JP6882629B1 - Positioning reference station - Google Patents

Positioning reference station Download PDF

Info

Publication number
JP6882629B1
JP6882629B1 JP2020549081A JP2020549081A JP6882629B1 JP 6882629 B1 JP6882629 B1 JP 6882629B1 JP 2020549081 A JP2020549081 A JP 2020549081A JP 2020549081 A JP2020549081 A JP 2020549081A JP 6882629 B1 JP6882629 B1 JP 6882629B1
Authority
JP
Japan
Prior art keywords
antenna device
pedestal
positioning reference
real
reference station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020549081A
Other languages
Japanese (ja)
Other versions
JPWO2021186548A1 (en
Inventor
賢治郎 橋爪
賢治郎 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOS YASHIMA CO.,LTD
Yashima Dengyo Co Ltd
Original Assignee
TECHNOS YASHIMA CO.,LTD
Yashima Dengyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOS YASHIMA CO.,LTD, Yashima Dengyo Co Ltd filed Critical TECHNOS YASHIMA CO.,LTD
Application granted granted Critical
Publication of JP6882629B1 publication Critical patent/JP6882629B1/en
Publication of JPWO2021186548A1 publication Critical patent/JPWO2021186548A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Catching Or Destruction (AREA)

Abstract

本発明者は、RTK測位基準局を構築するときごとに、ポータブルタイプであるRTK測位基準アンテナ装置の三次元的なアンテナ装置位置座標を得るための面倒な作業が行われなければならず、RTK測位基準局の構築が容易ではないことに気付いた。RTK測位基準局(1000)を構築するためのRTK測位基準アンテナ装置(1100)がセットされるアンテナ装置台座(1200)であって、あらかじめ得られる、アンテナ装置台座(1200)の三次元的な台座位置座標が書込まれる台座位置座標書込み部(1220)を備えたアンテナ装置台座(1200)である。The present inventor must perform troublesome work for obtaining the three-dimensional antenna device position coordinates of the portable type RTK positioning reference antenna device every time the RTK positioning reference station is constructed, and RTK positioning must be performed. I realized that it was not easy to build a reference station. The antenna device pedestal (1200) in which the RTK positioning reference antenna device (1100) for constructing the RTK positioning reference station (1000) is set, and the three-dimensional pedestal position of the antenna device pedestal (1200) obtained in advance. It is an antenna device pedestal (1200) provided with a pedestal position coordinate writing unit (1220) on which coordinates are written.

Description

本発明は、マルチローターヘリコプターのような飛行体などのためのアンテナ装置台座およびリアルタイムキネマティック測位基準局に関する。 The present invention relates to an antenna device pedestal and a real-time kinematic positioning reference station for such as an air vehicle such as a multi-rotor helicopter.

無人探査ヘリコプターなどのUAV(Unmanned Aerial Vehicle)は、米国などで軍事利用を目的として研究されてきた。 UAVs (Unmanned Aerial Vehicles) such as unmanned exploration helicopters have been studied in the United States and other countries for military use.

近年では、リチウムイオンバッテリー技術が急速に発展してきており、LiPo(Lithium Polymer)バッテリーなどのバッテリーを搭載するUAVが農薬散布作業などの農業利用を目的として実用化されている(たとえば、特許文献1参照)。 In recent years, lithium-ion battery technology has been rapidly developed, and UAVs equipped with batteries such as LiPo (Lithium Polymer) batteries have been put into practical use for agricultural use such as pesticide spraying work (for example, Patent Document 1). reference).

特開2014−76676号公報Japanese Unexamined Patent Publication No. 2014-76676

ところで、本発明者は、UAVのような飛行体がさまざまな利用を目的としてより広く実用化されることが望ましいと考えている。 By the way, the present inventor considers that it is desirable that an air vehicle such as a UAV is put into practical use more widely for various purposes.

より具体的には、本発明者は、ドローンとも呼ばれる、マルチローターヘリコプターのような飛行体が、農薬散布などにおいてより積極的に利用されることが望ましいと考えている。 More specifically, the present inventor considers that it is desirable that an air vehicle such as a multi-rotor helicopter, which is also called a drone, is more actively used for pesticide spraying and the like.

近年では、正確性が農薬散布に要求される場合が比較的に多くなってきた。 In recent years, accuracy has become relatively more demanding for pesticide application.

たとえば、小麦が栽培されている圃場と米が栽培されている圃場とが隣接している場合においては、収穫にともなうカメムシなどのような害虫の移動も考慮し、許容された散布量の農薬が枕地の農薬散布区域へ正確に散布されることが要求され、無農薬栽培圃場が隣接している場合においては、風などにより農薬のドリフトも考慮し、農薬が無農薬栽培圃場には散布されないように枕地から離れた農薬散布区域へ正確に散布されることが要求される。 For example, when the field where wheat is cultivated and the field where rice is cultivated are adjacent to each other, the permissible amount of pesticides can be applied in consideration of the movement of pests such as stink bugs during harvesting. Accurate spraying to the pesticide spraying area of the headland is required, and when pesticide-free cultivation fields are adjacent, pesticide drift is taken into consideration due to wind etc., and pesticides are not sprayed to the pesticide-free cultivation field. It is required to be accurately sprayed to the pesticide spraying area away from the headland.

正確性が要求される農薬散布を実現するために、マルチローターヘリコプターの無線操縦はRTK(Real Time Kinematic)測位基準アンテナ装置を利用してしばしば行われ、無線操縦のための圃場地図の作成もRTK測位基準アンテナ装置を利用して行われることがあるが、RTK測位基準局を構築するためのRTK測位基準アンテナ装置は、かなり高価であるので、夜間などには持帰られるポータブルタイプであることが望ましい。 In order to realize pesticide application that requires accuracy, radio control of multi-rotor helicopters is often performed using RTK (Real Time Kinetic) positioning reference antenna device, and field map creation for radio control is also RTK. Although it is sometimes performed using a positioning reference antenna device, the RTK positioning reference antenna device for constructing an RTK positioning reference station is quite expensive, so it is desirable that it be a portable type that can be taken home at night. ..

本発明者は、RTK測位基準局を構築するときごとに、ポータブルタイプであるRTK測位基準アンテナ装置の三次元的なアンテナ装置位置座標を得るための面倒な作業が行われなければならず、RTK測位基準局の構築が容易ではないことに気付いた。 The present inventor must perform troublesome work for obtaining the three-dimensional antenna device position coordinates of the portable type RTK positioning reference antenna device every time the RTK positioning reference station is constructed, and RTK positioning must be performed. I realized that it was not easy to build a reference station.

本発明は、上述された従来の課題を考慮し、RTK測位基準局を容易に構築することができるアンテナ装置台座およびリアルタイムキネマティック測位基準局を提供することを目的とする。 It is an object of the present invention to provide an antenna device pedestal and a real-time kinematic positioning reference station capable of easily constructing an RTK positioning reference station in consideration of the above-mentioned conventional problems.

第1の本発明は、リアルタイムキネマティック測位基準局を構築するためのアンテナ装置がセットされるアンテナ装置台座であって、
あらかじめ得られる、前記アンテナ装置台座の三次元的な台座位置座標が書込まれる台座位置座標書込み部を備え、
前記アンテナ装置は、圃場において作業を行う飛行体の飛行操縦に利用されるデータを発信するアンテナ装置であり、
前記アンテナ装置台座の台座位置は、前記圃場の近傍の位置であり、
前記台座位置座標書込み部には、前記アンテナ装置台座に対応する近傍の圃場だけについての地図に関するデータが書込まれており、
前記セットされるアンテナ装置の前記アンテナ装置台座に対するアンテナ装置相対位置を一意的に設定するためのアンテナ装置相対位置設定機構を備え、
前記アンテナ装置相対位置設定機構は、
前記アンテナ装置の三つの脚が前記アンテナ装置台座の台座表面に形成された三つの凹部へそれぞれ嵌込まれることにより、前記アンテナ装置台座に対する前記アンテナ装置相対位置が一意的に設定され、
前記アンテナ装置は、測位衛星から得られた信号、および前記書込まれた台座位置座標に基づいてリアルタイムキネマティック誤差信号を生成し、
前記飛行体は、前記圃場の地図に関するデータおよび前記リアルタイムキネマティック誤差信号を前記アンテナ装置から受信し利用
前記台座位置座標書込み部は、バーコードを利用して設けられることを特徴とするアンテナ装置台座である。
の本発明は、前記圃場の環境に関する測定を行う圃場環境測定ユニットを備えたことを特徴とする第1の本発明のアンテナ装置台座である。
の本発明は、第の本発明の前記アンテナ装置台座へ前記セットされるアンテナ装置を利用して前記構築されるリアルタイムキネマティック測位基準局であって、
前記アンテナ装置は、一意的に設定される前記アンテナ装置台座に対するアンテナ装置相対位置で前記アンテナ装置台座へセットされ、測位衛星から得られた信号、および前記書込まれた台座位置座標に基づいてリアルタイムキネマティック誤差信号を発信することを特徴とするリアルタイムキネマティック測位基準局である。
本発明に関連する第1の発明は、リアルタイムキネマティック測位基準局を構築するためのアンテナ装置がセットされるアンテナ装置台座であって、
あらかじめ得られる、前記アンテナ装置台座の三次元的な台座位置座標が書込まれる台座位置座標書込み部を備えたことを特徴とするアンテナ装置台座である。
The first invention is an antenna device pedestal in which an antenna device for constructing a real-time kinematic positioning reference station is set.
It is provided with a pedestal position coordinate writing unit on which the three-dimensional pedestal position coordinates of the antenna device pedestal obtained in advance are written.
The antenna device is an antenna device that transmits data used for flight maneuvering of an air vehicle working in a field.
The pedestal position of the antenna device pedestal is a position near the field.
In the pedestal position coordinate writing unit, data related to a map of only the fields in the vicinity corresponding to the antenna device pedestal are written.
The antenna device relative position setting mechanism for uniquely setting the antenna device relative position with respect to the antenna device pedestal of the set antenna device is provided.
The antenna device relative position setting mechanism is
By fitting the three legs of the antenna device into the three recesses formed on the pedestal surface of the antenna device pedestal, the relative position of the antenna device with respect to the antenna device pedestal is uniquely set.
The antenna device generates a real-time kinematic error signal based on the signal obtained from the positioning satellite and the written pedestal position coordinates.
The aircraft may receive data and the real-time kinematic error signal relating to the field of maps from the antenna device utilizes,
The pedestal position coordinate writing unit is an antenna device pedestal characterized in that it is provided by using a barcode.
The second invention is the antenna device pedestal of the first invention, characterized in that the field environment measurement unit for measuring the environment of the field is provided.
The third invention is a real-time kinematic positioning reference station constructed by using the antenna device set on the antenna device pedestal of the present invention.
The antenna device is set on the antenna device pedestal at a position relative to the antenna device pedestal that is uniquely set, and is set in real time based on a signal obtained from the positioning satellite and the written pedestal position coordinates. It is a real-time kinematic positioning reference station characterized by transmitting a kinematic error signal.
The first invention related to the present invention is an antenna device pedestal on which an antenna device for constructing a real-time kinematic positioning reference station is set.
The antenna device pedestal is provided with a pedestal position coordinate writing unit on which the three-dimensional pedestal position coordinates of the antenna device pedestal are written, which is obtained in advance.

本発明に関連する第2の明は、前記セットされるアンテナ装置の前記アンテナ装置台座に対するアンテナ装置相対位置を一意的に設定するためのアンテナ装置相対位置設定機構を備えたことを特徴とする本発明に関連する第1の明のアンテナ装置台座である。 Second inventions related to the present invention is characterized by comprising an antenna device relative position setting mechanism for setting uniquely the antenna device position relative to the antenna device base of the antenna device to be the set a first inventions of the antenna device base related to the present invention.

本発明に関連する第3の明は、前記アンテナ装置の脚が前記アンテナ装置台座の台座表面に形成された凹部へ嵌込まれることにより、前記アンテナ装置台座に対する前記アンテナ装置相対位置が一意的に設定されることを特徴とする本発明に関連する第2の明のアンテナ装置台座である。 Third inventions relating to the present invention, by the legs of the antenna device is written fitted to the antenna device recess formed in the pedestal surface of the base, the antenna device position relative to the antenna device pedestal unique a second inventions of the antenna device base related to the present invention characterized by being configured.

本発明に関連する第4の明は、前記台座位置座標書込み部は、RFタグまたはバーコードを利用して設けられることを特徴とする本発明に関連する第1の明のアンテナ装置台座である。 Fourth inventions related to the present invention, the pedestal position coordinate writing unit, the first inventions of the antenna device base related to the present invention which is characterized in that it is provided by using the RF tag or bar code Is.

本発明に関連する第5の明は、前記アンテナ装置は、圃場において薬剤を散布するための飛行体の無線操縦に利用されるアンテナ装置であり、
前記アンテナ装置台座の台座位置は、前記圃場の近傍の位置であることを特徴とする本発明に関連する第1の明のアンテナ装置台座である。
Fifth inventions related to the present invention, the antenna device is an antenna device used in the radio control of the aircraft for spraying agent in the field,
The pedestal position of the antenna device pedestal is a first inventions of the antenna device base related to the present invention, which is a position in the vicinity of the field.

本発明に関連する第6の明は、前記圃場の環境に関する測定を行う圃場環境測定ユニットを備えたことを特徴とする本発明に関連する第5の明のアンテナ装置台座である。 Sixth inventions of the context of the present invention is the fifth inventions of the antenna device base related to the present invention characterized by comprising a field environment measurement unit for performing measurements on the field of environment.

本発明に関連する第7の明は、本発明に関連する第1の明の前記アンテナ装置台座へ前記セットされるアンテナ装置を利用して前記構築されるリアルタイムキネマティック測位基準局であって、
前記アンテナ装置は、一意的に設定される前記アンテナ装置台座に対するアンテナ装置相対位置で前記アンテナ装置台座へセットされ、測位衛星から得られた信号、および前記書込まれた台座位置座標に基づいてリアルタイムキネマティック誤差信号を発信することを特徴とするリアルタイムキネマティック測位基準局である。
Seventh inventions of the context of the present invention is the first inventions of the antenna device real-time kinematic positioning reference station the constructed utilizing an antenna device to be the set to seat relating to the present invention ,
The antenna device is set on the antenna device pedestal at a position relative to the antenna device pedestal that is uniquely set, and is set in real time based on a signal obtained from the positioning satellite and the written pedestal position coordinates. It is a real-time kinematic positioning reference station characterized by transmitting a kinematic error signal.

本発明により、RTK測位基準局を容易に構築することが可能なアンテナ装置台座およびリアルタイムキネマティック測位基準局を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an antenna device pedestal and a real-time kinematic positioning reference station capable of easily constructing an RTK positioning reference station.

本発明における実施の形態の農薬散布システムの模式的な斜視図Schematic perspective view of the pesticide spraying system of the embodiment of the present invention 本発明における実施の形態のアンテナ装置台座の模式的な斜視図Schematic perspective view of the antenna device pedestal of the embodiment of the present invention 本発明における実施の形態のRTK測位基準局の模式的な断面図Schematic sectional view of the RTK positioning reference station according to the embodiment of the present invention. 本発明における変形例の実施の形態のRTK測位基準局の模式的な斜視図Schematic perspective view of the RTK positioning reference station according to the embodiment of the modified example in the present invention. 本発明における実施の形態の圃場水位測定部の模式的な正面図Schematic front view of the field water level measuring unit of the embodiment of the present invention 本発明における実施の形態の圃場水位測定部のバッテリー電圧と時間との間の関係の説明図Explanatory drawing of relationship between battery voltage and time of field water level measurement part of embodiment of this invention

図面を参照しながら、本発明における実施の形態について詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

以下同様であるが、いくつかの構成要素は図面において示されていないこともあるし透視的にまたは省略的に示されていることもある。 Similar below, but some components may not be shown in the drawings or may be shown fluoroscopically or abbreviated.

RTK測位基準局1000は、本発明におけるリアルタイムキネマティック測位基準局の例である。 The RTK positioning reference station 1000 is an example of a real-time kinematic positioning reference station in the present invention.

RTK測位基準アンテナ装置1100は本発明におけるアンテナ装置の例であり、脚1110は本発明における脚の例である。 The RTK positioning reference antenna device 1100 is an example of the antenna device in the present invention, and the leg 1110 is an example of the leg in the present invention.

アンテナ装置台座1200は、本発明におけるアンテナ装置台座の例である。台座表面1210は本発明における台座表面の例であり、凹部1212は本発明における凹部の例である。台座位置座標書込み部1220は、本発明における台座位置座標書込み部の例である。アンテナ装置相対位置設定機構1230は、本発明におけるアンテナ装置相対位置設定機構の例である。圃場環境測定ユニット1240は、本発明における圃場環境測定ユニットの例である。 The antenna device pedestal 1200 is an example of the antenna device pedestal in the present invention. The pedestal surface 1210 is an example of the pedestal surface in the present invention, and the recess 1212 is an example of the recess in the present invention. The pedestal position coordinate writing unit 1220 is an example of the pedestal position coordinate writing unit in the present invention. The antenna device relative position setting mechanism 1230 is an example of the antenna device relative position setting mechanism in the present invention. The field environment measurement unit 1240 is an example of the field environment measurement unit in the present invention.

マルチローターヘリコプター2000は、本発明における飛行体の例である。 The multi-rotor helicopter 2000 is an example of an air vehicle in the present invention.

本実施の形態のRTK誤差信号は、本発明におけるリアルタイムキネマティック誤差信号の例である。 The RTK error signal of the present embodiment is an example of the real-time kinematic error signal in the present invention.

本実施の形態の農薬は、本発明における薬剤の例である。 The pesticide of the present embodiment is an example of the agent in the present invention.

はじめに、図1から3を主として参照しながら、本実施の形態の農薬散布システムについて具体的に説明する。 First, the pesticide spraying system of the present embodiment will be specifically described with reference to FIGS. 1 to 3.

ここに、図1は本発明における実施の形態の農薬散布システムの模式的な斜視図であり、図2は本発明における実施の形態のアンテナ装置台座1200の模式的な斜視図であり、図3は本発明における実施の形態のRTK測位基準局1000の模式的な断面図である。 Here, FIG. 1 is a schematic perspective view of the pesticide spraying system of the embodiment of the present invention, and FIG. 2 is a schematic perspective view of the antenna device pedestal 1200 of the embodiment of the present invention. Is a schematic cross-sectional view of the RTK positioning reference station 1000 according to the embodiment of the present invention.

本実施の形態の農薬散布システムの動作について説明しながら、本発明に関連した発明の農薬散布方法についても説明する。 While explaining the operation of the pesticide spraying system of the present embodiment, the pesticide spraying method of the invention related to the present invention will also be described.

RTK測位基準局1000は、アンテナ装置台座1200へセットされるRTK測位基準アンテナ装置1100を利用して構築されるリアルタイムキネマティック測位基準局である。 The RTK positioning reference station 1000 is a real-time kinematic positioning reference station constructed by using the RTK positioning reference antenna device 1100 set on the antenna device pedestal 1200.

マルチローターヘリコプター2000の無線操縦のみならず、インターネットなどを介して無料で提供される地図よりしばしばより正確である、無線操縦のための圃場地図の作成が、RTK測位基準局1000を利用して行われてもよい。このような圃場地図の作成は、圃場Fの周囲を巡回する圃場地図作成者によって保持される、RTK測位移動アンテナ装置との協働で行われる。 Not only the radio control of the multi-rotor helicopter 2000, but also the creation of the field map for radio control, which is often more accurate than the map provided free of charge via the Internet etc., is performed using the RTK Positioning Reference Station 1000. You may. The creation of such a field map is performed in collaboration with the RTK positioning mobile antenna device held by the field map creator who circulates around the field F.

RTK測位基準アンテナ装置1100は、一意的に設定されるアンテナ装置台座1200に対するアンテナ装置相対位置でアンテナ装置台座1200へセットされ、測位衛星から得られた信号、および書込まれた台座位置座標に基づいてRTK誤差信号を発信する。 The RTK positioning reference antenna device 1100 is set on the antenna device pedestal 1200 at a position relative to the antenna device pedestal 1200 that is uniquely set, and is based on the signal obtained from the positioning satellite and the written pedestal position coordinates. RTK error signal is transmitted.

発信されたRTK誤差信号の受信、および測位衛星から得られた信号のRTK誤差信号による誤差補正は、マルチローターヘリコプター2000で行われてもよいし、ユーザー携帯端末装置などで行われてもよい。 The transmission of the transmitted RTK error signal and the error correction of the signal obtained from the positioning satellite by the RTK error signal may be performed by the multi-rotor helicopter 2000, or may be performed by a user mobile terminal device or the like.

たとえば、アンテナ装置台座1200の台座位置を表現する、台座経度および台座緯度ならびに台座高度の三つ組みである三次元的な台座位置座標が、利用される。 For example, three-dimensional pedestal position coordinates, which are a triplet of pedestal longitude and pedestal latitude and pedestal altitude, are used to represent the pedestal position of the antenna device pedestal 1200.

たとえば、ほぼ2キロ平方メートルの範囲においてRTK誤差信号を発信するために、RTK測位基準アンテナ装置1100の脚1110はほぼ4メートルの幅で広げられ、アンテナ装置台座1200に対するアンテナ装置相対高さはほぼ1.5メートルであるように設定される。このような数値データは、RTK測位基準アンテナ装置1100のモニターまたはユーザー携帯端末装置などに表示されてもよい。 For example, in order to transmit an RTK error signal in a range of approximately 2 km2, the legs 1110 of the RTK positioning reference antenna device 1100 are extended to a width of approximately 4 meters and the relative height of the antenna device relative to the antenna device pedestal 1200 is approximately 1. It is set to be .5 meters. Such numerical data may be displayed on the monitor of the RTK positioning reference antenna device 1100, the user's mobile terminal device, or the like.

アンテナ装置台座1200は、RTK測位基準局1000を構築するためのRTK測位基準アンテナ装置1100がセットされるアンテナ装置台座であって、台座位置座標書込み部1220と、アンテナ装置相対位置設定機構1230と、圃場環境測定ユニット1240と、を有する。 The antenna device pedestal 1200 is an antenna device pedestal in which the RTK positioning reference antenna device 1100 for constructing the RTK positioning reference station 1000 is set, and is a pedestal position coordinate writing unit 1220, an antenna device relative position setting mechanism 1230, and a field. It has an environment measurement unit 1240 and.

台座位置座標書込み部1220は、あらかじめ得られる、アンテナ装置台座1200の三次元的な台座位置座標が書込まれる台座位置座標書込み部である。 The pedestal position coordinate writing unit 1220 is a pedestal position coordinate writing unit that is obtained in advance and in which the three-dimensional pedestal position coordinates of the antenna device pedestal 1200 are written.

アンテナ装置相対位置設定機構1230は、セットされるRTK測位基準アンテナ装置1100のアンテナ装置台座1200に対するアンテナ装置相対位置を一意的に設定するためのアンテナ装置相対位置設定機構である。 The antenna device relative position setting mechanism 1230 is an antenna device relative position setting mechanism for uniquely setting the antenna device relative position with respect to the antenna device pedestal 1200 of the RTK positioning reference antenna device 1100 to be set.

錘球1121がRTK測位基準アンテナ装置1100からアンテナ装置台座1200の上面の錘球標的1211へ向かって錘糸1122で吊架されることにより、アンテナ装置台座1200に対するアンテナ装置相対位置が一意的に設定される。 The antenna device relative position with respect to the antenna device pedestal 1200 is uniquely set by suspending the weight ball 1121 from the RTK positioning reference antenna device 1100 toward the weight ball target 1211 on the upper surface of the antenna device pedestal 1200 with the weight thread 1122. Will be done.

なお、図4に示されているように、RTK測位基準アンテナ装置1100の脚1110がアンテナ装置台座1200の台座表面1210に形成された凹部1212へ嵌込まれることにより、アンテナ装置台座1200に対するアンテナ装置相対位置が一意的に設定されてもよい。 As shown in FIG. 4, the leg 1110 of the RTK positioning reference antenna device 1100 is fitted into the recess 1212 formed in the pedestal surface 1210 of the antenna device pedestal 1200, so that the antenna device with respect to the antenna device pedestal 1200 is fitted. The relative position may be set uniquely.

ここに、図4は、本発明における変形例の実施の形態のRTK測位基準局1000の模式的な斜視図である。 Here, FIG. 4 is a schematic perspective view of the RTK positioning reference station 1000 according to the embodiment of the modified example of the present invention.

脚1110の個数は三脚が構成されるように3であるので、凹部1212の個数も3である。 Since the number of legs 1110 is 3 so that a tripod is formed, the number of recesses 1212 is also 3.

セットされるRTK測位基準アンテナ装置1100のアンテナ装置台座1200に対するアンテナ装置相対位置は一意的に設定されるので、RTK測位基準アンテナ装置1100はそれ自身のアンテナ装置位置を表現する三次元的なアンテナ装置位置座標を、アンテナ装置相対位置に基づいて、台座位置座標書込み部1220へ書込まれた台座位置座標から正確に算出することができる。 Since the relative position of the antenna device relative to the antenna device pedestal 1200 of the RTK positioning reference antenna device 1100 to be set is uniquely set, the RTK positioning reference antenna device 1100 is a three-dimensional antenna device that expresses its own antenna device position. The position coordinates can be accurately calculated from the pedestal position coordinates written in the pedestal position coordinate writing unit 1220 based on the relative position of the antenna device.

RTK測位基準アンテナ装置1100は、アンテナ装置相対位置をあらかじめ認識していることが望ましい。 It is desirable that the RTK positioning reference antenna device 1100 recognizes the relative position of the antenna device in advance.

台座位置座標書込み部1220は、RF(Radio Frequency)タグまたはバーコードを利用して設けられる。 The pedestal position coordinate writing unit 1220 is provided by using an RF (Radio Frequency) tag or a barcode.

RTK測位基準アンテナ装置1100がアンテナ装置台座1200へセットされたときに、台座位置座標は電気的なまたは光学的な読込みにより自動で入力されてもよいし手動で入力されてもよい。 When the RTK positioning reference antenna device 1100 is set on the antenna device pedestal 1200, the pedestal position coordinates may be automatically input by electrical or optical reading or may be manually input.

たとえば、上述された圃場地図に関するデータは、クラウドサーバーなどへアップロードされて管理されてもよいが、台座位置座標書込み部1220のデータ容量に余裕がある場合には、台座位置が圃場Fの近傍の位置であるアンテナ装置台座1200との対応関係がはっきりするように、台座位置座標とともに台座位置座標書込み部1220へ書込まれてもよい。 For example, the above-mentioned data related to the field map may be uploaded to a cloud server or the like and managed, but if the data capacity of the pedestal position coordinate writing unit 1220 is sufficient, the pedestal position is near the field F. It may be written in the pedestal position coordinate writing unit 1220 together with the pedestal position coordinates so that the correspondence relationship with the antenna device pedestal 1200, which is the position, is clear.

つぎに、図1および3を主として参照しながら、本実施の形態の農薬散布システムについてより具体的に説明する。 Next, the pesticide spraying system of the present embodiment will be described more specifically with reference to FIGS. 1 and 3.

RTK測位基準アンテナ装置1100は、圃場Fにおいて農薬を散布するためのマルチローターヘリコプター2000の無線操縦に利用されるアンテナ装置である。 The RTK positioning reference antenna device 1100 is an antenna device used for radio control of the multi-rotor helicopter 2000 for spraying pesticides in the field F.

アンテナ装置台座1200の台座位置は、圃場Fの近傍の位置である。 The pedestal position of the antenna device pedestal 1200 is a position near the field F.

圃場環境測定ユニット1240は、圃場Fの環境に関する測定を行う圃場環境測定ユニットである。 The field environment measurement unit 1240 is a field environment measurement unit that measures the environment of the field F.

圃場Fの環境に関する測定は、たとえば、RTK測位基準アンテナ装置1100に内蔵されている、設置されたマイクロコンピューター、バッテリーおよびカメラを利用して、圃場温度、圃場湿度および圃場水位について行われる。 Environmental measurements of field F are made, for example, with respect to field temperature, field humidity and field water level using an installed microcomputer, battery and camera built into the RTK positioning reference antenna device 1100.

圃場環境測定ユニット1240は、地下に埋設されていてもよいし、地上に露出していてもよい。 The field environment measurement unit 1240 may be buried underground or exposed above the ground.

図5に示されているように、圃場水位は、スプリングまたはマグネットなどの付勢力に抗して回動される、水Wの高さに応じて鉛直方向に配列されたフロート部材1241fの移動によりオンオフされる複数のスイッチ部材1241sを有する圃場環境測定ユニット1240の圃場水位測定部1241により測定される。 As shown in FIG. 5, the field water level is caused by the movement of the float members 1241f arranged in the vertical direction according to the height of the water W, which is rotated against the urging force such as a spring or a magnet. It is measured by the field water level measuring unit 1241 of the field environment measuring unit 1240 having a plurality of switch members 1241s to be turned on and off.

ここに、図5は、本発明における実施の形態の圃場水位測定部1241の模式的な正面図である。 Here, FIG. 5 is a schematic front view of the field water level measuring unit 1241 according to the embodiment of the present invention.

圃場Fの環境に関する測定の結果は、無線通信を利用して、ネットワークを経てユーザー携帯端末装置などに通知されてもよい。 The result of the measurement regarding the environment of the field F may be notified to the user mobile terminal device or the like via the network by using wireless communication.

図6に示されているように、圃場環境測定ユニット1240においては、バッテリー出力電圧Vαのバッテリー電圧Vが出力される期間Tα、およびバッテリースリープ期間に対応する、バッテリー電圧Vが出力されない期間Tβが消費電力などを考慮して調節される。 As shown in FIG. 6, in the field environment measurement unit 1240, the period Tα in which the battery voltage V of the battery output voltage Vα is output and the period Tβ in which the battery voltage V is not output corresponding to the battery sleep period are It is adjusted in consideration of power consumption.

ここに、図6は、本発明における実施の形態の圃場水位測定部1241のバッテリー電圧Vと時間tとの間の関係の説明図である。 Here, FIG. 6 is an explanatory diagram of the relationship between the battery voltage V and the time t of the field water level measuring unit 1241 according to the embodiment of the present invention.

圃場環境測定ユニット1240の消費電力を抑制するために、150アンペアおよび3.2ボルトのバッテリー仕様で駆動するタイマーが利用されることが望ましい。ほぼ10分間のユニット駆動が1回の測定の結果の通知のために必要であり、1日あたり10回の測定の結果の通知はほぼ一年間にわたってバッテリー充電なしに行われる。もちろん、圃場水位は、たとえば、1日あたり3回しか測定されなくてもよい。 In order to reduce the power consumption of the field environment measurement unit 1240, it is desirable to use a timer driven by a battery specification of 150 amps and 3.2 volts. Almost 10 minutes of unit drive is required for notification of the result of one measurement, and notification of the result of 10 measurements per day takes place for almost a year without battery charging. Of course, the field water level may be measured, for example, only three times a day.

なお、本発明に関連した発明のプログラムは、上述された本発明に関連した発明の農薬散布方法の全部または一部のステップ(または工程、動作および作用など)の動作をコンピューターに実行させるためのプログラムであって、コンピューターと協働して動作するプログラムである。 The program of the invention related to the present invention is for causing a computer to perform the operation of all or a part of the steps (or steps, operations, actions, etc.) of the pesticide spraying method of the invention related to the present invention described above. It is a program that works in cooperation with a computer.

また、本発明に関連した発明の記録媒体は、上述された本発明に関連した発明の農薬散布方法の全部または一部のステップ(または工程、動作および作用など)の全部または一部の動作をコンピューターに実行させるためのプログラムを記録した記録媒体であり、読取られたプログラムがコンピューターと協働して利用されるコンピューター読取り可能な記録媒体である。 In addition, the recording medium of the invention related to the present invention performs all or part of the operation of all or part of the steps (or steps, operations, actions, etc.) of the pesticide spraying method of the invention related to the present invention described above. It is a recording medium on which a program to be executed by a computer is recorded, and is a computer-readable recording medium in which the read program is used in cooperation with the computer.

なお、上述された「一部のステップ(または工程、動作および作用など)」は、それらの複数のステップの内の一つまたはいくつかのステップを意味する。 The above-mentioned "partial step (or process, operation, action, etc.)" means one or several steps among the plurality of steps.

また、上述された「ステップ(または工程、動作および作用など)の動作」は、上述されたステップの全部または一部の動作を意味する。 Further, the above-mentioned "operation of a step (or process, operation, action, etc.)" means an operation of all or a part of the above-mentioned steps.

また、本発明に関連した発明のプログラムの一利用形態は、インターネット、光、電波または音波などのような伝送媒体の中を伝送され、コンピューターにより読取られ、コンピューターと協働して動作するという形態であってもよい。 Further, one usage form of the program of the invention related to the present invention is a form in which the program is transmitted in a transmission medium such as the Internet, light, radio waves, sound waves, etc., read by a computer, and operates in cooperation with the computer. It may be.

また、記録媒体としては、ROM(Read Only Memory)などが含まれる。 Further, the recording medium includes a ROM (Read Only Memory) and the like.

また、コンピューターは、CPU(Central Processing Unit)などのような純然たるハードウェアに限らず、ファームウェア、OS(Operating System)、そしてさらに周辺機器を含んでもよい。 Further, the computer is not limited to pure hardware such as a CPU (Central Processing Unit), but may include a firmware, an OS (Operating System), and further peripheral devices.

なお、上述されたように、本発明の構成は、ソフトウェア的に実現されてもよいし、ハードウェア的に実現されてもよい。 As described above, the configuration of the present invention may be realized by software or hardware.

本発明におけるアンテナ装置台座およびリアルタイムキネマティック測位基準局は、RTK測位基準局を容易に構築することができ、マルチローターヘリコプターのような飛行体などのためのアンテナ装置台座およびリアルタイムキネマティック測位基準局に利用する目的に有用である。 The antenna device pedestal and real-time kinematic positioning reference station in the present invention can easily construct an RTK positioning reference station, and are used for the antenna device pedestal and real-time kinematic positioning reference station for an aircraft such as a multi-rotor helicopter. Useful for the purpose.

1000 RTK測位基準局
1100 RTK測位基準アンテナ装置
1110 脚
1121 錘球
1122 錘糸
1200 アンテナ装置台座
1210 台座表面
1211 錘球標的
1212 凹部
1220 台座位置座標書込み部
1230 アンテナ装置相対位置設定機構
1240 圃場環境測定ユニット
1241 圃場水位測定部
1241f フロート部材
1241s スイッチ部材
2000 マルチローターヘリコプター
F 圃場
W 水
1000 RTK positioning reference station 1100 RTK positioning reference antenna device 1110 leg 1121 weight ball 1122 weight thread 1200 antenna device pedestal 1210 pedestal surface 1211 weight ball target 1212 recess 1220 pedestal position coordinate writing part 1230 antenna device relative position setting mechanism 1240 field environment measurement unit 1241 Field water level measuring unit 1241f Float member 1241s Switch member 2000 Multi-rotor helicopter F Field W water

Claims (3)

リアルタイムキネマティック測位基準局を構築するためのアンテナ装置がセットされるアンテナ装置台座であって、
あらかじめ得られる、前記アンテナ装置台座の三次元的な台座位置座標が書込まれる台座位置座標書込み部を備え、
前記アンテナ装置は、圃場において作業を行う飛行体の飛行操縦に利用されるデータを発信するアンテナ装置であり、
前記アンテナ装置台座の台座位置は、前記圃場の近傍の位置であり、
前記台座位置座標書込み部には、前記アンテナ装置台座に対応する近傍の圃場だけについての地図に関するデータが書込まれており、
前記セットされるアンテナ装置の前記アンテナ装置台座に対するアンテナ装置相対位置を一意的に設定するためのアンテナ装置相対位置設定機構を備え、
前記アンテナ装置相対位置設定機構は、
前記アンテナ装置の三つの脚が前記アンテナ装置台座の台座表面に形成された三つの凹部へそれぞれ嵌込まれることにより、前記アンテナ装置台座に対する前記アンテナ装置相対位置が一意的に設定され、
前記アンテナ装置は、測位衛星から得られた信号、および前記書込まれた台座位置座標に基づいてリアルタイムキネマティック誤差信号を生成し、
前記飛行体は、前記圃場の地図に関するデータおよび前記リアルタイムキネマティック誤差信号を前記アンテナ装置から受信し利用
前記台座位置座標書込み部は、バーコードを利用して設けられることを特徴とするアンテナ装置台座。
It is an antenna device pedestal on which an antenna device for constructing a real-time kinematic positioning reference station is set.
It is provided with a pedestal position coordinate writing unit on which the three-dimensional pedestal position coordinates of the antenna device pedestal obtained in advance are written.
The antenna device is an antenna device that transmits data used for flight maneuvering of an air vehicle working in a field.
The pedestal position of the antenna device pedestal is a position near the field.
In the pedestal position coordinate writing unit, data related to a map of only the fields in the vicinity corresponding to the antenna device pedestal are written.
The antenna device relative position setting mechanism for uniquely setting the antenna device relative position with respect to the antenna device pedestal of the set antenna device is provided.
The antenna device relative position setting mechanism is
By fitting the three legs of the antenna device into the three recesses formed on the pedestal surface of the antenna device pedestal, the relative position of the antenna device with respect to the antenna device pedestal is uniquely set.
The antenna device generates a real-time kinematic error signal based on the signal obtained from the positioning satellite and the written pedestal position coordinates.
The aircraft may receive data and the real-time kinematic error signal relating to the field of maps from the antenna device utilizes,
The antenna device pedestal is characterized in that the pedestal position coordinate writing unit is provided by using a barcode.
前記圃場の環境に関する測定を行う圃場環境測定ユニットを備えたことを特徴とする請求項1に記載のアンテナ装置台座。 The antenna device pedestal according to claim 1, further comprising a field environment measurement unit for measuring the field environment. 請求項1に記載の前記アンテナ装置台座へ前記セットされるアンテナ装置を利用して前記構築されるリアルタイムキネマティック測位基準局であって、
前記アンテナ装置は、一意的に設定される前記アンテナ装置台座に対するアンテナ装置相対位置で前記アンテナ装置台座へセットされ、測位衛星から得られた信号、および前記書込まれた台座位置座標に基づいてリアルタイムキネマティック誤差信号を発信することを特徴とするリアルタイムキネマティック測位基準局。
The real-time kinematic positioning reference station constructed by using the antenna device set on the antenna device pedestal according to claim 1.
The antenna device is set on the antenna device pedestal at a position relative to the antenna device pedestal that is uniquely set, and is set in real time based on a signal obtained from the positioning satellite and the written pedestal position coordinates. A real-time kinematic positioning reference station characterized by transmitting a kinematic error signal.
JP2020549081A 2020-03-17 2020-03-17 Positioning reference station Active JP6882629B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011706 WO2021186548A1 (en) 2020-03-17 2020-03-17 Positioning reference station

Publications (2)

Publication Number Publication Date
JP6882629B1 true JP6882629B1 (en) 2021-06-02
JPWO2021186548A1 JPWO2021186548A1 (en) 2021-09-23

Family

ID=76083901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020549081A Active JP6882629B1 (en) 2020-03-17 2020-03-17 Positioning reference station

Country Status (2)

Country Link
JP (1) JP6882629B1 (en)
WO (1) WO2021186548A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062980A (en) * 2021-11-03 2022-02-18 中国科学院近代物理研究所 Electromagnet magnetic field measurement positioning device, positioning auxiliary system and positioning method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140122889A1 (en) * 2012-10-30 2014-05-01 The Stardard Register Company Systems, methods, and apparatus for marking, verifying, and authenticating consumer products
JP2018105708A (en) * 2016-12-26 2018-07-05 株式会社クボタ Location positioning system
JP2018113940A (en) * 2017-01-20 2018-07-26 株式会社クボタ Position measurement device for work vehicle
JP2018169285A (en) * 2017-03-30 2018-11-01 ヤンマー株式会社 Reference station base, gnss reference station device, and gnss reference station system
US20190041637A1 (en) * 2017-08-03 2019-02-07 Commscope Technologies Llc Methods of automatically recording patching changes at passive patch panels and network equipment
CN111007535A (en) * 2019-11-28 2020-04-14 国网山东省电力公司经济技术研究院 Beidou foundation enhancement system reference station observation pier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140122889A1 (en) * 2012-10-30 2014-05-01 The Stardard Register Company Systems, methods, and apparatus for marking, verifying, and authenticating consumer products
JP2018105708A (en) * 2016-12-26 2018-07-05 株式会社クボタ Location positioning system
JP2018113940A (en) * 2017-01-20 2018-07-26 株式会社クボタ Position measurement device for work vehicle
JP2018169285A (en) * 2017-03-30 2018-11-01 ヤンマー株式会社 Reference station base, gnss reference station device, and gnss reference station system
US20190041637A1 (en) * 2017-08-03 2019-02-07 Commscope Technologies Llc Methods of automatically recording patching changes at passive patch panels and network equipment
CN111007535A (en) * 2019-11-28 2020-04-14 国网山东省电力公司经济技术研究院 Beidou foundation enhancement system reference station observation pier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062980A (en) * 2021-11-03 2022-02-18 中国科学院近代物理研究所 Electromagnet magnetic field measurement positioning device, positioning auxiliary system and positioning method
CN114062980B (en) * 2021-11-03 2022-04-26 中国科学院近代物理研究所 Electromagnet magnetic field measurement positioning device, positioning auxiliary system and positioning method

Also Published As

Publication number Publication date
WO2021186548A1 (en) 2021-09-23
JPWO2021186548A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
KR102229095B1 (en) UAV operation method and device
WO2018094661A1 (en) Flight course planning method for agricultural unmanned aerial vehicle, and ground control end
US11086025B2 (en) Integrated visual geo-referencing target unit and method of operation
US11302203B2 (en) Data processing device, drone, and control device, method, and processing program therefor
US20150175263A1 (en) Vehicle control and interface with mobile device
KR101929129B1 (en) Apparauts and method for controlling an agricultural unmanned aerial vehicles
WO2019100188A1 (en) Method for planning operation route of unmanned aerial vehicle and ground end device
CN105518414A (en) Distributed barometer network to assist in indoor navigation
JP2019062882A (en) System for measuring three-dimensional environment data, particularly for plant care, as well as sensor module
Greco et al. Localization of RFID tags for environmental monitoring using UAV
Reiser et al. Autonomous field navigation, data acquisition and node location in wireless sensor networks
Mogili et al. An intelligent drone for agriculture applications with the aid of the MAVlink protocol
JP2020170213A (en) Drone-work support system and drone-work support method
JP6882629B1 (en) Positioning reference station
Misopolinos et al. Development of a UAV system for VNIR-TIR acquisitions in precision agriculture
Devriendt et al. UAS Mapping as an alternative for land surveying techniques?
WO2021207977A1 (en) Movable platform operation method, movable platform and electronic device
JP2018155710A (en) Radio wave measurement device, unmanned aircraft, and radio wave measurement device management system
Ezekiel Remote Data Acquisition Using UAVs and Arduino Systems for Agricultural Purposes
CN109115183A (en) A kind of larger range matrix form low-cost unmanned machine aerial survey system and method
Kabir et al. Design and implementation of a crop health monitoring system
WO2021087727A1 (en) Positioning method and system, remote control device, and rtk module
JP7412038B2 (en) Re-survey necessity determination device, survey system, drone system, and re-survey necessity determination method
Joordens et al. Conceptual design for fully autonomous aerial and ground system for precision agriculture
Van Rensburg Investigating factors influencing UAS task automation in dynamic environments

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200915

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6882629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250