JP6882902B2 - Shaft structure, impermeable method - Google Patents

Shaft structure, impermeable method Download PDF

Info

Publication number
JP6882902B2
JP6882902B2 JP2017013937A JP2017013937A JP6882902B2 JP 6882902 B2 JP6882902 B2 JP 6882902B2 JP 2017013937 A JP2017013937 A JP 2017013937A JP 2017013937 A JP2017013937 A JP 2017013937A JP 6882902 B2 JP6882902 B2 JP 6882902B2
Authority
JP
Japan
Prior art keywords
shaft
flow path
opening
corner drop
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017013937A
Other languages
Japanese (ja)
Other versions
JP2018123470A (en
Inventor
安永 正道
正道 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2017013937A priority Critical patent/JP6882902B2/en
Publication of JP2018123470A publication Critical patent/JP2018123470A/en
Application granted granted Critical
Publication of JP6882902B2 publication Critical patent/JP6882902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Barrages (AREA)

Description

本発明は、立坑構造および立坑構造における遮水方法に関する。 The present invention relates to a shaft structure and a method of impermeable water in a shaft structure.

発電所では、タービンの冷却のために大量の海水を使用するものがある。この海水の流れを簡単に示すと、海域⇒取水口⇒取水路⇒取水ピット⇒ポンプ⇒循環水配管⇒タービン⇒循環水配管⇒放水ピット⇒放水路⇒放水口⇒海域となる(例えば、特許文献1参照)。 Some power plants use large amounts of seawater to cool turbines. A simple example of this seawater flow is sea area ⇒ intake ⇒ intake channel ⇒ intake pit ⇒ pump ⇒ circulating water piping ⇒ turbine ⇒ circulating water piping ⇒ water discharge pit ⇒ flood channel ⇒ water discharge port ⇒ sea area (for example, patent documents). 1).

一般的に、放水路の放水ピット側および放水口側の端部近くでは図7に示すように立坑100が設けられ、その両側に流路200が接続される。図7は立坑100および流路200の海水の流れ方向に沿った鉛直断面を示す図である。また図7の線a−a〜線e−eに沿った断面を図8(a)〜(e)に示す。以下、図8(a)〜(e)のような海水の流れ方向と直交する方向の断面を、単に断面ということがある。 Generally, a shaft 100 is provided near the ends of the drainage channel on the discharge pit side and the discharge port side as shown in FIG. 7, and the flow paths 200 are connected to both sides thereof. FIG. 7 is a diagram showing a vertical cross section of the shaft 100 and the flow path 200 along the flow direction of seawater. Further, the cross sections along the lines aa to ee of FIG. 7 are shown in FIGS. 8 (a) to 8 (e). Hereinafter, the cross section in the direction orthogonal to the flow direction of seawater as shown in FIGS. 8A to 8E may be simply referred to as a cross section.

立坑100は、矩形状の開口1101を有する隔壁110によって角落とし設置室120とメンテナンス室130に平面上区画される。角落とし設置室120は角落としによる遮水を行うために設けられ、メンテナンス室130は流路200内のメンテナンスや点検等の際に小型重機や作業員が入るために設けられる。角落とし設置室120やメンテナンス室130の平面は略矩形状である。 The shaft 100 is divided into a corner drop installation chamber 120 and a maintenance chamber 130 on a plane by a partition wall 110 having a rectangular opening 1101. The corner drop installation room 120 is provided for water shielding by corner drop, and the maintenance room 130 is provided for small heavy machinery and workers to enter during maintenance and inspection in the flow path 200. The flat surfaces of the corner drop installation room 120 and the maintenance room 130 are substantially rectangular.

放水路中の複数の立坑100において角落とし設置室120に板状の角落としを設置して遮水を行い、立坑100間の流路200やメンテナンス室130等をドライにし、メンテナンス室130から流路200内に小型重機や作業員を入れてメンテナンス等を行う。角落としは放水路の供用中地上に仮置きされ、遮水時のみ設置される。 In a plurality of shafts 100 in the flood bypass, a plate-shaped corner drop is installed in the corner drop installation chamber 120 to block water, the flow path 200 between the shafts 100, the maintenance room 130, etc. are dried, and the flow is performed from the maintenance room 130. A small heavy machine or a worker is put in the road 200 to perform maintenance or the like. The corner drop is temporarily placed on the ground during the operation of the floodway, and is installed only when the water is blocked.

特開2014-228148号公報Japanese Unexamined Patent Publication No. 2014-228148

立坑100の両側の流路200の断面は略円形であるが、立坑100内では海水の流路の断面が流路200の略円形から変化し、また流路200の略円形に戻る。結果、流路200の内面と海水との摩擦の他、立坑100での流路の断面変化により流水の流れが乱れることで、放水路全体の損失水頭が大きくなる。 The cross section of the flow path 200 on both sides of the shaft 100 is substantially circular, but in the shaft 100, the cross section of the seawater flow path changes from the substantially circular shape of the flow path 200 and returns to the substantially circular shape of the flow path 200. As a result, in addition to the friction between the inner surface of the flow path 200 and the seawater, the flow of flowing water is disturbed by the change in the cross section of the flow path in the shaft 100, so that the head loss of the entire drainage channel becomes large.

一般的に立坑100は放水路中の2箇所に設けられ、上記の断面変化による損失水頭は非常に大きなものとなる。例えば放水路長を1900m、放水路の内径を4.6mとし、放水路への貝殻の付着を考慮した場合、放水ピット側および放水口側の立坑100での損失水頭の合計が放水路全体の約20%と大きな値を占めるという試算結果もある。 Generally, the shaft 100 is provided at two locations in the drainage channel, and the head loss due to the above-mentioned cross-sectional change becomes very large. For example, if the length of the drainage channel is 1900 m, the inner diameter of the drainage channel is 4.6 m, and the adhesion of shells to the drainage channel is taken into consideration, the total head loss at the shaft 100 on the discharge pit side and the discharge port side is about the entire drainage channel. There is also a trial calculation result that it occupies a large value of 20%.

放水路全体の損失水頭は設計条件として予め決められているのが一般的であり、損失水頭が守れない場合には、流路200の径を大きくする、流路200の内面に付着した貝殻の除去を頻繁に行う、流路200の内面に貝殻を付着させないために塩素を流すなどの対策が必要になり、施工や維持管理にかかるコストが大きくなる。 The head loss of the entire drainage channel is generally determined in advance as a design condition, and if the head loss cannot be protected, the diameter of the flow path 200 is increased, and the shell attached to the inner surface of the flow path 200 is used. It is necessary to take measures such as frequent removal and flowing chlorine to prevent shells from adhering to the inner surface of the flow path 200, which increases the cost for construction and maintenance.

以上の説明は放水路について行ったが、取水路においても略同様である。 The above explanation has been given for the flood bypass, but the same applies to the intake channel.

本発明は上記の問題に鑑みてなされたものであり、損失水頭を小さくできる立坑構造、およびその立坑構造における遮水方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a shaft structure capable of reducing the head loss and a water shielding method in the shaft structure.

前述した課題を解決するための第1の発明は、地中に設けられた流路が立坑に接続された立坑構造であって、前記流路を流れる流体が前記立坑内を流れる際の立坑内流路が、前記流体の流れ方向と直交する方向の断面において、前記流路と略同等の断面形状となっており、前記立坑内流路が前記流路の延長部分を有し、当該延長部分の周壁が、前記流路の周壁と一体であり、前記延長部分の周壁に、前記流路のメンテナンスのための開口が設けられ、当該開口が蓋によって塞がれていることを特徴とする立坑構造である。 The first invention for solving the above-mentioned problems is a shaft structure in which a flow path provided in the ground is connected to a shaft, and the inside of the shaft when a fluid flowing through the flow path flows through the shaft. The flow path has a cross-sectional shape substantially equivalent to that of the flow path in a cross section in a direction orthogonal to the flow direction of the fluid, and the shaft internal flow path has an extension portion of the flow path, and the extension portion. peripheral wall of, Ri integral der peripheral wall of the passage, the peripheral wall of the extension portion, an opening for maintenance of the flow channel is provided, the opening is characterized that you have been closed by the lid It is a shaft structure.

本発明では、立坑内流路の断面形状が立坑に接続された流路から変化せず、流体の乱れが無くなるので立坑での損失水頭を小さくすることができる。従って、取水路や放水路等の全体の損失水頭を小さくするために流路の径を大きくする、流路の内面に付着した貝殻の除去を頻繁に行う、流路の内面に貝殻を付着させないために塩素を流すなどの対策の必要は無く、施工や維持管理にかかるコストを抑えることができる。 In the present invention, the cross-sectional shape of the flow path in the shaft does not change from the flow path connected to the shaft, and the turbulence of the fluid is eliminated, so that the head loss in the shaft can be reduced. Therefore, the diameter of the flow path is increased in order to reduce the overall head loss of the intake channel, the drainage channel, etc., the shells attached to the inner surface of the flow path are frequently removed, and the shells are not attached to the inner surface of the flow path. Therefore, it is not necessary to take measures such as flowing chlorine, and the cost for construction and maintenance can be suppressed.

前記流路は、例えば発電所における海水の取水路または放水路である。
これにより、発電所における海水の取水路や放水路の立坑での損失水頭を小さくしてコストを低減することが可能になる。
The flow path is, for example, a seawater intake or discharge channel in a power plant.
As a result, it becomes possible to reduce the head loss in the shaft of the seawater intake channel and the drainage channel in the power plant and reduce the cost.

前記立坑内の第1の室に角落としが設置され、前記角落としは開口を有し、当該開口は、前記流路の前記流体の流れ方向と直交する方向の断面と略同等の形状を有し、前記立坑内流路を構成することが望ましい。また前記角落としは、凹部を有する複数の板材によって構成されることが望ましい。
これにより、立坑において、角落としを設置する室空間での断面変化を防ぐことができる。また凹部を有する複数の板材によって開口を有する角落としを構成することで、角落としの設置が容易となり、且つ凹部の組み合わせにより上記の開口を形成できる。
A corner drop is installed in the first chamber in the shaft, and the corner drop has an opening, which has a shape substantially equivalent to a cross section in a direction orthogonal to the flow direction of the fluid in the flow path. However, it is desirable to construct the shaft flow path. Further, it is desirable that the corner drop is composed of a plurality of plate materials having recesses.
This makes it possible to prevent a change in cross section in the room space where the angle drop is installed in the shaft. Further, by configuring the corner drop having an opening with a plurality of plate materials having a recess, the corner drop can be easily installed, and the above-mentioned opening can be formed by combining the recesses.

記蓋に、前記蓋を貫通する貫通孔が設けられることが望ましい。
第1の発明では、立坑内流路において、メンテナンス等に利用する開口による断面変化を防ぐことができる。また上記の蓋に貫通孔を設けることで、水圧により蓋に過大な力が加わるのを防ぐことができる。
Before Kifuta, through hole penetrating through the lid it is preferably provided.
According to the first invention, it is possible to prevent a change in cross section due to an opening used for maintenance or the like in the flow path in the shaft. Further, by providing the through hole in the lid, it is possible to prevent an excessive force from being applied to the lid due to water pressure.

前記立坑内が隔壁によって第1の室と第2の室に区画され、前記隔壁は開口を有し、当該開口は、前記流路の前記流体の流れ方向と直交する方向の断面と略同等の形状を有し、前記立坑内流路を構成し、前記延長部分は、第2の室において、前記隔壁に達するまで延びることが望ましい。
これにより、立坑において、第1の室と第2の室を区画する隔壁の開口での断面変化を防ぐことができる。
The inside of the shaft is divided into a first chamber and a second chamber by a partition wall, and the partition wall has an opening, which is substantially equivalent to a cross section in a direction orthogonal to the flow direction of the fluid in the flow path. It is desirable that it has a shape, constitutes the shaft flow path, and the extension portion extends in the second chamber until it reaches the partition wall.
This makes it possible to prevent a change in cross section at the opening of the partition wall that separates the first chamber and the second chamber in the shaft.

第2の発明は、前記の立坑構造において前記開口を有する角落としを撤去した後、開口の無い角落としを前記第1の室に設置することを特徴とする遮水方法である。
このように開口を有する角落としを開口の無い角落としに交換することにより、立坑構造における遮水を好適に行うことができる。
The second invention is a water-impervious method characterized in that after removing the corner drop having the opening in the shaft structure, the corner drop without the opening is installed in the first chamber.
By replacing the corner drop having an opening with a corner drop without an opening in this way, water shielding in the shaft structure can be preferably performed.

本発明により、損失水頭を小さくできる立坑構造、およびその立坑構造における遮水方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a shaft structure capable of reducing the head loss and a water shielding method in the shaft structure.

立坑1と流路2の概略を示す図。The figure which shows the outline of the shaft 1 and the flow path 2. 立坑構造10を示す図。The figure which shows the shaft structure 10. 立坑構造10を示す図。The figure which shows the shaft structure 10. 立坑1および流路2の断面を示す図。The figure which shows the cross section of the shaft 1 and the flow path 2. 立坑内流路fを示す図。The figure which shows the flow path f in a shaft. 遮水方法について示す図。The figure which shows the impermeable method. 立坑100と流路200を示す図。The figure which shows the shaft 100 and the flow path 200. 立坑100および流路200の断面を示す図。The figure which shows the cross section of the shaft 100 and the flow path 200.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

(1.立坑1と流路2)
図1は本発明の実施形態に係る立坑構造10を構成する立坑1と流路2の概略を示す図である。立坑1は、前記と同様、発電所のタービンの冷却用の海水(流体)が流れる取水路または放水路(流路2)の途中の複数箇所において、遮水及びメンテナンス等のために設けられるものとする。
(1. Shaft sink 1 and flow path 2)
FIG. 1 is a diagram showing an outline of a shaft 1 and a flow path 2 constituting the shaft structure 10 according to the embodiment of the present invention. Similar to the above, the shaft 1 is provided for water shielding, maintenance, etc. at a plurality of locations in the middle of the intake channel or the discharge channel (flow path 2) through which seawater (fluid) for cooling the turbine of the power plant flows. And.

立坑1は、例えば放水路の放水ピット側と放水口側の端部近く、取水路の取水ピット側と取水口側の端部近く、あるいはこれらの中間部に設けられる。立坑1の両側には流路2が接続される。 The shaft 1 is provided, for example, near the ends of the water discharge pit side and the water discharge port side of the drainage channel, near the ends of the intake pit side and the intake port side of the intake channel, or at an intermediate portion between them. Channels 2 are connected to both sides of the shaft 1.

(2.立坑構造10)
図2、図3は立坑構造10を示す図である。図2は立坑構造10の海水の流れ方向に沿った鉛直断面を示す図であり、図3は図2の線A−Aに沿った水平断面を示す図である。また図2の線B−B〜線F−Fに沿った断面を図4(a)〜(e)に示す。以下、図4(a)〜(e)のような海水の流れ方向と直交する方向の断面を、単に断面ということがある。
(2. Shaft sink structure 10)
2 and 3 are views showing the shaft structure 10. FIG. 2 is a diagram showing a vertical cross section of the shaft structure 10 along the flow direction of seawater, and FIG. 3 is a diagram showing a horizontal cross section along the line AA of FIG. Further, the cross sections along the lines BB to FF of FIG. 2 are shown in FIGS. 4 (a) to 4 (e). Hereinafter, the cross section in the direction orthogonal to the flow direction of seawater as shown in FIGS. 4A to 4E may be simply referred to as a cross section.

図2等に示すように、立坑構造10は、立坑1とその両側の流路2を有する。この立坑構造10は、図1の左側の立坑構造10に対応するものとする。 As shown in FIG. 2 and the like, the shaft structure 10 has a shaft 1 and flow paths 2 on both sides thereof. This shaft structure 10 corresponds to the shaft structure 10 on the left side of FIG.

立坑1は有底筒状のコンクリート構造物である。立坑1の平面は略矩形状であるが、これに限ることはない。 The shaft 1 is a bottomed tubular concrete structure. The plane of the shaft 1 is substantially rectangular, but is not limited to this.

流路2は、地中に設けられたコンクリート製のシールドトンネル等の内部に形成される。立坑1の両側の流路2の断面形状は同じであり、本実施形態では略円形である。 The flow path 2 is formed inside a concrete shield tunnel or the like provided in the ground. The cross-sectional shapes of the flow paths 2 on both sides of the shaft 1 are the same, and in the present embodiment, they are substantially circular.

立坑1の平面は、前記と同様、鉛直方向の隔壁11により角落とし設置室12(第1の室)とメンテナンス室13(第2の室)に区画される。角落とし設置室12とメンテナンス室13の平面は略矩形状である。 The plane of the shaft 1 is divided into a corner drop installation room 12 (first room) and a maintenance room 13 (second room) by a vertical partition wall 11 as described above. The flat surfaces of the corner drop installation room 12 and the maintenance room 13 are substantially rectangular.

隔壁11の下部には開口111が設けられる。図4(c)に示すように開口111は略円形であり、立坑1の両側の流路2の断面と略同等の形状となっている。 An opening 111 is provided in the lower part of the partition wall 11. As shown in FIG. 4C, the opening 111 has a substantially circular shape, and has a shape substantially equivalent to the cross section of the flow paths 2 on both sides of the shaft 1.

角落とし設置室12は板状の角落としを設置するための室空間であり、角落としの厚みに合わせた細幅の平面を有する。図2、3に示すように、角落とし設置室12の底面と側面には、角落としの位置決めを行うための溝121が設けられる。溝121の側壁は角落としに当接する戸当りとなる。 The corner drop installation chamber 12 is a room space for installing a plate-shaped corner drop, and has a narrow flat surface corresponding to the thickness of the corner drop. As shown in FIGS. 2 and 3, grooves 121 for positioning the corner drop are provided on the bottom surface and the side surface of the corner drop installation chamber 12. The side wall of the groove 121 serves as a door stop that abuts on the corner drop.

取水路または放水路の供用時は、角落とし設置室12の溝121に沿って角落とし14が設置される。角落とし14は開口142を有する。 When the intake channel or the flood channel is in service, the corner drop 14 is installed along the groove 121 of the corner drop installation chamber 12. The corner drop 14 has an opening 142.

図4(b)に示すように、本実施形態では略半円形の凹部を有する略矩形状の2つの板材141によって角落とし14が構成され、両板材141を上下に重ねてその凹部同士を組み合わせることで開口142が形成される。板材141には例えばコンクリートや鋼材が用いられる。開口142は略円形であり、立坑1の両側の流路2の断面と略同等の形状となっている。 As shown in FIG. 4B, in the present embodiment, the corner drop 14 is formed by two substantially rectangular plate members 141 having substantially semicircular recesses, and both plate members 141 are vertically stacked and the recesses are combined. As a result, the opening 142 is formed. For example, concrete or steel is used for the plate material 141. The opening 142 has a substantially circular shape, and has a shape substantially equivalent to the cross section of the flow paths 2 on both sides of the shaft 1.

なお、本実施形態ではこれらの板材141の上部に吊り部(不図示)が設けられる。吊り部にワイヤーなどの吊材を取付け、立坑1の上部からクレーンやジャッキ等を用いて角落とし設置室12への板材141の吊り込み、およびその吊り上げを行うことが可能である。 In this embodiment, a hanging portion (not shown) is provided on the upper portion of these plate members 141. It is possible to attach a hanging material such as a wire to the hanging portion, suspend the plate material 141 from the upper part of the shaft 1 to the corner drop installation chamber 12 using a crane, a jack, or the like, and lift the plate material 141.

メンテナンス室13は、取水路や放水路のメンテナンスや点検等を行う際に、小型重機や作業員等の出入りに用いる室空間である。メンテナンス室13の下部には流路2の延長部分2’が配置される。当該延長部分2’の断面形状は流路2と略同等であり、この延長部分2’は隔壁11の開口111まで達している。 The maintenance room 13 is a room space used for entering and exiting small heavy machinery, workers, and the like when performing maintenance and inspection of intake channels and flood channels. An extension portion 2'of the flow path 2 is arranged in the lower part of the maintenance room 13. The cross-sectional shape of the extension portion 2'is substantially the same as that of the flow path 2, and the extension portion 2'reaches the opening 111 of the partition wall 11.

メンテナンス室13では、上記の延長部分2’の周壁に開口131が設けられる。開口131は上記した小型重機や作業員等の出入りに用いられる。本実施形態では、この開口131における断面変化を防ぐため、開口131が蓋132によって塞がれる。 In the maintenance room 13, an opening 131 is provided in the peripheral wall of the extension portion 2'. The opening 131 is used for entering and exiting the above-mentioned small heavy machinery, workers, and the like. In the present embodiment, the opening 131 is closed by the lid 132 in order to prevent the cross-sectional change in the opening 131.

蓋132は鉄筋コンクリート等により形成され、図4(d)に示すように全体として略扇形の形状を有する。蓋132には下方に突出する凸部1320が設けられており、この凸部1320が上記の開口131に挿入される。 The lid 132 is made of reinforced concrete or the like, and has a substantially fan-shaped shape as a whole as shown in FIG. 4 (d). The lid 132 is provided with a convex portion 1320 projecting downward, and the convex portion 1320 is inserted into the above-mentioned opening 131.

凸部1320の下面は略円弧状に窪んでおり、凸部1320を開口131に挿入した時に、当該下面が流路2の延長部分2’の内面に沿って配置される。結果、メンテナンス室13では、流路2の延長部分2’の開口131に対応する位置も、流路2と略同等の断面形状で仕上げられることになる。 The lower surface of the convex portion 1320 is recessed in a substantially arc shape, and when the convex portion 1320 is inserted into the opening 131, the lower surface is arranged along the inner surface of the extension portion 2'of the flow path 2. As a result, in the maintenance room 13, the position corresponding to the opening 131 of the extension portion 2'of the flow path 2 is also finished with a cross-sectional shape substantially equivalent to that of the flow path 2.

蓋132の上面は流路2の延長部分2’の周壁外面に沿った略円弧状となっており、その外周部がボルト等の締結具1322によって延長部分2’の周壁に締結される。これにより、急激な水位変動が生じた際の蓋132の浮き上がりを防止しつつ、蓋132の取付け、取外しが可能な構成となっている。 The upper surface of the lid 132 has a substantially arc shape along the outer surface of the peripheral wall of the extension portion 2'of the flow path 2, and the outer peripheral portion thereof is fastened to the peripheral wall of the extension portion 2'by a fastener 1322 such as a bolt. As a result, the lid 132 can be attached and detached while preventing the lid 132 from rising when a sudden water level change occurs.

また本実施形態では、水圧により蓋132に過大な力が加わるのを防ぐため、蓋132を上下に貫通する貫通孔1321が設けられる。貫通孔1321の直径は例えば200mm程度とするが、これに限ることはない。 Further, in the present embodiment, in order to prevent an excessive force from being applied to the lid 132 due to water pressure, a through hole 1321 that penetrates the lid 132 up and down is provided. The diameter of the through hole 1321 is, for example, about 200 mm, but the diameter is not limited to this.

取水路または放水路の供用時は、海水が角落とし14と角落とし設置室12の間の微小な隙間を通って角落とし設置室12の内部に満たされる。メンテナンス室13においても、海水は上記の貫通孔1321を通ってメンテナンス室13の内部に満たされる。結果、立坑1内の水位は海水面と同程度となり、流路2の上端より上に有る。 When the intake channel or the drainage channel is in service, seawater fills the inside of the corner drop installation chamber 12 through a minute gap between the corner drop 14 and the corner drop installation chamber 12. Also in the maintenance room 13, seawater is filled inside the maintenance room 13 through the through hole 1321 described above. As a result, the water level in the shaft 1 is about the same as the sea level and is above the upper end of the flow path 2.

図5のfは、海水が立坑1内を流れる際の立坑内流路を示す。本実施形態では、海水が流路2⇒角落とし設置室12の角落とし14の開口142⇒隔壁11の開口111⇒メンテナンス室13の流路2の延長部分2’⇒流路2と流れるようになっており、立坑内流路fは角落とし14の開口142、隔壁11の開口111、および流路2の延長部分2’から構成される。これらの断面は立坑1の両側の流路2の断面と略同等の形状を有しており、立坑内流路fの全体が、流路2と略同等の断面形状でほぼ一定となっている。 FIG. 5f shows an in-shaft flow path when seawater flows through the shaft 1. In the present embodiment, the seawater flows in the order of flow path 2 ⇒ opening 142 of the corner drop 14 of the corner drop installation chamber 12 ⇒ opening 111 of the partition wall 11 ⇒ extension portion 2'⇒ flow path 2 of the flow path 2 of the maintenance chamber 13. The shaft flow path f is composed of an opening 142 of a corner drop 14, an opening 111 of a partition wall 11, and an extension portion 2'of the flow path 2. These cross sections have substantially the same shape as the cross sections of the flow paths 2 on both sides of the shaft 1, and the entire flow path f in the shaft has a cross section shape substantially the same as that of the flow path 2 and is substantially constant. ..

このように、本実施形態では立坑内流路fの断面形状が流路2から変化しないことから、流水の乱れが無くなり損失水頭が小さくなる。例えば損失水頭を立坑1の両側の流路2と同等の値(例えば流路長1mあたり0.001m)にすることができる。 As described above, in the present embodiment, since the cross-sectional shape of the shaft flow path f does not change from the flow path 2, the turbulence of the flowing water is eliminated and the head loss is reduced. For example, the head loss can be set to a value equivalent to that of the flow paths 2 on both sides of the shaft 1 (for example, 0.001 m per 1 m of the flow path length).

(3.立坑構造10における遮水方法)
図6は立坑構造10における遮水方法について示す図である。図6(a)は図2と同様の断面を示す図、図6(b)は図6(a)の線G−Gによる断面を示す図である。
(3. Impermeable method in shaft structure 10)
FIG. 6 is a diagram showing a water shielding method in the shaft structure 10. FIG. 6A is a diagram showing a cross section similar to that of FIG. 2, and FIG. 6B is a diagram showing a cross section taken along the line GG of FIG. 6A.

取水路または放水路のメンテナンス等を行う際は、前記の角落とし14を図6に示す角落とし15に交換する。この際、角落とし14(板材141)を角落とし設置室12から吊り上げて撤去した後、遮水用の角落とし15を取水路または放水路の複数の立坑1(図1参照)のそれぞれに設置して遮水を行う。角落とし15は前記と同様、角落とし設置室12の溝121に沿って設置する。 When performing maintenance of the intake channel or the flood channel, the corner drop 14 is replaced with the corner drop 15 shown in FIG. At this time, after the corner drop 14 (plate material 141) is lifted from the corner drop installation room 12 and removed, the corner drop 15 for impermeable water is installed in each of a plurality of shafts 1 (see FIG. 1) of the intake channel or the flood channel. To block water. The corner drop 15 is installed along the groove 121 of the corner drop installation chamber 12 in the same manner as described above.

角落とし15は略矩形状の複数の板材151から構成され、これらを角落とし設置室12内で上下に積み重ね、その上端が立坑1内の水面より上に来るようにする。板材151はコンクリート製あるいは鋼製であり、これらを上下に積み重ねたときに前記の角落とし14のような開口は形成されない。 The corner drop 15 is composed of a plurality of substantially rectangular plate members 151, which are stacked vertically in the corner drop installation chamber 12 so that the upper end thereof is above the water surface in the shaft 1. The plate material 151 is made of concrete or steel, and when these are stacked one above the other, an opening like the corner drop 14 is not formed.

これらの板材151についても、前記と同様、上部に吊り部(不図示)が設けられる。吊り部にワイヤーなどの吊材を取付け、立坑1の上部からクレーンやジャッキ等を用いて角落とし設置室12への板材151の吊り込み、およびその吊り上げを行うことが可能である。 Similar to the above, these plate members 151 are also provided with a hanging portion (not shown) at the upper part. It is possible to attach a hanging material such as a wire to the hanging portion, suspend the plate material 151 from the upper part of the shaft 1 to the corner drop installation chamber 12 using a crane, a jack, or the like, and lift the plate material 151.

こうして各立坑1で遮水を行った後、メンテナンス室13や立坑1間の流路2を排水してドライな状態とし、蓋132を開口131から取外す。そして、メンテナンス室13から開口131を介して流路2内に小型重機等を搬入して作業員を入れ、流路2のメンテナンス等を行う。メンテナンス等を終えた後は、ドライな状態で開口131に蓋132を取付ける。 After water is blocked in each shaft 1 in this way, the maintenance room 13 and the flow path 2 between the shafts 1 are drained to a dry state, and the lid 132 is removed from the opening 131. Then, a small heavy machine or the like is carried into the flow path 2 from the maintenance room 13 through the opening 131, a worker is put in, and maintenance of the flow path 2 or the like is performed. After the maintenance and the like are completed, the lid 132 is attached to the opening 131 in a dry state.

この後、角落とし15(板材151)を角落とし設置室12から吊り上げて撤去し、角落とし14(板材141)を前記のように角落とし設置室12に吊り込んで設置すると、図2等と同様に立坑1および流路2に海水を流すことができる。前記したように板材141、151の吊り込み、吊り上げを行うことで、角落とし14と角落とし15の交換を容易に行える。 After that, the corner drop 15 (plate material 151) is lifted from the corner drop installation room 12 and removed, and the corner drop 14 (plate material 141) is suspended and installed in the corner drop installation room 12 as described above. Similarly, seawater can flow through the shaft 1 and the flow path 2. By suspending and lifting the plate members 141 and 151 as described above, the corner drop 14 and the corner drop 15 can be easily exchanged.

以上説明したように、本実施形態では、立坑内流路fの断面形状が流路2から変化せず、流水の乱れが無くなるので立坑1での損失水頭を小さくすることができる。従って、取水路や放水路全体の損失水頭を小さくするために流路2の径を大きくする、流路2の内面に付着した貝殻の除去を頻繁に行う、流路2の内面に貝殻を付着させないために塩素を流すなどの対策の必要は無く、施工や維持管理にかかるコストを抑えることができる。 As described above, in the present embodiment, the cross-sectional shape of the shaft flow path f does not change from the flow path 2, and the turbulence of the flowing water is eliminated, so that the head loss in the shaft 1 can be reduced. Therefore, the diameter of the flow path 2 is increased in order to reduce the head loss of the entire intake channel and the discharge channel, the shells attached to the inner surface of the flow path 2 are frequently removed, and the shells are attached to the inner surface of the flow path 2. There is no need to take measures such as flowing chlorine to prevent it, and the cost for construction and maintenance can be suppressed.

特に本実施形態では、角落とし設置室12に流路2の断面形状と略同等の形状の開口142を有する角落とし14を設置することで、角落とし設置室12における断面変化を防ぐことができる。また凹部を有する複数の板材141によって開口142を有する角落とし14を構成することで、角落とし14の設置が容易となり、且つ凹部の組み合わせにより上記の開口142を形成できる。また、この角落とし14を開口の無い角落とし15に交換することで、立坑構造10において好適に遮水を行うことができる。 In particular, in the present embodiment, by installing the corner drop 14 having an opening 142 having a shape substantially the same as the cross-sectional shape of the flow path 2 in the corner drop installation chamber 12, it is possible to prevent the cross-sectional change in the corner drop installation chamber 12. .. Further, by forming the corner drop 14 having the opening 142 by the plurality of plate members 141 having the recess, the corner drop 14 can be easily installed, and the opening 142 can be formed by combining the recesses. Further, by replacing the corner drop 14 with a corner drop 15 having no opening, water can be suitably shielded in the shaft structure 10.

メンテナンス室13においては、メンテナンス等に利用する流路2の延長部分2’の周壁の開口131を蓋132で塞ぐことで、開口131による断面変化を防ぐことができる。また蓋132に貫通孔1321を設けることで、水圧により蓋132に過大な力が加わるのを防ぐことができる。 In the maintenance room 13, the opening 131 of the peripheral wall of the extension portion 2'of the flow path 2 used for maintenance or the like is closed with the lid 132, so that the cross-sectional change due to the opening 131 can be prevented. Further, by providing the through hole 1321 in the lid 132, it is possible to prevent an excessive force from being applied to the lid 132 due to water pressure.

さらに、本実施形態では隔壁11の開口111も流路2と略同等の断面形状を有するので、当該開口111における断面変化も防ぐことができる。 Further, in the present embodiment, since the opening 111 of the partition wall 11 also has a cross-sectional shape substantially equivalent to that of the flow path 2, it is possible to prevent the cross-sectional change in the opening 111.

また本実施形態の立坑1は発電所のタービンの冷却用の海水の取水路または放水路に設けられており、これにより取水路や放水路の立坑1の損失水頭を低減してコストを軽減できる。 Further, the shaft 1 of the present embodiment is provided in the seawater intake channel or the drainage channel for cooling the turbine of the power plant, whereby the head loss of the shaft 1 of the intake channel or the drainage channel can be reduced and the cost can be reduced. ..

しかしながら、本発明はこれに限ることはない。例えば本実施形態の立坑1は上記した海水の取水路または放水路に設けられるが、これに限ることはなく、各種の流路に設けられる立坑に同様の構造を適用可能である。流路を流れる流体も海水に限らず、地下水や雨水等となる場合もある。 However, the present invention is not limited to this. For example, the shaft 1 of the present embodiment is provided in the above-mentioned seawater intake channel or flood channel, but the present invention is not limited to this, and a similar structure can be applied to a shaft provided in various flow paths. The fluid flowing through the flow path is not limited to seawater, but may be groundwater, rainwater, or the like.

また本実施形態では角落とし14、15を複数の板材141、151から構成したが、1枚の板材により構成してもよい。 Further, in the present embodiment, the corner drop 14, 15 is composed of a plurality of plate materials 141, 151, but it may be composed of one plate material.

さらに、本実施形態では流路2の断面が略円形であるが、これに限ることはなく、略楕円形、略矩形など他の形状であってもよい。この場合も本実施形態と同様の手法で立坑内流路fの断面変化を抑え、損失水頭を小さくすることができる。 Further, in the present embodiment, the cross section of the flow path 2 is substantially circular, but the present invention is not limited to this, and other shapes such as a substantially elliptical shape and a substantially rectangular shape may be used. In this case as well, the cross-sectional change of the shaft flow path f can be suppressed and the head loss can be reduced by the same method as in the present embodiment.

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

1、100:立坑
2、200:流路
2’:延長部分
10:立坑構造
11、110:隔壁
12、120:角落とし設置室
13、130:メンテナンス室
14、15:角落とし
111、131、142、1301:開口
121:溝
132:蓋
141、151:板材
f:立坑内流路
1, 100: Shaft 2, 200: Flow path 2': Extension 10: Shaft structure 11, 110: Partition 12, 120: Corner drop installation room 13, 130: Maintenance room 14, 15: Corner drop 111, 131, 142 , 1301: Opening 121: Groove 132: Lid 141, 151: Plate material f: Shaft sink flow path

Claims (7)

地中に設けられた流路が立坑に接続された立坑構造であって、
前記流路を流れる流体が前記立坑内を流れる際の立坑内流路が、前記流体の流れ方向と直交する方向の断面において、前記流路と略同等の断面形状となっており、
前記立坑内流路が前記流路の延長部分を有し、当該延長部分の周壁が、前記流路の周壁と一体であり、
前記延長部分の周壁に、前記流路のメンテナンスのための開口が設けられ、当該開口が蓋によって塞がれていることを特徴とする立坑構造。
It is a shaft structure in which the flow path provided in the ground is connected to the shaft.
The in-shaft flow path when the fluid flowing through the flow path flows in the shaft has a cross-sectional shape substantially equivalent to that of the flow path in a cross section in a direction orthogonal to the flow direction of the fluid.
The vertical shaft internal channel has an extension of the flow path, the peripheral wall of the extension portion, Ri integral der peripheral wall of the flow path,
Wherein the peripheral wall of the extension, an opening is provided for the maintenance of the flow path, the vertical shaft structure the opening is characterized that you have been closed by the lid.
前記流路は、発電所における海水の取水路または放水路であることを特徴とする請求項1に記載の立坑構造。 The shaft structure according to claim 1, wherein the flow path is a seawater intake or discharge channel in a power plant. 前記立坑内の第1の室に角落としが設置され、
前記角落としは開口を有し、
当該開口は、前記流路の前記流体の流れ方向と直交する方向の断面と略同等の形状を有し、前記立坑内流路を構成することを特徴とする請求項1または請求項2に記載の立坑構造。
A corner drop was installed in the first chamber of the shaft.
The corner drop has an opening
The first or second aspect of the present invention, wherein the opening has a shape substantially equivalent to a cross section of the flow path in a direction orthogonal to the flow direction of the fluid, and constitutes the shaft flow path. Shaft structure.
前記角落としは、凹部を有する複数の板材によって構成されることを特徴とする請求項3記載の立坑構造。 The shaft structure according to claim 3, wherein the corner drop is composed of a plurality of plate materials having recesses. 前記蓋に、前記蓋を貫通する貫通孔が設けられたことを特徴とする請求項1から請求項4のいずれかに記載の立坑構造。 The shaft structure according to any one of claims 1 to 4 , wherein the lid is provided with a through hole penetrating the lid. 前記立坑内が隔壁によって第1の室と第2の室に区画され、
前記隔壁は開口を有し、
当該開口は、前記流路の前記流体の流れ方向と直交する方向の断面と略同等の形状を有し、前記立坑内流路を構成し、
前記延長部分は、第2の室において、前記隔壁に達するまで延びることを特徴とする請求項に記載の立坑構造。
The inside of the shaft is divided into a first chamber and a second chamber by a partition wall, and the inside of the shaft is divided into a first chamber and a second chamber.
The partition has an opening
The opening has a shape substantially equivalent to a cross section in a direction orthogonal to the flow direction of the fluid in the flow path, and constitutes the shaft flow path .
The shaft structure according to claim 3 , wherein the extension portion extends in the second chamber until it reaches the partition wall.
請求項3または請求項4に記載の立坑構造において前記開口を有する角落としを撤去した後、
開口の無い角落としを前記第1の室に設置することを特徴とする遮水方法。
After removing the corner drop having the opening in the shaft structure according to claim 3 or 4.
A water shielding method characterized by installing a corner drop without an opening in the first room.
JP2017013937A 2017-01-30 2017-01-30 Shaft structure, impermeable method Active JP6882902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013937A JP6882902B2 (en) 2017-01-30 2017-01-30 Shaft structure, impermeable method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013937A JP6882902B2 (en) 2017-01-30 2017-01-30 Shaft structure, impermeable method

Publications (2)

Publication Number Publication Date
JP2018123470A JP2018123470A (en) 2018-08-09
JP6882902B2 true JP6882902B2 (en) 2021-06-02

Family

ID=63110164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013937A Active JP6882902B2 (en) 2017-01-30 2017-01-30 Shaft structure, impermeable method

Country Status (1)

Country Link
JP (1) JP6882902B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4531647Y1 (en) * 1968-09-12 1970-12-04
JPS57174536U (en) * 1981-04-30 1982-11-04
JP4644761B2 (en) * 2001-07-03 2011-03-02 株式会社鴻池組 Underground conduit
JP4827488B2 (en) * 2005-10-25 2011-11-30 株式会社クボタ Installation method of water control door and water control door
GB0709544D0 (en) * 2007-05-18 2007-06-27 Yorkshire Water Services Ltd Penstock
JP6111450B2 (en) * 2012-10-10 2017-04-12 前澤工業株式会社 Permanent water installation method for water control doors
JP6114950B2 (en) * 2013-05-01 2017-04-19 前澤工業株式会社 Telescopic water stop device

Also Published As

Publication number Publication date
JP2018123470A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP6764591B2 (en) Cutting edge structure, cutting edge damage confirmation method and cutting edge repair method
CN103939142B (en) Hydraulic pressure controllable type tunnel drainage system and hydraulic control device thereof
JP5099558B2 (en) Structure to prevent floating of underground structures
CN107675721A (en) Anti-liquefaction suction type cylindrical foundation device
CN109372006B (en) Scour prevention protection structure for offshore wind turbine foundation and construction method thereof
JP6882902B2 (en) Shaft structure, impermeable method
CN106458292B (en) The method for sucking caisson for installing multistage
JP6576095B2 (en) Segment manufacturing method and concrete-integrated steel segment
JP5681827B2 (en) Vertical shaft construction method
EP2981674B1 (en) Shielded draining pipe mesh
CN206662256U (en) A kind of splice type ladle working lining with refractory precast block
JP5903877B2 (en) Temporary deadline construction method for dam body
CN103397622B (en) A kind of jack-up unit spud leg and mounting method thereof
JP2016003470A (en) Liquid discharge device on inner peripheral surface of tunnel and liquid discharge method
KR20120011120A (en) installation of the waterproof cloths for work of the pier under water
CN210798909U (en) Disconnect-type underwater wellhead suction anchor of high-efficient processing transportation
JP6853736B2 (en) Impermeable structure
JP2011179239A (en) Construction method of cast-in-place concrete pile
KR20140106943A (en) Assembly type block for wave dissipation
CN104803126B (en) Chassis of container and there is its container
CN205858381U (en) Subway segment hanging component
JP6626692B2 (en) Manhole and its installation structure
KR101159096B1 (en) Hydraulic structure with counterflow prevention cap in drainage hole
JP6768596B2 (en) Maintenance method and intake / discharge port in the intake / discharge tunnel
CN104294836A (en) Water table lowering method applied to situation that aquiclude of foundation pit is cracked

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210507

R150 Certificate of patent or registration of utility model

Ref document number: 6882902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250