JP6879783B2 - Tea viscosity inhibitor and jelly-like tea foods containing it - Google Patents

Tea viscosity inhibitor and jelly-like tea foods containing it Download PDF

Info

Publication number
JP6879783B2
JP6879783B2 JP2017041716A JP2017041716A JP6879783B2 JP 6879783 B2 JP6879783 B2 JP 6879783B2 JP 2017041716 A JP2017041716 A JP 2017041716A JP 2017041716 A JP2017041716 A JP 2017041716A JP 6879783 B2 JP6879783 B2 JP 6879783B2
Authority
JP
Japan
Prior art keywords
tea
starch
jelly
viscosity
prototype example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017041716A
Other languages
Japanese (ja)
Other versions
JP2018143173A (en
Inventor
晃一 村山
晃一 村山
欣明 岩田
欣明 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2017041716A priority Critical patent/JP6879783B2/en
Publication of JP2018143173A publication Critical patent/JP2018143173A/en
Application granted granted Critical
Publication of JP6879783B2 publication Critical patent/JP6879783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grain Derivatives (AREA)
  • Tea And Coffee (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)

Description

本発明は、茶類とゼラチンを含有してなるゼリー様茶類食品の粘度上昇を抑制するための茶類粘度抑制剤及びこの茶類粘度抑制剤を含有してなるゼリー様茶類食品に関する。 The present invention relates to a tea viscosity inhibitor for suppressing an increase in viscosity of a jelly-like tea food containing tea and gelatin, and a jelly-like tea food containing the tea viscosity inhibitor.

近年、健康志向の高まりにより、健康機能が着目されているゼラチンやコラーゲンといった動物性機能成分等や、ポリフェノール等の植物性機能成分等が注目されている。ポリフェノール等の植物性機能成分は、抹茶や緑茶等の茶類に多く含まれる成分として知られており、種々の茶類からなる食品を飲食することにより摂取することができる。そこで、ゼラチンやコラーゲンとともにこれら茶類を用いた健康食品、美容品、医療品等の製品の開発が活発に進められている(例えば、特許文献1,2参照)。 In recent years, with increasing health consciousness, animal functional components such as gelatin and collagen, which are attracting attention for their health functions, and plant functional components such as polyphenols have been attracting attention. Plant-derived functional ingredients such as polyphenols are known to be abundantly contained in teas such as matcha and green tea, and can be ingested by eating and drinking foods composed of various teas. Therefore, the development of products such as health foods, cosmetological products, and medical products using these teas together with gelatin and collagen is being actively promoted (see, for example, Patent Documents 1 and 2).

例えば、特許文献1には、ゼラチンとポリフェノールと凝集材を含むゴム状組成物、ゼラチンとポリフェノールとグリセリンを含み乾燥処理が施されたゴム状組成物、ゼラチンとポリフェノールとグリセリンを含みゲル化させたゴム状組成物が記載されている。また、特許文献2には、ゼラチンにカテキンを作用させ架橋させた機能性架橋構造体を含む医療材料が記載されている。これら特許文献1,2は、ゼラチンやコラーゲンとポリフェノールやカテキン等の植物性機能成分とを併用することで生じる架橋反応を利用しているため、高い粘性を備えた混合物となる。 For example, Patent Document 1 contains a rubber-like composition containing gelatin, polyphenols and a flocculant, a rubber-like composition containing gelatin, polyphenols and glycerin and subjected to a drying treatment, and gelling containing gelatin, polyphenols and glycerin. A rubbery composition is described. Further, Patent Document 2 describes a medical material containing a functional crosslinked structure in which gelatin is crosslinked by allowing catechin to act on it. Since these Patent Documents 1 and 2 utilize a cross-linking reaction generated by using gelatin or collagen in combination with a plant-derived functional component such as polyphenol or catechin, they are a mixture having high viscosity.

一方、いわゆるサプリメントと称される栄養補助食品では、ゼラチン皮膜のソフトカプセル化された製品が一般的である。しかしながら、ゼラチンやコラーゲンと植物性機能成分との併用は、架橋反応により粘度の向上が生じるため、ソフトカプセル加工が困難となる。そのため、ゼラチンやコラーゲンと植物性機能成分とを併用しながら粘度の向上を抑制することが求められる。 On the other hand, in dietary supplements, so-called supplements, soft-encapsulated products with a gelatin film are common. However, when gelatin or collagen is used in combination with a plant-derived functional component, the viscosity is improved by a cross-linking reaction, which makes soft capsule processing difficult. Therefore, it is required to suppress the improvement of viscosity while using gelatin or collagen in combination with plant functional ingredients.

そこで、植物ポリフェノールとコラーゲンとの混合による架橋構造によって生じる濁りや沈殿を抑制するために、塩基性アミノ酸を添加する方法が知られている(特許文献3参照)。しかしながら、塩基性アミノ酸の例としてアルギニンやリジン、オルニチン等が挙げられるが、これらは価格が高く経済的に不利である。しかも、適切な抑制効果を得るためには組成物をアルカリ性にする必要があるため、苦味等が生じやすい問題もある。 Therefore, a method of adding a basic amino acid is known in order to suppress turbidity and precipitation caused by a crosslinked structure due to a mixture of plant polyphenols and collagen (see Patent Document 3). However, examples of basic amino acids include arginine, lysine, ornithine, etc., which are expensive and economically disadvantageous. Moreover, since it is necessary to make the composition alkaline in order to obtain an appropriate suppressing effect, there is a problem that bitterness or the like is likely to occur.

この苦味の欠点を解消する方法としては、砂糖等の甘味料を添加することが考えられるが、ゼラチンやコラーゲンがタンパク質であることから、アルカリ性下では糖とメイラード反応が生じるため、褐色に変色して呈味や外観が悪化するおそれがある。また、甘味料の他にマスキング性能に優れたサイクロデキストリン(シクロデキストリン)を用いることも考えられるが、サイクロデキストリンは分子内に標的の物質を取り込むと放出しにくいため、機能性成分が低下する問題がある。 As a method of eliminating this defect of bitterness, it is conceivable to add a sweetener such as sugar, but since gelatin and collagen are proteins, a Maillard reaction occurs with sugar under alkaline conditions, so that the color changes to brown. The taste and appearance may deteriorate. In addition to sweeteners, cyclodextrin (cyclodextrin), which has excellent masking performance, may be used, but cyclodextrin is difficult to release when the target substance is taken into the molecule, resulting in a decrease in functional components. There is.

特開2007−089579号公報Japanese Unexamined Patent Publication No. 2007-0895779 特開2015−208369号公報Japanese Unexamined Patent Publication No. 2015-208369 特許第4653052号公報Japanese Patent No. 4653052

本発明は、前記の点に鑑みなされたものであり、ゼラチンやコラーゲンと植物性機能成分を含む茶類との併用に際して安価かつ効果的に粘度の向上が抑制された茶類粘度抑制剤及びこれを含有するゼリー様茶類食品を提供する。 The present invention has been made in view of the above points, and is an inexpensive and effective tea viscosity inhibitor whose viscosity improvement is suppressed when gelatin or collagen is used in combination with tea containing a vegetable functional ingredient. To provide a jelly-like tea food containing.

すなわち、請求項1の発明は、茶類とゼラチンを含有してなるゼリー様茶類食品において前記茶類の添加量に対して少なくとも同等以上添加されて前記ゼリー様茶類食品の粘度上昇を抑制する粘度抑制剤であって、前記粘度抑制剤は、デンプンの糖鎖に物理的な衝撃が加えられて分解された分解処理物である物理加工デンプン、加水分解か酵素的加水分解のいずれかまたは両方により分解されたデキストロース当量(DE)を6以下とする分解処理物である分解デンプン、または化工デンプンであることを特徴とする茶類粘度抑制剤に係る。 That is, the invention of claim 1 suppresses an increase in viscosity of the jelly-like tea food by adding at least equal to or more than the addition amount of the tea in the jelly-like tea food containing tea and gelatin. a viscosity suppressing agent, wherein the viscosity suppressing agent, either to sugar chains of the starch physical shock is decomposition products decomposed by applied physical modified starch, hydrolysis or enzymatic hydrolysis or The present invention relates to a tea viscosity inhibitor characterized by being a decomposed starch which is a decomposition-treated product having a dextrose equivalent (DE) of 6 or less decomposed by both, or a modified starch.

請求項2の発明は、前記物理加工デンプンが、デンプンの糊化物に超音波を照射した超音波照射デンプンである請求項1に記載の茶類粘度抑制剤に係る。 The invention of claim 2 relates to the tea viscosity inhibitor according to claim 1, wherein the physically modified starch is an ultrasonically irradiated starch obtained by irradiating a gelatinized starch with ultrasonic waves.

請求項3の発明は、前記物理加工デンプンが、ワキシーコーンスターチを原料とする請求項2に記載の茶類粘度抑制剤に係る。 The invention of claim 3 relates to the tea viscosity inhibitor according to claim 2, wherein the physically modified starch is made from waxy cornstarch as a raw material.

請求項の発明は、前記化工デンプンが、アセチル化デンプンである請求項1に記載の茶類粘度抑制剤に係る。 The invention of claim 4 relates to the tea viscosity inhibitor according to claim 1, wherein the modified starch is acetylated starch.

請求項の発明は、請求項1ないしのいずれか1項に記載の茶類粘度抑制剤と、茶類と、ゼラチンと、水分とを含有してなる茶類ゼリー様物を有することを特徴とするゼリー様茶類食品に係る。 The invention of claim 5 has a tea jelly-like product containing the tea viscosity inhibitor according to any one of claims 1 to 4, tea, gelatin, and water. It relates to the characteristic jelly-like tea food.

請求項の発明は、前記茶類ゼリー様物が乾燥物である請求項に記載のゼリー様茶類食品に係る。 The invention of claim 6 relates to the jelly-like tea food according to claim 5 , wherein the tea jelly-like product is a dried product.

請求項の発明は、前記茶類粘度抑制剤が、前記茶類ゼリー様物中に0.5〜5重量%含有される請求項またはに記載のゼリー様茶類食品に係る。 The invention of claim 7 relates to the jelly-like tea food according to claim 5 or 6 , wherein the tea viscosity inhibitor is contained in the tea jelly-like product in an amount of 0.5 to 5% by weight.

請求項1の発明に係る茶類粘度抑制剤によると、茶類とゼラチンを含有してなるゼリー様茶類食品において前記茶類の添加量に対して少なくとも同等以上添加されて前記ゼリー様茶類食品の粘度上昇を抑制する粘度抑制剤であって、前記粘度抑制剤は、デンプンの糖鎖に物理的な衝撃が加えられて分解された分解処理物である物理加工デンプン、加水分解か酵素的加水分解のいずれかまたは両方により分解されたデキストロース当量(DE)を6以下とする分解処理物である分解デンプン、または化工デンプンであるため、ゼリー様茶類食の粘度上昇を安価かつ効果的に抑制することができる。 According to the tea viscosity inhibitor according to the invention of claim 1, the jelly-like tea is added at least equal to or more than the amount of the tea added in the jelly-like tea food containing tea and gelatin. a viscosity inhibitor to suppress the viscosity increase of the food, the viscosity suppressing agent, physical modified starch, hydrolysed or enzymatically is decomposed product physical shock was degraded added to the sugar chains of the starch Since it is a decomposed starch or modified starch that is a decomposition product having a dextrose equivalent (DE) of 6 or less decomposed by either or both of hydrolysis, it is inexpensive and effective in increasing the viscosity of jelly-like tea foods. It can be suppressed.

請求項2の発明に係る茶類粘度抑制剤によると、請求項1の発明において、前記物理加工デンプンが、デンプンの糊化物に超音波を照射した超音波照射デンプンであるため、調製が容易で入手しやすい。 According to the tea viscosity inhibitor according to the invention of claim 2, in the invention of claim 1, the physically modified starch is an ultrasonically irradiated starch obtained by irradiating a gelatinized starch with ultrasonic waves, so that preparation is easy. Easy to obtain.

請求項3の発明に係る茶類粘度抑制剤によると、請求項2の発明において、前記物理加工デンプンが、ワキシーコーンスターチを原料とするため、安定したデンプン糊化物が容易に得られ、物理加工デンプンの調製がより容易となる。 According to the tea viscosity inhibitor according to the invention of claim 3, in the invention of claim 2, since the physically modified starch is made from waxy cornstarch, a stable starch gelatinized product can be easily obtained, and the physically modified starch can be easily obtained. Is easier to prepare.

請求項の発明に係る茶類粘度抑制剤によると、請求項1の発明において、前記化工デンプンが、アセチル化デンプンであるため、デンプンの糊化が抑制されて取り扱いの利便性が向上される。 According to the tea viscosity inhibitor according to the invention of claim 4, in the invention of claim 1, since the modified starch is acetylated starch, gelatinization of starch is suppressed and the convenience of handling is improved. ..

請求項の発明に係るゼリー様茶類食品によると、請求項1ないしのいずれか1項に記載の茶類粘度抑制剤と、茶類と、ゼラチンと、水分とを含有してなる茶類ゼリー様物を有するため、茶類の風味を損なうことなくソフトカプセル等の形態でも提供が可能となる。 According to the jelly-like tea food according to the invention of claim 5 , a tea containing the tea viscosity inhibitor according to any one of claims 1 to 4, tea, gelatin, and water. Since it has a jelly-like substance, it can be provided in the form of a soft capsule or the like without impairing the flavor of tea.

請求項の発明に係るゼリー様茶類食品によると、請求項の発明において、前記茶類ゼリー様物が乾燥物であるため、防腐や保存、取り扱い易さ等の利便性が向上する。 According to the jelly-like tea food according to the invention of claim 6, in the invention of claim 5 , since the tea jelly-like product is a dried product, conveniences such as preservative, storage, and ease of handling are improved.

請求項の発明に係るゼリー様茶類食品によると、請求項またはの発明において、前記茶類粘度抑制剤が、前記茶類ゼリー様物中に0.5〜5重量%含有されるため、茶類の風味を損なうことなく十分な粘度抑制効果が得られる。 According to the jelly-like tea food according to the invention of claim 7, in the invention of claim 5 or 6 , the tea viscosity inhibitor is contained in the tea jelly-like product in an amount of 0.5 to 5% by weight. Therefore, a sufficient effect of suppressing viscosity can be obtained without impairing the flavor of tea.

本発明は、茶類とゼラチンとを含有してなる茶類混合物の粘度上昇を抑制するための茶類粘度抑制剤と、この茶類粘度抑制剤を用いた茶類とゼラチンとを含有してなるゼリー様茶類食品である。 The present invention contains a tea viscosity inhibitor for suppressing an increase in the viscosity of a tea mixture containing tea and gelatin, and tea and gelatin using this tea viscosity inhibitor. It is a jelly-like tea food.

茶類は、抹茶、緑茶、紅茶、中国茶等の公知の茶葉であって、粉末状に加工して使用される。茶類は、ポリフェノールが含まれるカテキン類を有している。カテキン類は、血圧上昇抑制作用、血糖値調節作用、抗酸化作用、抗癌作用、老化抑制作用等の健康機能を備えた植物性機能成分であり、健康食品等での使用に好適である。 Teas are known tea leaves such as matcha, green tea, black tea, and Chinese tea, which are processed into powder and used. Teas have catechins containing polyphenols. Catkins are plant-derived functional ingredients having health functions such as blood pressure increase suppressing action, blood sugar level regulating action, antioxidant action, anticancer action, and aging suppressing action, and are suitable for use in health foods and the like.

ゼラチンは、牛、豚等の動物または魚類のコラーゲンからの抽出により得られる繊維状のタンパク質である。ゼラチンは含水により網状構造が発達し、全体がゲル状ないしゾル状化しやすくなる。そのため、保水性のよさから美容効果等が期待できる。 Gelatin is a fibrous protein obtained by extraction from collagen of animals such as cows and pigs or fish. Gelatin develops a network structure due to water content, and the whole becomes gel-like or sol-like easily. Therefore, a beauty effect can be expected due to its good water retention.

茶類混合物は、茶類とゼラチンとが混合されたことにより、架橋反応が生じて粘性を備えたゼリー状の可食性混合物である。この茶類混合物は、茶類とゼラチンの他、水や甘味料等の可食性の材料が必要に応じて混合され、特に茶類の風味を呈するように調製される。 The tea mixture is a jelly-like edible mixture having a viscosity due to a cross-linking reaction caused by mixing tea and gelatin. In addition to tea and gelatin, this tea mixture is mixed with edible materials such as water and sweeteners as needed, and is prepared so as to exhibit the flavor of tea in particular.

茶類粘度抑制剤は、上記茶類混合物の粘度上昇を抑制するための材料であり、物理加工デンプン、分解デンプン、または化工デンプンのいずれかが含まれる。茶類粘度抑制剤に使用されるデンプンは特に限定されず、市販されている容易に入手可能な種類が用いられる。例えば、トウモロコシ(コーンスターチ)、小麦、大麦、ライ麦、米、サツマイモ(甘糖)、ジャガイモ(馬鈴薯)、エンドウ、枝豆、タピオカ等のデンプンの他、もち小麦、もち粟、もち稗等のもち種のデンプンや、ワキシーコーンスターチ、もち米デンプン等のいずれも利用可能である。 The tea viscosity inhibitor is a material for suppressing an increase in the viscosity of the tea mixture, and includes any of physically modified starch, decomposed starch, and modified starch. The starch used for the tea viscosity inhibitor is not particularly limited, and a commercially available easily available type is used. For example, starches such as corn (cornstarch), wheat, barley, rye, rice, sweet potato (sweet sugar), potato (potato), pea, edible beans, tapioca, and glutinous wheat, glutinous rice, glutinous rice, etc. Any of starch, waxy corn starch, glutinous rice starch and the like can be used.

物理加工デンプンは、デンプンの糖鎖に物理的な衝撃が加えられて分解された分解処理物である。デンプンの物理加工方法としては、超音波照射、ボールミル等を用いた磨砕、電子線、エックス線等の放射線、紫外線、赤外線、高周波、磁力線等の照射、凍結や高圧処理といった方法が知られている。本発明の物理加工デンプンでは、特に、デンプンの糊化物に超音波を照射した超音波照射デンプンが好ましい。超音波照射は物理的な衝撃のみを糊化されたデンプンの糖鎖に効果的に加えることができる。 Physically modified starch is a decomposed product that is decomposed by applying a physical impact to the sugar chains of starch. Known physical processing methods for starch include ultrasonic irradiation, grinding using a ball mill, irradiation with radiation such as electron beams and X-rays, irradiation with ultraviolet rays, infrared rays, high frequencies, magnetic field rays, and freezing and high-pressure treatment. .. In the physically modified starch of the present invention, ultrasonically irradiated starch obtained by irradiating the gelatinized starch with ultrasonic waves is particularly preferable. Ultrasound irradiation can effectively apply only physical impact to the glycans of gelatinized starch.

デンプンの糊化物は、公知のデンプンを水に分散させ、加熱等が行われることにより、デンプン結晶中に水分子が適度に入り込んで糊状となった(糊化された)液体である。通常、アミロペクチン量が高いほど糊化後に沈澱や固化を生じにくい傾向にあると考えられる。そこで、デンプンとして、ほぼ全量がアミロペクチンから構成されるワキシーコーンスターチを用いることにより、沈澱物や固化物が発生しにくい安定したデンプン糊化物が容易に得られる。 The gelatinized starch is a liquid in which known starch is dispersed in water and heated or the like to allow water molecules to appropriately enter into the starch crystals to form a paste (gelatinized). Generally, it is considered that the higher the amount of amylopectin, the less likely it is that precipitation or solidification will occur after gelatinization. Therefore, by using waxy cornstarch in which almost the entire amount is composed of amylopectin as the starch, a stable starch gelatinized product in which precipitates and solidified substances are less likely to be generated can be easily obtained.

超音波照射デンプンは、デンプン糊化物に対して超音波が照射されて得られる。デンプン糊化物に超音波が照射されると、デンプン分子に対して超音波の振動の物理的なエネルギーが加わって糖鎖同士の絡み合いが適度に解消され、微分散化が促進すると考えられる。超音波照射によるデンプンの微分散化では、当初の糖鎖の鎖長が短くなる他、デンプン結晶中の糖鎖同士の塊が小さくなることが予想され、加工前のデンプンと比較して低分子量化が進む。デンプンの低分子量化はデンプン糊化物の粘度に影響し、低分子量化が進みすぎると適度な粘度が得られない。このような超音波照射デンプンは、調製が容易で入手しやすい。 Ultrasonic irradiation starch is obtained by irradiating starch paste with ultrasonic waves. When the starch paste is irradiated with ultrasonic waves, it is considered that the physical energy of the vibration of the ultrasonic waves is applied to the starch molecules, the entanglement of the sugar chains is appropriately eliminated, and the microdispersion is promoted. In the microdispersion of starch by ultrasonic irradiation, the initial chain length of sugar chains is shortened, and it is expected that the lumps of sugar chains in the starch crystals will become smaller, and the molecular weight is lower than that of starch before processing. The conversion progresses. The low molecular weight of starch affects the viscosity of starch paste, and if the low molecular weight is too high, an appropriate viscosity cannot be obtained. Such ultrasonically irradiated starch is easy to prepare and readily available.

超音波照射デンプンの粘度は、デンプンの種類、設備面等により好適に勘案され、たいてい、0.2〜40Pa・sの粘度範囲内に調製される。超音波照射デンプンの粘度調製は、超音波照射の調製によって行われる。照射される超音波では、周波数は20kHz〜1MHzの一般的な範囲でよく、超音波発振器の出力も100〜2000Wの適宜である。周波数や出力は照射対象となるデンプンの種類、濃度、糊化の性状、並びに所望する最終的な粘度等により総合的に規定される。超音波照射に際しては、超音波発振器の通電操作により照射の開始と停止の切り替えが行われ、適時試料を採取しながら所望の粘度に達した時点で停止操作を行って処理を停止させる。 The viscosity of the ultrasonically irradiated starch is preferably taken into consideration depending on the type of starch, equipment, etc., and is usually prepared within the viscosity range of 0.2 to 40 Pa · s. The viscosity of the ultrasonically irradiated starch is adjusted by the preparation of ultrasonic irradiation. The frequency of the irradiated ultrasonic waves may be in the general range of 20 kHz to 1 MHz, and the output of the ultrasonic oscillator is also appropriately 100 to 2000 W. The frequency and output are comprehensively defined by the type and concentration of starch to be irradiated, the gelatinization properties, the desired final viscosity, and the like. In ultrasonic irradiation, the start and stop of irradiation are switched by the energization operation of the ultrasonic oscillator, and the stop operation is performed when the desired viscosity is reached while collecting a sample in a timely manner to stop the process.

超音波の照射方法は適宜であり、例えば、公知の超音波振動子、超音波発振器等が用いられる。超音波照射に用いる処理槽、超音波振動子、超音波発振器等は、生産規模や処理能力等を勘案して適切に選択される。デンプン糊化物に対する超音波照射は、逐次回分式あるいは連続式のいずれであってもよい。 The method of irradiating ultrasonic waves is appropriate, and for example, a known ultrasonic oscillator, ultrasonic oscillator, or the like is used. The processing tank, ultrasonic oscillator, ultrasonic oscillator, etc. used for ultrasonic irradiation are appropriately selected in consideration of the production scale, processing capacity, and the like. The ultrasonic irradiation of the starch paste may be either a sequential batch system or a continuous system.

超音波照射を通じて得た物理加工デンプン(微分散デンプンまたは低分子量デンプンとも称される。)は、水と混合された状態である。そこで、乾燥されて乾燥粉末とされる。乾燥に際しては、凍結乾燥、真空ドラムドライヤによる乾燥、噴霧乾燥(スプレードライ)等が用いられる。乾燥することにより、防腐や保存、取り扱いやすさ等の利便性が向上する。 Physically modified starch (also referred to as finely dispersed starch or low molecular weight starch) obtained through ultrasonic irradiation is in a state of being mixed with water. Therefore, it is dried to obtain a dry powder. For drying, freeze-drying, drying with a vacuum drum dryer, spray drying (spray drying) and the like are used. By drying, convenience such as antiseptic, storage, and ease of handling is improved.

分解デンプンは、常法の酸環境下による加水分解、酵素的加水分解のいずれかまたは両方により分解された分解処理物である。しかし、酸加水分解法を用いる場合には、塩酸、リン酸等の強酸の使用による設備の劣化を考慮しなければならない。一方、酵素処理は、比較的穏和な水素イオン濃度域での反応が可能であり、その取り扱いは比較的安全である。また、使用する酵素に応じて至適温度(最適温度)、至適pH(最適pH)を制御することにより容易に反応系を制御することができる。つまり、デンプンの分解状況に合わせて加温、加熱し、酵素を失活させることにより適切な時点で反応停止とすることができる。 Degraded starch is a degraded product that is degraded by either or both of hydrolysis under a conventional acid environment and / or enzymatic hydrolysis. However, when using the acid hydrolysis method, it is necessary to consider the deterioration of equipment due to the use of strong acids such as hydrochloric acid and phosphoric acid. On the other hand, the enzyme treatment can react in a relatively mild hydrogen ion concentration range, and its handling is relatively safe. Further, the reaction system can be easily controlled by controlling the optimum temperature (optimum temperature) and the optimum pH (optimum pH) according to the enzyme used. That is, the reaction can be stopped at an appropriate time by heating and heating according to the decomposition state of starch to inactivate the enzyme.

そこで本発明の分解デンプンは、酵素的加水分解によりデキストロース当量(DE)を6以下とした酵素分解デンプンである。デンプンの分解に用いる酵素としては、デンプンのα−1,4結合を加水分解可能な酵素であればいずれでもよく、α-アミラーゼ[1,4−α−D−glucan glucanohydrolase(EC 3.2.1.1)]等の種々の酵素が最適である。これらの酵素の多くは、Aspergillus属、Bacillus属等に由来する。むろん、速度反応論の見知から、反応性を高めるため至適温度は高いほど望ましい。従って、至適温度を70ないし90℃とする同属の好熱菌等由来のα-アミラーゼであるほど好ましい。 Therefore, the decomposed starch of the present invention is an enzymatically decomposed starch having a dextrose equivalent (DE) of 6 or less by enzymatic hydrolysis. The enzyme used for decomposing starch may be any enzyme capable of hydrolyzing the α-1,4 bond of starch, and α-amylase [1,4-α-D-glucan glucanoydrose (EC 3.2. 1.1)] and other various enzymes are optimal. Most of these enzymes are derived from the genus Aspergillus, the genus Bacillus, and the like. Of course, from the knowledge of kinetic theory, the higher the optimum temperature is, the more desirable it is to increase the reactivity. Therefore, α-amylase derived from thermophiles of the same genus having an optimum temperature of 70 to 90 ° C. is preferable.

デキストロース当量(DE)は、分解デンプンにおけるデンプンの分解促進状況を把握するための指標の1つである。デキストロースとはブドウ糖(グルコース)の別称であり、デンプンはブドウ糖を構成単位とするポリマーである。DE=0ならばデンプンが未分解であることを示し、DEの値が0に近いほどデンプンの分解が少なくデンプンに近い特性を示す。DE=100ならばデンプンがブドウ糖まで完全分解されたことを示し、DEの値が100に近いほどデンプンが分解されて低分子量化が進んだことを示す。一般にDEが10以下の場合にデキストリンと呼ばれ、本発明ではデキストロース当量が6以下であるから、デンプンの分解が比較的軽度に抑制されている。そのため、この分解デンプンは水(液体)に溶解しやすく、取り扱いの利便性が向上される。なお、DEを測定する方法としては、レーンエイノン法、ベルトラン法、ウイルシュテッターシューデル法等が知られており、ここではウイルシュテッターシューデル法が用いられる。 The dextrose equivalent (DE) is one of the indexes for grasping the state of promoting the decomposition of starch in the decomposed starch. Dextrose is another name for glucose, and starch is a polymer whose constituent unit is glucose. If DE = 0, it means that the starch is undecomposed, and the closer the DE value is to 0, the less the starch is decomposed and the more the starch is close to the starch. If DE = 100, it indicates that the starch was completely decomposed to glucose, and the closer the DE value was to 100, the more the starch was decomposed and the molecular weight was reduced. Generally, when DE is 10 or less, it is called dextrin, and in the present invention, since the dextrose equivalent is 6 or less, the decomposition of starch is suppressed relatively mildly. Therefore, this decomposed starch is easily dissolved in water (liquid), and the convenience of handling is improved. As a method for measuring DE, the Lane Einon method, the Bertrand method, the Wilstetter-Schudel method and the like are known, and the Wilstetter-Schudel method is used here.

酵素処理により得られた分解デンプンは液状である。そこで、物理加工デンプンと同様に乾燥されて乾燥粉末とされる。乾燥方法は、凍結乾燥、真空ドラムドライヤによる乾燥、噴霧乾燥(スプレードライ)等、適宜の公知手法が用いられる。乾燥により、防腐や保存、取り扱い易さ等の利便性が向上する。 The decomposed starch obtained by the enzyme treatment is liquid. Therefore, it is dried in the same manner as the physically modified starch to obtain a dry powder. As the drying method, an appropriate known method such as freeze-drying, drying with a vacuum drum dryer, spray drying (spray drying) and the like is used. Drying improves convenience such as antiseptic, storage, and ease of handling.

化工デンプンは、化学的処理により修飾されて改良されたデンプンである。本発明の化工デンプンは、特にアセチル化デンプンである。アセチル化デンプンは、デンプンにアセチル基を導入することによって、デンプンの糊化が容易に抑制され、取り扱いの利便性が向上される。 Modified starch is a starch that has been modified and improved by chemical treatment. The modified starch of the present invention is particularly acetylated starch. By introducing an acetyl group into the starch, the acetylated starch easily suppresses gelatinization of the starch and improves the convenience of handling.

茶類粘度抑制剤として用いられる物理加工デンプン、分解デンプン、化工デンプンは、いずれもデンプンを原料とするため、安価で入手しやすく、調製も容易で取り扱いの利便性に優れている。 Since physically processed starch, decomposed starch, and modified starch used as tea viscosity inhibitors are all made from starch, they are inexpensive, easily available, easy to prepare, and excellent in handling convenience.

ゼリー様茶類食品は、茶類粘度抑制剤と、茶類と、ゼラチンと、水分とを含有してなる茶類ゼリー様物である。このゼリー様茶類食品は、茶類やゼラチンに含まれる機能成分を摂取するための食品であり、茶類粘度抑制剤により粘度上昇が抑制されていることによりソフトカプセル等の形態でも提供可能である。また特に、ゼリー様茶類食品は、凍結乾燥、真空ドラムドライヤによる乾燥、噴霧乾燥(スプレードライ)等の乾燥方法を用いて乾燥物とすることができる。乾燥物としては、例えば、可食フィルムや乾燥粉末等が挙げられる。これら乾燥物とすることにより、防腐や保存、取り扱い易さ等の利便性が向上する。 The jelly-like tea food is a tea jelly-like product containing a tea viscosity inhibitor, tea, gelatin, and water. This jelly-like tea food is a food for ingesting the functional ingredients contained in tea and gelatin, and can be provided in the form of soft capsules or the like because the increase in viscosity is suppressed by the tea viscosity inhibitor. .. In particular, jelly-like tea foods can be dried by using drying methods such as freeze-drying, drying with a vacuum drum dryer, and spray drying (spray drying). Examples of the dried product include an edible film and a dry powder. By using these dried products, conveniences such as antiseptic, storage, and ease of handling are improved.

ゼリー様茶類食品において、茶類粘度抑制剤は茶類ゼリー様物中に0.5〜5重量%含有される。茶類粘度抑制剤は、茶類とゼラチンとを含有してなる茶類ゼリー様物に添加されることで粘度上昇は抑制される。含有量が茶類ゼリー様物中に0.5重量%未満である場合、含有量が少なすぎて十分な粘度抑制効果を得ることができない。一方、茶類粘度抑制剤はデンプン由来の材料であるため、茶類ゼリー様物中の含有量が5重量%より多いとデンプンの割合が過剰となり、デンプン自体の粘性により十分な粘度抑制効果を得ることができなくなる。さらに、デンプン類の風味が目立ちすぎて茶類の風味を損なうおそれがある。 In jelly-like tea foods, the tea viscosity inhibitor is contained in the tea jelly-like product in an amount of 0.5 to 5% by weight. The increase in viscosity of tea is suppressed by adding the tea viscosity inhibitor to a tea jelly-like product containing tea and gelatin. When the content is less than 0.5% by weight in the tea jelly-like product, the content is too small to obtain a sufficient viscosity suppressing effect. On the other hand, since the tea viscosity inhibitor is a starch-derived material, if the content in the tea jelly-like substance is more than 5% by weight, the proportion of starch becomes excessive, and the viscosity of the starch itself provides a sufficient viscosity inhibitory effect. You will not be able to get it. Furthermore, the flavor of starches may be too conspicuous and impair the flavor of teas.

また、茶類粘度抑制剤は、ゼリー様茶類食品中の茶類に対して1〜5倍の割合で含有される。茶類粘度抑制剤がゼリー様茶類食品中の茶類に対して1倍未満、すなわち茶類の含有量より少ない場合、十分な粘度抑制効果を得ることができない。一方、茶類粘度抑制剤がゼリー様茶類食品中の茶類に対して5倍より多い場合、茶類粘度抑制剤の増加量に伴う粘度抑制効果の向上が見られず、茶類の風味を損なうおそれもある。なお、茶類粘度抑制剤は、物理加工デンプン、分解デンプン、化工デンプンのいずれか一種を含めばよく、複数を混合して用いてもかまわない。 Further, the tea viscosity inhibitor is contained in a ratio of 1 to 5 times that of tea in a jelly-like tea food. If the amount of the tea viscosity inhibitor is less than 1 times that of tea in the jelly-like tea food, that is, less than the content of tea, a sufficient viscosity inhibitor effect cannot be obtained. On the other hand, when the amount of the tea viscosity inhibitor is more than 5 times that of the tea in the jelly-like tea food, the viscosity inhibitory effect does not improve with the increase in the amount of the tea viscosity inhibitor, and the flavor of the tea is not improved. There is also a risk of damaging. The tea viscosity inhibitor may contain any one of physically processed starch, decomposed starch, and modified starch, and a plurality of them may be mixed and used.

発明者は、以下の手順に従って、ゼラチンと、茶類と、茶類粘度抑制剤とを含む試作例1〜14のゼリー様茶類食品を作製した。なお、表1に試作例1〜14について、各材料の混合割合として、ゼラチン量、茶類粘度抑制剤量、茶類量(いずれも重量%)を示す。 The inventor prepared the jelly-like tea foods of Prototype Examples 1 to 14 containing gelatin, tea, and a tea viscosity inhibitor according to the following procedure. Table 1 shows the amount of gelatin, the amount of tea viscosity inhibitor, and the amount of tea (all by weight) as the mixing ratio of each material for Prototype Examples 1 to 14.

[試作例1]
〈物理加工デンプンの調製〉
天然デンプンであるワキシーコーンスターチ(日本食品化工株式会社製:ワキシスターチ)に水を加え、糊化装置(ノリタケエンジニアリング株式会社製:ミニクッカー)により10%濃度のデンプン糊化液を作製した。このデンプン糊化液に対し、約50℃の液温を維持しながら、超音波分散機(株式会社ギンセン製:GSD1200CVP)を用いて周波数20kHz、出力1200Wで超音波を照射して、粘度が約0.3Pa・sになるまで微分散化して微分散デンプンを作製した。この微分散デンプンを乾燥機内で100℃の熱風にさらして乾燥させて、乾燥粉末状の物理加工デンプンを得た。なお、粘度の測定は、日本薬局方の一般試験法における粘度測定法に準拠し、50℃における粘度(mPa・s)を粘度分析装置(東機産業株式会社製:TVB−10M)で測定した。
[Prototype example 1]
<Preparation of physically modified starch>
Water was added to waxy cornstarch (manufactured by Nihon Shokuhin Kako Co., Ltd .: waxy starch), which is a natural starch, and a 10% concentrated starch gelatinizing solution was prepared by a gelatinizing device (manufactured by Noritake Engineering Co., Ltd .: mini cooker). The starch gelatinized solution is irradiated with ultrasonic waves at a frequency of 20 kHz and an output of 1200 W using an ultrasonic disperser (manufactured by Ginsen Co., Ltd .: GSD1200CVP) while maintaining a liquid temperature of about 50 ° C., and the viscosity is about. Finely dispersed starch was prepared by finely dispersing until it reached 0.3 Pa · s. This finely dispersed starch was dried by exposing it to hot air at 100 ° C. in a dryer to obtain a physically modified starch in the form of a dry powder. The viscosity was measured in accordance with the viscosity measurement method in the general test method of the Japanese Pharmacopoeia, and the viscosity (mPa · s) at 50 ° C. was measured with a viscometer analyzer (manufactured by Toki Sangyo Co., Ltd .: TVB-10M). ..

〈試作例1のゼリー様茶類食品の作製〉
60℃に加温したゼラチン(森永製菓株式会社製:クックゼラチン)を20重量%含有する溶液に、前記調製の物理加工デンプンを1重量%、粉末抹茶(株式会社嘉木園製:抹茶)を1重量%それぞれ混合して試作例1を得た。
<Production of jelly-like tea food of Prototype Example 1>
In a solution containing 20% by weight of gelatin (manufactured by Morinaga & Co., Ltd .: Cook Gelatin) heated to 60 ° C., 1% by weight of the physically modified starch prepared above and 1% by weight of powdered matcha (manufactured by Kagien Co., Ltd .: Matcha) Prototype Example 1 was obtained by mixing each by weight.

[試作例2]
〈試作例2のゼリー様茶類食品の作製〉
試作例1の物理加工デンプンの代わりに化工デンプン(エムスランド社製:アセチル化澱粉「ELA−100」アセチル化度0.3〜0.5%)を1重量%混合して試作例2を得た。他の条件は試作例1と共通とした。
[Prototype example 2]
<Production of jelly-like tea food of Prototype Example 2>
Instead of the physically modified starch of Prototype Example 1, 1% by weight of modified starch (manufactured by Msland Co., Ltd .: acetylated starch "ELA-100" with an acetylation degree of 0.3 to 0.5%) was mixed to obtain Prototype Example 2. It was. Other conditions were the same as in Prototype Example 1.

[試作例3]
〈DE1.8分解デンプンの調製〉
天然デンプンである馬鈴薯デンプンに対し、耐熱性α−アミラーゼ(アマノエンザイム株式会社製:クライスターゼT−5)を添加し、糊化装置(ノリタケエンジニアリング株式会社製:ミニクッカー)を用いて酵素処理によりデキストロース当量をDE1.8に調製した液化物を作製した。この液化物をスプレードライヤにより噴霧乾燥してDE1.8分解デンプンを得た。なお、デキストロース当量は、還元糖の定量法として一般的なウイルシュテッターシューデル法に基づいて測定した。
[Prototype example 3]
<Preparation of DE1.8 decomposed starch>
Heat-resistant α-amylase (manufactured by Amano Enzyme Co., Ltd .: Crystase T-5) is added to natural starch, potato starch, and enzymatically treated using a gelatinization device (manufactured by Noritake Engineering Co., Ltd .: mini cooker). A liquefied product having a starch equivalent equivalent to DE1.8 was prepared. This liquid was spray-dried with a spray dryer to obtain DE1.8-decomposed starch. The dextrose equivalent was measured based on the Wilstetter-Schudel method, which is a general method for quantifying reducing sugars.

〈試作例3のゼリー様茶類食品の作製〉
試作例1の物理加工デンプンの代わりに前記調製のDE1.8分解デンプンを1重量%混合して試作例3を得た。他の条件は試作例1と共通とした。
<Production of jelly-like tea food of Prototype Example 3>
Instead of the physically modified starch of Prototype Example 1, 1% by weight of the prepared DE1.8-decomposed starch was mixed to obtain Prototype Example 3. Other conditions were the same as in Prototype Example 1.

[試作例4]
〈DE4.8分解デンプンの調製〉
天然デンプンであるタピオカスターチに対し、耐熱性α−アミラーゼ(アマノエンザイム株式会社製:クライスターゼT−5)を添加し、糊化装置(ノリタケエンジニアリング株式会社製:ミニクッカー)を用いて酵素処理によりデキストロース当量をDE4.8に調製した液化物を作製した。この液化物をスプレードライヤにより噴霧乾燥してDE4.8分解デンプンを得た。
[Prototype example 4]
<Preparation of DE4.8 decomposed starch>
Heat-resistant α-amylase (manufactured by Amano Enzyme Co., Ltd .: Crystase T-5) is added to tapioca starch, which is a natural starch, and enzymatically treated using a gelatinization device (manufactured by Noritake Engineering Co., Ltd .: mini cooker). A liquefied product having a starch equivalent of DE4.8 was prepared. This liquid was spray-dried with a spray dryer to obtain DE4.8-decomposed starch.

〈試作例4のゼリー様茶類食品の作製〉
試作例1の物理加工デンプンの代わりに前記調製のDE4.8分解デンプンを1重量%混合して試作例4を得た。他の条件は試作例1と共通とした。
<Preparation of jelly-like tea food of Prototype Example 4>
In place of the physically modified starch of Prototype Example 1, 1% by weight of the prepared DE4.8-decomposed starch was mixed to obtain Prototype Example 4. Other conditions were the same as in Prototype Example 1.

[試作例5]
〈試作例5のゼリー様茶類食品の作製〉
試作例1の物理加工デンプンを5重量%として混合して試作例5を得た。他の条件は試作例1と共通とした。
[Prototype Example 5]
<Preparation of jelly-like tea food of Prototype Example 5>
The physically modified starch of Prototype Example 1 was mixed in an amount of 5% by weight to obtain Prototype Example 5. Other conditions were the same as in Prototype Example 1.

[試作例6]
〈試作例6のゼリー様茶類食品の作製〉
試作例1の粉末抹茶の代わりに粉末緑茶(株式会社あさみや製:粉末緑茶)を1重量%混合して試作例6を得た。他の条件は試作例1と共通とした。
[Prototype example 6]
<Preparation of jelly-like tea food of Prototype Example 6>
Prototype Example 6 was obtained by mixing 1% by weight of powdered green tea (manufactured by Asamiya Co., Ltd .: powdered green tea) instead of the powdered green tea of Prototype Example 1. Other conditions were the same as in Prototype Example 1.

[試作例7]
〈試作例7のゼリー様茶類食品の作製〉
試作例6の物理加工デンプンを5重量%として混合して試作例7を得た。他の条件は試作例6と共通とした。
[Prototype example 7]
<Preparation of jelly-like tea food of Prototype Example 7>
The physically modified starch of Prototype Example 6 was mixed in an amount of 5% by weight to obtain Prototype Example 7. Other conditions were the same as in Prototype Example 6.

[試作例8]
〈試作例8のゼリー様茶類食品の作製〉
試作例1の物理加工デンプンの代わりに馬鈴薯デンプンを1重量%混合して試作例8を得た。他の条件は試作例1と共通とした。
[Prototype Example 8]
<Preparation of jelly-like tea food of Prototype Example 8>
Potato starch was mixed in an amount of 1% by weight instead of the physically modified starch of Prototype Example 1 to obtain Prototype Example 8. Other conditions were the same as in Prototype Example 1.

[試作例9]
〈DE7.9分解デンプンの調製〉
天然デンプンである馬鈴薯デンプンに対し、耐熱性α−アミラーゼ(アマノエンザイム株式会社製:クライスターゼT−5)を添加し、糊化装置(ノリタケエンジニアリング株式会社製:ミニクッカー)を用いて酵素処理によりデキストロース当量をDE7.9に調製した液化物を作製した。この液化物をスプレードライヤにより噴霧乾燥してDE7.9分解デンプンを得た。
[Prototype example 9]
<Preparation of DE7.9 degraded starch>
Heat-resistant α-amylase (manufactured by Amano Enzyme Co., Ltd .: Crystase T-5) is added to natural starch, potato starch, and enzymatically treated using a gelatinization device (manufactured by Noritake Engineering Co., Ltd .: mini cooker). A liquefied product having a starch equivalent equivalent to DE7.9 was prepared. This liquid was spray-dried with a spray dryer to obtain DE7.9-decomposed starch.

〈試作例9のゼリー様茶類食品の作製〉
試作例1の物理加工デンプンの代わりに前記調製のDE7.9分解デンプンを1重量%混合して試作例9を得た。他の条件は試作例1と共通とした。
<Preparation of jelly-like tea food of Prototype Example 9>
Instead of the physically modified starch of Prototype Example 1, 1% by weight of the prepared DE7.9-decomposed starch was mixed to obtain Prototype Example 9. Other conditions were the same as in Prototype Example 1.

[試作例10]
〈DE11.1分解デンプンの調製〉
天然デンプンであるタピオカスターチに対し、耐熱性α−アミラーゼ(アマノエンザイム株式会社製:クライスターゼT−5)を添加し、糊化装置(ノリタケエンジニアリング株式会社製:ミニクッカー)を用いて酵素処理によりデキストロース当量をDE11.1に調製した液化物を作製した。この液化物をスプレードライヤにより噴霧乾燥してDE11.1分解デンプンを得た。
[Prototype Example 10]
<Preparation of DE11.1 decomposed starch>
Heat-resistant α-amylase (manufactured by Amano Enzyme Co., Ltd .: Crystase T-5) is added to tapioca starch, which is a natural starch, and enzymatically treated using a gelatinization device (manufactured by Noritake Engineering Co., Ltd .: mini cooker). A liquefied product having a dextrose equivalent of DE11.1 was prepared. This liquid was spray-dried with a spray dryer to obtain DE11.1 decomposed starch.

〈試作例10のゼリー様茶類食品の作製〉
試作例1の物理加工デンプンの代わりに前記調製のDE11.1分解デンプンを1重量%混合して試作例10を得た。他の条件は試作例1と共通とした。
<Preparation of jelly-like tea food of Prototype Example 10>
Instead of the physically modified starch of Prototype Example 1, 1% by weight of the prepared DE11.1 decomposed starch was mixed to obtain Prototype Example 10. Other conditions were the same as in Prototype Example 1.

[試作例11]
〈試作例11のゼリー様茶類食品の作製〉
60℃に加温したゼラチンを20重量%含有する溶液に粉末抹茶を1重量%混合して、(茶類粘度抑制剤を混合せず)試作例11を得た。
[Prototype Example 11]
<Preparation of jelly-like tea food of Prototype Example 11>
1% by weight of powdered green tea was mixed with a solution containing 20% by weight of gelatin heated to 60 ° C. to obtain Prototype Example 11 (without mixing a tea viscosity inhibitor).

[試作例12]
〈試作例12のゼリー様茶類食品の作製〉
試作例1の粉末抹茶を5重量%として混合して試作例12を得た。他の条件は試作例1と共通とした。
[Prototype example 12]
<Preparation of jelly-like tea food of Prototype Example 12>
The powdered green tea of Prototype Example 1 was mixed in an amount of 5% by weight to obtain Prototype Example 12. Other conditions were the same as in Prototype Example 1.

[試作例13]
〈試作例13のゼリー様茶類食品の作製〉
60℃に加温したゼラチンを20重量%含有する溶液に、粉末緑茶を1重量%混合して(茶類粘度抑制剤を混合せず)試作例13を得た。
[Prototype example 13]
<Preparation of jelly-like tea food of Prototype Example 13>
Prototype Example 13 was obtained by mixing 1% by weight of powdered green tea with a solution containing 20% by weight of gelatin heated to 60 ° C. (without mixing a tea viscosity inhibitor).

[試作例14]
〈試作例14のゼリー様茶類食品の作製〉
試作例6の粉末緑茶を5重量%として混合して試作例14を得た。他の条件は試作例6と共通とした。
[Prototype Example 14]
<Preparation of jelly-like tea food of Prototype Example 14>
The powdered green tea of Prototype Example 6 was mixed in an amount of 5% by weight to obtain Prototype Example 14. Other conditions were the same as in Prototype Example 6.

Figure 0006879783
Figure 0006879783

〈試作例1〜14の粘度測定〉
試作例1〜14について、茶類の添加前(ゼラチンとデンプン類の混合溶液、またはゼラチンのみの溶液)と、茶類の添加直後と、茶類添加から1時間後〜5時間後まで1時間ごとの各時点での粘度を測定した。表2に試作例1〜7、表3に試作例8〜14の粘度(mPa・s)の測定結果と、添加前の粘度を基準とした各時点での粘度の増加率(%)と、良品または不良品の判定結果とをそれぞれ示す。なお、判定結果は、各時点のいずれにおいても粘度の増加率(%)が20%未満であった場合は「○(良品)」、各時点のいずれかにおいて粘度の増加率(%)が20%以上となった場合は「×(不良品)」とした。
<Viscosity measurement of prototype examples 1 to 14>
Regarding Prototype Examples 1 to 14, before the addition of tea (mixed solution of gelatin and starch or solution of gelatin only), immediately after the addition of tea, and 1 hour to 5 hours after the addition of tea. The viscosity at each time point was measured. Table 2 shows the measurement results of the viscosities (mPa · s) of Prototype Examples 1 to 7 and Table 3 shows the viscosity (mPa · s) of Prototype Examples 8 to 14, and the rate of increase (%) of the viscosity at each time point based on the viscosity before addition. The judgment results of non-defective products and defective products are shown. The judgment result is "○ (non-defective product)" when the viscosity increase rate (%) is less than 20% at any of the time points, and the viscosity increase rate (%) is 20 at any of the time points. When it was% or more, it was evaluated as "x (defective product)".

Figure 0006879783
Figure 0006879783

Figure 0006879783
Figure 0006879783

[粘度測定の結果と考察]
表2,3に示す試作例1〜14において、試作例1〜7は良品、試作例8〜14は不良品であった。試作例11〜14から理解されるように、茶類粘度抑制剤は、茶類の添加量より少ないと十分な粘度抑制効果を得られず、少なくとも同等以上が必要であることがわかった。また、試作例5,7の通り、茶類に対して過剰に茶類粘度抑制剤を添加しても適切な粘度抑制効果が得られることがわかった。そこで茶類粘度抑制剤の含有量は、茶類ゼリー様物中に0.5〜5重量%、かつ、茶類の添加量に対して1〜5倍の割合が好ましい。むろん、粘度抑制の観点から5重量%を超えて添加したり、茶類に対して5倍以上の割合とすることも可能である。ただし、デンプン量の過剰さから風味の変化が大きく好ましくないため、前述の範囲となる。
[Results and discussion of viscosity measurement]
In Prototype Examples 1 to 14 shown in Tables 2 and 3, Prototype Examples 1 to 7 were non-defective products, and Prototype Examples 8 to 14 were defective products. As can be understood from Prototype Examples 11 to 14, it was found that if the amount of the tea viscosity inhibitor is less than the amount of tea added, a sufficient viscosity inhibitory effect cannot be obtained, and at least the same or more is required. Further, as shown in Prototype Examples 5 and 7, it was found that an appropriate viscosity suppressing effect can be obtained even if an excessive amount of the tea viscosity suppressing agent is added to the tea. Therefore, the content of the tea viscosity inhibitor is preferably 0.5 to 5% by weight in the tea jelly-like product and 1 to 5 times the amount added to the tea. Of course, from the viewpoint of suppressing viscosity, it is possible to add more than 5% by weight, or to add 5 times or more to teas. However, since the change in flavor is large and unfavorable due to the excessive amount of starch, it falls within the above range.

一方、茶類粘度抑制剤の種類としては、物理加工デンプン、化工デンプンで良好な結果が得られたが、天然デンプン(馬鈴薯デンプン)では十分な粘度抑制効果を得ることができなかった。また、分解デンプンでは、試作例3(DE1.8)及び試作例4(DE4.8)で良好な結果が得られたが、試作例9(DE7.9)及び試作例10(DE11.1)では十分な粘度抑制効果を得ることができなかった。これらから、有効な分解デンプンのデキストロース当量(DE)は、概ね6以下と導くことができる。 On the other hand, as the type of tea viscosity inhibitor, good results were obtained with physically modified starch and modified starch, but sufficient viscosity inhibitory effect could not be obtained with natural starch (potato starch). Regarding the decomposed starch, good results were obtained in Prototype Example 3 (DE1.8) and Prototype Example 4 (DE4.8), but Prototype Example 9 (DE7.9) and Prototype Example 10 (DE11.1). However, a sufficient viscosity suppressing effect could not be obtained. From these, the dextrose equivalent (DE) of the effective degraded starch can be derived to be approximately 6 or less.

[可食性のフィルム状物(乾燥物)の作製]
次に、以下の手順で試作例21〜23の可食性のフィルム状物を作製し、フィルム状物の任意の30点における厚さを測定した。表4に試作例21〜23のフィルム状物における茶類粘度抑制剤(物理加工デンプン)の添加量(重量%)、外観(目視)、厚さの最大値(μm)、厚さの最小値(μm)、厚さの最大値と最小値の差(μm)、厚さの算術平均(μm)、厚さの標準偏差をそれぞれ示す。なお、表4の厚さに関する各値は、30点の測定値のうち最大値と最小値を除いた28点から導いた値とした。
[Preparation of edible film-like material (dried product)]
Next, the edible film-like material of Prototype Examples 21 to 23 was prepared by the following procedure, and the thickness of the film-like material at any 30 points was measured. Table 4 shows the addition amount (% by weight), appearance (visual), maximum thickness (μm), and minimum thickness of the tea viscosity inhibitor (physically modified starch) in the film-like products of Prototype Examples 21 to 23. (Μm), the difference between the maximum and minimum values of the thickness (μm), the arithmetic mean of the thickness (μm), and the standard deviation of the thickness are shown. Each value related to the thickness in Table 4 was a value derived from 28 points excluding the maximum value and the minimum value among the measured values of 30 points.

[試作例21]
試作例1と同様の条件(60℃のゼラチン20重量%、物理加工デンプン1重量%、抹茶粉末1重量%)で茶類混合溶液を作製した。塗布量を250μmに調製したバーコーターを用いてこの茶類混合溶液をPETフィルム(基材)上に塗工速度10cm/minで塗布し、70℃で乾燥させて試作例21のフィルム状物を得た。
[Prototype example 21]
A tea mixed solution was prepared under the same conditions as in Prototype Example 1 (20% by weight of gelatin at 60 ° C., 1% by weight of physically modified starch, 1% by weight of matcha powder). This tea mixture solution was applied onto a PET film (base material) at a coating speed of 10 cm / min using a bar coater having a coating amount adjusted to 250 μm, and dried at 70 ° C. to obtain a film-like product of Prototype Example 21. Obtained.

[試作例22]
試作例と同様の条件(試作例1の物理加工デンプンを5重量%としてその他は同条件)で茶類混合溶液を作製した。この茶類混合溶液を用いて、試作例21と同様の手順により試作例22のフィルム状物を得た。
[Prototype example 22]
A tea mixture solution was prepared under the same conditions as in Prototype Example 5 (the physically modified starch of Prototype Example 1 was 5% by weight and the other conditions were the same). Using this tea mixture solution, a film-like product of Prototype Example 22 was obtained by the same procedure as that of Prototype Example 21.

[試作例23]
試作例11と同様の条件(60℃のゼラチン20重量%、抹茶粉末1重量%、茶類粘度抑制剤は混合せず)で茶類混合溶液を作製した。この茶類混合溶液を用いて、試作例21と同様の手順により試作例23のフィルム状物を得た。
[Prototype Example 23]
A tea mixture solution was prepared under the same conditions as in Prototype Example 11 (20% by weight of gelatin at 60 ° C., 1% by weight of matcha powder, and no tea viscosity inhibitor was mixed). Using this tea mixture solution, a film-like product of Prototype Example 23 was obtained by the same procedure as that of Prototype Example 21.

Figure 0006879783
Figure 0006879783

[可食性のフィルム状物の結果と考察]
茶類粘度抑制剤が添加されていない試作例23は、茶類粘度抑制剤が添加された試作例21,22と比較して厚さのばらつきが大きく、表面が粗いフィルムとなった。また、試作例23は試作例21,22と比較してフィルム状態が破れやすく、安定したフィルム成形が困難であることがわかった。従って、ゼラチンと茶類との混合物において、茶類粘度抑制剤を添加することによって安定したフィルム成形が可能である。このようにフィルムかが可能であったことから、粉末化等の他の形態での加工も容易である。
[Results and discussion of edible film-like materials]
The prototype example 23 to which the tea viscosity inhibitor was not added had a large variation in thickness as compared with the prototype examples 21 and 22 to which the tea viscosity inhibitor was added, and the surface of the film was rough. Further, it was found that the film state of Prototype Example 23 was more easily torn than that of Prototype Examples 21 and 22, and stable film molding was difficult. Therefore, in a mixture of gelatin and tea, stable film molding is possible by adding a tea viscosity inhibitor. Since the film can be formed in this way, it can be easily processed in other forms such as pulverization.

本発明の茶類粘度抑制剤は、ゼラチンやコラーゲンと植物性機能成分を含む茶類との併用に際して安価かつ効果的に粘度上昇を抑制することができる。また、この茶類粘度抑制剤を含有してなるゼリー様茶類食品では、茶類の風味を損なうことなく茶類ゼリー様物の粘度上昇を抑制することができて、ソフトカプセル加工等も容易に行うことができる。そのため、種々の形態の食品として提供することができ、従来の茶類を含む食品の代替品となり得る。 The tea viscosity inhibitor of the present invention can suppress an increase in viscosity inexpensively and effectively when used in combination with gelatin or collagen and tea containing a plant-derived functional component. Further, in the jelly-like tea food containing this tea viscosity inhibitor, the increase in viscosity of the tea jelly-like product can be suppressed without impairing the flavor of the tea, and soft capsule processing and the like can be easily performed. It can be carried out. Therefore, it can be provided as various forms of food and can be a substitute for conventional foods including teas.

Claims (7)

茶類とゼラチンを含有してなるゼリー様茶類食品において前記茶類の添加量に対して少なくとも同等以上添加されて前記ゼリー様茶類食品の粘度上昇を抑制する粘度抑制剤であって、
前記粘度抑制剤は、デンプンの糖鎖に物理的な衝撃が加えられて分解された分解処理物である物理加工デンプン、加水分解か酵素的加水分解のいずれかまたは両方により分解されたデキストロース当量(DE)を6以下とする分解処理物である分解デンプン、または化工デンプンである
ことを特徴とする茶類粘度抑制剤。
A viscosity inhibitor to suppress the viscosity increase of the jelly-like tea food is added at least equal to or more with respect to the addition amount of the tea in the jelly-like tea food comprising the tea and gelatin,
The viscosity inhibitor is a physically modified starch which is a decomposition product decomposed by applying a physical impact to the sugar chain of starch, and an equivalent amount of dextrose decomposed by either or both of hydrolysis and enzymatic hydrolysis ( A tea viscosity inhibitor characterized by being a degraded starch, which is a hydrolyzed product having a DE) of 6 or less, or a modified starch.
前記物理加工デンプンが、デンプンの糊化物に超音波を照射した超音波照射デンプンである請求項1に記載の茶類粘度抑制剤。 The tea viscosity inhibitor according to claim 1, wherein the physically modified starch is an ultrasonically irradiated starch obtained by irradiating a gelatinized starch with ultrasonic waves. 前記物理加工デンプンが、ワキシーコーンスターチを原料とする請求項2に記載の茶類粘度抑制剤。 The tea viscosity inhibitor according to claim 2, wherein the physically modified starch is made from waxy cornstarch. 前記化工デンプンが、アセチル化デンプンである請求項1に記載の茶類粘度抑制剤。 The tea viscosity inhibitor according to claim 1, wherein the modified starch is acetylated starch. 請求項1ないしのいずれか1項に記載の茶類粘度抑制剤と、茶類と、ゼラチンと、水分とを含有してなる茶類ゼリー様物を有することを特徴とするゼリー様茶類食品。 A jelly-like tea characterized by having a tea jelly-like product containing the tea viscosity inhibitor according to any one of claims 1 to 4, tea, gelatin, and water. Food. 前記茶類ゼリー様物が乾燥物である請求項に記載のゼリー様茶類食品。 The jelly-like tea food according to claim 5 , wherein the tea jelly-like product is a dried product. 前記茶類粘度抑制剤が、前記茶類ゼリー様物中に0.5〜5重量%含有される請求項またはに記載のゼリー様茶類食品。 The jelly-like tea food according to claim 5 or 6 , wherein the tea viscosity inhibitor is contained in the tea jelly-like product in an amount of 0.5 to 5% by weight.
JP2017041716A 2017-03-06 2017-03-06 Tea viscosity inhibitor and jelly-like tea foods containing it Active JP6879783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017041716A JP6879783B2 (en) 2017-03-06 2017-03-06 Tea viscosity inhibitor and jelly-like tea foods containing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017041716A JP6879783B2 (en) 2017-03-06 2017-03-06 Tea viscosity inhibitor and jelly-like tea foods containing it

Publications (2)

Publication Number Publication Date
JP2018143173A JP2018143173A (en) 2018-09-20
JP6879783B2 true JP6879783B2 (en) 2021-06-02

Family

ID=63589820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017041716A Active JP6879783B2 (en) 2017-03-06 2017-03-06 Tea viscosity inhibitor and jelly-like tea foods containing it

Country Status (1)

Country Link
JP (1) JP6879783B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156264A (en) * 1997-08-22 1999-03-02 Japan Organo Co Ltd Gelling agent for gel-like product and production of gel-like product
JP4360760B2 (en) * 2001-02-22 2009-11-11 伊那食品工業株式会社 Element of jelly-like composition, jelly-like composition obtained therefrom, and method for producing the jelly-like composition
JP2008104398A (en) * 2006-10-25 2008-05-08 Nippi:Kk Low-temperature gelling gelatin
JP2010035518A (en) * 2008-08-07 2010-02-18 Aiei Support:Kk Tea jelly for drinking
JP5775373B2 (en) * 2011-06-17 2015-09-09 ユーハ味覚糖株式会社 Galate-type catechin-containing beverage
CN103300295A (en) * 2013-06-28 2013-09-18 陈键 Nutrient and delicious blancmange and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018143173A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
Sarabandi et al. Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges
EP0939773B1 (en) Production of vegetable gels
Muzzarelli et al. Chitin and chitosan hydrogels
Ye et al. Konjac glucomannan (KGM), deacetylated KGM (Da-KGM), and degraded KGM derivatives: A special focus on colloidal nutrition
TW201233337A (en) Viscous nutritional composition
JP6724104B2 (en) Foods containing barley powder
JP3349677B2 (en) Coating agent
KR100454067B1 (en) High pressure starch
JP2002249714A (en) Film coating agent
Lee et al. Physicochemical properties of β-glucan from acid hydrolyzed barley
Wang et al. Interaction of starch and non-starch polysaccharides in raw potato flour and their effects on thickening stability
Zheng et al. New insights into the interaction between bamboo shoot polysaccharides and lotus root starch during gelatinization, retrogradation, and digestion of starch
JP6879783B2 (en) Tea viscosity inhibitor and jelly-like tea foods containing it
JP2009011313A (en) Unfolding agent for gelatinized noodle
DK9700015U3 (en) Fiber and protein product
EP3874957A1 (en) Resistant starch and production method thereof
JP2009039043A (en) Composition and method for producing the same
JPH08176202A (en) Production of hydrolyzed starch
WO2016097328A1 (en) Process for producing dough intended for food for human consumption and/or animal feeds comprising at least 35% of leguminous plant
JP2017042113A (en) Dry food
JP2011152103A (en) Royal jelly-containing composition
JP2022160945A (en) Powdered soy sauce and method for producing the same
CN114980751A (en) Processed cereal product, method for producing processed cereal product, and method for producing softened processed cereal product
Xu et al. Preparation of fat substitute based on the high-methoxyl pectin of citrus and application in moon-cake skin
WO2020124201A1 (en) A composition and method for producing an edible product containing starch particles having improved health effects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210430

R150 Certificate of patent or registration of utility model

Ref document number: 6879783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250