JP6878169B2 - Superconducting coil support structure of superconducting magnet device, and superconducting magnet device - Google Patents

Superconducting coil support structure of superconducting magnet device, and superconducting magnet device Download PDF

Info

Publication number
JP6878169B2
JP6878169B2 JP2017121983A JP2017121983A JP6878169B2 JP 6878169 B2 JP6878169 B2 JP 6878169B2 JP 2017121983 A JP2017121983 A JP 2017121983A JP 2017121983 A JP2017121983 A JP 2017121983A JP 6878169 B2 JP6878169 B2 JP 6878169B2
Authority
JP
Japan
Prior art keywords
superconducting
coil support
magnet device
radial
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017121983A
Other languages
Japanese (ja)
Other versions
JP2019009206A (en
Inventor
雄大 石黒
雄大 石黒
祐二 峯元
祐二 峯元
朝文 折笠
朝文 折笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017121983A priority Critical patent/JP6878169B2/en
Publication of JP2019009206A publication Critical patent/JP2019009206A/en
Application granted granted Critical
Publication of JP6878169B2 publication Critical patent/JP6878169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明の実施形態は、超電導磁石装置の超電導コイル支持構造、及びこの超電導コイル支持構造を備えた超電導磁石装置に関する。 An embodiment of the present invention relates to a superconducting coil support structure of a superconducting magnet device and a superconducting magnet device provided with the superconducting coil support structure.

超電導磁石装置においては、内部の超電導コイルを極低温まで冷却して超電導状態にするために、超電導磁石装置の外部から超電導コイルに伝熱する熱侵入量を抑制する必要がある。このため、超電導コイルが内側に配置されたコイル支持体としての鉄心と、超電導磁石装置の外装である真空容器とを連結し、超電導コイル及び鉄心を支持するコイルサポートは、熱侵入量を抑制するために可能な限り本数を減らし、その断面積を小さくし、更に熱伝導率が低い材質にて構成される。 In the superconducting magnet device, in order to cool the internal superconducting coil to an extremely low temperature to bring it into a superconducting state, it is necessary to suppress the amount of heat transfer from the outside of the superconducting magnet device to the superconducting coil. Therefore, the coil support that connects the iron core as a coil support in which the superconducting coil is arranged inside and the vacuum vessel that is the exterior of the superconducting magnet device, and supports the superconducting coil and the iron core suppresses the amount of heat penetration. Therefore, the number of magnets is reduced as much as possible, the cross-sectional area is reduced, and the material is composed of a material having low thermal conductivity.

更に、コイルサポートは、熱伝導率が低い材質(例えば複合材)にて構成されるため金属材料よりも剛性が低くなり、冷却により収縮する鉄心に取り付けられることで引張応力を受け、超電導コイルには励磁により電磁力が作用すること等から、十分な強度を確保する必要がある。しかし、低熱侵入量と高強度は相反する関係にあるため、コイルサポートはこれらの両条件を満たす最適設計が必要になる。 Furthermore, since the coil support is made of a material with low thermal conductivity (for example, a composite material), its rigidity is lower than that of a metal material, and when it is attached to an iron core that shrinks due to cooling, it receives tensile stress and becomes a superconducting coil. It is necessary to secure sufficient strength because electromagnetic force acts by excitation. However, since the low heat penetration amount and the high strength have a contradictory relationship, the coil support needs to be optimally designed to satisfy both of these conditions.

特開2010−287792号公報Japanese Unexamined Patent Publication No. 2010-287792 実開平1−157457号公報Jikkenhei 1-157457

ところで、粒子線医療装置用の超電導磁石装置は回転ガントリーに設置されるため、回転によって重力による荷重方向が変化する。これに伴ってコイルサポートの変形が大きくなると、超電導コイルの中心位置がずれ、粒子線が偏向し、更に粒子線の集束効率が低下する課題が生ずる。 By the way, since the superconducting magnet device for the particle beam medical device is installed in the rotating gantry, the load direction due to gravity changes due to the rotation. If the deformation of the coil support increases with this, the center position of the superconducting coil shifts, the particle beam is deflected, and there arises a problem that the focusing efficiency of the particle beam is further lowered.

例えば、図7(A)に示す第1従来技術の超電導コイル支持構造では、重力による荷重方向が矢印Aの場合には、超電導コイル100及び鉄心101を真空容器102に支持させるコイルサポート103が、荷重方向(矢印A)に沿うように配置されているので、超電導コイル100の中心位置が大きくずれることはない。しかし、超電導磁石装置が回転し、重力による荷重方向が矢印Bになると、重力による荷重方向(矢印B)に沿うようにコイルサポート103が配置されていないため、コイルサポート103はそのせん断方向で荷重を受け、曲げモーメントが作用することになる。この曲げモーメントによりコイルサポート103は撓み、超電導コイル100の中心位置がずれてしまう。 For example, in the superconducting coil support structure of the first conventional technique shown in FIG. 7A, when the load direction due to gravity is arrow A, the coil support 103 for supporting the superconducting coil 100 and the iron core 101 on the vacuum vessel 102 Since it is arranged along the load direction (arrow A), the center position of the superconducting coil 100 does not deviate significantly. However, when the superconducting magnet device rotates and the load direction due to gravity becomes arrow B, the coil support 103 is not arranged along the load direction due to gravity (arrow B), so that the coil support 103 is loaded in the shear direction. In response to this, a bending moment will act. This bending moment causes the coil support 103 to bend, and the center position of the superconducting coil 100 shifts.

これに対し、図7(B)に示す第2従来技術の超電導コイル支持構造では、コイルサポート104を放射状に配置することで、超電導磁石装置の回転に伴う超電導コイル100の中心位置のずれには対応することが可能となる。しかしながら、超電導コイル100及び鉄心101の荷重をコイルサポート104の圧縮方向で支持するためには、真空容器102及び鉄心101に対してコイルサポート104を軸方向に動かないように固定する必要がある。このため、超電導コイル100の冷却時に鉄心101の縮径に伴う引張応力がコイルサポート104に生じることになる。これに対応するため、コイルサポート104を太くして強度を高めると、コイルサポート104の断面積が増加して、真空容器102からコイルサポート104を経て超電導コイル100へ伝熱する熱侵入量が増大してしまう。 On the other hand, in the superconducting coil support structure of the second conventional technique shown in FIG. 7B, by arranging the coil supports 104 in a radial pattern, the deviation of the center position of the superconducting coil 100 due to the rotation of the superconducting magnet device can be prevented. It becomes possible to correspond. However, in order to support the load of the superconducting coil 100 and the iron core 101 in the compression direction of the coil support 104, it is necessary to fix the coil support 104 to the vacuum vessel 102 and the iron core 101 so as not to move in the axial direction. Therefore, when the superconducting coil 100 is cooled, tensile stress due to the diameter reduction of the iron core 101 is generated in the coil support 104. In order to cope with this, when the coil support 104 is thickened to increase the strength, the cross-sectional area of the coil support 104 increases, and the amount of heat transfer from the vacuum vessel 102 to the superconducting coil 100 via the coil support 104 increases. Resulting in.

本発明の実施形態は、上述の事情を考慮してなされたものであり、超電導磁石装置が回転しても超電導コイルを、その中心位置がずれないように支持できると共に、外部から超電導コイルへの熱侵入量を抑制できる超電導磁石装置の超電導コイル支持構造、及び超電導磁石装置を提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above circumstances, and can support the superconducting coil so that its center position does not shift even if the superconducting magnet device rotates, and also from the outside to the superconducting coil. It is an object of the present invention to provide a superconducting coil support structure of a superconducting magnet device capable of suppressing a heat penetration amount, and a superconducting magnet device.

本発明の実施形態における超電導磁石装置の超電導コイル支持構造は、冷凍機により超電導状態に冷却される超電導コイルを内側に配置して支持するコイル支持体である鉄心と、前記超電導コイル及び前記鉄心を内側空間に収容すると共に、この内側空間を真空状態に保持する真空容器と、前記鉄心の端部を前記真空容器に支持させる端部サポート部材と、を有する超電導磁石装置の超電導コイル支持構造であって、前記端部サポート部材は、リング状フレームと、このリング状フレームの半径方向に延びる複数の放射状フレームとが結合されてなり、前記リング状フレームの内側と外側にそれぞれ結合された前記放射状フレームは、前記リング状フレームの周方向において偏倚して位置づけられ、前記端部サポート部材における最も内側の前記放射状フレームの第1連結部が前記鉄心の前記端部に連結され、前記端部サポート部材における最も外側の前記放射状フレームの第2連結部が前記真空容器の蓋体に連結され、前記第1連結部と前記第2連結部の少なくとも一方が、前記鉄心の前記端部、前記真空容器の前記蓋体に対し、前記端部サポート部材の半径方向に移動可能に連結されて構成されたことを特徴とするものである。 The superconducting coil support structure of the superconducting magnet device according to the embodiment of the present invention includes an iron core which is a coil support for arranging and supporting a superconducting coil cooled in a superconducting state by a refrigerating machine, and the superconducting coil and the iron core . It is a superconducting coil support structure of a superconducting magnet device having a vacuum container that is housed in an inner space and holds the inner space in a vacuum state, and an end support member that supports the end of the iron core by the vacuum container. The end support member is formed by connecting a ring-shaped frame and a plurality of radial frames extending in the radial direction of the ring-shaped frame, and the radial frame is connected to the inside and the outside of the ring-shaped frame, respectively. Is positioned unevenly in the circumferential direction of the ring-shaped frame, and the innermost first connecting portion of the radial frame in the end support member is connected to the end portion of the iron core, and the end support member. The outermost second connecting portion of the radial frame is connected to the lid of the vacuum vessel, and at least one of the first connecting portion and the second connecting portion is the end portion of the iron core and the vacuum vessel. It is characterized in that it is configured to be movably connected to the lid in the radial direction of the end support member.

本発明の実施形態における超電導磁石装置は、前記発明の実施形態に記載の超電導磁石装置の超電導コイル支持構造を備えたことを特徴とするものである。 The superconducting magnet device according to the embodiment of the present invention is characterized by including the superconducting coil support structure of the superconducting magnet device according to the embodiment of the present invention.

本発明の実施形態によれば、超電導磁石装置が回転しても超電導コイルを、その中心位置がずれないように支持できると共に、外部から超電導コイルへの熱侵入量を抑制できる。 According to the embodiment of the present invention, the superconducting coil can be supported so that its center position does not shift even if the superconducting magnet device rotates, and the amount of heat invading the superconducting coil from the outside can be suppressed.

本発明の一実施形態に係る超電導磁石装置の超電導コイル支持構造が適用された超電導磁石装置を装備する粒子線治療装置を示す斜視図。The perspective view which shows the particle beam therapy apparatus which comprises the superconducting magnet apparatus to which the superconducting coil support structure of the superconducting coil apparatus which concerns on one Embodiment of this invention is applied. 図1の超電導磁石装置を示す斜視図。The perspective view which shows the superconducting magnet device of FIG. 図2の真空容器の容器本体を取り外して示す斜視図。The perspective view which shows by removing the container body of the vacuum container of FIG. 図3の輻射シールドを取り外して示す斜視図。The perspective view which shows by removing the radiation shield of FIG. 図2のV−V線に沿う断面図。FIG. 2 is a cross-sectional view taken along the line VV of FIG. 図3のVI−VI線に沿う断面図。FIG. 3 is a cross-sectional view taken along the line VI-VI of FIG. 超電導磁石装置における超電導コイル支持構造の従来技術を示し、(A)が第1従来技術の概略断面図、(B)が第2従来技術の概略断面図。The prior art of the superconducting coil support structure in the superconducting magnet device is shown, (A) is a schematic cross-sectional view of the first prior art, and (B) is a schematic cross-sectional view of the second prior art.

以下、本発明を実施するための形態を、図面に基づき説明する。
図1は、本発明の一実施形態に係る超電導磁石装置の超電導コイル支持構造が適用された超電導磁石装置を装備する粒子線治療装置を示す斜視図であり、図2は、図1の超電導磁石装置を示す斜視図である。図1に示す粒子線治療装置10は、円筒形状の回転ガントリー11を備え、この回転ガントリー11の回転中心位置に、患者を載置するベッド12が設置されている。また、回転ガントリー11には、重粒子のビームの軌道に沿って複数台の超電導磁石装置13が配列して設置される。この超電導磁石装置13の超電導コイル15(後述)が励磁されることで発生する電磁力の作用で、重粒子の速度及び位置が調整される。粒子線治療装置10は、回転ガントリー11がその回転中心回りに回転することで、ベッド12に横臥した患者の周囲の任意の位置から重粒子を照射して治療する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a particle beam therapy apparatus equipped with a superconducting magnet device to which the superconducting coil support structure of the superconducting magnet device according to the embodiment of the present invention is applied, and FIG. 2 is a perspective view showing the superconducting magnet of FIG. It is a perspective view which shows the apparatus. The particle beam therapy device 10 shown in FIG. 1 includes a cylindrical rotating gantry 11, and a bed 12 on which a patient is placed is installed at a rotation center position of the rotating gantry 11. Further, in the rotating gantry 11, a plurality of superconducting magnet devices 13 are arranged and installed along the trajectory of the beam of heavy particles. The velocity and position of the heavy particles are adjusted by the action of the electromagnetic force generated by exciting the superconducting coil 15 (described later) of the superconducting magnet device 13. The particle beam therapy device 10 treats the patient by irradiating heavy particles from an arbitrary position around the patient lying on the bed 12 by rotating the rotating gantry 11 around the center of rotation thereof.

超電導磁石装置13は、図2〜図5に示すように、超電導コイル15、コイル支持体としての鉄心16、超電導磁石装置13の外装としての真空容器17、輻射シールド18、冷凍機19、及び端部サポート部材としてのコイルサポート20を有して構成される。なお、図5中の符号21は、重粒子が通過するビームダクトである。 As shown in FIGS. 2 to 5, the superconducting magnet device 13 includes a superconducting coil 15, an iron core 16 as a coil support, a vacuum container 17 as an exterior of the superconducting magnet device 13, a radiation shield 18, a refrigerator 19, and an end. It is configured to have a coil support 20 as a part support member. Reference numeral 21 in FIG. 5 is a beam duct through which heavy particles pass.

超電導コイル15は、図5に示すように、超電導線材が巻回されて形成され、冷凍機19により後述の如く極低温(4K程度)に冷却されることで超電導状態になる。鉄心16は、この超電導コイル15を内側に配置して支持する。 As shown in FIG. 5, the superconducting coil 15 is formed by winding a superconducting wire, and is cooled to an extremely low temperature (about 4K) by a refrigerator 19 to be in a superconducting state. The iron core 16 supports the superconducting coil 15 by arranging it inside.

真空容器17は、図2及び図5に示すように、略円筒形状の容器本体22と、この容器本体22の両端の開口の閉塞する蓋体23とを有して構成され、内側空間Mに超電導コイル15及び鉄心16を収容する。真空容器17は、図示しない真空ポンプに接続され、この真空ポンプの稼動により内側空間Mを真空状態に保持する。 As shown in FIGS. 2 and 5, the vacuum container 17 includes a container body 22 having a substantially cylindrical shape and a lid body 23 that closes the openings at both ends of the container body 22, and is formed in the inner space M. It houses the superconducting coil 15 and the iron core 16. The vacuum vessel 17 is connected to a vacuum pump (not shown), and the operation of the vacuum pump keeps the inner space M in a vacuum state.

輻射シールド18は、図2、図3及び図5に示すように、真空容器17の内側空間M内で鉄心16を囲んで設置される。即ち、輻射シールド18は、真空容器17の容器本体22と鉄心16との間に配置され、図示しない断熱サポートにより真空容器17に支持される。この輻射シールド18は、後述の如く冷凍機19により極低温(50K程度)に冷却されることで、真空容器17から鉄心16及び超電導コイル15へ伝熱される輻射熱を遮断する。 As shown in FIGS. 2, 3 and 5, the radiation shield 18 is installed so as to surround the iron core 16 in the inner space M of the vacuum container 17. That is, the radiation shield 18 is arranged between the container body 22 of the vacuum container 17 and the iron core 16, and is supported by the vacuum container 17 by a heat insulating support (not shown). The radiant shield 18 is cooled to an extremely low temperature (about 50 K) by the refrigerator 19 as described later, thereby blocking the radiant heat transferred from the vacuum vessel 17 to the iron core 16 and the superconducting coil 15.

冷凍機19は、図5に示すように、2段式の例えばGM式(ギフォードマクマフォン式)の冷凍機である。この冷凍機19の第1段コールドヘッド19Aは輻射シールド18に熱的に接続されて、この輻射シールド18を極低温(50K程度)に冷却する。冷凍機19の第2コールドヘッド19Bは、伝熱部材24を介して超電導コイル15に熱的に接続され、この超電導コイル15及び鉄心16を極低温(4K程度)に冷却する。 As shown in FIG. 5, the refrigerator 19 is a two-stage type, for example, a GM type (Gifford McMaphone type) refrigerator. The first-stage cold head 19A of the refrigerator 19 is thermally connected to the radiation shield 18, and the radiation shield 18 is cooled to an extremely low temperature (about 50K). The second cold head 19B of the refrigerator 19 is thermally connected to the superconducting coil 15 via the heat transfer member 24, and cools the superconducting coil 15 and the iron core 16 to an extremely low temperature (about 4K).

コイルサポート20は、図4及び図6に示すように、鉄心16の端部26を真空容器17の蓋体23に支持させるものである。つまり、コイルサポート20は、同心円状に設けられた複数のリング状フレーム27と、このリング状フレーム27の半径方向に延びる複数の放射状フレーム28とが同一平面内で結合されて、蜘蛛の巣形状に形成されたものである。 As shown in FIGS. 4 and 6, the coil support 20 supports the end portion 26 of the iron core 16 with the lid 23 of the vacuum vessel 17. That is, the coil support 20 has a spider web shape in which a plurality of ring-shaped frames 27 provided concentrically and a plurality of radial frames 28 extending in the radial direction of the ring-shaped frame 27 are connected in the same plane. It was formed in.

このコイルサポート20のうち、リング状フレーム27の内側と外側にそれぞれ結合された放射状フレーム28は、コイルサポート20の半径方向における同一の直線上にはなく、リング状フレーム27の周方向において偏倚して(ずれて)交互位置づけられる。具体的には、リング状フレーム27の内側と外側にある放射状フレーム28は、その内側と外側の一方(例えば内側)におけるコイルサポート20の周方向に隣り合う放射状フレーム28の中間位置に、内側と外側の他方(例えば外側)の放射状フレーム28が配置される。更に、放射状フレーム28は、コイルサポート20の軸線(例えば軸線O)に対して軸対称に配置されている。 Of the coil supports 20, the radial frames 28 coupled to the inside and the outside of the ring-shaped frame 27 are not on the same straight line in the radial direction of the coil support 20, but are biased in the circumferential direction of the ring-shaped frame 27. It is positioned alternately (shifted). Specifically, the radial frames 28 inside and outside the ring-shaped frame 27 are located at intermediate positions of the radial frames 28 adjacent to each other in the circumferential direction of the coil support 20 on one of the inside and the outside (for example, inside). The other outer (eg, outer) radial frame 28 is arranged. Further, the radial frame 28 is arranged symmetrically with respect to the axis of the coil support 20 (for example, the axis O).

上述のように形成されたコイルサポート20では、このコイルサポート20における最も内側の放射状フレーム28の第1連結部31が、鉄心16の端部26に形成された凹部29に係合して連結される。更に、コイルサポート20における最も外側の放射状フレーム28の第2連結部32が、真空容器17の蓋体23に形成された凹部30に係合して連結される。これらの第1連結部31と第2連結部32の少なくとも一方、本実施形態では第1連結部31及び第2連結部32は、第1連結部31が鉄心16の端部26の凹部29に対し、第2連結部32が真空容器17の蓋体23の凹部30に対し、それぞれコイルサポート20の半径方向に移動可能に連結される。 In the coil support 20 formed as described above, the first connecting portion 31 of the innermost radial frame 28 in the coil support 20 is engaged with and connected to the recess 29 formed in the end portion 26 of the iron core 16. To. Further, the second connecting portion 32 of the outermost radial frame 28 in the coil support 20 is engaged with and connected to the recess 30 formed in the lid 23 of the vacuum vessel 17. At least one of the first connecting portion 31 and the second connecting portion 32, in the present embodiment, the first connecting portion 31 and the second connecting portion 32 have the first connecting portion 31 in the recess 29 of the end portion 26 of the iron core 16. On the other hand, the second connecting portion 32 is movably connected to the recess 30 of the lid 23 of the vacuum vessel 17 in the radial direction of the coil support 20, respectively.

図1に示す回転ガントリー11の回転に伴い超電導磁石装置13が回転したとき、コイルサポート20では、図6に示すように、水平軸線P上にある放射状フレーム28の第1連結部31及び第2連結部32が、超電導コイル15及び鉄心16の荷重を主に支持する。放射状フレーム28は、リング形状のリング状フレーム27の半径方向に延び且つこのリング状フレーム27に結合されたものであるため、このリング状フレーム27により補強されて、コイルサポート20が高強度に構成される。このため、コイルサポート20では、リング状フレーム27によって、水平軸線P上にある放射状フレーム28の撓み量の増大が防止される。 When the superconducting magnet device 13 rotates with the rotation of the rotating gantry 11 shown in FIG. 1, the coil support 20 has the first connecting portion 31 and the second connecting portion 31 and the second connecting portion 31 of the radial frame 28 on the horizontal axis P as shown in FIG. The connecting portion 32 mainly supports the load of the superconducting coil 15 and the iron core 16. Since the radial frame 28 extends in the radial direction of the ring-shaped ring-shaped frame 27 and is coupled to the ring-shaped frame 27, the coil support 20 is reinforced by the ring-shaped frame 27 to form a high-strength coil support 20. Will be done. Therefore, in the coil support 20, the ring-shaped frame 27 prevents an increase in the amount of deflection of the radial frame 28 on the horizontal axis P.

また、図3及び図6に示すように、輻射シールド18の両端面には、輻射シールド18の周方向に沿う複数の位置から、輻射シールド18の軸方向へ延びる突部33が突設される。この突部33は、コイルサポート20における複数のリング状フレーム27間で、且つコイルサポート20の周方向に隣り合う放射状フレーム28間に配置される。また、コイルサポート20は、複数のリング状フレーム27間で且つコイルサポート20の周方向に隣り合う放射状フレーム28に、輻射シールド18の突部33とワイヤ34を用いて熱的に接続されるサーマルアンカー35を備える。上記ワイヤ34は、コイルサポート20のサーマルアンカー35と輻射シールド18の突部33とを、伸縮及び曲げ変形可能に接続する。 Further, as shown in FIGS. 3 and 6, protrusions 33 extending in the axial direction of the radiation shield 18 are projected from a plurality of positions along the circumferential direction of the radiation shield 18 on both end faces of the radiation shield 18. .. The protrusions 33 are arranged between the plurality of ring-shaped frames 27 in the coil support 20 and between the radial frames 28 adjacent to each other in the circumferential direction of the coil support 20. Further, the coil support 20 is thermally connected between the plurality of ring-shaped frames 27 and to the radial frames 28 adjacent to each other in the circumferential direction of the coil support 20 by using the protrusion 33 of the radiation shield 18 and the wire 34. An anchor 35 is provided. The wire 34 connects the thermal anchor 35 of the coil support 20 and the protrusion 33 of the radiation shield 18 so as to be stretchable and bendable.

以上のように構成されたことから、本実施形態によれば、次の効果(1)〜(6)を奏する。
(1)図6に示すように、超電導コイル15を支持する鉄心16の端部26を真空容器17の蓋体23に支持させるコイルサポート20は、リング状フレーム27及び放射状フレーム28が結合されて高強度に構成される。このため、粒子線治療装置10の回転ガントリー11の回転に伴い超電導磁石装置13が回転し任意の位置に停止したとき、コイルサポート20は、超電導コイル15及び鉄心16の荷重で変形せず、従って、超電導コイル15をその中心位置がずれないように支持できる。この結果、重粒子線の偏向を防止できると共に、重粒子線の集束効率の低下を抑制できる。
Since it is configured as described above, according to the present embodiment, the following effects (1) to (6) are obtained.
(1) As shown in FIG. 6, the coil support 20 for supporting the end portion 26 of the iron core 16 for supporting the superconducting coil 15 on the lid 23 of the vacuum vessel 17 has a ring-shaped frame 27 and a radial frame 28 coupled to each other. It is composed of high strength. Therefore, when the superconducting magnet device 13 rotates with the rotation of the rotating gantry 11 of the particle beam therapy device 10 and stops at an arbitrary position, the coil support 20 does not deform under the load of the superconducting coil 15 and the iron core 16, and therefore, , The superconducting coil 15 can be supported so that its center position does not shift. As a result, the deflection of the heavy particle beam can be prevented, and the decrease in the focusing efficiency of the heavy particle beam can be suppressed.

(2)コイルサポート20は、リング状フレーム27の内側と外側にそれぞれ結合された放射状フレーム28が、リング状フレーム27の周方向において偏倚して(ずれて)位置づけられている。このため、コイルサポート20における真空容器17から鉄心16及び超電導コイル15への熱伝導経路は、リング状フレーム27の内側と外側にある放射状フレーム28がリング状フレーム27の周方向で偏倚した偏倚量分だけ長くなり、コイルサポート20の熱抵抗が増大する。 (2) In the coil support 20, the radial frame 28 coupled to the inside and the outside of the ring-shaped frame 27 is positioned unevenly (shifted) in the circumferential direction of the ring-shaped frame 27. Therefore, the heat conduction path from the vacuum vessel 17 to the iron core 16 and the superconducting coil 15 in the coil support 20 is the amount of deviation of the radial frames 28 inside and outside the ring-shaped frame 27 in the circumferential direction of the ring-shaped frame 27. It becomes longer by the amount, and the thermal resistance of the coil support 20 increases.

しかも、コイルサポート20における放射状フレーム28の第1連結部31が鉄心16の端部26の凹部29に対し、また、第2連結部32が真空容器17の蓋体23の凹部30に対し、それぞれコイルサポート20の半径方向に移動可能に構成されている。このため、超電導コイル15の冷却時に鉄心16が縮径しても、コイルサポート28の放射状フレーム28に引張応力が生じないので、コイルサポート20の強度を増大させるためにこのコイルサポート20の特に放射状フレーム28の断面積を増加させる必要がない。 Moreover, the first connecting portion 31 of the radial frame 28 in the coil support 20 has a recess 29 of the end portion 26 of the iron core 16, and the second connecting portion 32 has a recess 30 of the lid 23 of the vacuum vessel 17. The coil support 20 is configured to be movable in the radial direction. Therefore, even if the diameter of the iron core 16 is reduced when the superconducting coil 15 is cooled, no tensile stress is generated in the radial frame 28 of the coil support 28. Therefore, in order to increase the strength of the coil support 20, the coil support 20 is particularly radial. It is not necessary to increase the cross-sectional area of the frame 28.

上述のように、コイルサポート20の熱抵抗が増大したこと、及びコイルサポート20の特に放射状フレーム28の断面積の増加を防止できることから、真空容器17の外部から超電導コイル15への熱侵入量を抑制でき、超電導コイル15を極低温(4K程度)に好適に冷却して超電導状態に保持できる。 As described above, since the thermal resistance of the coil support 20 has increased and the increase in the cross-sectional area of the coil support 20, particularly the radial frame 28, can be prevented, the amount of heat penetration from the outside of the vacuum vessel 17 into the superconducting coil 15 can be reduced. It can be suppressed, and the superconducting coil 15 can be suitably cooled to an extremely low temperature (about 4K) and maintained in the superconducting state.

(3)コイルサポート20は、ワイヤ34を用いて輻射シールド18の突部33と熱的に接続されたサーマルアンカー35を有することから、輻射シート18と同程度の極低温(50K程度)に冷却される。この結果、真空容器17からコイルサポート20に伝熱された熱が、鉄心16を経て超電導コイル15へ侵入することを確実に防止できる。 (3) Since the coil support 20 has a thermal anchor 35 that is thermally connected to the protrusion 33 of the radiation shield 18 by using a wire 34, the coil support 20 is cooled to an extremely low temperature (about 50K) similar to that of the radiation sheet 18. Will be done. As a result, the heat transferred from the vacuum vessel 17 to the coil support 20 can be reliably prevented from entering the superconducting coil 15 via the iron core 16.

(4)コイルサポート20のサーマルアンカー35と輻射シールド18の突部33とが、伸縮及び曲げ変形可能なワイヤ34により接続されている。従って、粒子線治療装置10の回転ガントリー11の回転に伴い超電導磁石装置13が回転したとき、コイルサポート20と輻射シールド18に相対的な変位が生じた場合でも、コイルサポート20と輻射シート18は、一方の変位が他方に影響を及ぼすことを防止できる。 (4) The thermal anchor 35 of the coil support 20 and the protrusion 33 of the radiation shield 18 are connected by a wire 34 that can be expanded and contracted and bent and deformed. Therefore, when the superconducting magnet device 13 rotates with the rotation of the rotating gantry 11 of the particle beam therapy device 10, even if the coil support 20 and the radiation shield 18 are relatively displaced, the coil support 20 and the radiation sheet 18 can be used. , It is possible to prevent the displacement of one from affecting the other.

(5)コイルサポート20では、放射状フレーム28がコイルサポート20の軸対称に配置されている。このため、粒子線治療装置10の回転ガントリー11の回転に伴い超電導磁石装置13が回転して任意の位置に停止した場合、コイルサポート18の放射状フレーム28は、各停止位置において超電導コイル15及び鉄心16の荷重を確実に支持できる。 (5) In the coil support 20, the radial frame 28 is arranged symmetrically with respect to the coil support 20. Therefore, when the superconducting magnet device 13 rotates with the rotation of the rotating gantry 11 of the particle beam therapy device 10 and stops at an arbitrary position, the radial frame 28 of the coil support 18 changes the superconducting coil 15 and the iron core at each stop position. 16 loads can be reliably supported.

(6)コイルサポート20では、リング状フレーム27の内側と外側にある放射状フレーム28は、内側と外側の一方におけるコイルサポート20の周方向に隣り合う放射状フレーム28の中間位置に、内側と外側の他方の放射状フレーム28が配置されている。このため、コイルサポート20における真空容器17から鉄心16及び超電導コイル15までの熱伝導経路を最も長く設定できるので、真空容器17から超電導コイル15への熱侵入量を効果的に抑制できる。 (6) In the coil support 20, the radial frames 28 inside and outside the ring-shaped frame 27 are located at intermediate positions of the radial frames 28 adjacent to each other in the circumferential direction of the coil support 20 on either the inside or the outside, and are inside and outside. The other radial frame 28 is arranged. Therefore, since the heat conduction path from the vacuum vessel 17 to the iron core 16 and the superconducting coil 15 in the coil support 20 can be set to be the longest, the amount of heat penetration from the vacuum vessel 17 to the superconducting coil 15 can be effectively suppressed.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and the replacements and changes thereof can be made. , It is included in the scope and gist of the invention, and is also included in the scope of the invention described in the claims and the equivalent scope thereof.

例えば、コイルサポート20では、リング状フレーム27の内側と外側において放射状フレーム28の本数は必ずしも同数でなくてもよい。また、リング状フレーム27は、1本または3本以上設けられてもよい。更に、コイル支持体は磁性体の鉄製の鉄心16である必要はなく、例えばステンレス製の非磁性体で構成されてもよい。 For example, in the coil support 20, the number of radial frames 28 does not necessarily have to be the same inside and outside the ring-shaped frame 27. Further, one or three or more ring-shaped frames 27 may be provided. Further, the coil support does not have to be a magnetic iron core 16, and may be made of, for example, a non-magnetic material made of stainless steel.

13…超電導磁石装置、15…超電導コイル、16…鉄心(コイル支持体)、17…真空容器、18…輻射シールド、19…冷凍機、20…コイルサポート(端部サポート部材)、27…リング状フレーム、28…放射状フレーム、31…第1連結部、32…第2連結部、34…ワイヤ、35…サーマルアンカー、M…内側空間、O…軸線。 13 ... Superconducting magnet device, 15 ... Superconducting coil, 16 ... Iron core (coil support), 17 ... Vacuum container, 18 ... Radiation shield, 19 ... Refrigerator, 20 ... Coil support (end support member), 27 ... Ring shape Frame, 28 ... radial frame, 31 ... first connecting part, 32 ... second connecting part, 34 ... wire, 35 ... thermal anchor, M ... inner space, O ... axis.

Claims (6)

冷凍機により超電導状態に冷却される超電導コイルを内側に配置して支持するコイル支持体である鉄心と、前記超電導コイル及び前記鉄心を内側空間に収容すると共に、この内側空間を真空状態に保持する真空容器と、前記鉄心の端部を前記真空容器に支持させる端部サポート部材と、を有する超電導磁石装置の超電導コイル支持構造であって、
前記端部サポート部材は、リング状フレームと、このリング状フレームの半径方向に延びる複数の放射状フレームとが結合されてなり、
前記リング状フレームの内側と外側にそれぞれ結合された前記放射状フレームは、前記リング状フレームの周方向において偏倚して位置づけられ、
前記端部サポート部材における最も内側の前記放射状フレームの第1連結部が前記鉄心の前記端部に連結され、前記端部サポート部材における最も外側の前記放射状フレームの第2連結部が前記真空容器の蓋体に連結され、前記第1連結部と前記第2連結部の少なくとも一方が、前記鉄心の前記端部、前記真空容器の前記蓋体に対し、前記端部サポート部材の半径方向に移動可能に連結されて構成されたことを特徴とする超電導磁石装置の超電導コイル支持構造。
An iron core , which is a coil support for arranging and supporting a superconducting coil cooled by a refrigerator into a superconducting state, and the superconducting coil and the iron core are housed in an inner space, and the inner space is kept in a vacuum state. A superconducting coil support structure of a superconducting magnet device having a vacuum container and an end support member for supporting the end of the iron core by the vacuum container.
The end support member is formed by connecting a ring-shaped frame and a plurality of radial frames extending in the radial direction of the ring-shaped frame.
The radial frame coupled to the inside and the outside of the ring-shaped frame is positioned unevenly in the circumferential direction of the ring-shaped frame.
The innermost first connecting portion of the radial frame in the end support member is connected to the end of the iron core , and the outermost second connecting portion of the radial frame in the end support member is the vacuum vessel . Connected to the lid , at least one of the first connecting portion and the second connecting portion can move in the radial direction of the end support member with respect to the end of the iron core and the lid of the vacuum vessel. The superconducting coil support structure of the superconducting magnet device, which is characterized by being connected to and configured in.
前記真空容器の内側空間には、鉄心を囲み且つ冷凍機により冷却される輻射シールドが配置され、前記端部サポート部材は、前記輻射シールドと熱的に接続されたサーマルアンカーを有することを特徴とする請求項1に記載の超電導磁石装置の超電導コイル支持構造。 A radiation shield that surrounds the iron core and is cooled by a refrigerator is arranged in the inner space of the vacuum vessel, and the end support member has a thermal anchor that is thermally connected to the radiation shield. The superconducting coil support structure of the superconducting magnet device according to claim 1. 前記端部サポート部材のサーマルアンカーは、輻射シールドと伸縮及び曲げ変形可能に連結されたことを特徴とする請求項2に記載の超電導磁石装置の超電導コイル支持構造。 The superconducting coil support structure of the superconducting magnet device according to claim 2, wherein the thermal anchor of the end support member is connected to the radiation shield so as to be stretchable and bendable. 前記端部サポート部材の放射状フレームは、前記端部サポート部材の軸対称に配置されたことを特徴とする請求項1乃至3のいずれか1項に記載の超電導磁石装置の超電導コイル支持構造。 The superconducting coil support structure of the superconducting magnet device according to any one of claims 1 to 3, wherein the radial frame of the end support member is arranged symmetrically with respect to the end support member. 前記端部サポート部材におけるリング状フレームの内側と外側にある放射状フレームは、内側と外側の一方における隣り合う前記放射状フレームの中間位置に、内側と外側の他方の前記放射状フレームが配置されたことを特徴とする請求項1乃至4のいずれか1項に記載の超電導磁石装置の超電導コイル支持構造。 The radial frames on the inside and outside of the ring-shaped frame in the end support member indicate that the radial frame on the inner and outer sides is arranged at an intermediate position between the adjacent radial frames on one of the inner and outer sides. The superconducting coil support structure of the superconducting magnet device according to any one of claims 1 to 4. 請求項1乃至5のいずれか1項に記載の超電導磁石装置の超電導コイル支持構造を備えたことを特徴とする超電導磁石装置。 A superconducting magnet device comprising the superconducting coil support structure of the superconducting magnet device according to any one of claims 1 to 5.
JP2017121983A 2017-06-22 2017-06-22 Superconducting coil support structure of superconducting magnet device, and superconducting magnet device Active JP6878169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017121983A JP6878169B2 (en) 2017-06-22 2017-06-22 Superconducting coil support structure of superconducting magnet device, and superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121983A JP6878169B2 (en) 2017-06-22 2017-06-22 Superconducting coil support structure of superconducting magnet device, and superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2019009206A JP2019009206A (en) 2019-01-17
JP6878169B2 true JP6878169B2 (en) 2021-05-26

Family

ID=65029693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121983A Active JP6878169B2 (en) 2017-06-22 2017-06-22 Superconducting coil support structure of superconducting magnet device, and superconducting magnet device

Country Status (1)

Country Link
JP (1) JP6878169B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166168U (en) * 1984-04-11 1985-11-05 株式会社日立製作所 cryostat
JP2005185319A (en) * 2003-12-24 2005-07-14 Mitsubishi Electric Corp Superconductive magnetic device, and magnetic resonance imaging device

Also Published As

Publication number Publication date
JP2019009206A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP4987157B2 (en) Cylindrical hollow heat shield for tubular superconducting magnets cooled at cryogenic temperatures
JP2007027715A (en) Low magnetic field loss cold mass structure for superconducting magnet
JP5731842B2 (en) Superconducting magnet with improved support structure
JP5432429B2 (en) Composite sealed container for use in a magnetic resonance imaging system and method for manufacturing the same
JP4422711B2 (en) Superconducting magnet device and magnetic resonance imaging device
JP4705528B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP2010502172A (en) Torque transmission assembly of superconducting rotating machine
US20130093273A1 (en) Rotary electric machine
US9859045B2 (en) Superconducting magnet
US9711267B2 (en) Support structure for cylindrical superconducting coil structure
JP6268108B2 (en) Superconducting magnet and magnetic resonance imaging device
JP6878169B2 (en) Superconducting coil support structure of superconducting magnet device, and superconducting magnet device
US11081268B2 (en) Electromagnet assembly
JP2016049159A (en) Superconducting magnet and magnetic resonance imaging apparatus
JP5154512B2 (en) Superconducting magnet device
WO2007135459A1 (en) Improved magnetic formers
JP2016046930A (en) Superconducting coil support structure
JP2006261335A (en) Superconducting magnet apparatus
JP2014175599A (en) Superconducting coil
JP6534630B2 (en) Superconducting electromagnet device
JP3647266B2 (en) Superconducting magnet device
JP2014093308A (en) Superconducting magnet device
KR101589368B1 (en) Superconducting rotation device
JP6235571B2 (en) X-ray tube rotor containing carbon composite material
JP6460922B2 (en) Superconducting deflection electromagnet for beam and beam deflection apparatus using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150