JP6878913B2 - How to make carbon dioxide - Google Patents

How to make carbon dioxide Download PDF

Info

Publication number
JP6878913B2
JP6878913B2 JP2017011857A JP2017011857A JP6878913B2 JP 6878913 B2 JP6878913 B2 JP 6878913B2 JP 2017011857 A JP2017011857 A JP 2017011857A JP 2017011857 A JP2017011857 A JP 2017011857A JP 6878913 B2 JP6878913 B2 JP 6878913B2
Authority
JP
Japan
Prior art keywords
exhaust gas
carbon dioxide
ethylene
equipment
cracking furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017011857A
Other languages
Japanese (ja)
Other versions
JP2018118882A (en
Inventor
顕史 佐藤
顕史 佐藤
正寿 岡崎
正寿 岡崎
清光 高野
清光 高野
典雄 石原
典雄 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017011857A priority Critical patent/JP6878913B2/en
Publication of JP2018118882A publication Critical patent/JP2018118882A/en
Application granted granted Critical
Publication of JP6878913B2 publication Critical patent/JP6878913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、二酸化炭素の製造方法に関し、詳しくは、負圧下で運転されるエチレンプラントの排ガスを原料とする二酸化炭素の製造方法に関する。 The present invention relates to a method for producing carbon dioxide, and more particularly to a method for producing carbon dioxide using exhaust gas from an ethylene plant operated under negative pressure as a raw material.

二酸化炭素は、溶接用シールドガス、鋳物製造用ガス、食品用封入ガス、パージガス、清涼飲料、ドライアイス等、種々の分野で使用されている。そして、この二酸化炭素は、アンモニア製造工程で副生する二酸化炭素を主に使用してきた。
しかし、アンモニアの需給バランスの関係から、アンモニア製造工場の停止等が生じており、新たな二酸化炭素の供給源が必要となっている。そのような新たな供給源として、大量の化石燃料を使用する火力発電所等の動力発生設備として使用されるボイラーやガスタービン等の産業設備や、分解炉において、エタン、プロパン、ナフサ、ガスオイル等の広範囲な炭化水素原料を無触媒下にて高温短時間で熱分解して、エチレン、プロピレン、ブテン等のオレフィンおよびベンゼン、トルエン、キシレン等の芳香族化合物を生成し、これを分離精製するエチレンプラント等が検討される。
Carbon dioxide is used in various fields such as a shield gas for welding, a gas for manufacturing castings, a gas for filling foods, a purge gas, a soft drink, and dry ice. And this carbon dioxide has mainly used carbon dioxide produced as a by-product in the ammonia production process.
However, due to the balance between supply and demand of ammonia, the ammonia manufacturing plant has been shut down, and a new source of carbon dioxide is needed. As such a new source, ethane, propane, naphtha, gas oil in industrial equipment such as boilers and gas turbines used as power generation equipment such as thermal power plants that use a large amount of fossil fuel, and in cracking furnaces. A wide range of hydrocarbon raw materials such as benzene, etc. are thermally decomposed at high temperature for a short time under no catalyst to produce olefins such as ethylene, propylene and butene and aromatic compounds such as benzene, toluene and xylene, which are separated and purified. Ethane plants, etc. will be considered.

上記のボイラーやガスタービン等の産業設備から生じる排ガス中の二酸化炭素を利用する技術は、環境対策としての二酸化炭素固定化を念頭においており、その適用対象は発生量の多い発電所などのボイラータービン設備を中心に検討されている技術で、排出された二酸化炭素を含有する排ガスの一部若しくは全量を抜き出して二酸化炭素回収設備に送る技術である(特許文献1)。 The technology that uses carbon dioxide in the exhaust gas generated from the above industrial equipment such as boilers and gas turbines is intended to fix carbon dioxide as an environmental measure, and its application is to boiler turbines such as power plants that generate a large amount of electricity. This is a technology that is being studied mainly for equipment, and is a technology that extracts part or all of the exhaust gas containing exhaust gas and sends it to carbon capture equipment (Patent Document 1).

また、上記のエチレンプラントは、熱分解工程と分離精製工程とを有する。熱分解工程で原料炭化水素と水蒸気を混合し、これをエチレン分解炉内の反応管に導入してバーナーによって管の外部から加熱する工程であり、エチレン等の反応生成物が得られる。次に熱交換器によって得られた反応生成物は急冷され、分離精製工程に送られ、各成分に分離される。この急冷時、凝縮されなかったガス成分は排ガスとして、外部に排出される。この排ガスには原料炭化水素の完全燃焼物である二酸化炭素が含まれる。 In addition, the above ethylene plant has a thermal decomposition step and a separation and purification step. In the thermal decomposition step, the raw material hydrocarbon and steam are mixed, introduced into the reaction tube in the ethylene decomposition furnace, and heated from the outside of the tube by a burner, and a reaction product such as ethylene is obtained. The reaction product obtained by the heat exchanger is then rapidly cooled and sent to a separation and purification step where it is separated into individual components. During this quenching, the uncondensed gas component is discharged to the outside as exhaust gas. This exhaust gas contains carbon dioxide, which is a complete combustion product of the raw material hydrocarbon.

特開2010−17617号公報Japanese Unexamined Patent Publication No. 2010-17617

Gato et.al.(2005):”Dynamic behavior of high-pressure natural gas flow in pipelines”,Int. J. Heat and Fluid flow,Vol26,817-825Gato et.al. (2005): “Dynamic behavior of high-pressure natural gas flow in pipelines”, Int. J. Heat and Fluid flow, Vol26,817-825

しかしながら、特許文献1に記載の設備からの排出ガスには硫黄分やその他重金属成分などの不純物が含有されているため、回収された二酸化炭素を食品用途に活用するのは困難である。 However, since the exhaust gas from the equipment described in Patent Document 1 contains impurities such as sulfur and other heavy metal components, it is difficult to utilize the recovered carbon dioxide for food applications.

これに対し、上記のエチレンプラントからの排出ガス中には、硫黄分やその他重金属成分などの不純物は含まれておらず、これから回収された二酸化炭素を食品用途に活用することが可能である。
ところで、上記のエチレンプラントの分解炉は、発電所ボイラーとは対照的に−35PaG〜−15PaGの微負圧の条件にて運転されることが多い。そして、万が一、エチレンプラントから二酸化炭素を含む排ガスを回収している際、その二酸化炭素回収設備に不調が生じた場合、排ガスの回収速度に変化が生じ、その結果、圧力変動による衝撃波、すなわち圧力変動波が発生する事が知られている(非特許文献1)。その圧力変動波がエチレンプラントのエチレン分解炉に伝播すると、分解炉の圧力が変動し、場合によっては、陽圧に転じるおそれがあり、分解炉の安定運転に支障を与える可能性がある。
On the other hand, the exhaust gas from the above ethylene plant does not contain impurities such as sulfur and other heavy metal components, and the carbon dioxide recovered from this can be utilized for food applications.
By the way, the decomposition furnace of the above ethylene plant is often operated under the condition of a slight negative pressure of −35 PaG to −15 PaG, in contrast to the power plant boiler. Then, in the unlikely event that the exhaust gas containing carbon dioxide is recovered from the ethylene plant and the carbon dioxide recovery facility malfunctions, the recovery rate of the exhaust gas changes, and as a result, a shock wave due to pressure fluctuation, that is, pressure It is known that fluctuating waves are generated (Non-Patent Document 1). When the pressure fluctuation wave propagates to the ethylene cracking furnace of the ethylene plant, the pressure of the cracking furnace fluctuates, and in some cases, it may change to positive pressure, which may hinder the stable operation of the cracking furnace.

そこで、この発明は、エチレンプラントから二酸化炭素を含む排ガスを回収して純度の高い二酸化炭素を製造する際、その二酸化炭素製造設備に不調が生じたことにより発生した衝撃波がエチレンプラントのエチレン分解炉に伝播して、エチレン分解炉内が陽圧になるのを抑制し、エチレン分解炉の安定運転を確保することを目的とする。 Therefore, in the present invention, when exhaust gas containing carbon dioxide is recovered from an ethylene plant to produce high-purity carbon dioxide, a shock wave generated due to a malfunction in the carbon dioxide production facility causes an ethylene decomposition furnace of the ethylene plant. The purpose is to prevent the inside of the ethylene cracking furnace from becoming positive pressure and to ensure stable operation of the ethylene cracking furnace.

本発明者らが検討を行った結果、特定の条件を満たす排ガス設備、二酸化炭素製造設備及び排ガス取り出し配管を設けることにより、上記課題を解決することができることを見出し、本発明を完成させた。
即ち、本発明は以下を要旨とする。
As a result of studies by the present inventors, they have found that the above problems can be solved by providing an exhaust gas facility, a carbon dioxide production facility, and an exhaust gas extraction pipe that satisfy specific conditions, and have completed the present invention.
That is, the gist of the present invention is as follows.

[1]エチレン分解炉、及びこのエチレン分解炉から排出される排ガスを回収、排出するための排ガス設備を有するエチレンプラントから排出される排ガスを用いて二酸化炭素を製造する二酸化炭素の製造方法において、上記排ガス設備と上記二酸化炭素を製造する二酸化炭素製造設備とは排ガス取り出し配管により連結され、この排ガス取り出し配管の一方の端部は、上記排ガス設備の内部に挿入され、上記排ガス取り出し配管を流れる上記排ガスの量の減少が生じたとき、その減少開始から減少終了までの時間をt1秒、上記排ガス設備の内部に挿入された上記排ガス取り出し配管の一方の端部の開口部のある部分の排ガスの流れ方向を基準としたとき、この排ガス取り出し配管の一方の端部の開口部の向く方向をθrad(0≦θ≦π)、上記排ガス取り出し配管を流れる上記排ガスの量が減少するときに生じる圧力変動波が前記エチレン分解炉に到達する時間をt2秒、上記排ガス取り出し配管を流れる上記排ガスの速度低下により生じる運動エネルギー減少量をΔU(J)、
としたとき、下記の式(1)を満たすことにより、上記二酸化炭素製造設備の不調により生じる圧力変動幅を100Pa以下に抑制することを特徴とする二酸化炭素の製造方法。
(−7.29349)×t1+(−18.5213)×θ+(−138.68)×t2+(0.404007)×ΔU+149.9496≦100 …(1)
[2]上記エチレン分解炉は、−150PaG以上−100PaG未満で運転され、上記圧力変動によるエチレン分解炉の圧力が負圧で維持されることを特徴とする[1]に記載の二酸化炭素の製造方法。
[1] In a method for producing carbon dioxide using an exhaust gas discharged from an ethylene decomposition furnace and an exhaust gas plant having an exhaust gas facility for collecting and discharging the exhaust gas discharged from the ethylene decomposition furnace. The exhaust gas equipment and the carbon dioxide production equipment that produces the carbon dioxide are connected by an exhaust gas take-out pipe, and one end of the exhaust gas take-out pipe is inserted into the exhaust gas equipment and flows through the exhaust gas take-out pipe. When the amount of exhaust gas decreases, the time from the start of the decrease to the end of the decrease is t1 seconds, and the exhaust gas in the portion of the exhaust gas with an opening at one end of the exhaust gas take-out pipe inserted inside the exhaust gas facility. When the flow direction is used as a reference, the direction in which the opening at one end of the exhaust gas extraction pipe faces is θrad (0 ≤ θ ≤ π), and the pressure generated when the amount of the exhaust gas flowing through the exhaust gas extraction pipe decreases. The time for the fluctuating wave to reach the ethylene decomposition furnace is t2 seconds, and the amount of decrease in kinetic energy caused by the decrease in the speed of the exhaust gas flowing through the exhaust gas extraction pipe is ΔU (J).
Then, by satisfying the following formula (1), the pressure fluctuation range caused by the malfunction of the carbon dioxide production equipment is suppressed to 100 Pa or less, which is a method for producing carbon dioxide.
(-7.29349) × t1 + (-18.52513) × θ + (-138.68) × t2 + (0.4040007) × ΔU + 149.9496 ≦ 100… (1)
[2] The production of carbon dioxide according to [1], wherein the ethylene cracking furnace is operated at −150 PaG or more and less than -100 PaG, and the pressure of the ethylene cracking furnace due to the pressure fluctuation is maintained at a negative pressure. Method.

本発明によれば、式(1)の条件を満たすように、排ガス設備、二酸化炭素製造設備及び排ガス取り出し配管を設けるので、二酸化炭素製造設備の不調により生じる圧力変動波による圧力変動幅を100Pa以内に抑えることができるので、エチレン分解炉を負圧の状態に保持することができ、エチレン分解炉の安定運転を確保することができる。 According to the present invention, since the exhaust gas equipment, the carbon dioxide production equipment and the exhaust gas extraction pipe are provided so as to satisfy the condition of the equation (1), the pressure fluctuation width due to the pressure fluctuation wave caused by the malfunction of the carbon dioxide production equipment is within 100 Pa. Therefore, the ethylene cracking furnace can be maintained in a negative pressure state, and stable operation of the ethylene cracking furnace can be ensured.

(a)(b)(c)この発明に係るエチレン分解炉、排ガス設備、及び排ガス取り出し配管との関係を示す模式図(A) (b) (c) Schematic diagram showing the relationship between the ethylene decomposition furnace, the exhaust gas equipment, and the exhaust gas extraction pipe according to the present invention. この発明に係る二酸化炭素製造設備の模式図Schematic diagram of carbon dioxide production equipment according to the present invention この発明にかかる排ガス設備と排ガス取り出し配管の一方の端部との関係を示す模式図Schematic diagram showing the relationship between the exhaust gas equipment according to the present invention and one end of the exhaust gas extraction pipe. 排ガス取り出し配管を流れる排ガスの速度低下の例を示すグラフGraph showing an example of slowdown of exhaust gas flowing through the exhaust gas extraction pipe

以下、本発明の実施の形態を詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することが出来る。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.

この発明は、エチレン分解炉、及びこのエチレン分解炉から排出される排ガスを回収、排出するための排ガス設備を有するエチレンプラントの排ガスから二酸化炭素を回収する二酸化炭素の製造方法である。 The present invention is a method for producing carbon dioxide, which recovers carbon dioxide from an ethylene cracking furnace and an exhaust gas of an ethylene plant having an exhaust gas facility for recovering and discharging the exhaust gas discharged from the ethylene cracking furnace.

エチレン分解炉10は、飽和炭化水素、主としてエタン、プロパン、ブタン、LNG(液化天然ガス)、ナフサ又はガス油等を原料として、分解炉内で温度500〜875℃、圧力−150PaG〜−100PaGの範囲で運転される。分解ガスは必要に応じ冷却器により冷却され、排ガス設備11へ送られる。 The ethylene cracking furnace 10 uses saturated hydrocarbons, mainly ethane, propane, butane, LNG (liquefied natural gas), naphtha, gas oil, etc. as raw materials, and has a temperature of 500 to 875 ° C. and a pressure of −150 PaG to −100 PaG in the cracking furnace. Driven in range. The decomposed gas is cooled by a cooler as needed and sent to the exhaust gas equipment 11.

上記の排ガス設備11は、図1(a)に示すように、複数のエチレン分解炉10で発生する二酸化炭素を有する排ガスを回収する分解炉ダクト12、各分解炉ダクト12を連結する連結ダクト13、連結ダクト13内の排ガスを集める集約ダクト14、この集約ダクト14に集められた排ガスを外方に排出する排ガス煙突15から構成される。
この排ガス設備11によって、エチレン分解炉10で発生した二酸化炭素を含む排ガスは回収され、煙突より外方に排出される。
As shown in FIG. 1A, the above exhaust gas facility 11 includes a decomposition furnace duct 12 for recovering exhaust gas having carbon dioxide generated in a plurality of ethylene decomposition furnaces 10, and a connecting duct 13 for connecting each decomposition furnace duct 12. It is composed of an exhaust gas collecting duct 14 that collects the exhaust gas in the connecting duct 13, and an exhaust gas chimney 15 that discharges the exhaust gas collected in the collecting duct 14 to the outside.
The exhaust gas equipment 11 recovers the exhaust gas containing carbon dioxide generated in the ethylene decomposition furnace 10 and discharges it to the outside from the chimney.

この排ガス設備11に回収された排ガスの一部又は全部を抜き出し、その抜き出された排ガスに含まれる二酸化炭素の少なくとも一部を回収し、純度の高い二酸化炭素を製造するため、図2に示すような二酸化炭素製造設備21が設けられる。 A part or all of the exhaust gas recovered in the exhaust gas equipment 11 is extracted, and at least a part of carbon dioxide contained in the extracted exhaust gas is recovered to produce high-purity carbon dioxide, which is shown in FIG. Such carbon dioxide production equipment 21 is provided.

この二酸化炭素製造設備21は、特に限定されないが、上記排ガス設備11から排ガスの一部又は全部を抜き出す排ガス取り出し配管22、この排ガス取り出し配管22で抜き出された排ガスを水で洗浄する水洗塔23、水洗塔23で水洗された排ガスを吸引するブロア24、吸引された排ガスから二酸化炭素を吸収する吸収塔25、二酸化炭素を吸収した吸収液を処理、精製する処理設備(図示せず)等を有する設備である。このブロア24は、1つだけ設けてもよいが、ブロア24の不調や故障により、二酸化炭素製造設備21全体が停止するのを防止するため、複数、すなわち少なくとも2つを並列に設けることが好ましい。 The carbon dioxide production facility 21 is not particularly limited, but is an exhaust gas take-out pipe 22 that extracts a part or all of the exhaust gas from the exhaust gas facility 11, and a water washing tower 23 that cleans the exhaust gas extracted by the exhaust gas take-out pipe 22 with water. , A blower 24 that sucks the exhaust gas washed with water in the water washing tower 23, an absorption tower 25 that absorbs carbon dioxide from the sucked exhaust gas, a processing facility (not shown) that processes and purifies the absorbing liquid that has absorbed carbon dioxide, etc. It is a facility to have. Although only one blower 24 may be provided, it is preferable to provide a plurality, that is, at least two in parallel in order to prevent the entire carbon dioxide production facility 21 from stopping due to a malfunction or failure of the blower 24. ..

上記の通り、排ガス設備11と二酸化炭素製造設備21とは、上記排ガス取り出し配管22により連結される。この排ガス取り出し配管22の一方の端部は、上記排ガス設備11の内部に挿入され、他方の端部は、例えば水洗塔23に接続される。 As described above, the exhaust gas equipment 11 and the carbon dioxide production equipment 21 are connected by the exhaust gas extraction pipe 22. One end of the exhaust gas take-out pipe 22 is inserted into the exhaust gas equipment 11, and the other end is connected to, for example, a washing tower 23.

上記排ガス取り出し配管22の一方の端部を挿入する上記排ガス設備11の位置は、図1(a)に示すような集約ダクト14の1つの面、図1(b)示すような排ガス煙突15の下端面、図1(c)示すような、排ガス煙突15の上端開口部等があげられる。
そして、上記排ガス取り出し配管22の一方の端部は、上記の位置から上記排ガス設備11内部に挿入され、後記する条件の下、この端部が配置される。
The position of the exhaust gas equipment 11 into which one end of the exhaust gas take-out pipe 22 is inserted is located on one surface of the aggregation duct 14 as shown in FIG. 1 (a) and the exhaust gas chimney 15 as shown in FIG. 1 (b). The lower end surface, the upper end opening of the exhaust gas chimney 15 as shown in FIG. 1C, and the like can be mentioned.
Then, one end of the exhaust gas take-out pipe 22 is inserted into the exhaust gas equipment 11 from the above position, and this end is arranged under the conditions described later.

この上記排ガス取り出し配管22の一方の端部に設けられる開口部22aは、例えば図3に示すように、当該端部の端面又は側面に設けられる。具体的には、排ガス設備11に挿入された排ガス取り出し配管22を、その排ガス設備11内を流れる排ガスの流れ方向に屈曲させ、排ガス取り出し配管22の端部の開口部22aを、上記排ガスの流れ方向を基準として、図3に示すように、所定の角度(θrad、0≦θ≦π)を傾けて向くように形成することが好ましい。この角度θは、具体的には、上記排ガスの流れ方向と開口部22aが形成される面と垂直方向との間になす角度とする。なお、この角度については、後記する。
なお、この角度θは、上記排ガスの流れ方向を0radとし、排ガス取り出し配管22が排ガス設備11の壁面に最も近い側の面と反対側の面に、上記排ガスの流れ方向に対して90°(=π/2rad)の角度を持って形成された開口部22aの角度を90°(=π/2rad)とする。同様に、排ガス取り出し配管22が排ガス設備11の壁面に最も近い側の面に、上記排ガスの流れ方向に対して90°(=π/2rad)の角度を持って形成された開口部22aの角度についても90°(=π/2rad)とする。
The opening 22a provided at one end of the exhaust gas extraction pipe 22 is provided at the end face or side surface of the end, for example, as shown in FIG. Specifically, the exhaust gas take-out pipe 22 inserted into the exhaust gas equipment 11 is bent in the flow direction of the exhaust gas flowing in the exhaust gas equipment 11, and the opening 22a at the end of the exhaust gas take-out pipe 22 is passed through the exhaust gas flow. As shown in FIG. 3, it is preferable to form the shape so as to be inclined at a predetermined angle (θrad, 0 ≦ θ ≦ π) with respect to the direction. Specifically, this angle θ is an angle formed between the flow direction of the exhaust gas and the surface on which the opening 22a is formed and the vertical direction. This angle will be described later.
The angle θ is 90 ° with respect to the flow direction of the exhaust gas on the surface of the exhaust gas take-out pipe 22 opposite to the surface closest to the wall surface of the exhaust gas facility 11, with the flow direction of the exhaust gas as 0 rad. The angle of the opening 22a formed with an angle of = π / 2 rad) is 90 ° (= π / 2 rad). Similarly, the angle of the opening 22a formed on the surface of the exhaust gas take-out pipe 22 closest to the wall surface of the exhaust gas equipment 11 at an angle of 90 ° (= π / 2rad) with respect to the flow direction of the exhaust gas. Also set to 90 ° (= π / 2 rad).

本願発明において、二酸化炭素製造設備21の不調により、エチレン分解炉10に生じる圧力変動幅を100Pa以下に抑制するため、下記の式(1)を満たすことが必要となる。
(−7.29349)×t1+(−18.5213)×θ+(−138.68)×t2+(0.404007)×ΔU+149.9496≦100 …(1)
In the present invention, in order to suppress the pressure fluctuation range generated in the ethylene decomposition furnace 10 to 100 Pa or less due to the malfunction of the carbon dioxide production facility 21, it is necessary to satisfy the following formula (1).
(-7.29349) × t1 + (-18.52513) × θ + (-138.68) × t2 + (0.4040007) × ΔU + 149.9496 ≦ 100… (1)

なお、式(1)中、t1(秒)は、上記排ガス取り出し配管22を流れる上記排ガスの量の減少が生じたとき、その減少開始から減少終了までの時間を示す。
t1(秒)は、計画的に二酸化炭素製造設備21を停止させるときにも適用されるが、定数の符号がマイナスであり、短時間に上記排ガス取り出し配管22を流れる上記排ガスの量の減少が生じる場合、具体的には、ブロア24の1つ又は複数の停止又は不調、それ以外の二酸化炭素製造設備21の不調等による上記排ガス量の減少、二酸化炭素製造設備21の緊急停止等により、短時間に上記排ガス量の減少が生じた場合に、式(1)の結果に大きな影響を与えることとなる。
In the formula (1), t1 (second) indicates the time from the start of the decrease to the end of the decrease when the amount of the exhaust gas flowing through the exhaust gas take-out pipe 22 decreases.
t1 (second) is also applied when the carbon dioxide production facility 21 is intentionally stopped, but the sign of the constant is negative, and the amount of the exhaust gas flowing through the exhaust gas extraction pipe 22 is reduced in a short time. If it occurs, specifically, it will be short due to the shutdown or malfunction of one or more of the blowers 24, the decrease in the amount of exhaust gas due to the malfunction of the other carbon dioxide production equipment 21, the emergency shutdown of the carbon dioxide production equipment 21, etc. When the amount of exhaust gas decreases in time, it has a great influence on the result of the equation (1).

θ(rad)は上記した角度を示す。
θは、上記したように、開口部22aの角度であり、一般的には、他の条件によっては、上記排ガスの流れ方向と反対方向であってもよいが、上記排ガスの流れ方向、すなわち、エチレン分解炉に向かう方向と反対方向に設けられるのがより好ましい。より好ましい範囲は、0〜90°(=π/2rad)となる。なお、270°(=3π/2rad)〜0°(360°)は、排ガス設備11の壁面に開口部22aが向くことになるが0°〜90°(=π/2rad)の場合と同様の効果が得られると考えられる。即ち本発明では0〜180°と360〜180°とを区別せず、排ガス取り出し配管の一方の端部の開口部の向く方向をθrad(0≦θ≦π)とした。
θ (rad) indicates the above angle.
As described above, θ is the angle of the opening 22a, and generally, depending on other conditions, the direction may be opposite to the flow direction of the exhaust gas, but the flow direction of the exhaust gas, that is, More preferably, it is provided in the direction opposite to the direction toward the ethylene cracking furnace. A more preferable range is 0 to 90 ° (= π / 2 rad). At 270 ° (= 3π / 2rad) to 0 ° (360 °), the opening 22a faces the wall surface of the exhaust gas equipment 11, but it is the same as at 0 ° to 90 ° (= π / 2rad). It is thought that the effect will be obtained. That is, in the present invention, 0 to 180 ° and 360 to 180 ° are not distinguished, and the direction of the opening at one end of the exhaust gas extraction pipe is set to θrad (0 ≦ θ ≦ π).

t2(秒)は、上記排ガス取り出し配管22を流れる排ガスの量が減少するときに生じる圧力変動波が前記エチレン分解炉に到達する時間を示す。
t2(秒)は、圧力変動波がエチレン分解炉に到達する時間であるが、圧力変動波は気体中を伝播するので、音波とほぼ同様の速度を有する。このため、この時間t2は、実質上、分解炉10から二酸化炭素製造設備21までの距離、すなわち、排ガス取り出し配管22の長さ、及び排ガス取り出し配管22の一方の端部の開口部から分解炉10までの最短経路の距離の合計値で決定される。
t2 (seconds) indicates the time for the pressure fluctuation wave generated when the amount of exhaust gas flowing through the exhaust gas extraction pipe 22 decreases to reach the ethylene cracking furnace.
t2 (seconds) is the time for the pressure fluctuation wave to reach the ethylene cracking furnace, but since the pressure fluctuation wave propagates in the gas, it has almost the same speed as the sound wave. Therefore, this time t2 is substantially the distance from the decomposition furnace 10 to the carbon dioxide production facility 21, that is, the length of the exhaust gas extraction pipe 22, and the decomposition furnace from the opening at one end of the exhaust gas extraction pipe 22. It is determined by the total value of the distances of the shortest routes up to 10.

ΔU(J)は、上記排ガス取り出し配管22を流れる上記排ガスの速度低下により生じる運動エネルギー減少量を示す。
ΔUは、排ガス取り出し配管22を流れる排ガスの速度低下により生じる運動エネルギー減少量である。排ガス取り出し配管22を流れる排ガスの質量は、単位体積当たりの質量が一定なので、排ガス取り出し配管22の径が定まると一定化するので、定数に組み込むことができる。このため、例えば、図4に示すように、速度がv1からv2に低下したとすると、ΔUは、((v1)−(v2))の定数倍となる。
ΔU (J) indicates the amount of decrease in kinetic energy caused by the decrease in the speed of the exhaust gas flowing through the exhaust gas extraction pipe 22.
ΔU is the amount of decrease in kinetic energy caused by the decrease in the speed of the exhaust gas flowing through the exhaust gas extraction pipe 22. Since the mass of the exhaust gas flowing through the exhaust gas take-out pipe 22 is constant per unit volume, it becomes constant once the diameter of the exhaust gas take-out pipe 22 is determined, and can be incorporated into a constant. Therefore, for example, as shown in FIG. 4, if the velocity decreases from v1 to v2, ΔU becomes a constant multiple of ((v1) 2- (v2) 2).

なお、低下した速度v2は、二酸化炭素製造設備21が停止した場合は、v2=0となる。また、複数あるブロア24のいくつかが停止した等、二酸化炭素製造設備21が停止しないものの不調が生じた場合は、v2>0となる。 The reduced speed v2 becomes v2 = 0 when the carbon dioxide production facility 21 is stopped. Further, when the carbon dioxide production facility 21 does not stop but a malfunction occurs, such as when some of the plurality of blowers 24 stop, v2> 0.

上記したt1、θ、t2およびΔUの係数は、これらの条件を変更した場合におけるエチレン分解炉での圧力変動幅のデータを再現できるように決定した係数である。この係数が正の場合には当該変数を増加させるとともに圧力変動幅が増加し、逆にこの係数が負の場合は当該変数を増加させるとともに圧力変動幅が減少する事を示している。
このため、上記式(1)の「(−7.29349)×t1+(−18.5213)×θ+(−138.68)×t2+(0.404007)×ΔU+149.9496」の値が100以下というのは、エチレン分解炉における圧力変動幅が100Pa以下であることを意味する。
The coefficients of t1, θ, t2 and ΔU described above are coefficients determined so that the data of the pressure fluctuation width in the ethylene decomposition furnace when these conditions are changed can be reproduced. When this coefficient is positive, the variable is increased and the pressure fluctuation range is increased. On the contrary, when this coefficient is negative, the variable is increased and the pressure fluctuation range is decreased.
Therefore, the value of "(-7.29349) x t1 + (-18.5213) x θ + (-138.68) x t2 + (0.4040007) x ΔU + 149.9494" in the above formula (1) is said to be 100 or less. Means that the pressure fluctuation range in the ethylene decomposition furnace is 100 Pa or less.

したがって、この式(1)のうち、t1及びΔUは、二酸化炭素製造設備21の不調の程度により変化するので、t2及びθ、すなわち、エチレン分解炉から二酸化炭素製造設備21までの距離及び開口部22aの角度を適正化することにより、t1及びΔUの変化が生じても、圧力変動幅を100Pa以下にすることができる。 Therefore, in this formula (1), t1 and ΔU change depending on the degree of malfunction of the carbon dioxide production facility 21, so that t2 and θ, that is, the distance and the opening from the ethylene decomposition furnace to the carbon dioxide production facility 21. By optimizing the angle of 22a, the pressure fluctuation range can be set to 100 Pa or less even if t1 and ΔU change.

ところで、上記の式(1)は、t1、t2、θ、ΔUを含む各種ファクターを設定し、エチレン分解炉における圧力変動幅(ΔP)を流体解析により計算し、この結果を再現する統計回帰モデルを構築することによって導き出した式である。この流体解析による計算方法については、後記の実施例の欄において示す。 By the way, in the above equation (1), various factors including t1, t2, θ, and ΔU are set, the pressure fluctuation width (ΔP) in the ethylene decomposition furnace is calculated by fluid analysis, and a statistical regression model that reproduces this result is reproduced. It is an equation derived by constructing. The calculation method by this fluid analysis will be shown in the column of Examples described later.

この発明においては、圧力変動幅を100Pa以下に抑えることができる。本願のエチレン分解炉は、−150PaG以上−100PaG未満の負圧条件下で運転されるが、この負圧条件下の場合、圧力変動によっては、エチレン分解炉が陽圧になる恐れがある。この事態を防ぐため、上記式(1)の値がエチレン分解炉の圧力の絶対値より小さくなるように、t1、t2、θ、ΔU、特にt2及びθの値を調整する必要がある。これにより、二酸化炭素製造設備の不調により圧力変動が生じても、エチレン分解炉の圧力を負圧で維持することができ、エチレン分解炉の安定運転を確保することができる。 In the present invention, the pressure fluctuation range can be suppressed to 100 Pa or less. The ethylene cracking furnace of the present application is operated under a negative pressure condition of −150 PaG or more and less than -100 PaG, but under this negative pressure condition, the ethylene cracking furnace may become positive pressure depending on the pressure fluctuation. In order to prevent this situation, it is necessary to adjust the values of t1, t2, θ, ΔU, especially t2 and θ, so that the value of the above formula (1) becomes smaller than the absolute value of the pressure of the ethylene decomposition furnace. As a result, even if the pressure fluctuates due to the malfunction of the carbon dioxide production facility, the pressure of the ethylene cracking furnace can be maintained at a negative pressure, and the stable operation of the ethylene cracking furnace can be ensured.

次に実施例により本発明をさらに詳細に説明する。本発明はこれらの実施例により何ら限定されるものではない。
下記の実施例及び比較例においては、数値流体力学(CFD)のソフトを用いて圧力変動値を計算した。
Next, the present invention will be described in more detail by way of examples. The present invention is not limited to these examples.
In the following examples and comparative examples, the pressure fluctuation value was calculated using software of computational fluid dynamics (CFD).

<式(1)を用いて、圧力変動値を算出する方法>
[数値流体力学(CFD)ソフト]
数値流体力学(CFD)は、対象事例が関わる流体及びその他の物理現象を詳細に計算するエンジニアリング手法である。そして、CFDソフトでは、エチレン分解炉出口から二酸化炭素取出し設備入口までのダクトおよび煙突の形状、内部構造物を3次元で実物どおりにモデル化する事ができ、内部のガスの流れや圧力分布などを詳細に求めることが出来る。また計算は定常計算および非定常計算のいずれにも適用可能であり、エチレン分解炉から二酸化炭素製造設備まで通常運転されている場合には定常計算を行い、二酸化炭素製造設備に不調が生じた後の設備内の圧力変動を求める際には非定常計算を行うことにより、エチレン分解炉に伝播する圧力波の大きさを求めることができ、圧力変動幅を求めることができる。
・使用ソフト…ANSYS CFX(ANSYS社製、ver16.2)
この流体解析ソフトを用いた計算手順は、以下のとおりである。
1)分解炉ダクト12の入口条件として分解炉発生ガス量を設定。
2)排ガス取出し配管22の出口における流量を設定。
3)排ガス取出し配管22の出口において、所定時間経過後に、流量が所定量まで低下するように変更。
4)分解炉ダクト12の入口における圧力変動値を計算。
<Method of calculating pressure fluctuation value using equation (1)>
[Computational Fluid Dynamics (CFD) Software]
Computational fluid dynamics (CFD) is an engineering method for detailed calculation of fluids and other physical phenomena involving a target case. And with CFD software, the shape of the duct and chimney from the outlet of the ethylene decomposition furnace to the inlet of the carbon dioxide extraction facility, and the internal structure can be modeled in three dimensions as they are, such as the internal gas flow and pressure distribution. Can be obtained in detail. In addition, the calculation can be applied to both steady-state calculation and unsteady calculation. If the operation from the ethylene decomposition furnace to the carbon dioxide production equipment is in normal operation, the steady-state calculation is performed, and after the carbon dioxide production equipment malfunctions. The magnitude of the pressure wave propagating in the ethylene cracking furnace can be obtained and the pressure fluctuation range can be obtained by performing unsteady calculation when obtaining the pressure fluctuation in the equipment of the above.
-Software used: ANSYS CFX (manufactured by ANSYS, ver16.2)
The calculation procedure using this fluid analysis software is as follows.
1) The amount of gas generated in the decomposition furnace is set as the inlet condition for the decomposition furnace duct 12.
2) Set the flow rate at the outlet of the exhaust gas take-out pipe 22.
3) At the outlet of the exhaust gas take-out pipe 22, the flow rate is changed to decrease to a predetermined amount after a predetermined time has elapsed.
4) Calculate the pressure fluctuation value at the inlet of the decomposition furnace duct 12.

(実施例1)
エチレン分解炉(総排ガス量44万Nm/hr)の一部排ガス(10万Nm/hr、32%相当)を排ガス取出し配管から抜出す設備(取出し配管は直径1.5mの円形配管)において、排ガス送り出し設備(例えばブロワー)の送り出し量が1秒間で10万Nm/hr(ガス線速15.7m/sec)から5万Nm/hr(ガス線速7.9m/sec)に変化した場合において、排ガス取出し口(排ガス取出し配管の開口部。以下同様)をエチレン分解炉からの距離が318m(音速347m/secと仮定すると伝播時間=0.92sec)、排ガス取出し配管の向きはガスの流れ方向と0°(=0radian)の角度をなすように設置した。この場合における式(1)の計算値は53Paとなった。本条件において、流体解析ソフト(CFX ver16.2)を用いてエチレン分解炉における圧力変動値を計算した。流体解析ソフトを用いた計算は以下手順で行った。
1)分解炉入口条件として分解炉発生ガス量を設定(44万Nm/hr)
2)排ガス取出し配管出口における流量を設定(10万Nm/hr,ガス線速15.7m/sec)
3)排ガス取出し配管出口において、1秒後に5万Nm/hr(ガス線速7.9m/sec)まで低下するように変更
4)分解炉入口における圧力変動値を計算
その結果、エチレン分解炉における圧力変動は53Paとなり、エチレンプラントへの影響が無い事が分かった。
(Example 1)
Equipment to extract part of the exhaust gas (100,000 Nm 3 / hr, equivalent to 32%) of the ethylene decomposition furnace (total exhaust gas amount 440,000 Nm 3 / hr) from the exhaust gas extraction pipe (the extraction pipe is a circular pipe with a diameter of 1.5 m) From 100,000 Nm 3 / hr (gas linear speed 15.7 m / sec) to 50,000 Nm 3 / hr (gas linear speed 7.9 m / sec) in 1 second. When the change occurs, the distance from the exhaust gas outlet (opening of the exhaust gas outlet pipe; the same applies hereinafter) is 318 m (assuming a sound velocity of 347 m / sec, propagation time = 0.92 sec), and the direction of the exhaust gas outlet pipe is It was installed so as to form an angle of 0 ° (= 0radian) with the gas flow direction. The calculated value of the equation (1) in this case was 53 Pa. Under these conditions, the pressure fluctuation value in the ethylene cracking furnace was calculated using fluid analysis software (CFX ver16.2). The calculation using the fluid analysis software was performed according to the following procedure.
1) Set the amount of gas generated in the cracking furnace as the cracking furnace inlet condition (440,000 Nm 3 / hr)
2) Set the flow rate at the outlet of the exhaust gas take-out pipe (100,000 Nm 3 / hr, gas linear speed 15.7 m / sec)
3) At the outlet of the exhaust gas take-out pipe, changed to 50,000 Nm 3 / hr (gas linear speed 7.9 m / sec) after 1 second. 4) Calculate the pressure fluctuation value at the cracker inlet. As a result, the ethylene cracker The pressure fluctuation in was 53 Pa, and it was found that there was no effect on the ethylene plant.

(比較例1)
エチレン分解炉(総排ガス量44万Nm/hr)の一部排ガス(14万Nm/hr、32%相当)を排ガス取出し配管から抜出す設備(取出し配管は直径1.5mの円形配管)において、排ガス送り出し設備(例えばブロワー)の送り出し量が1秒間で14万Nm/hr(ガス線速22.0m/sec)から7万Nm/hr(ガス線速11.0m/sec)に変化した場合において、排ガス取出し口をエチレン分解炉からの距離が115m(音速347m/secと仮定すると伝播時間=0.33 sec)、排ガス取出し配管の向きはガスの流れ方向と90°(=1.57radian)の角度をなすように設置した。この場合における式(1)の計算値は132Paとなった。本条件において、流体解析ソフト(CFX ver16.2)を用いてエチレン分解炉における圧力変動値を計算した。流体解析ソフトを用いた計算は以下手順で行った。
1)分解炉入口条件として分解炉発生ガス量を設定(44万Nm/hr)
2)排ガス取出し配管出口における流量を設定(14万Nm/hr,ガス線速22.0m/sec)
3)排ガス取出し配管出口において、1秒後に7万Nm/hr(ガス線速11.0m/sec)まで低下するように変更
4)分解炉入口における圧力変動値を計算
その結果、エチレン分解炉における圧力変動は141Paとなり、エチレンプラントへの影響がある事が分かった。
(Comparative Example 1)
Equipment to extract part of the exhaust gas (140,000 Nm 3 / hr, equivalent to 32%) of the ethylene decomposition furnace (total exhaust gas amount 440,000 Nm 3 / hr) from the exhaust gas extraction pipe (the extraction pipe is a circular pipe with a diameter of 1.5 m) From 140,000 Nm 3 / hr (gas linear speed 22.0 m / sec) to 70,000 Nm 3 / hr (gas linear speed 11.0 m / sec) in one second. When the change occurs, the distance from the exhaust gas outlet to the ethylene decomposition furnace is 115 m (propagation time = 0.33 sec assuming a sound velocity of 347 m / sec), and the direction of the exhaust gas outlet pipe is 90 ° (= 1) with the gas flow direction. It was installed so as to form an angle of .57 radian). The calculated value of the equation (1) in this case was 132 Pa. Under these conditions, the pressure fluctuation value in the ethylene cracking furnace was calculated using fluid analysis software (CFX ver16.2). The calculation using the fluid analysis software was performed according to the following procedure.
1) Set the amount of gas generated in the cracking furnace as the cracking furnace inlet condition (440,000 Nm 3 / hr)
2) Set the flow rate at the outlet of the exhaust gas take-out pipe (140,000 Nm 3 / hr, gas linear speed 22.0 m / sec)
3) Change to 70,000 Nm 3 / hr (gas linear speed 11.0 m / sec) at the outlet of the exhaust gas take-out pipe after 1 second. 4) Calculate the pressure fluctuation value at the inlet of the cracking furnace. As a result, the ethylene cracking furnace The pressure fluctuation in was 141 Pa, which was found to have an effect on the ethylene plant.

10 エチレン分解炉
11 排ガス設備
12 分解炉ダクト
13 連結ダクト
14 集約ダクト
15 排ガス煙突
21 二酸化炭素製造設備
22 排ガス取り出し配管
22a 開口部
23 水洗塔
24 ブロア
25 吸収塔
10 Ethylene decomposition furnace 11 Exhaust gas equipment 12 Decomposition furnace duct 13 Connecting duct 14 Consolidation duct 15 Exhaust gas chimney 21 Carbon dioxide production equipment 22 Exhaust gas extraction piping 22a Opening 23 Water washing tower 24 Blower 25 Absorption tower

Claims (2)

エチレン分解炉、及びこのエチレン分解炉から排出される排ガスを回収、排出するための排ガス設備を有するエチレンプラントから排出される排ガスを用いて二酸化炭素を製造する二酸化炭素の製造方法において、
上記排ガス設備と上記二酸化炭素を製造する二酸化炭素製造設備とは排ガス取り出し配管により連結され、この排ガス取り出し配管の一方の端部は、上記排ガス設備の内部に挿入され、
上記排ガス取り出し配管を流れる上記排ガスの量の減少が生じたとき、その減少開始から減少終了までの時間をt1秒、
上記排ガス設備の内部に挿入された上記排ガス取り出し配管の一方の端部の開口部のある部分の排ガスの流れ方向を基準としたとき、この排ガス取り出し配管の一方の端部の開口部の向く方向をθrad(0≦θ≦π)、
上記排ガス取り出し配管を流れる上記排ガスの量が減少するときに生じる圧力変動波が前記エチレン分解炉に到達する時間をt2秒、
上記排ガス取り出し配管を流れる上記排ガスの速度低下により生じる運動エネルギー減少量をΔU(J)、
としたとき、下記の式(1)を満たすことにより、上記二酸化炭素製造設備の不調により生じる圧力変動幅を100Pa以下に抑制することを特徴とする二酸化炭素の製造方法。
(−7.29349)×t1+(−18.5213)×θ+(−138.68)×t2+(0.404007)×ΔU+149.9496≦100 …(1)
In an ethylene cracking furnace and a method for producing carbon dioxide using exhaust gas discharged from an ethylene plant having an exhaust gas facility for recovering and discharging the exhaust gas discharged from the ethylene cracking furnace.
The exhaust gas equipment and the carbon dioxide production equipment for producing carbon dioxide are connected by an exhaust gas take-out pipe, and one end of the exhaust gas take-out pipe is inserted into the exhaust gas equipment.
When the amount of the exhaust gas flowing through the exhaust gas take-out pipe is reduced, the time from the start of the reduction to the end of the reduction is t1 second.
The direction in which the opening at one end of the exhaust gas take-out pipe faces, based on the flow direction of the exhaust gas at the portion having the opening at one end of the exhaust gas take-out pipe inserted inside the exhaust gas equipment. Θrad (0 ≤ θ ≤ π),
The time for the pressure fluctuation wave generated when the amount of the exhaust gas flowing through the exhaust gas extraction pipe decreases to reach the ethylene cracking furnace is t2 seconds.
The amount of decrease in kinetic energy caused by the decrease in the speed of the exhaust gas flowing through the exhaust gas extraction pipe is ΔU (J),
Then, by satisfying the following formula (1), the pressure fluctuation range caused by the malfunction of the carbon dioxide production equipment is suppressed to 100 Pa or less, which is a method for producing carbon dioxide.
(-7.29349) × t1 + (-18.52513) × θ + (-138.68) × t2 + (0.4040007) × ΔU + 149.9496 ≦ 100… (1)
上記エチレン分解炉は、−150PaG以上−100PaG未満で運転され、上記圧力変動によるエチレン分解炉の圧力が負圧で維持されることを特徴とする請求項1に記載の二酸化炭素の製造方法。 The method for producing carbon dioxide according to claim 1, wherein the ethylene cracking furnace is operated at −150 PaG or more and less than −100 PaG, and the pressure of the ethylene cracking furnace due to the pressure fluctuation is maintained at a negative pressure.
JP2017011857A 2017-01-26 2017-01-26 How to make carbon dioxide Active JP6878913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017011857A JP6878913B2 (en) 2017-01-26 2017-01-26 How to make carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017011857A JP6878913B2 (en) 2017-01-26 2017-01-26 How to make carbon dioxide

Publications (2)

Publication Number Publication Date
JP2018118882A JP2018118882A (en) 2018-08-02
JP6878913B2 true JP6878913B2 (en) 2021-06-02

Family

ID=63044744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017011857A Active JP6878913B2 (en) 2017-01-26 2017-01-26 How to make carbon dioxide

Country Status (1)

Country Link
JP (1) JP6878913B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105114A (en) * 1989-09-18 1991-05-01 Toshiba Corp Controller for common final control element
JP2000068211A (en) * 1998-08-20 2000-03-03 Air Liquide Japan Ltd Gas recovering apparatus
JP5039651B2 (en) * 2008-07-08 2012-10-03 三菱重工業株式会社 Carbon dioxide recovery system in exhaust gas

Also Published As

Publication number Publication date
JP2018118882A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
Yang et al. Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration
US7665291B2 (en) Method and system for heat recovery from dirty gaseous fuel in gasification power plants
Billingham et al. Corrosion and materials selection issues in carbon capture plants
KR20150014997A (en) Methods and systems for cooling hot particulates
US9644149B2 (en) Medium pressure steam intervention in an olefin cracking furnace decoke procedure
Ibrahim et al. Exergy study of amine regeneration unit for diethanolamine used in refining gas sweetening: a real start-up plant
Rubini et al. A new turbomachine for clean and sustainable hydrocarbon cracking
JP6878913B2 (en) How to make carbon dioxide
JP6878912B2 (en) How to make carbon dioxide
Mazumder et al. Integrated ejector‐based flare gas recovery and on‐site desalination of produced water in shale gas production
Yakub et al. Technical and economic considerations of post-combustion carbon capture in a coal fired power plant
Cai et al. Numerical study on sulfur-bearing natural gas oxy-fuel combustion power plant
Rubini et al. A new robust regenerative turbo-reactor concept for clean hydrocarbon cracking
CN108261883B (en) Method for treating silane tail gas containing chlorosilane
JP4971399B2 (en) Steam generator
CN202674674U (en) Anti-condensing and anti-impact expansion joint for torch pipeline
CA2537464A1 (en) Continuous-flow steam generator and method for operating said continuous-flow steam generator
Taimoor et al. Comprehensive dynamic modeling, simulation, and validation for an industrial boiler incident investigation
Boualouache Integration of organic Rankine open cycles to alkanes’ fractional distillation: Process design and techno-economic assessment
GhasemiKafrudi et al. Environmental study of waste energy recovery by using exergy and economic analysis in a fluid catalytic cracking unit
Chen et al. Development of new technology for tar removal in IGCC
CN109443048A (en) A kind of high-efficiency condensation heat exchanger tube
JP2019521849A (en) Cyclone condensing and cooling system
Xiao et al. Numerical evaluations on enhanced steam–air condensation outside S-type tubes under natural convection conditions
Jeong et al. Modeling of heat recovery from a steam‐gas mixture in a high‐temperature sorption process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R151 Written notification of patent or utility model registration

Ref document number: 6878913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151