peripheral end of the laminate outer package 1 is sealed with an insulating seal 4.
In the laminate type battery according to the above example, the number of the positive plates 5 is 5 and the number of the negative plates 6 is 6, and the positive plates 5 and the negative plates 6 are separated from each other through the separators 7. All the outer layers are laminated in an arrangement to be the negative electrode plate 6. However, it is needless to say that the number of positive plates, the number of negative plates, and the arrangement in the laminated battery are not limited to this example, and various changes may be made.

なお、本発明のリチウム二次電池は、負極と、正極と、上記本発明の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
即ち、本発明のリチウム二次電池は、まず、負極と、正極と、上記本発明の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
The lithium secondary battery of the present invention is obtained by charging / discharging a lithium secondary battery (lithium secondary battery before charge / discharge) including a negative electrode, a positive electrode, and the non-aqueous electrolyte of the present invention. Lithium secondary batteries may be used.
That is, the lithium secondary battery of the present invention is prepared by first preparing a lithium secondary battery before charging / discharging including the negative electrode, the positive electrode, and the non-aqueous electrolyte of the present invention, and then before charging / discharging. It may be a lithium secondary battery (charged / discharged lithium secondary battery) produced by charging / discharging the lithium secondary battery one or more times.

本発明のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。   The use of the lithium secondary battery of the present invention is not particularly limited, and can be used for various known uses. For example, notebook computers, mobile computers, mobile phones, headphone stereos, video movies, LCD TVs, handy cleaners, electronic notebooks, calculators, radios, backup power applications, motors, automobiles, electric cars, motorcycles, electric bikes, bicycles, electric motors Bicycles, lighting fixtures, game machines, watches, electric tools, cameras, etc. can be widely used regardless of small portable devices or large devices.

以下に実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって制限されるものではない。
なお、以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を表す。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
In the following examples, “addition amount” represents the content in the finally obtained non-aqueous electrolyte (that is, the amount relative to the total amount of the finally obtained non-aqueous electrolyte).

〔実施例1〕
以下の手順にて、リチウム二次電池(以下、単に「電池」ともいう)として、図1に示すラミネート型電池と同様の構成のラミネート型電池を作製した。
[Example 1]
In the following procedure, a laminate type battery having the same configuration as the laminate type battery shown in FIG. 1 was produced as a lithium secondary battery (hereinafter also simply referred to as “battery”).

<負極の作製>
人造黒鉛98質量部、カルボキシメチルセルロース1質量部及びSBRラテックス1質量部を水溶媒で混錬し、ペースト状の負極合剤スラリーを調製した。
次に、この負極合剤スラリーを厚さ12μmの帯状銅箔製の負極集電体の両面に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極(負極板)を得た。このときの負極活物質層の塗布密度は12mg/cmであり、充填密度は1.45g/mlであった。
以上の負極板を6枚作製し、得られた6枚の負極板の各々に負極タブを取り付けた。
<Production of negative electrode>
98 parts by mass of artificial graphite, 1 part by mass of carboxymethylcellulose and 1 part by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry.
Next, the negative electrode mixture slurry is applied to both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 12 μm, dried, and then compressed by a roll press to form a sheet formed of a negative electrode current collector and a negative electrode active material layer. Negative electrode (negative electrode plate) was obtained. The coating density of the negative electrode active material layer at this time was 12 mg / cm 2 , and the packing density was 1.45 g / ml.
Six negative electrode plates as described above were produced, and a negative electrode tab was attached to each of the obtained six negative electrode plates.

<正極の作製>
LiCoOを98質量部、アセチレンブラック1質量部及びポリフッ化ビニリデン1質量部を、N−メチルピロリジノンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
次に、この正極合剤スラリーを厚さ20μmの帯状アルミニウム箔の正極集電体の両面に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質とからなるシート状の正極(正極板)を得た。このときの正極活物質層の塗布密度は25mg/cmであり、充填密度は3.6g/mlであった。
以上の正極板を5枚作製し、得られた5枚の正極板の各々に正極タブを取り付けた。
<Preparation of positive electrode>
A paste-like positive electrode mixture slurry was prepared by kneading 98 parts by mass of LiCoO 2 , 1 part by mass of acetylene black and 1 part by mass of polyvinylidene fluoride using N-methylpyrrolidinone as a solvent.
Next, this positive electrode mixture slurry was applied to both sides of a positive electrode current collector of a strip-shaped aluminum foil having a thickness of 20 μm, dried, and then compressed by a roll press to form a sheet-like material comprising a positive electrode current collector and a positive electrode active material. A positive electrode (positive electrode plate) was obtained. The coating density of the positive electrode active material layer at this time was 25 mg / cm 2 , and the packing density was 3.6 g / ml.
Five positive electrode plates as described above were produced, and a positive electrode tab was attached to each of the obtained five positive electrode plates.

<非水電解液の調製>
非水溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:35:35(質量比)の割合で混合し、混合溶媒を得た。
得られた混合溶媒中に、電解質であるLiPFを、最終的に得られる非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
上記で得られた溶液に対して、一般式(A)で表される化合物としてジフルオロビス(オキサラト)リン酸リチウム(添加量0.5質量%)を添加し、更に、Cu化合物としてビス(アセチルアセトナート)銅(II)(添加量3.0質量ppm(Cu元素の添加量として0.7質量ppm相当))を添加し、非水電解液を得た。
<Preparation of non-aqueous electrolyte>
As a non-aqueous solvent, ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (EMC) were mixed at a ratio of 30:35:35 (mass ratio), respectively, to obtain a mixed solvent.
In the obtained mixed solvent, LiPF 6 as an electrolyte was dissolved so that the electrolyte concentration in the finally obtained nonaqueous electrolytic solution was 1 mol / liter.
To the solution obtained above, lithium difluorobis (oxalato) phosphate (addition amount 0.5% by mass) is added as a compound represented by the general formula (A), and bis (acetyl) is further added as a Cu compound. Acetonate) copper (II) (addition amount 3.0 mass ppm (corresponding to 0.7 mass ppm as the addition amount of Cu element)) was added to obtain a non-aqueous electrolyte.

<積層電極体の作製>
負極タブを取り付けた上記負極板6枚と、正極タブを取り付けた上記正極板5枚とを、微多孔性ポリエチレンフィルム(厚さ20μm;セパレータ)を介し、正極タブと負極タブとが同一の辺に配置される方向に積層させた。このとき、正極板と負極板とを、両側の最外層がいずれも負極板となるように、交互に積層させた。得られた積層体に、形状保持のため絶縁テープ(セパレータ)を巻き付け、積層電極体とした。
<Production of laminated electrode body>
The positive electrode tab and the negative electrode tab on the same side of the six negative electrode plates attached with the negative electrode tab and the five positive electrode plates attached with the positive electrode tab through a microporous polyethylene film (thickness 20 μm; separator). It was laminated in the direction in which it is arranged. At this time, the positive electrode plate and the negative electrode plate were alternately laminated so that the outermost layers on both sides were both negative electrode plates. An insulating tape (separator) was wound around the obtained laminated body to maintain the shape, thereby obtaining a laminated electrode body.

<正極端子及び負極端子の取り付け>
6枚の負極板の各々から延びる6枚の負極タブを、銅箔からなる1枚の負極端子に、超音波溶接によって取り付けた。
5枚の正極板の各々から延びる5枚の正極タブを、アルミニウム箔からなる1枚の正極端子に、超音波溶接によって取り付けた。
<Attachment of positive terminal and negative terminal>
Six negative electrode tabs extending from each of the six negative electrode plates were attached to one negative electrode terminal made of copper foil by ultrasonic welding.
Five positive electrode tabs extending from each of the five positive electrode plates were attached to one positive electrode terminal made of aluminum foil by ultrasonic welding.

<積層ラミネート型電池の作製>
正極端子及び負極端子を取り付けた積層電極体を、アルミニウム製のラミネート外装体に収容し、正極端子及び負極端子が取り付けられた側のラミネート外装体の一辺を熱融着した。このとき、正極端子の一部及び負極端子の一部が、ラミネート外装体の周端部から突出するようにした。正極端子及び負極端子が突出する部分は、それぞれ、絶縁シールによってシールした。
次に、ラミネート外装体の残りの3辺のうちの2辺を熱融着した。
次に、ラミネート外装体の熱融着していない1辺側からラミネート外装体内に上記非水電解液を注入し、上記非水電解液を、各正極板、各負極板、及び各セパレータに含浸させた。次いで、上記熱融着していない1辺を熱融着することにより、ラミネート外装体を密封した。以上により、ラミネート型電池を得た。
得られたラミネート型電池(試験用電池)について、各測定を実施した。
<Production of laminated laminated battery>
The laminated electrode body to which the positive electrode terminal and the negative electrode terminal were attached was accommodated in an aluminum laminate outer body, and one side of the laminate outer body to which the positive electrode terminal and the negative electrode terminal were attached was heat-sealed. At this time, a part of the positive electrode terminal and a part of the negative electrode terminal protruded from the peripheral end of the laminate outer package. The portions where the positive electrode terminal and the negative electrode terminal protrude were each sealed with an insulating seal.
Next, two of the remaining three sides of the laminate outer package were heat-sealed.
Next, the nonaqueous electrolyte solution is injected into the laminate exterior body from one side of the laminate exterior body that is not thermally fused, and the positive electrode plate, each negative electrode plate, and each separator are impregnated with the nonaqueous electrolyte solution. I let you. Next, the laminate outer package was sealed by heat-sealing one side that was not heat-sealed. Thus, a laminate type battery was obtained.
Each measurement was implemented about the obtained lamination type battery (battery for a test).

[評価方法]
<電池中の非水電解液におけるCu元素の含有量の測定>
上記ラミネート型電池を定電圧4.2Vで充電し、次いで、充電後のラミネート型電池を恒温槽内で−20℃に冷却し、−20℃において50mA定電流で放電した。
放電後のラミネート型電池中の非水電解液をサンプリングし、これをPTFE容器中で濃硝酸を用いて湿式分解した後に定容し、誘導結合プラズマ質量分析法にてCu元素の含有量を測定した。測定結果に基づき、放電後のラミネート型電池中の非水電解液におけるCu元素の含有量を求めた。
得られた結果を表1に示す。
[Evaluation method]
<Measurement of Cu element content in non-aqueous electrolyte in battery>
The laminated battery was charged at a constant voltage of 4.2 V, and then the laminated battery after charging was cooled to −20 ° C. in a constant temperature bath and discharged at −20 ° C. with a constant current of 50 mA.
Sampling the non-aqueous electrolyte in the laminated battery after discharge, wetting it with concentrated nitric acid in a PTFE container, measuring the volume, and measuring the Cu element content by inductively coupled plasma mass spectrometry did. Based on the measurement results, the content of Cu element in the non-aqueous electrolyte in the laminated battery after discharge was determined.
The obtained results are shown in Table 1.

<電池抵抗>
上記ラミネート型電池の電池抵抗(初期の電池抵抗)を評価した。詳細を以下に示す。
上記ラミネート型電池を定電圧4.2Vで充電し、次いで、該充電後のラミネート型電池を恒温槽内で−20℃に冷却し、−20℃にて50mA定電流で放電し、放電開始から10秒間における電位低下を測定することにより、ラミネート型電池の直流抵抗[Ω](−20℃)を測定し、得られた値を抵抗値[Ω](−20℃)とした。
後述の比較例1のラミネート型電池についても同様にして、抵抗値[Ω](−20℃)を測定した。
これらの結果から、下記式により、比較例1での抵抗値[Ω](−20℃)を100%としたときの実施例1での抵抗値(相対値;%)として、「電池抵抗[%]」を求めた。
得られた結果を表1に示す。
<Battery resistance>
The battery resistance (initial battery resistance) of the laminate type battery was evaluated. Details are shown below.
The laminate type battery was charged at a constant voltage of 4.2 V, then the charged laminate type battery was cooled to −20 ° C. in a constant temperature bath, and discharged at −20 ° C. with a 50 mA constant current. The direct current resistance [Ω] (−20 ° C.) of the laminate type battery was measured by measuring the potential drop for 10 seconds, and the obtained value was defined as the resistance value [Ω] (−20 ° C.).
The resistance value [Ω] (−20 ° C.) was measured in the same manner for a laminate type battery of Comparative Example 1 described later.
From these results, according to the following formula, the resistance value (relative value;%) in Example 1 when the resistance value [Ω] (−20 ° C.) in Comparative Example 1 is set to 100% is expressed as “battery resistance [ %] ”.
The obtained results are shown in Table 1.

電池抵抗(相対値;%)
=(実施例1での抵抗値[Ω](−20℃)/比較例1での抵抗値[Ω](−20℃))×100
Battery resistance (relative value;%)
= (Resistance value in Example 1 [Ω] (−20 ° C.) / Resistance value in Comparative Example 1 [Ω] (−20 ° C.)) × 100

〔実施例2〕
非水電解液の調製の際に、更に、その他の添加剤として例示化合物22(添加量0.5質量%)を添加したこと以外は実施例1と同様の操作を行った。
ここで、例示化合物22は、一般式(I)で表される環状硫酸エステル化合物の具体例である。
結果を表1に示す。
[Example 2]
During the preparation of the non-aqueous electrolyte, the same operation as in Example 1 was performed except that the exemplified compound 22 (addition amount 0.5% by mass) was further added as another additive.
Here, the exemplified compound 22 is a specific example of the cyclic sulfate compound represented by the general formula (I).
The results are shown in Table 1.

〔実施例3〕
非水電解液の調製に用いたジフルオロビス(オキサラト)リン酸リチウム(添加量0.5質量%)を、ビス(オキサラト)ホウ酸リチウム(添加量0.5質量%)に変更したこと以外は実施例1と同様の操作を行った。
ここで、ビス(オキサラト)ホウ酸リチウムも、一般式(A)で表される化合物の具体例である。
結果を表1に示す。
Example 3
Except for changing lithium difluorobis (oxalato) phosphate (addition amount 0.5% by mass) used in the preparation of the non-aqueous electrolyte to bis (oxalato) lithium borate (addition amount 0.5% by mass). The same operation as in Example 1 was performed.
Here, lithium bis (oxalato) borate is also a specific example of the compound represented by the general formula (A).
The results are shown in Table 1.

〔比較例1〕
非水電解液の調製の際に、ジフルオロビス(オキサラト)リン酸リチウム及びビス(アセチルアセトナート)銅(II)を添加しなかったこと以外は実施例1と同様の操作を行った。
結果を表1に示す。
[Comparative Example 1]
The same operation as in Example 1 was performed except that difluorobis (oxalato) lithium phosphate and bis (acetylacetonato) copper (II) were not added during the preparation of the nonaqueous electrolytic solution.
The results are shown in Table 1.

表1に示すように、ジフルオロビス(オキサラト)リン酸リチウム又はビス(オキサラト)ホウ酸リチウムを含有する非水電解液を用い、電池中の非水電解液におけるCu元素の含有量が0.001質量ppm以上5質量ppm未満である実施例1〜3では、ジフルオロビス(オキサラト)リン酸リチウム又はビス(オキサラト)ホウ酸リチウムを含有する非水電解液を用いた例であるにもかかわらず、電池抵抗が低減されていた。   As shown in Table 1, a non-aqueous electrolyte containing lithium difluorobis (oxalato) phosphate or bis (oxalato) borate was used, and the content of Cu element in the non-aqueous electrolyte in the battery was 0.001. In Examples 1 to 3 which are not less than 5 ppm by mass and not more than 5 ppm by mass, despite being an example using a non-aqueous electrolyte containing lithium difluorobis (oxalato) phosphate or lithium bis (oxalato) borate, Battery resistance was reduced.

1 ラミネート外装体
2 正極端子
3 負極端子
4 絶縁シール
5 正極板
6 負極板
7、8 セパレータ
DESCRIPTION OF SYMBOLS 1 Laminate exterior body 2 Positive electrode terminal 3 Negative electrode terminal 4 Insulation seal 5 Positive electrode plate 6 Negative electrode plate 7, 8 Separator

Claims (6)

下記一般式(A)で表される化合物を含有し、電池用非水電解液全量に対する銅元素の含有量が0.001質量ppm以上5質量ppm未満である電池用非水電解液。

〔一般式(A)中、Mは、ホウ素原子又はリン原子を表し、Xは、ハロゲン原子を表し、Rは、炭素数1〜10のアルキレン基、炭素数1〜10のハロゲン化アルキレン基、炭素数6〜20のアリーレン基、又は炭素数6〜20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよい。)を表し、mは、1〜3の整数を表し、nは、0〜4の整数を表し、qは、0又は1を表す。〕
A nonaqueous electrolytic solution for a battery containing a compound represented by the following general formula (A), wherein the content of the copper element is 0.001 mass ppm or more and less than 5 mass ppm with respect to the total amount of the nonaqueous electrolytic solution for a battery.

[In General Formula (A), M represents a boron atom or a phosphorus atom, X represents a halogen atom, R represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, An arylene group having 6 to 20 carbon atoms or a halogenated arylene group having 6 to 20 carbon atoms (these groups may contain a substituent or a hetero atom in the structure), m is 1 Represents an integer of ˜3, n represents an integer of 0 to 4, and q represents 0 or 1. ]
前記一般式(A)で表される化合物の含有量が、電池用非水電解液全量に対し、0.001質量%〜5質量%である請求項1に記載の電池用非水電解液。   The battery nonaqueous electrolyte solution according to claim 1, wherein the content of the compound represented by the general formula (A) is 0.001% by mass to 5% by mass with respect to the total amount of the battery nonaqueous electrolyte solution. 前記一般式(A)で表される化合物が、ジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、及びビス(オキサラト)ホウ酸リチウムからなる群から選択される少なくとも1種を含む請求項1又は請求項2に記載の電池用非水電解液。   The compound represented by the general formula (A) is composed of lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate, lithium difluoro (oxalato) borate, and lithium bis (oxalato) borate. The nonaqueous electrolytic solution for a battery according to claim 1, comprising at least one selected from the group consisting of: 更に、下記一般式(I)で表される環状硫酸エステル化合物を含有する請求項1〜請求項3のいずれか1項に記載の電池用非水電解液。

〔一般式(I)中、R及びRが、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、フェニル基、一般式(II)で表される基若しくは式(III)で表される基を表すか、又は、R及びRが一体となって、Rが結合する炭素原子及びRが結合する炭素原子と共に、ベンゼン環若しくはシクロヘキシル環を形成する基を表す。
一般式(II)中、Rは、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のハロゲン化アルキル基、炭素数1〜6のアルコキシ基、又は式(IV)で表される基を表す。一般式(II)、式(III)、及び式(IV)における波線は、結合位置を表す。
一般式(I)で表される環状硫酸エステル化合物中に、一般式(II)で表される基が2つ含まれる場合、2つの一般式(II)で表される基は、同一であっても互いに異なっていてもよい。〕
Furthermore, the non-aqueous electrolyte for batteries of any one of Claims 1-3 containing the cyclic sulfate ester compound represented with the following general formula (I).

[In General Formula (I), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, a group represented by General Formula (II), or Formula (III). or a group represented by or, R 1 and R 2 together, with the carbon atom to the carbon atom and R 2 wherein R 1 is bonded are bonded, represents a group forming a benzene ring or a cyclohexyl ring.
In general formula (II), R 3 is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a formula (IV). Represents a group. The wavy line in general formula (II), formula (III), and formula (IV) represents a bonding position.
When the cyclic sulfate ester compound represented by the general formula (I) includes two groups represented by the general formula (II), the two groups represented by the general formula (II) are the same. Or they may be different from each other. ]
正極と、
銅元素を含有する負極集電体、並びに、負極活物質としての、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種の物質を含む負極と、
請求項1〜請求項4のいずれか1項に記載の電池用非水電解液と、
を含むリチウム二次電池。
A positive electrode;
Negative electrode current collector containing copper element, and as a negative electrode active material, metal lithium, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping and dedoping of lithium ions, A negative electrode comprising at least one substance selected from the group consisting of transition metal nitrides capable of doping and dedoping lithium ions, and carbon materials capable of doping and undoping lithium ions;
The nonaqueous electrolytic solution for a battery according to any one of claims 1 to 4,
Including lithium secondary battery.
請求項5に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。   A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to claim 5.
JP2016156796A 2015-08-28 2016-08-09 Nonaqueous electrolyte for battery and lithium secondary battery Pending JP2017045723A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169755 2015-08-28
JP2015169755 2015-08-28

Publications (1)

Publication Number Publication Date
JP2017045723A true JP2017045723A (en) 2017-03-02

Family

ID=58211621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016156796A Pending JP2017045723A (en) 2015-08-28 2016-08-09 Nonaqueous electrolyte for battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2017045723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022452A1 (en) 2018-07-26 2020-01-30 三井化学株式会社 Nonaqueous electrolyte solution for batteries and lithium secondary battery
WO2020121850A1 (en) 2018-12-13 2020-06-18 三井化学株式会社 Non-aqueous electrolyte for battery and lithium secondary battery
WO2020203322A1 (en) 2019-03-29 2020-10-08 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery
WO2022196375A1 (en) 2021-03-17 2022-09-22 三井化学株式会社 Nonaqueous secondary battery and method for producing nonaqueous secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075460A (en) * 2000-06-13 2002-03-15 Shin Kobe Electric Mach Co Ltd Lithium secondary cell
JP2003007339A (en) * 2001-06-22 2003-01-10 Toyota Motor Corp Battery and manufacturing method of battery
JP2006344505A (en) * 2005-06-09 2006-12-21 Sony Corp Electrolyte solution and battery
JP2011150968A (en) * 2010-01-25 2011-08-04 Hitachi Ltd Nonaqueous electrolyte secondary battery
WO2012053644A1 (en) * 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
JP2014132576A (en) * 2009-08-21 2014-07-17 Mitsubishi Chemicals Corp Difluorophosphate composition, additive agent for nonaqueous electrolyte including the same and nonaqueous electrolyte for secondary batteries arranged by use thereof, and nonaqueous electrolyte secondary battery
JP2014170689A (en) * 2013-03-04 2014-09-18 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery
WO2015045989A1 (en) * 2013-09-25 2015-04-02 三井化学株式会社 Nonaqueous electrolyte solution for batteries and lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075460A (en) * 2000-06-13 2002-03-15 Shin Kobe Electric Mach Co Ltd Lithium secondary cell
JP2003007339A (en) * 2001-06-22 2003-01-10 Toyota Motor Corp Battery and manufacturing method of battery
JP2006344505A (en) * 2005-06-09 2006-12-21 Sony Corp Electrolyte solution and battery
JP2014132576A (en) * 2009-08-21 2014-07-17 Mitsubishi Chemicals Corp Difluorophosphate composition, additive agent for nonaqueous electrolyte including the same and nonaqueous electrolyte for secondary batteries arranged by use thereof, and nonaqueous electrolyte secondary battery
JP2011150968A (en) * 2010-01-25 2011-08-04 Hitachi Ltd Nonaqueous electrolyte secondary battery
WO2012053644A1 (en) * 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
JP2014170689A (en) * 2013-03-04 2014-09-18 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery
WO2015045989A1 (en) * 2013-09-25 2015-04-02 三井化学株式会社 Nonaqueous electrolyte solution for batteries and lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022452A1 (en) 2018-07-26 2020-01-30 三井化学株式会社 Nonaqueous electrolyte solution for batteries and lithium secondary battery
WO2020121850A1 (en) 2018-12-13 2020-06-18 三井化学株式会社 Non-aqueous electrolyte for battery and lithium secondary battery
WO2020203322A1 (en) 2019-03-29 2020-10-08 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery
WO2022196375A1 (en) 2021-03-17 2022-09-22 三井化学株式会社 Nonaqueous secondary battery and method for producing nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
WO2016190404A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP6017697B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6285332B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
WO2012053644A1 (en) Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
WO2017038406A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP2017045724A (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6913159B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP6338913B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6368501B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP6607695B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP2018156761A (en) Nonaqueous electrolyte solution for battery, and lithium secondary battery
JP2017027930A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
WO2019146731A1 (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JP7103713B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP2017045723A (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP2019175577A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP2017017002A (en) Nonaqueous electrolytic solution for battery and lithium secondary battery
JP2019153443A (en) Nonaqueous electrolyte solution for battery and lithium secondary battery
JP7160461B2 (en) Method for manufacturing lithium secondary battery
JP6879799B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP2017045722A (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP7098276B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2018170236A (en) Nonaqueous electrolyte solution for battery, and lithium secondary battery
JP6607690B2 (en) Additive for non-aqueous electrolyte for battery, non-aqueous electrolyte for battery, and lithium secondary battery
JP6749088B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210216