JP6879723B2 - Catadioptric optics, imaging devices and artificial satellites - Google Patents

Catadioptric optics, imaging devices and artificial satellites Download PDF

Info

Publication number
JP6879723B2
JP6879723B2 JP2016234123A JP2016234123A JP6879723B2 JP 6879723 B2 JP6879723 B2 JP 6879723B2 JP 2016234123 A JP2016234123 A JP 2016234123A JP 2016234123 A JP2016234123 A JP 2016234123A JP 6879723 B2 JP6879723 B2 JP 6879723B2
Authority
JP
Japan
Prior art keywords
mirror
convex
lens
object side
secondary mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016234123A
Other languages
Japanese (ja)
Other versions
JP2018091956A (en
JP2018091956A5 (en
Inventor
米山 修二
修二 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2016234123A priority Critical patent/JP6879723B2/en
Publication of JP2018091956A publication Critical patent/JP2018091956A/en
Publication of JP2018091956A5 publication Critical patent/JP2018091956A5/en
Application granted granted Critical
Publication of JP6879723B2 publication Critical patent/JP6879723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、凹面反射鏡からなる主鏡部と、凸平または正メニスカスレンズと平凹または負メニスカスレンズと凸面反射鏡からなる副鏡部と、主鏡と副鏡部の結像性能を補正する屈折部からなり、反射面は全て球面で構成されたカタディオプトリック光学系、またはこれを用いた撮像装置、またはこれを搭載する人工衛星に関する。 The present invention corrects the imaging performance of a primary mirror unit composed of a concave reflector, a secondary mirror unit composed of a convex flat or positive meniscus lens and a plano-concave or negative meniscus lens and a convex reflector, and a primary mirror and a secondary mirror. The present invention relates to a catadioptric optical system, which is composed of a refracting part and the reflecting surface is entirely composed of a spherical surface, an imaging device using the same, or an artificial satellite on which the lens is mounted.

天体観測や撮影等に用いられる反射光学系では、特に全長を小さくできるカセグレン・タイプがしばしば使われる。古典的なカセグレン光学系は主鏡が放物面、副鏡が双曲面と2つの非球面からなる。このカセグレン光学系を改良したリッチー・クレチャン光学系では更に収差を補正し視野を広げるため主鏡、副鏡とも双曲面であり、より正確には高次の非球面が用いられる。しかし、これらの非球面は球面に比べて製作が難しく、また、形状の測定も難しい。そのため、加工に時間が掛かったり、加工、測定の費用が高くなったりする。 In the catadioptric system used for astronomical observation and photography, the Cassegrain type, which can reduce the overall length, is often used. In the classical Cassegrain optical system, the primary mirror consists of a paraboloid, the secondary mirror consists of a hyperboloid and two aspherical surfaces. In the Ritchie-Krechan optical system, which is an improved version of this Cassegrain optical system, both the primary mirror and the secondary mirror are hyperboloids in order to further correct aberrations and widen the field of view, and more accurately, a higher-order aspherical surface is used. However, these aspherical surfaces are more difficult to manufacture than spherical surfaces, and their shapes are also difficult to measure. Therefore, processing takes time, and processing and measurement costs are high.

また、主鏡、副鏡による残存収差を、副鏡と像面の間に配置した光学系により補正する技術も知られている。 Further, there is also known a technique of correcting residual aberrations caused by the primary mirror and the secondary mirror by an optical system arranged between the secondary mirror and the image plane.

特許文献2ではリッチー・クレチャン光学系またはカセグレン光学系に組み合わせるロスの補正レンズが開示されている。ロス・レンズは正レンズと負レンズの2枚からなりコマ及び非点収差を補正するもので球面収差は補正しない。従って、主・副鏡系で少なくとも球面収差は補正されていなければならないので、主・副鏡のどちらかには非球面を用いなければならない。 Patent Document 2 discloses a loss correction lens to be combined with a Ritchie-Crechan optical system or a Cassegrain optical system. The loss lens consists of two lenses, a positive lens and a negative lens, and corrects coma and astigmatism, but does not correct spherical aberration. Therefore, since at least spherical aberration must be corrected in the primary / secondary mirror system, an aspherical surface must be used for either the primary / secondary mirror.

特許文献3は主鏡が放物面で副鏡が双曲面である古典的カセグレン光学系にレンズ3枚からなる補正系を組み合わせた例が開示されている。しかし、鏡面は非球面であり、収差を補正する3枚のレンズ系が開示されているが、レンズ枚数と面の凹凸のみが示され、具体的なデータは無く、どの収差がどの程度補正されているのかは分からない。 Patent Document 3 discloses an example in which a correction system composed of three lenses is combined with a classical Cassegrain optical system in which the primary mirror is a paraboloid and the secondary mirror is a hyperboloid. However, the mirror surface is an aspherical surface, and although three lens systems for correcting aberrations are disclosed, only the number of lenses and the unevenness of the surface are shown, there is no specific data, and which aberration is corrected to what extent. I don't know if it is.

特開昭59−222809号公報JP-A-59-222809 特開2015−45887号公報JP-A-2015-45887 特開2016−35499号公報Japanese Unexamined Patent Publication No. 2016-35499

All-Spherical Catadioptric System for 0.8 m F/4.5 Astronomical Telescope: Can We Compete With the Ritchey-Chretien Design? (Mehdi Bahrami, Alexander V. Goncharov, and Christopher Dainty, International Optical Design Conference 2010)All-Spherical Catadioptric System for 0.8 m F / 4.5 Astronomical Telescope: Can We Compete With the Ritchey-Chretien Design? (Mehdi Bahrami, Alexander V. Goncharov, and Christopher Dainty, International Optical Design Conference 2010)

上述のように非球面を用いることが製作を困難にしているので球面のみで構成できれば良い。 As described above, using an aspherical surface makes it difficult to manufacture , so it is sufficient if only a spherical surface can be used.

非特許文献1のBahrami等の論文ではこの問題を回避するため球面のみの望遠鏡が検討されている。この論文では、地上で使われる望遠鏡は大気の揺らぎにより像がぼけるため、大気の揺らぎで決まる像のぼけ量程度に収差が補正されていれば良いとし、通常必要となる回折限界の性能が出ていない。 In a paper such as Bahrami of Non-Patent Document 1, a telescope having only a spherical surface is examined in order to avoid this problem. In this paper, since the telescope used on the ground blurs the image due to the fluctuation of the atmosphere, it is sufficient that the aberration is corrected to the extent of the blur of the image determined by the fluctuation of the atmosphere, and the performance of the diffraction limit normally required is obtained. Not.

また、副鏡が平面鏡であり全長が十分に小型になっていないという問題もある。 Another problem is that the secondary mirror is a plane mirror and the total length is not sufficiently small.

特許文献1は、凸面鏡である副鏡の非球面の製作の困難性に言及しており球面化しているが、主鏡は非球面としている。望遠鏡は口径が大きいほど分解能が高くなるため、主鏡は年々大型化する傾向がある。非球面の加工は、大型になるほど困難性が増すので主鏡が非球面のままでは加工の困難性が回避されたとは言い難い。 Patent Document 1 mentions the difficulty of manufacturing an aspherical surface of a secondary mirror which is a convex mirror and makes it spherical, but the primary mirror is an aspherical surface. The larger the aperture of a telescope, the higher the resolution, so the primary mirror tends to become larger year by year. Since the difficulty of processing an aspherical surface increases as the size increases, it cannot be said that the difficulty of processing has been avoided if the primary mirror remains an aspherical surface.

非特許文献1、特許文献1、2及び3には副鏡と像面の間に配置される補正光学系も示されている。しかし、いずれも非球面の反射鏡と組み合わせて用いられており反射鏡の球面化には十分とは言えない。 Non-Patent Document 1, Patent Documents 1, 2 and 3 also indicate an adaptive optics system arranged between the secondary mirror and the image plane. However, all of them are used in combination with an aspherical reflector, and cannot be said to be sufficient for making the reflector spherical.

本発明は、上記の問題に鑑みてなされたものであり、反射鏡が球面のみからなり、カセグレン・タイプを採用し小型で、回折限界を満足する高性能なカタディオプトリック光学系を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a high-performance catadioptric optical system in which the reflector is composed of only a spherical surface, a Cassegrain type is adopted, the size is small, and the diffraction limit is satisfied. With the goal.

本発明のカタディオプトリック光学系は、物体側から、光の通る順に、物体側に凹面を向けた球面の凹面鏡からなる主鏡部、前記主鏡部に対し物体側に配置され像側に凸面を向けた球面の凸面鏡を持つ副鏡部、前記副鏡部と像面との間に配置され拡大倍率を持つ屈折部からなり、前記副鏡部は、前記凸面鏡の像側に配置され、物体側に凸面を向けた凸平またはメニスカスの正レンズと、前記凸平またはメニスカスの正レンズと間隔を隔てて配置され、像側に凹面を向けた平凹またはメニスカスの負レンズとからなり、前記正レンズ及び前記負レンズには、前記主鏡部からの光線が通過後、前記凸面鏡で反射した光線が再度通過することを特徴としている。 The catadioptric optical system of the present invention is a primary mirror portion composed of a spherical concave mirror whose concave surface is directed toward the object side in the order in which light passes from the object side, and is arranged on the object side with respect to the primary mirror portion and is convex on the image side. It consists of a secondary mirror unit having a spherical convex mirror facing the lens, a refracting unit arranged between the secondary mirror unit and the image plane and having a magnification, and the secondary mirror unit is arranged on the image side of the convex mirror and is an object. a plano-convex or meniscus positive lens having a convex surface directed toward the side, the is disposed at a positive lens and spacing of the plano-convex or meniscus, is concave or flat with a concave surface facing the image side Ri Do and a negative lens of meniscus, The positive lens and the negative lens are characterized in that after the light rays from the primary mirror portion pass through, the light rays reflected by the convex mirror pass through again.

本発明によれば、反射鏡が2面とも球面であり、そのため製作や測定が非球面に比べて容易で、その結果製作費も安く抑えられた、焦点距離に対し小型で、回折限界の性能を持つカタディオプトリック光学系が得られる。 According to the present invention, the reflector is spherical on both sides, so that it is easier to manufacture and measure than an aspherical surface, and as a result, the manufacturing cost is kept low. A catadioptric optical system with is obtained.

実施例1の光路図である。It is an optical path diagram of Example 1. 実施例1のレンズ断面図である。It is a cross-sectional view of the lens of Example 1. FIG. 実施例1の球面収差図である。It is a spherical aberration diagram of Example 1. FIG. 実施例1の非点収差図である。It is a non-point aberration diagram of Example 1. 実施例1のディストーション図である。FIG. 5 is a distortion diagram of the first embodiment. 実施例2のレンズ断面図である。It is a cross-sectional view of the lens of Example 2. FIG. 実施例2の球面収差図である。It is a spherical aberration diagram of Example 2. 実施例2の非点収差図である。It is a non-point aberration diagram of Example 2. 実施例2のディストーション図である。It is a distortion diagram of Example 2. 実施例3のレンズ断面図である。It is a cross-sectional view of the lens of Example 3. FIG. 実施例3の球面収差図である。It is a spherical aberration diagram of Example 3. 実施例3の非点収差図である。It is a non-point aberration diagram of Example 3. 実施例3のディストーション図である。It is a distortion diagram of Example 3. 実施例4のレンズ断面図である。It is a cross-sectional view of the lens of Example 4. FIG. 実施例4の球面収差図である。It is a spherical aberration diagram of Example 4. 実施例4の非点収差図である。It is a non-point aberration diagram of Example 4. 実施例4のディストーション図である。It is a distortion diagram of Example 4. 本発明の撮像装置の概略図である。It is the schematic of the image pickup apparatus of this invention. 本発明の光学系を搭載する人工衛星の概略図である。It is the schematic of the artificial satellite which carries the optical system of this invention.

以下、図面を用いて本発明のカタディオプトリック光学系の実施例について説明する。 Hereinafter, examples of the catadioptric optical system of the present invention will be described with reference to the drawings.

本発明のカタディオプトリック光学系は、物体側に凹面を向けた凹球面鏡からなる主鏡部と、主鏡の物体側に配置され、主鏡から反射してきた光を像面側に折り返す副鏡部Msと、副鏡部と像面の間に配置され、主鏡と副鏡部での残存収差を補正する屈折部D1を有する。 The catadioptric optical system of the present invention has a primary mirror portion composed of a concave spherical mirror with a concave surface facing the object side, and a secondary mirror arranged on the object side of the primary mirror and returning the light reflected from the primary mirror to the image plane side. It has a portion Ms and a refracting portion D1 which is arranged between the secondary mirror portion and the image plane and corrects residual aberration in the primary mirror and the secondary mirror portion.

副鏡部Msは物体側から順に像面側に凸面を向けた凸球面鏡である副鏡と物体側に凸面を向けた凸平または正メニスカスレンズのL1と、像側に凹面を向けた平凹または負メニスカスレンズのL2からなる。 The secondary mirror unit Ms is a secondary mirror which is a convex spherical mirror whose convex surface is directed to the image plane side in order from the object side, L1 of a convex flat or regular meniscus lens whose convex surface is directed to the object side, and a flat concave surface whose concave surface is directed to the image surface side. Or it consists of L2 of a negative meniscus lens.

また、副鏡部Msは主鏡M1から反射してきた光が像側から物体側に向けて通り、副鏡Msで反射され再び2枚のレンズを光が物体側から像側に向けて通過するので、副鏡部Msの2枚のレンズは光が往復で通過することになる。 Further, in the secondary mirror unit Ms, the light reflected from the primary mirror M1 passes from the image side toward the object side, is reflected by the secondary mirror Ms, and the light passes through the two lenses again from the object side toward the image side. Therefore, light passes through the two lenses of the secondary mirror unit Ms in a reciprocating manner.

屈折部D1は拡大倍率を有し、屈折部D1内の最大間隔で前群Dfと後群Drに分けられ、前群Dfは少なくとも1枚の正レンズからなり、後群Drは負レンズと正レンズからなる。後群Drの負レンズと正レンズは異なる光学材料からなる。 The refracting portion D1 has a magnifying magnification and is divided into a front group Df and a rear group Dr at the maximum interval in the refracting portion D1, the front group Df is composed of at least one positive lens, and the rear group Dr is a negative lens and a positive lens. It consists of a lens. The negative lens and the positive lens of the rear group Dr are made of different optical materials.

図1は、本発明の実施例1のカタディオプトリック光学系の光路図である。
本発明は所謂カセグレン・タイプを採用しているので光は2度折り返される。このときの光の通過経路を説明するためのものである。
FIG. 1 is an optical path diagram of the catadioptric optical system according to the first embodiment of the present invention.
Since the present invention adopts the so-called Cassegrain type, the light is turned back twice. This is for explaining the passage path of light at this time.

物体からの光は主鏡M1で反射され物体側に折り返される。主鏡M1で折り返され物体側に向かう光は、まず副鏡部Msの平凹または負メニスカスレンズL2に入射し、次に凸平または正メニスカスレンズL1を通過し、凸面鏡である副鏡M2で再び反射され像側に折り返される。 The light from the object is reflected by the primary mirror M1 and turned back toward the object. The light that is turned back by the primary mirror M1 and heads toward the object first enters the plano-concave or negative meniscus lens L2 of the secondary mirror portion Ms, then passes through the convex flat or positive meniscus lens L1 and is the secondary mirror M2 that is a convex mirror. It is reflected again and folded back to the image side.

副鏡M2で像側に折り返された光は、再び凸平または正メニスカスレンズL1、平凹または負メニスカスレンズL2の順に通過する。このため、副鏡部Msの正レンズL1と負レンズL2は往復で光が2度通過することになる。副鏡部Msを出た光は副鏡部Msと像面の間に配置された屈折部D1を通り像面に至る。 The light returned to the image side by the secondary mirror M2 passes again in the order of the convex flat or positive meniscus lens L1 and the flat concave or negative meniscus lens L2. Therefore, the positive lens L1 and the negative lens L2 of the secondary mirror unit Ms pass through the light twice in a reciprocating manner. The light emitted from the secondary mirror portion Ms passes through the refracting portion D1 arranged between the secondary mirror portion Ms and the image plane and reaches the image plane.

以下、他の実施例も、光は同様の経路を通る。
図2は、本発明の実施例1の光学系の光学配置の説明図である。図においてM1が主鏡、M2が副鏡、L1、L2が副鏡部のレンズ、L3からL8が屈折部であり、L3からL6が前群、L7、L8が後群である。
Hereinafter, in other embodiments, light follows a similar path.
FIG. 2 is an explanatory diagram of the optical arrangement of the optical system according to the first embodiment of the present invention. In the figure, M1 is the primary mirror, M2 is the secondary mirror, L1 and L2 are the lenses of the secondary mirror portion, L3 to L8 are the refracting portions, L3 to L6 are the front group, and L7 and L8 are the rear group.

主鏡M1は球面からなる凹面鏡である。副鏡M2は球面からなる凸面鏡である。実施例1では屈折部はL3からL8までの6枚のレンズからなっている。更に前群は正レンズのL3、正レンズのL4、負レンズのL5、負レンズのL6からなっている。後群は負レンズのL7、正レンズのL8からなっている。 The primary mirror M1 is a concave mirror made of a spherical surface. The secondary mirror M2 is a convex mirror made of a spherical surface. In the first embodiment, the refracting portion is composed of six lenses from L3 to L8. Further, the front group consists of a positive lens L3, a positive lens L4, a negative lens L5, and a negative lens L6. The rear group consists of a negative lens L7 and a positive lens L8.

図3は実施例1における球面収差図でd−Line、C−Line、g−Lineの各スペクトルの球面収差を示している。図4は実施例1におけるd−Lineでの非点収差図である。点線がタンジェンシャル、実線がサジタルの像面を示す。図5は実施例1におけるd−Lineでのディストーションを示している。 FIG. 3 is a spherical aberration diagram in Example 1 and shows the spherical aberration of each spectrum of d-Line, C-Line, and g-Line. FIG. 4 is an astigmatism diagram of d-Line in Example 1. The dotted line shows the tangier and the solid line shows the image plane of the sagittal. FIG. 5 shows the distortion in d-Line in Example 1.

図6は、本発明の実施例2の光学系の光学配置の説明図である。図においてM1が主鏡、M2が副鏡、L1、L2が副鏡部のレンズ、L3からL7が屈折部であり、L3からL5が前群、L6、L7が後群である。主鏡M1は球面からなる凹面鏡である。 FIG. 6 is an explanatory diagram of the optical arrangement of the optical system according to the second embodiment of the present invention. In the figure, M1 is the primary mirror, M2 is the secondary mirror, L1 and L2 are the lenses of the secondary mirror portion, L3 to L7 are the refracting portions, L3 to L5 are the front group, and L6 and L7 are the rear group. The primary mirror M1 is a concave mirror made of a spherical surface.

副鏡M2は球面からなる凸面鏡である。実施例2では屈折部はL3からL7までの5枚のレンズからなっている。更に前群は正レンズのL3、負レンズのL4、負レンズのL5からなっている。後群は負レンズのL6、正レンズのL7からなっている。 The secondary mirror M2 is a convex mirror made of a spherical surface. In the second embodiment, the refracting portion is composed of five lenses from L3 to L7. Further, the front group consists of a positive lens L3, a negative lens L4, and a negative lens L5. The rear group consists of a negative lens L6 and a positive lens L7.

図7は実施例2における球面収差図でd−Line、C−Line、g−Lineの各スペクトルの球面収差を示している。図8は実施例2におけるd−Lineでの非点収差図である。点線がタンジェンシャル、実線がサジタルの像面を示す。図9は実施例2におけるd−Lineでのディストーションを示している。 FIG. 7 is a spherical aberration diagram in Example 2 showing the spherical aberration of each spectrum of d-Line, C-Line, and g-Line. FIG. 8 is an astigmatism diagram of d-Line in Example 2. The dotted line shows the tangier and the solid line shows the image plane of the sagittal. FIG. 9 shows the distortion in d-Line in Example 2.

図10は、本発明の実施例3の光学系の光学配置の説明図である。図においてM1が主鏡、M2が副鏡、L1、L2が副鏡部のレンズ、L3からL6が屈折部であり、L3、L4が前群、L5、L6が後群である。主鏡M1は球面からなる凹面鏡である。副鏡M2は球面からなる凸面鏡である。 FIG. 10 is an explanatory diagram of the optical arrangement of the optical system according to the third embodiment of the present invention. In the figure, M1 is the primary mirror, M2 is the secondary mirror, L1 and L2 are the lenses of the secondary mirror portion, L3 to L6 are the refracting portions, L3 and L4 are the front group, and L5 and L6 are the rear group. The primary mirror M1 is a concave mirror made of a spherical surface. The secondary mirror M2 is a convex mirror made of a spherical surface.

実施例3では屈折部はL3からL6までの4枚のレンズからなっている。更に前群は正レンズのL3、負レンズのL4からなっている。後群は負レンズのL5、正レンズのL6からなっている。 In the third embodiment, the refracting portion is composed of four lenses L3 to L6. Furthermore, the front group consists of a positive lens L3 and a negative lens L4. The rear group consists of a negative lens L5 and a positive lens L6.

図11は実施例3における球面収差図でd−Line、C−Line、g−Lineの各スペクトルの球面収差を示している。図12は実施例3におけるd−Lineでの非点収差図である。点線がタンジェンシャル、実線がサジタルの像面を示す。図13は実施例3におけるd−Lineでのディストーションを示している。 FIG. 11 is a spherical aberration diagram in Example 3 showing the spherical aberration of each spectrum of d-Line, C-Line, and g-Line. FIG. 12 is an astigmatism diagram of d-Line in Example 3. The dotted line shows the tangier and the solid line shows the image plane of the sagittal. FIG. 13 shows the distortion in d-Line in Example 3.

図14は、本発明の実施例4の光学系の光学配置の説明図である。図においてM1が主鏡、M2が副鏡、L1、L2が副鏡部のレンズ、L3からL5が屈折部であり、L3が前群、L4、L5が後群である。主鏡M1は球面からなる凹面鏡である。副鏡M2は球面からなる凸面鏡である。 FIG. 14 is an explanatory diagram of the optical arrangement of the optical system according to the fourth embodiment of the present invention. In the figure, M1 is the primary mirror, M2 is the secondary mirror, L1 and L2 are the lenses of the secondary mirror portion, L3 to L5 are the refracting portions, L3 is the front group, and L4 and L5 are the rear groups. The primary mirror M1 is a concave mirror made of a spherical surface. The secondary mirror M2 is a convex mirror made of a spherical surface.

実施例4では屈折部はL3からL5までの3枚のレンズからなっている。更に前群は正レンズのL3からなっている。後群は負レンズのL4、正レンズのL5からなっている。 In the fourth embodiment, the refracting portion is composed of three lenses from L3 to L5. Furthermore, the front group consists of a positive lens L3. The rear group consists of a negative lens L4 and a positive lens L5.

図15は実施例4における球面収差図でd−Line、C−Line、g−Lineの各スペクトルの球面収差を示している。図16は実施例4におけるd−Lineでの非点収差図である。点線がタンジェンシャル、実線がサジタルの像面を示す。図17は実施例4におけるd−Lineでのディストーションを示している。 FIG. 15 is a spherical aberration diagram in Example 4 showing the spherical aberration of each spectrum of d-Line, C-Line, and g-Line. FIG. 16 is an astigmatism diagram of d-Line in Example 4. The dotted line shows the tangier and the solid line shows the image plane of the sagittal. FIG. 17 shows the distortion at d-Line in Example 4.

本発明のカタディオプトリック光学系は、例えば撮像装置や、人工衛星に搭載され地球や他の天体を撮像する装置などの光学機器に適用可能である。 The catadioptric optical system of the present invention can be applied to an optical device such as an imaging device or a device mounted on an artificial satellite to image the earth or other celestial bodies.

本発明は、カセグレン・タイプの光学系を採用し、その主鏡、副鏡を両方とも球面として、製造を容易にしたことで低コスト化を図りつつ、副鏡部を構成する副鏡レンズ群に関して、最も物体側に配置された副鏡は像側に凸面を向けた球面とし、この副鏡の像側に、物体側に凸面を向けた凸平、または、正メニスカスレンズを第1レンズとして配置し、更に第1レンズの像側に、像側に凹面を向けた平凹、または、負メニスカスレンズを第2レンズとして配置することで、球面鏡で発生する球面収差とコマを補正し、また、このようなレンズ構成の副鏡部と像面との光路間に、拡大倍率を持つ屈折部を配置することで、主に画角に伴って発生する非点収差等を補正し、同時に、主鏡部と副鏡部で形成される光学系を縮小して全体の光学系の更なる小型化を図りつつ、所望の回折限界を満足する高性能なカタディオプトリック光学系を実現するものである。 In the present invention, a casegren type optical system is adopted, and both the primary mirror and the secondary mirror are spherical, so that the manufacturing is easy and the cost is reduced, and the secondary mirror lens group constituting the secondary mirror unit is formed. With respect to, the secondary mirror arranged most on the object side is a spherical surface with a convex surface facing the image side, and a convex flat or positive meniscus lens with a convex surface facing the object side is used as the first lens on the image side of this secondary mirror. By arranging it, and further arranging a plano-concave lens with a concave surface facing the image side or a negative meniscus lens as the second lens on the image side of the first lens, spherical aberration and coma generated in the spherical mirror can be corrected. By arranging a refracting portion having a magnifying magnification between the optical path between the secondary mirror portion and the image plane of such a lens configuration, non-point aberration and the like mainly generated with the angle of view are corrected, and at the same time A high-performance catadioptric optical system that satisfies the desired refraction limit is realized while reducing the size of the optical system formed by the primary and secondary mirrors to further reduce the overall size of the optical system. is there.

上述のように本発明は、主鏡、副鏡とも球面で構成している。そのため主鏡、副鏡で球面収差が大きく発生する。この球面収差を補正するため、副鏡部Msに正、負、2枚のレンズL1 、L2 を配置している。そして、この2枚のレンズの形状をそれぞれ、L1は物体側に凸面を向けた凸平、または正メニスカスレンズ、L2は像側に凹面を向けた平凹、または負メニスカスレンズとしている。 As described above, in the present invention, both the primary mirror and the secondary mirror are formed by a spherical surface. Therefore, spherical aberration is greatly generated in the primary mirror and the secondary mirror. In order to correct this spherical aberration, two lenses L1 and L2, positive and negative, are arranged in the secondary mirror unit Ms. The shapes of these two lenses are as follows: L1 is a convex flat or positive meniscus lens with a convex surface facing the object side, and L2 is a flat concave or negative meniscus lens with a concave surface facing the image side.

これは球面収差を補正するための配置と形状で、比較的Fno.が小さく明るい主鏡M1の負の球面収差をL2の像側凹面の正の球面収差で補正している。更にL1と組み合わせることでコマも補正している。 This is an arrangement and shape for correcting spherical aberration, and is relatively Fno. The negative spherical aberration of the primary mirror M1 which is small and bright is corrected by the positive spherical aberration of the concave surface on the image side of L2. Furthermore, the coma is also corrected by combining with L1.

副鏡部Msのレンズは往復で2回光が通過するが主鏡M1からの光線の球面収差とコマを補正した後、副鏡M2で反射され折り返された光が再びL1、L2を通過するとき余計な収差を発生しないように、副鏡M2で反射して集光する光の焦点に対してコンセントリックに近い形状をとっている。 The lens of the secondary mirror Ms passes light twice in a reciprocating manner, but after correcting the spherical aberration and coma of the light beam from the primary mirror M1, the light reflected and folded back by the secondary mirror M2 passes through L1 and L2 again. In order not to generate extra aberrations, the shape is close to concentric with respect to the focal point of the light reflected and focused by the secondary mirror M2.

これにより、副鏡部MsのレンズL1、L2は主鏡M1からの光が通過するときは大きな正の球面収差で主鏡M1の収差を補正しながら副鏡M2からの光が通過するときは比較的小さな収差しか発生せずトータルで主鏡M1と副鏡M2の収差を補正している。更に詳しくは、L1、L2の各レンズは以下の条件を満足すような形状を持つことが好ましい。 As a result, the lenses L1 and L2 of the secondary mirror unit Ms correct the aberration of the primary mirror M1 with a large positive spherical aberration when the light from the primary mirror M1 passes through, and when the light from the secondary mirror M2 passes through, the lens L1 and L2 correct the aberration of the primary mirror M1. Only relatively small aberrations are generated, and the aberrations of the primary mirror M1 and the secondary mirror M2 are corrected in total. More specifically, it is preferable that each of the L1 and L2 lenses has a shape that satisfies the following conditions.

1.0 < SFp < 5.0 ・・・(3)
−5.0 < SFn < −1.0 ・・・(4)
−0.5 < SFp + SFn < 0.5 ・・・(5)
1.0 <SFp <5.0 ... (3)
-5.0 <SFn <-1.0 ... (4)
-0.5 <SFp + SFn <0.5 ... (5)

ただし上記のSFはシェイプファクターであり、レンズの物体側の曲率半径をr1、像側の曲率半径をr2とするとき以下の式で表される。
SF= (r2+r1) / (r2−r1)
However, the above SF is a shape factor, and is expressed by the following equation when the radius of curvature on the object side of the lens is r1 and the radius of curvature on the image side is r2.
SF = (r2 + r1) / (r2-r1)

条件式(3)のSFpは正レンズであるL1のシェイプファクター示す。条件式(4)のSFnは負レンズであるL2のシェイプファクターを示す。条件式(5)はL1とL2のシェイプファクターの和である。 The SFp in the conditional expression (3) indicates the shape factor of L1 which is a positive lens. SFn in the conditional expression (4) indicates the shape factor of L2, which is a negative lens. Conditional expression (5) is the sum of the shape factors of L1 and L2.

条件式(3)の下限を越えるとL1の形状が両凸レンズになってしまい副鏡M2を反射した後の復路の光束でL1の像側面で正の球面収差を発生してしまい全系の球面収差を適切に留めることが出来なくなる。 If the lower limit of the conditional expression (3) is exceeded, the shape of L1 becomes a biconvex lens, and the light beam on the return path after reflecting the secondary mirror M2 causes positive spherical aberration on the image side surface of L1. Aberration cannot be properly suppressed.

また、条件式(3)の上限を越えると曲率が強くなり過ぎ、主鏡M1と副鏡部Msからなる系の焦点に対するコンセントリックから離れすぎてしまい負の球面収差を発生し、やはり全系の球面収差を適切に留めることが出来なくなってしまう。 Further, if the upper limit of the conditional equation (3) is exceeded, the curvature becomes too strong, and the system is too far from the concentric with respect to the focal point of the system consisting of the primary mirror M1 and the secondary mirror portion Ms, causing negative spherical aberration. It becomes impossible to properly suppress the spherical aberration of.

条件式(4)の上限を越えるとL2の形状が両凹レンズとなってしまい副鏡M2を反射した後の復路の光束でL2の物体側面で正の球面収差を発生してしまい全系の球面収差を適切に留めることが出来なくなる。 If the upper limit of the conditional expression (4) is exceeded, the shape of L2 becomes a biconcave lens, and the light beam on the return path after reflecting the secondary mirror M2 causes positive spherical aberration on the side surface of the object of L2, resulting in a spherical surface of the entire system. Aberration cannot be properly suppressed.

条件式(4)の下限を越えると曲率が強くなり過ぎ、主鏡M1と副鏡部Msからなる系の焦点に対するコンセントリックから離れすぎてしまい負の球面収差を発生し、やはり全系の球面収差を適切に留めることが出来なくなってしまう。 If the lower limit of the conditional equation (4) is exceeded, the curvature becomes too strong, and the system is too far from the focal point of the system consisting of the primary mirror M1 and the secondary mirror part Ms, causing negative spherical aberration. Aberration cannot be properly suppressed.

条件式(5)はL1とL2、両方の形状を規定し、両レンズのシェイプファクターの和が0付近にあるということを表す。これはL1の物体側面とL2の像側面、つまりL1とL2の外側の面とL1とL2の間の内側の面がそれぞれ近い曲率を持つことを表す。 The conditional expression (5) defines the shapes of both L1 and L2, and represents that the sum of the shape factors of both lenses is near 0. This means that the object side surface of L1 and the image side surface of L2, that is, the outer surface of L1 and L2 and the inner surface between L1 and L2 have similar curvatures, respectively.

つまり、L1とL2は合わせるとパワーの弱いメニスカスレンズの様な形状になる。球面主鏡の物体側に、物体側に凹面を向けたパワーの弱いメニスカスレンズを持つ、所謂マクストフ光学系で一般に知られているようにパワーの弱いメニスカスレンズは凹球面鏡と反対の球面収差とコマを持つ。 That is, when L1 and L2 are combined, they form a shape like a meniscus lens with weak power. A weak-powered meniscus lens with a concave surface facing the object side on the object side of the spherical primary mirror, as is generally known in the so-called Maksutov optical system, has spherical aberration and coma opposite to the concave spherical mirror. have.

本発明でもこれと同じ原理で球面鏡の球面収差を補正している。しかし、パワーの弱いメニスカスレンズはZ値が小さく心取りが難しい。また、球面収差とコマの補正も十分とは言えない。そこで、本発明ではパワーの弱いメニスカスレンズを正メニスカスレンズと負メニスカスレンズの2つに分割している。 In the present invention, the spherical aberration of the spherical mirror is corrected by the same principle. However, a meniscus lens with weak power has a small Z value and is difficult to keep in mind. Also, the correction of spherical aberration and coma is not sufficient. Therefore, in the present invention, the weak meniscus lens is divided into a positive meniscus lens and a negative meniscus lens.

これにより、パワーの弱いメニスカスレンズの製作の困難さを避け、また、2つのレンズの内側面の曲率と材料の自由度により、球面収差とコマを高度に補正することが出来たものである。 As a result, it is possible to avoid the difficulty of manufacturing a meniscus lens having a weak power, and to highly correct spherical aberration and coma by the curvature of the inner surface of the two lenses and the degree of freedom of the material.

条件式(5)の上下限のどちらを外れても、同心メニスカスの条件から離れてしまいL1、L2の外側面、または内側面、またはすべての面から球面収差とコマを発生し、全系の収差を適切に留めることが出来なくなる。 Regardless of which of the upper and lower limits of the conditional expression (5) is deviated, the condition of the concentric meniscus is deviated, and spherical aberration and coma are generated from the outer surface or inner surface of L1 and L2, or all surfaces, and the whole system is affected. Aberration cannot be properly suppressed.

更に各実施例は副鏡部Msと像面の間に配置された屈折部D1を持っている。この屈折部D1は、主鏡M1と副鏡部Msで球面収差とコマを補正した後、残りの、主に画角に対して発生する非点収差と像面湾曲を補正する視野補正系として働いている。 Further, each embodiment has a refracting portion D1 arranged between the secondary mirror portion Ms and the image plane. The refracting portion D1 serves as a field correction system for correcting spherical aberration and coma with the primary mirror M1 and the secondary mirror portion Ms, and then correcting the remaining astigmatism and curvature of field that mainly occur with respect to the angle of view. is working.

屈折部D1は各実施例で異なるレンズ枚数で構成されているが全系の像面の収差を補正し且つ色収差を補正しようとすると最低3枚は必要になる。 The refracting portion D1 is composed of a different number of lenses in each embodiment, but at least three lenses are required to correct the aberration of the image plane of the whole system and to correct the chromatic aberration.

さらに屈折部D1は拡大倍率を持つことで、必要な焦点距離にたいして主鏡M1と副鏡部Msからなる系を縮小でき、全長の小型化にも寄与している。このため屈折部D1は次の条件式(1)を満足する。
1.0 < Md < 1.5 ・・・(1)
Further, since the refracting portion D1 has a magnifying magnification, the system including the primary mirror M1 and the secondary mirror portion Ms can be reduced with respect to the required focal length, which also contributes to the reduction of the overall length. Therefore, the refracting portion D1 satisfies the following conditional expression (1).
1.0 <Md <1.5 ... (1)

条件式(1)のMdは屈折部D1の倍率を表し、条件式の下限は拡大倍率という意味でこれを下回ると全長を小さくする効果がなくなり、むしろ大きくなってしまう。条件式の上限を越えて倍率が高くなると主鏡M1と副鏡部Msからなる系の焦点距離が短くなりFno.が小さくなってしまい球面収差等の発生が大きくなり過ぎ、全系の収差を適切に留めることが出来なくなる。また、屈折部D1もパワーが強くなり色収差等が発生してしまい全系の収差を保てなくなる。 The Md of the conditional expression (1) represents the magnification of the refracting portion D1, and if the lower limit of the conditional expression is less than this in the sense of the enlargement magnification, the effect of reducing the total length is lost, but rather it becomes large. When the magnification increases beyond the upper limit of the conditional expression, the focal length of the system consisting of the primary mirror M1 and the secondary mirror portion Ms becomes short, and Fno. Becomes smaller and the occurrence of spherical aberration and the like becomes too large, and it becomes impossible to properly suppress the aberration of the entire system. In addition, the power of the refracting portion D1 becomes stronger and chromatic aberration or the like is generated, so that the aberration of the entire system cannot be maintained.

更に屈折部D1は屈折部内の最大間隔で前群Df、後群Drに分けられる。前群Dfは少なくとも1枚の正レンズからなり、後群Drは少なくとも負レンズと正レンズからなる。この後群Drも拡大倍率を持ち、望遠タイプのように全長を小さくし、全系の全長を小さくすることに寄与している。 Further, the refracting portion D1 is divided into a front group Df and a rear group Dr at the maximum interval in the refracting portion. The front group Df consists of at least one positive lens, and the rear group Dr consists of at least a negative lens and a positive lens. After this, the rear group Dr also has a magnifying magnification, which contributes to reducing the overall length like the telephoto type and reducing the overall length of the entire system.

実際には副鏡部Msからの収束光束中に置かれているため、平行光束に対する一般的な望遠タイプとはやや異なるが、前群Dfからの収束光を後群Drで拡大するので望遠タイプと同様に全長が小さくなる。 Actually, it is placed in the convergent luminous flux from the secondary mirror unit Ms, so it is slightly different from the general telephoto type for parallel luminous flux, but it is a telephoto type because the convergent light from the front group Df is magnified by the rear group Dr. The total length becomes smaller as well.

前群Dfは副鏡部Msからの光束を収束させるので少なくとも1枚の正レンズを持たなければならない。後群は拡大倍率を持ち負レンズ系となるが倍率がやや高い場合もあり、色収差補正等を考えると少なくとも1枚の負レンズと1枚の正レンズが必要となる。ここで後群Drは以下の条件式(2)を満足する。
1.05 < Mr < 4.0 ・・・(2)
Since the front group Df converges the luminous flux from the secondary mirror unit Ms, it must have at least one positive lens. The rear group has a magnifying magnification and is a negative lens system, but the magnification may be slightly higher, and at least one negative lens and one positive lens are required in consideration of chromatic aberration correction and the like. Here, the rear group Dr satisfies the following conditional expression (2).
1.05 <Mr <4.0 ... (2)

条件式(2)のMrは後群Drの倍率を表し、条件式(2)の下限を越えて倍率が小さくなると全長を小さくする効果が無くなってしまう。条件式(2)の上限を越えて倍率が大きくなると、後群Drのパワーが強くなり過ぎ、色収差等の全系の収差を適切に保てなくなる。 Mr of the conditional expression (2) represents the magnification of the rear group Dr, and when the magnification becomes smaller than the lower limit of the conditional expression (2), the effect of reducing the total length disappears. If the magnification increases beyond the upper limit of the conditional expression (2), the power of the rear group Dr becomes too strong, and it becomes impossible to properly maintain the aberration of the entire system such as chromatic aberration.

ここで、色収差を補正するためには後群Drの材料を以下の条件を満足するように選ぶと良い。
1.0 < Vdp - Vdn < 20 ・・・(6)
Here, in order to correct the chromatic aberration, it is preferable to select the material of the rear group Dr so as to satisfy the following conditions.
1.0 <Vdp --Vdn <20 ... (6)

ここで、Vdpは後群Drの正レンズのアッベ数、Vdnは負レンズのアッベ数を表す。例えば特開2016−35499号公報では、レンズ3枚からなる補正光学系を同一硝材としている。しかし、主なパワーを反射鏡が担っているとはいえ、実際には可視光域で使えるようにするためには、わずかでもアッベ数の異なる材料を組み合わせなければ色収差を十分に補正することはできない。 Here, Vdp represents the Abbe number of the positive lens of the rear group Dr, and Vdn represents the Abbe number of the negative lens. For example, in Japanese Patent Application Laid-Open No. 2016-35499, an adaptive optics system composed of three lenses is used as the same glass material. However, although the reflector is responsible for the main power, in order to be able to use it in the visible light region, it is not possible to sufficiently correct chromatic aberration unless materials with even slightly different Abbe numbers are combined. Can not.

条件式(6)の下限を越えてアッベ数の差が小さくなると色消しにならず、C−Lineからg−Lineまでの幅が大きくなり過ぎ回折限界の性能を満足できなくなる。条件式(6)の上限を越えてアッベ数の差が大きくなると色収差が過剰補正となってしまう。 If the difference in Abbe number becomes smaller than the lower limit of the conditional expression (6), the color is not erased, the width from C-Line to g-Line becomes too large, and the performance of the diffraction limit cannot be satisfied. If the difference in Abbe number becomes large beyond the upper limit of the conditional expression (6), the chromatic aberration will be overcorrected.

ここまで説明したように屈折部D1を構成すれば回折限界の性能を満足する光学系が得られるが、各実施例は屈折部D1のレンズ枚数が異なり、実際には収差補正の程度は異なる。レンズ枚数が減ると、やはり収差補正能力は下がり、その分を主鏡M1と副鏡部Msからなる系で発生する収差を小さくしておきたい。 As described above, if the refraction section D1 is configured, an optical system satisfying the diffraction limit performance can be obtained, but in each embodiment, the number of lenses of the refraction section D1 is different, and the degree of aberration correction is actually different. As the number of lenses decreases, the aberration correction ability also decreases, and it is desired to reduce the aberration generated in the system including the primary mirror M1 and the secondary mirror unit Ms by that amount.

具体的には屈折部D1のレンズ枚数が減るにつれ、わずかずつ主鏡M1の焦点距離を長くしFno.を大きくすることによって主鏡M1で発生する球面収差を小さくしている。しかし、そのままでは主鏡M1の焦点距離を長くした分全長が長くなってしまうので副鏡部Msの負レンズL2とL1の間隔を大きくして主鏡M1とL2で望遠系を構成し全長を抑えている。同時にL2への入射高さを高くしL2で発生する正の球面収差を大きくし全系の球面収差を抑えている。 Specifically, as the number of lenses in the refracting portion D1 decreases, the focal length of the primary mirror M1 is gradually increased to obtain Fno. Is increased to reduce the spherical aberration generated in the primary mirror M1. However, if it is left as it is, the total length will be long due to the lengthening of the focal length of the primary mirror M1, so the distance between the negative lenses L2 and L1 of the secondary mirror part Ms is increased to form a telephoto system with the primary mirrors M1 and L2 to increase the total length. I'm holding it down. At the same time, the height of incidence on L2 is increased to increase the positive spherical aberration generated in L2, and the spherical aberration of the entire system is suppressed.

この条件を表したものが以下の条件式(7)である。
−0.016N+0.112<d/L<−0.016N+0.128 ・・・(7)
The following conditional expression (7) expresses this condition.
-0.016N + 0.112 <d / L <-0.016N + 0.128 ... (7)

副鏡部MsのレンズL1とL2の間隔dを副鏡部Msの負レンズL2の凹面から屈折部D1の最も物体側の面の頂点までの間隔Lで割ったものである。Nは屈折部D1のレンズ枚数である。 The distance d between the lenses L1 and L2 of the secondary mirror unit Ms is divided by the distance L from the concave surface of the negative lens L2 of the secondary mirror unit Ms to the apex of the surface of the refracting unit D1 on the most object side. N is the number of lenses in the refracting portion D1.

条件式(7)の下限を越えるとL1とL2の間隔が小さくなり主鏡M1と合わせた望遠系のL2の倍率が小さくなり全長を抑える効果が小さくなり、全長が大きくなってしまう。また、L2の像側凹面への入射高さが低くなり球面収差の補正効果が小さくなってしまい全系の収差を適切に留めることが出来なくなる。 When the lower limit of the conditional expression (7) is exceeded, the distance between L1 and L2 becomes small, the magnification of L2 of the telephoto system combined with the primary mirror M1 becomes small, the effect of suppressing the total length becomes small, and the total length becomes large. Further, the height of incidence of L2 on the concave surface on the image side becomes low, the effect of correcting spherical aberration becomes small, and it becomes impossible to properly suppress the aberration of the entire system.

条件式(7)の上限を越えると、L2の像側凹面への入射高さが大きくなり過ぎ正の球面収差が発生し全系の球面収差を適切に留めることが出来なくなってしまう。 If the upper limit of the conditional expression (7) is exceeded, the incident height of L2 on the concave surface on the image side becomes too large, positive spherical aberration occurs, and it becomes impossible to properly suppress the spherical aberration of the entire system.

以下、各実施例における光学系の構成について説明する。
実施例1は物体側から、光の通る順に物体側に凹面を向けた球面鏡M1と、主鏡の物体側に配置され像側に凸面を向けた球面の凸面鏡M2と2枚のレンズを持つ副鏡部Ms、副鏡部Msと像面の間に配置され拡大倍率を持つ屈折部D1からなり、副鏡部Msは凸面鏡の像側に、物体側に凸面を向けた凸平またはメニスカスの正レンズL1、間隔を隔てて配置され像側に凹面を向けた平凹またはメニスカスの負レンズL2からなる。
Hereinafter, the configuration of the optical system in each embodiment will be described.
In the first embodiment, a secondary mirror M1 having a concave surface facing the object side in the order in which light passes from the object side, a spherical convex mirror M2 arranged on the object side of the primary mirror and facing the convex surface toward the image side, and two lenses are provided. It consists of a mirror part Ms, a refracting part D1 which is arranged between the secondary mirror part Ms and the image plane and has a magnification, and the secondary mirror part Ms is a convex flat or a positive meniscus with the convex surface facing the image side of the convex mirror and the object side. It is composed of a lens L1 and a flat concave or meniscus negative lens L2 which is arranged at a distance and has a concave surface facing the image side.

正レンズL1、負レンズL2の形状は条件式(3)、(4)および(5)を満足しており、これにより球面鏡である主鏡M1と副鏡M2で発生する球面収差とコマを良好に補正している。また、正レンズL1と負レンズL2の間隔dは条件式(7)を満足しており、これにより屈折部D1の構成にかかわらず全長の小型化と回折限界の性能を達成している。 The shapes of the positive lens L1 and the negative lens L2 satisfy the conditional equations (3), (4) and (5), whereby the spherical aberration and coma generated by the primary mirror M1 and the secondary mirror M2, which are spherical mirrors, are good. It is corrected to. Further, the distance d between the positive lens L1 and the negative lens L2 satisfies the conditional expression (7), whereby the overall length is reduced and the diffraction limit performance is achieved regardless of the configuration of the refracting portion D1.

屈折部D1は屈折部D1内の最大レンズ間隔で分けられた前群Dfと後群Drからなる。前群Dfは物体側から順に、正レンズのL3、正レンズのL4,負レンズのL5、負レンズのL6からなり、後群Drは物体側から順に、負レンズのL7、正レンズのL8から構成されている。 The refracting portion D1 is composed of a front group Df and a rear group Dr divided by the maximum lens spacing in the refracting portion D1. The front group Df consists of the positive lens L3, the positive lens L4, the negative lens L5, and the negative lens L6 in order from the object side, and the rear group Dr consists of the negative lens L7 and the positive lens L8 in order from the object side. It is configured.

これらの構成により、主に画角に伴って発生する非点収差、像面湾曲を補正し、回折限界の性能を満足している。屈折部D1は拡大倍率を持ち、条件式(1)を満足しており、それにより光学系の全長を短くする効果を得ている。更に後群Drの倍率は条件式(2)を満足しており、これにより光学系の全長を小さく保っている。 With these configurations, astigmatism and curvature of field that occur mainly with the angle of view are corrected, and the performance of the diffraction limit is satisfied. The refracting portion D1 has a magnifying magnification and satisfies the conditional expression (1), thereby obtaining the effect of shortening the total length of the optical system. Further, the magnification of the rear group Dr satisfies the conditional expression (2), whereby the total length of the optical system is kept small.

後群Drを構成する負レンズL7と正レンズL8は異なる材料からなり、そのアッベ数は条件式(6)を満足しており、全系の色収差等を良好に保っている。 The negative lens L7 and the positive lens L8 constituting the rear group Dr are made of different materials, and the Abbe number satisfies the conditional equation (6), and the chromatic aberration and the like of the whole system are kept good.

実施例2は物体側から、光の通る順に物体側に凹面を向けた球面鏡M1と、主鏡の物体側に配置され像側に凸面を向けた球面の凸面鏡M2と2枚のレンズを持つ副鏡部Ms、副鏡部Msと像面の間に配置され拡大倍率を持つ屈折部D1からなり、副鏡部Msは凸面鏡の像側に、物体側に凸面を向けた凸平またはメニスカスの正レンズL1、間隔を隔てて配置され像側に凹面を向けた平凹またはメニスカスの負レンズL2からなる。 In the second embodiment, a secondary mirror M1 having a concave surface facing the object side in the order in which light passes from the object side, a spherical convex mirror M2 arranged on the object side of the primary mirror and facing the convex surface toward the image side, and two lenses are provided. It consists of a mirror part Ms, a refracting part D1 which is arranged between the secondary mirror part Ms and the image plane and has a magnification, and the secondary mirror part Ms is a convex flat or a positive meniscus with the convex surface facing the image side of the convex mirror and the object side. It is composed of a lens L1 and a flat concave or meniscus negative lens L2 which is arranged at a distance and has a concave surface facing the image side.

正レンズL1、負レンズL2の形状は条件式(3)、(4)および(5)を満足しており、これにより球面鏡である主鏡M1と副鏡M2で発生する球面収差とコマを良好に補正している。また、正レンズL1と負レンズL2の間隔dは条件式(7)を満足しており、これにより屈折部D1の構成にかかわらず全長の小型化と回折限界の性能を達成している。 The shapes of the positive lens L1 and the negative lens L2 satisfy the conditional equations (3), (4) and (5), whereby the spherical aberration and coma generated by the primary mirror M1 and the secondary mirror M2, which are spherical mirrors, are good. It is corrected to. Further, the distance d between the positive lens L1 and the negative lens L2 satisfies the conditional expression (7), whereby the overall length is reduced and the diffraction limit performance is achieved regardless of the configuration of the refracting portion D1.

屈折部D1は屈折部D1内の最大レンズ間隔で分けられた前群Dfと後群Drからなる。前群Dfは物体側から順に、正レンズのL3、負レンズのL4,負レンズのL5からなり、後群Drは物体側から順に、負レンズのL6、正レンズのL7から構成されている。 The refracting portion D1 is composed of a front group Df and a rear group Dr divided by the maximum lens spacing in the refracting portion D1. The front group Df is composed of a positive lens L3, a negative lens L4, and a negative lens L5 in order from the object side, and the rear group Dr is composed of a negative lens L6 and a positive lens L7 in order from the object side.

これらの構成により、主に画角に伴って発生する非点収差、像面湾曲を補正し、回折限界の性能を満足している。屈折部D1は拡大倍率を持ち、条件式(1)を満足しており、それにより光学系の全長を短くする効果を得ている。 With these configurations, astigmatism and curvature of field that occur mainly with the angle of view are corrected, and the performance of the diffraction limit is satisfied. The refracting portion D1 has a magnifying magnification and satisfies the conditional expression (1), thereby obtaining the effect of shortening the total length of the optical system.

更に後群Drの倍率は条件式(2)を満足しており、これにより光学系の全長を小さく保っている。後群Drを構成する負レンズL6と正レンズL7は異なる材料からなり、そのアッベ数は条件式(6)を満足しており、全系の色収差等を良好に保っている。 Further, the magnification of the rear group Dr satisfies the conditional expression (2), whereby the total length of the optical system is kept small. The negative lens L6 and the positive lens L7 constituting the rear group Dr are made of different materials, and the Abbe number satisfies the conditional equation (6), and the chromatic aberration and the like of the whole system are kept good.

実施例3は物体側から、光の通る順に物体側に凹面を向けた球面鏡M1と、主鏡の物体側に配置され像側に凸面を向けた球面の凸面鏡M2と2枚のレンズを持つ副鏡部Ms、副鏡部Msと像面の間に配置され拡大倍率を持つ屈折部D1からなり、副鏡部Msは凸面鏡の像側に、物体側に凸面を向けた凸平またはメニスカスの正レンズL1、間隔を隔てて配置され像側に凹面を向けた平凹またはメニスカスの負レンズL2からなる。 Example 3 has a spherical mirror M1 having a concave surface facing the object side in the order in which light passes from the object side, a spherical convex mirror M2 arranged on the object side of the primary mirror and having a convex surface facing the image side, and a secondary lens having two lenses. It consists of a mirror part Ms, a refracting part D1 which is arranged between the secondary mirror part Ms and the image plane and has a magnification, and the secondary mirror part Ms is a convex flat or a positive meniscus with the convex surface facing the image side of the convex mirror and the object side. It is composed of a lens L1 and a flat concave or meniscus negative lens L2 which is arranged at a distance and has a concave surface facing the image side.

正レンズL1、負レンズL2の形状は条件式(3)、(4)および(5)を満足しており、これにより球面鏡である主鏡M1と副鏡M2で発生する球面収差とコマを良好に補正している。また、正レンズL1と負レンズL2の間隔dは条件式(7)を満足しており、これにより屈折部D1の構成にかかわらず全長の小型化と回折限界の性能を達成している。 The shapes of the positive lens L1 and the negative lens L2 satisfy the conditional equations (3), (4) and (5), whereby the spherical aberration and coma generated by the primary mirror M1 and the secondary mirror M2, which are spherical mirrors, are good. It is corrected to. Further, the distance d between the positive lens L1 and the negative lens L2 satisfies the conditional expression (7), whereby the overall length is reduced and the diffraction limit performance is achieved regardless of the configuration of the refracting portion D1.

屈折部D1は屈折部D1内の最大レンズ間隔で分けられた前群Dfと後群Drからなる。前群Dfは物体側から順に、正レンズのL3、負レンズのL4からなり、後群Drは物体側から順に、負レンズのL5、正レンズのL6から構成されている。 The refracting portion D1 is composed of a front group Df and a rear group Dr divided by the maximum lens spacing in the refracting portion D1. The front group Df is composed of a positive lens L3 and a negative lens L4 in order from the object side, and the rear group Dr is composed of a negative lens L5 and a positive lens L6 in order from the object side.

これらの構成により、主に画角に伴って発生する非点収差、像面湾曲を補正し、回折限界の性能を満足している。屈折部D1は拡大倍率を持ち、条件式(1)を満足しており、それにより光学系の全長を短くする効果を得ている。 With these configurations, astigmatism and curvature of field that occur mainly with the angle of view are corrected, and the performance of the diffraction limit is satisfied. The refracting portion D1 has a magnifying magnification and satisfies the conditional expression (1), thereby obtaining the effect of shortening the total length of the optical system.

更に後群Drの倍率は条件式(2)を満足しており、これにより光学系の全長を小さく保っている。後群Drを構成する負レンズL5と正レンズL6は異なる材料からなり、そのアッベ数は条件式(6)を満足しており、全系の色収差等を良好に保っている。 Further, the magnification of the rear group Dr satisfies the conditional expression (2), whereby the total length of the optical system is kept small. The negative lens L5 and the positive lens L6 constituting the rear group Dr are made of different materials, and the Abbe number satisfies the conditional expression (6), and the chromatic aberration and the like of the whole system are kept good.

実施例4は物体側から、光の通る順に物体側に凹面を向けた球面鏡M1と、主鏡の物体側に配置され像側に凸面を向けた球面の凸面鏡M2と2枚のレンズを持つ副鏡部Ms、副鏡部Msと像面の間に配置され拡大倍率を持つ屈折部D1からなり、副鏡部Msは凸面鏡の像側に、物体側に凸面を向けた凸平またはメニスカスの正レンズL1、間隔を隔てて配置され像側に凹面を向けた平凹またはメニスカスの負レンズL2からなる。 In the fourth embodiment, a secondary mirror M1 having a concave surface facing the object side in the order in which light passes from the object side, a spherical convex mirror M2 arranged on the object side of the primary mirror and facing the convex surface toward the image side, and two lenses are provided. It consists of a mirror part Ms, a refracting part D1 which is arranged between the secondary mirror part Ms and the image plane and has a magnification, and the secondary mirror part Ms is a convex flat or a positive meniscus with the convex surface facing the image side of the convex mirror and the object side. It is composed of a lens L1 and a flat concave or meniscus negative lens L2 which is arranged at a distance and has a concave surface facing the image side.

正レンズL1、負レンズL2の形状は条件式(3)、(4)および(5)を満足しており、これにより球面鏡である主鏡M1と副鏡M2で発生する球面収差とコマを良好に補正している。また、正レンズL1と負レンズL2の間隔dは条件式(7)を満足しており、これにより屈折部D1の構成にかかわらず全長の小型化と回折限界の性能を達成している。 The shapes of the positive lens L1 and the negative lens L2 satisfy the conditional equations (3), (4) and (5), whereby the spherical aberration and coma generated by the primary mirror M1 and the secondary mirror M2, which are spherical mirrors, are good. It is corrected to. Further, the distance d between the positive lens L1 and the negative lens L2 satisfies the conditional expression (7), whereby the overall length is reduced and the diffraction limit performance is achieved regardless of the configuration of the refracting portion D1.

屈折部D1は屈折部D1内の最大レンズ間隔で分けられた前群Dfと後群Drからなる。前群Dfは物体側から順に、正レンズのL3からなり、後群Drは物体側から順に、負レンズのL4、正レンズのL5から構成されている。 The refracting portion D1 is composed of a front group Df and a rear group Dr divided by the maximum lens spacing in the refracting portion D1. The front group Df is composed of a positive lens L3 in order from the object side, and the rear group Dr is composed of a negative lens L4 and a positive lens L5 in order from the object side.

これらの構成により、主に画角に伴って発生する非点収差、像面湾曲を補正し、回折限界の性能を満足している。屈折部D1は拡大倍率を持ち、条件式(1)を満足しており、それにより光学系の全長を短くする効果を得ている。 With these configurations, astigmatism and curvature of field that occur mainly with the angle of view are corrected, and the performance of the diffraction limit is satisfied. The refracting portion D1 has a magnifying magnification and satisfies the conditional expression (1), thereby obtaining the effect of shortening the total length of the optical system.

更に後群Drの倍率は条件式(2)を満足しており、これにより光学系の全長を小さく保っている。後群Drを構成する負レンズL4と正レンズL5は異なる材料からなり、そのアッベ数は条件式(6)を満足しており、全系の色収差等を良好に保っている。 Further, the magnification of the rear group Dr satisfies the conditional expression (2), whereby the total length of the optical system is kept small. The negative lens L4 and the positive lens L5 constituting the rear group Dr are made of different materials, and the Abbe number satisfies the conditional equation (6), and the chromatic aberration and the like of the whole system are kept good.

図18は本発明の光学系を撮像装置として用いた場合を示している。像面には、CCDセンサやCMOSセンサ等の、光学系によって形成される像を受光する固体撮像素子(光電変換素子)や銀塩フィルムが配置される。実施例1から4にて説明した利益は本実施例に開示したような撮像装置において効果的に享受される。 FIG. 18 shows a case where the optical system of the present invention is used as an image pickup apparatus. On the image plane, a solid-state image sensor (photoelectric conversion element) or a silver salt film that receives an image formed by an optical system, such as a CCD sensor or a CMOS sensor, is arranged. The benefits described in Examples 1 to 4 are effectively enjoyed in the imaging apparatus as disclosed in this Example.

また、図19は本発明の光学系を撮像装置として人工衛星に搭載した場合を示している。本発明の光学系を撮像装置に適用したものを、宇宙空間から地球や他の天体を観察、撮像する人工衛星に搭載しても良い。実施例1から4にて説明した利益は人工衛星に搭載した場合においても効果的に享受される。 Further, FIG. 19 shows a case where the optical system of the present invention is mounted on an artificial satellite as an imaging device. An artificial satellite in which the optical system of the present invention is applied to an imaging device may be mounted on an artificial satellite that observes and images the earth and other celestial bodies from outer space. The benefits described in Examples 1 to 4 are effectively enjoyed even when mounted on an artificial satellite.

本発明の光学系を人工衛星に搭載する場合には、主鏡M1、副鏡M2の材料に低熱膨張材料を選ぶとよい。宇宙では空気が無いため太陽に照らされた場合と太陽が当たらない場合で大きな温度差が起こるため、温度変化でミラーが変形すればピントずれや収差が変化して求める性能が得られない場合が生じてしまう。具体的には線膨張係数が10×10^−6以下が望ましい。 When the optical system of the present invention is mounted on an artificial satellite, it is preferable to select a low thermal expansion material as the material of the primary mirror M1 and the secondary mirror M2. Since there is no air in space, there is a large temperature difference between when the sun is shining and when the sun is not shining, so if the mirror is deformed due to temperature changes, the focus shift and aberrations may change and the desired performance may not be obtained. It will occur. Specifically, it is desirable that the coefficient of linear expansion is 10 × 10 ^ -6 or less.

また、本発明の光学系を人工衛星に搭載する場合には、副鏡部Ms中のレンズL1、L2や、屈折部D1に、比較的低屈折率材料を選ぶとよい。宇宙では地球上よりも放射線の強度が強く、通常のガラスはガンマ線などの放射線を浴び続けると着色してしまうことが知られている。これにより人工衛星の耐用時間が短くなってしまう。 Further, when the optical system of the present invention is mounted on an artificial satellite, it is preferable to select a material having a relatively low refractive index for the lenses L1 and L2 in the secondary mirror unit Ms and the refraction unit D1. In space, the intensity of radiation is stronger than on the earth, and it is known that ordinary glass will be colored if it is continuously exposed to radiation such as gamma rays. This shortens the useful life of the artificial satellite.

これを避けるには耐放射線ガラスを用いればよいが特殊用途のため、通常の光学ガラスに比べて種類が少ない。しかも、ガラスの屈折率−アッベ数マップの所謂日本海側には屈折率の低い硝材が多い。そこで、より具体的には屈折率が1.7以下の材料を選んで設計することが望ましい。特に直接宇宙空間に曝される副鏡部Ms中のレンズと屈折部D1の最も物体側のレンズを低い屈折率にすることが必要である。 To avoid this, radiation-resistant glass may be used, but since it is a special purpose, there are fewer types than ordinary optical glass. Moreover, there are many glass materials with a low refractive index on the so-called Sea of Japan side of the refractive index-Abe number map of glass. Therefore, more specifically, it is desirable to select and design a material having a refractive index of 1.7 or less. In particular, it is necessary to make the lens in the secondary mirror unit Ms directly exposed to outer space and the lens on the most object side of the refracting unit D1 have a low refractive index.

以上、本発明の好ましいズームレンズの実施例について説明したが、本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred examples of the zoom lens of the present invention have been described above, it goes without saying that the present invention is not limited to these examples, and various modifications and changes can be made within the scope of the gist thereof.

以下に実施例1乃至4に対応する数値実施例を示す。各数値実施例においてiは物体面からの面の順番を示す。数値実施例においてRはレンズ面の曲率半径、Dはレンズ厚及びレンズ間隔、NdとVdは各々レンズの材料のd−Lineにおける屈折率とアッベ数である。 Numerical examples corresponding to Examples 1 to 4 are shown below. In each numerical embodiment, i indicates the order of the planes from the object plane. In the numerical embodiment, R is the radius of curvature of the lens surface, D is the lens thickness and lens spacing, and Nd and Vd are the refractive index and Abbe number in d-Line of the lens material, respectively.

尚、以下に記載する数値実施例1から4のレンズデータに基づく、各条件式の計算結果を表5に示す。 Table 5 shows the calculation results of each conditional expression based on the lens data of the numerical examples 1 to 4 described below.

<実施例1>

Figure 0006879723
<Example 1>
Figure 0006879723

<実施例2>

Figure 0006879723
<Example 2>
Figure 0006879723

<実施例3>

Figure 0006879723
<Example 3>
Figure 0006879723

<実施例4>

Figure 0006879723
<Example 4>
Figure 0006879723

Figure 0006879723
Figure 0006879723

Claims (9)

物体側から、光の通る順に、
物体側に凹面を向けた球面の凹面鏡からなる主鏡部、
前記主鏡部に対し物体側に配置され像側に凸面を向けた球面の凸面鏡を持つ副鏡部、
前記副鏡部と像面との間に配置され拡大倍率を持つ屈折部
からなり、
前記副鏡部は、
前記凸面鏡の像側に配置され、物体側に凸面を向けた凸平またはメニスカスの正レンズと、
前記凸平またはメニスカスの正レンズと間隔を隔てて配置され、像側に凹面を向けた平凹またはメニスカスの負レンズと
からなり、
前記正レンズ及び前記負レンズには、前記主鏡部からの光線が通過後、前記凸面鏡で反射した光線が再度通過することを特徴とするカタディオプトリック光学系。
From the object side, in the order of light passing
A primary mirror unit consisting of a spherical concave mirror with a concave surface facing the object side,
A secondary mirror unit having a spherical convex mirror arranged on the object side with respect to the primary mirror unit and having a convex surface facing the image side.
It consists of a refracting part that is arranged between the secondary mirror part and the image plane and has a magnifying magnification.
The secondary mirror unit
A convex flat or meniscus positive lens arranged on the image side of the convex mirror and having a convex surface facing the object side,
The plano-convex or are arranged at a positive lens and spacing of the meniscus, is concave or flat with a concave surface facing the image side Ri Do and a negative lens of meniscus,
A catadioptric optical system characterized in that, after a light ray from the primary mirror portion passes through the positive lens and the negative lens, the light ray reflected by the convex mirror passes again.
前記屈折部は、前記屈折部内における最大レンズ間隔で隔てられた前群と後群からなり、前記前群は少なくとも1枚の正レンズを含み、前記後群は少なくとも負レンズと正レンズからなることを特徴とする請求項1に記載のカタディオプトリック光学系。 The refracting portion comprises a front group and a rear group separated by a maximum lens spacing in the refracting portion, the front group includes at least one positive lens, and the rear group consists of at least a negative lens and a positive lens. The catadioptric optical system according to claim 1. 前記屈折部の拡大倍率をMdとすると、
1.0 < Md < 1.5
を満足することを特徴とする請求項1または2に記載のカタディオプトリック光学系。
Assuming that the magnification of the refracted portion is Md,
1.0 <Md <1.5
The catadioptric optical system according to claim 1 or 2, wherein the catadioptric optical system is characterized in that.
前記屈折部の前記後群の倍率をMrとすると、
1.05 < Mr < 4.0
を満足することを特徴とする請求項2に記載のカタディオプトリック光学系。
Assuming that the magnification of the rear group of the refracting portion is Mr.
1.05 <Mr <4.0
The catadioptric optical system according to claim 2, wherein the catadioptric optical system is characterized in that.
物体側から、光の通る順に、
物体側に凹面を向けた球面の凹面鏡からなる主鏡部、
前記主鏡部に対し物体側に配置され像側に凸面を向けた球面の凸面鏡を持つ副鏡部、
前記副鏡部と像面との間に配置され拡大倍率を持つ屈折部
からなり、
前記副鏡部は、
前記凸面鏡の像側に配置され、物体側に凸面を向けた凸平またはメニスカスの正レンズと、
前記凸平またはメニスカスの正レンズと間隔を隔てて配置され、像側に凹面を向けた平凹またはメニスカスの負レンズと
からなり、
レンズの物体側の曲率半径をr1、像側の曲率半径をr2とするとき、
SF= (r2+r1) / (r2−r1)
で表されるシェイプファクターSFに対し、
前記副鏡部の正レンズのシェイプファクターをSFp、負レンズのシェイプファクターをSFnとすると、
1.0 < SFp < 5.0
−5.0 < SFn < −1.0
−0.5 < SFp + SFn < 0.5
を満足することを特徴とするカタディオプトリック光学系。
From the object side, in the order of light passing
A primary mirror unit consisting of a spherical concave mirror with a concave surface facing the object side,
A secondary mirror unit having a spherical convex mirror arranged on the object side with respect to the primary mirror unit and having a convex surface facing the image side.
A refracting portion arranged between the secondary mirror portion and the image plane and having a magnifying magnification.
Consists of
The secondary mirror unit
A convex flat or meniscus positive lens arranged on the image side of the convex mirror and having a convex surface facing the object side,
With a flat concave or meniscus negative lens that is placed at a distance from the convex flat or meniscus positive lens and has a concave surface facing the image side.
Consists of
When the radius of curvature on the object side of the lens is r1 and the radius of curvature on the image side is r2,
SF = (r2 + r1) / (r2-r1)
For the shape factor SF represented by
Assuming that the shape factor of the positive lens of the secondary mirror is SFp and the shape factor of the negative lens is SFn,
1.0 <SFp <5.0
-5.0 <SFn <-1.0
-0.5 <SFp + SFn <0.5
Features and to Luke Tadi opto Rick optical system satisfies the.
物体側から、光の通る順に、
物体側に凹面を向けた球面の凹面鏡からなる主鏡部、
前記主鏡部に対し物体側に配置され像側に凸面を向けた球面の凸面鏡を持つ副鏡部、
前記副鏡部と像面との間に配置され拡大倍率を持つ屈折部
からなり、
前記副鏡部は、
前記凸面鏡の像側に配置され、物体側に凸面を向けた凸平またはメニスカスの正レンズと、
前記凸平またはメニスカスの正レンズと間隔を隔てて配置され、像側に凹面を向けた平凹またはメニスカスの負レンズと
からなり、
前記屈折部は、前記屈折部内における最大レンズ間隔で隔てられた前群と後群からなり、前記前群は少なくとも1枚の正レンズを含み、前記後群は少なくとも負レンズと正レンズからなり、
前記屈折部の後群の負レンズのアッベ数をVdn、正レンズのアッベ数をVdpとすると、
1.0 < Vdp − Vdn < 20
を満足することを特徴とするカタディオプトリック光学系。
From the object side, in the order of light passing
A primary mirror unit consisting of a spherical concave mirror with a concave surface facing the object side,
A secondary mirror unit having a spherical convex mirror arranged on the object side with respect to the primary mirror unit and having a convex surface facing the image side.
A refracting portion arranged between the secondary mirror portion and the image plane and having a magnifying magnification.
Consists of
The secondary mirror unit
A convex flat or meniscus positive lens arranged on the image side of the convex mirror and having a convex surface facing the object side,
It is composed of a flat concave or meniscus negative lens that is arranged at a distance from the convex flat or meniscus positive lens and has a concave surface facing the image side .
The refracting portion comprises a front group and a rear group separated by a maximum lens spacing in the refracting portion, the front group including at least one positive lens, and the rear group consisting of at least a negative lens and a positive lens.
Assuming that the Abbe number of the negative lens in the rear group of the refracting portion is Vdn and the Abbe number of the positive lens is Vdp.
1.0 <Vdp − Vdn <20
Features and to Luke Tadi opto Rick optical system satisfies the.
物体側から、光の通る順に、
物体側に凹面を向けた球面の凹面鏡からなる主鏡部、
前記主鏡部に対し物体側に配置され像側に凸面を向けた球面の凸面鏡を持つ副鏡部、
前記副鏡部と像面との間に配置され拡大倍率を持つ屈折部
からなり、
前記副鏡部は、
前記凸面鏡の像側に配置され、物体側に凸面を向けた凸平またはメニスカスの正レンズと、
前記凸平またはメニスカスの正レンズと間隔を隔てて配置され、像側に凹面を向けた平凹またはメニスカスの負レンズと
からなり、
前記屈折部のレンズ枚数をN、前記副鏡部の正、負レンズの間隔をd、前記副鏡部の負レンズの凹面から前記屈折部の最も物体側の面の頂点までの間隔をLとすると、
d/Lは、
−0.016N+0.112<d/L<−0.016N+0.128
を満足することを特徴とするカタディオプトリック光学系。
From the object side, in the order of light passing
A primary mirror unit consisting of a spherical concave mirror with a concave surface facing the object side,
A secondary mirror unit having a spherical convex mirror arranged on the object side with respect to the primary mirror unit and having a convex surface facing the image side.
A refracting portion arranged between the secondary mirror portion and the image plane and having a magnifying magnification.
Consists of
The secondary mirror unit
A convex flat or meniscus positive lens arranged on the image side of the convex mirror and having a convex surface facing the object side,
With a flat concave or meniscus negative lens that is placed at a distance from the convex flat or meniscus positive lens and has a concave surface facing the image side.
Consists of
The number of lenses of the refracting portion is N, the distance between the positive and negative lenses of the secondary mirror portion is d, and the distance from the concave surface of the negative lens of the secondary mirror portion to the apex of the surface closest to the object side of the refracting portion is L. Then,
d / L is
−0.016N + 0.112 <d / L <−0.016N + 0.128
Features and to Luke Tadi opto Rick optical system satisfies the.
請求項1乃至7のいずれか1項に記載のカタディオプトリック光学系と、前記カタディオプトリック光学系によって形成される像を受光する撮像素子とを有することを特徴とする撮像装置。 An image pickup apparatus comprising the catadioptric optical system according to any one of claims 1 to 7 and an image pickup element that receives an image formed by the catadioptric optical system. 請求項1乃至7のいずれか1項に記載のカタディオプトリック光学系を搭載した人工衛星であって、
前記副鏡部と、前記屈折部の最も物体側のレンズの屈折率が1.7以下であることを特徴とする人工衛星。
An artificial satellite equipped with the catadioptric optical system according to any one of claims 1 to 7.
An artificial satellite characterized in that the refractive index of the secondary mirror portion and the lens on the most object side of the refracting portion is 1.7 or less.
JP2016234123A 2016-12-01 2016-12-01 Catadioptric optics, imaging devices and artificial satellites Active JP6879723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016234123A JP6879723B2 (en) 2016-12-01 2016-12-01 Catadioptric optics, imaging devices and artificial satellites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016234123A JP6879723B2 (en) 2016-12-01 2016-12-01 Catadioptric optics, imaging devices and artificial satellites

Publications (3)

Publication Number Publication Date
JP2018091956A JP2018091956A (en) 2018-06-14
JP2018091956A5 JP2018091956A5 (en) 2020-01-23
JP6879723B2 true JP6879723B2 (en) 2021-06-02

Family

ID=62563788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234123A Active JP6879723B2 (en) 2016-12-01 2016-12-01 Catadioptric optics, imaging devices and artificial satellites

Country Status (1)

Country Link
JP (1) JP6879723B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401265B2 (en) 2019-11-07 2023-12-19 キヤノン株式会社 Optics and optical equipment
TWI754877B (en) * 2020-01-02 2022-02-11 財團法人國家實驗研究院 Catadioptric optical system
CN112859319A (en) * 2021-02-22 2021-05-28 中科院南京天文仪器有限公司 Large-caliber wide-spectrum coaxial bidirectional layout telescope optical system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169119A (en) * 1982-03-30 1983-10-05 Canon Inc Catadioptric lens
JPS60184223A (en) * 1984-03-01 1985-09-19 Nippon Kogaku Kk <Nikon> Cata-dioptric telephoto lens
JPS6398618A (en) * 1986-10-15 1988-04-30 Canon Inc Reflecting and refracting telephoto lens
JP2526299B2 (en) * 1990-04-20 1996-08-21 大日本スクリーン製造株式会社 Objective lens for microscope
JP6395036B2 (en) * 2014-08-01 2018-09-26 株式会社 清原光学 Cassegrain telescope and telephoto lens
CN104317039B (en) * 2014-11-11 2017-02-15 苏州大学 Reflex type telephoto objective lens

Also Published As

Publication number Publication date
JP2018091956A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
US9746658B2 (en) Objective for microscope
CN108254859B (en) Catadioptric optical system and imaging apparatus
CN107111110B (en) Endoscope objective optical system
JP5818209B2 (en) Macro lens
CN109491045B (en) Optical system and image pickup apparatus
JP4944436B2 (en) Zoom lens and imaging apparatus having the same
US9329373B2 (en) Catadioptric optical system with multi-reflection element for high numerical aperture imaging
JP6404795B2 (en) Zoom lens and imaging device
JP2005352060A (en) Small-size wide-angle lens with large aperture and camera equipped with same
CN107589534B (en) A kind of lens system and camera lens
JP6642022B2 (en) Eyepiece optical system
JP2011107313A5 (en)
JP6797401B2 (en) Zoom lens
JP6879723B2 (en) Catadioptric optics, imaging devices and artificial satellites
JP2017032927A (en) Imaging optical system, image projection device, and image capturing device
JP2012113296A (en) Zoom lens system
US10539768B2 (en) Rear converter optical system and imaging apparatus including the same
JP2008008981A (en) Finder optical system and optical apparatus with the same
JP2018091956A5 (en) Catadioptric optics, imaging devices and satellites
JP2010237430A (en) Finder optical system of single lens reflex camera
JP2009157372A (en) Rear focusing zoom lens
JP2004252101A (en) Super wide angle lens
JP6991836B2 (en) Optical system and image pickup device
JP5037960B2 (en) Optical system and imaging apparatus having the same
JP5854944B2 (en) Inner focus lens

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210430

R150 Certificate of patent or registration of utility model

Ref document number: 6879723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250