JP6877301B2 - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP6877301B2
JP6877301B2 JP2017170427A JP2017170427A JP6877301B2 JP 6877301 B2 JP6877301 B2 JP 6877301B2 JP 2017170427 A JP2017170427 A JP 2017170427A JP 2017170427 A JP2017170427 A JP 2017170427A JP 6877301 B2 JP6877301 B2 JP 6877301B2
Authority
JP
Japan
Prior art keywords
heat generation
resistance element
generation resistance
element group
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170427A
Other languages
Japanese (ja)
Other versions
JP2019003924A (en
Inventor
北林 徹夫
徹夫 北林
遠藤 俊行
俊行 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to US15/718,953 priority Critical patent/US10679873B2/en
Publication of JP2019003924A publication Critical patent/JP2019003924A/en
Application granted granted Critical
Publication of JP6877301B2 publication Critical patent/JP6877301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Description

本発明は、半導体ウエハなどの被加熱物を加熱するセラミックスヒータに関する。 The present invention relates to a ceramic heater that heats an object to be heated such as a semiconductor wafer.

半導体ウエハなどの被加熱物を加熱するセラミックスヒータにおいて、基体の内部に複数の発熱抵抗体が独立して埋設され、各発熱抵抗体に供給する電流を独立して制御可能なものが存在し、少なくとも1つの端子に複数の発熱抵抗体を接続することにより端子数を削減することが開示されている(例えば、特許文献1参照)。 In ceramic heaters that heat objects to be heated such as semiconductor wafers, there are ceramic heaters in which a plurality of heat generating resistors are independently embedded inside the substrate and the current supplied to each heat generating resistor can be controlled independently. It is disclosed that the number of terminals is reduced by connecting a plurality of heat generating resistors to at least one terminal (see, for example, Patent Document 1).

特開2012−160368号公報Japanese Unexamined Patent Publication No. 2012-160368

しかしながら、上記従来のセラミックスヒータにおいては、各発熱抵抗体の両端部にそれぞれ電流を供給するための給電端子が接続されており、これら給電端子は、基体の下面に接続された中空の支持部材内に位置させる必要がある。発熱抵抗体の数が増加すると、このような給電端子を支持部材内に位置させるため、支持部材が大径化する。しかし、支持部材が大径化して、支持部材と基体との接合面積が大きくなると、支持部材を介して基体から逃げる熱が増加するので好ましくない。 However, in the above-mentioned conventional ceramic heater, power supply terminals for supplying an electric current are connected to both ends of each heat generating resistor, and these power supply terminals are inside a hollow support member connected to the lower surface of the substrate. Must be located in. As the number of heat generating resistors increases, the diameter of the support member increases because such a power feeding terminal is positioned in the support member. However, when the diameter of the support member is increased and the joint area between the support member and the substrate is increased, the heat escaping from the substrate through the support member increases, which is not preferable.

本発明は、かかる事情に鑑みてなされたものであり、供給する電流を変化可能な発熱抵抗体の区域の増加に比して、給電端子数の増加の抑制を図ることが可能なセラミックスヒータを提供することを目的とする。 The present invention has been made in view of such circumstances, and a ceramic heater capable of suppressing an increase in the number of feeding terminals as compared with an increase in the area of a heating resistor in which the supplied current can be changed is provided. The purpose is to provide.

本発明は、セラミックスからなり、上面に被加熱物が載置されるセラミックス基体と、前記セラミックス基体に内蔵された発熱抵抗体と、セラミックスからなり、前記セラミックス基体の下面の中心部に接続された筒状の支持部材とを備えたセラミックスヒータであって、前記発熱抵抗体は、それぞれが1の又は1以上に接続された発熱抵抗要素からなる、3つ以上の発熱抵抗要素群からなり、前記3つ以上の発熱抵抗要素群のうち少なくとも3つの発熱抵抗要素群は、それぞれ、両端部に、前記少なくとも3つの発熱抵抗要素群のうち他の1つの前記発熱抵抗要素群の端部が直接的に接続され、前記両端部からなる合計3つの端部にそれぞれ電力を供給する給電端子が少なくとも接続されていることを特徴とする。 The present invention is made of ceramics, a ceramic substrate on which an object to be heated is placed on the upper surface, a heat generating resistor built in the ceramic substrate, and ceramics, and is connected to the central portion of the lower surface of the ceramic substrate. A ceramic heater provided with a tubular support member, wherein the heat generation resistor is composed of three or more heat generation resistance element groups, each of which is composed of one or more heat generation resistance elements. At least three of the three or more heat generation resistance element groups have direct ends at both ends of the other one of the at least three heat generation resistance element groups. It is characterized in that at least a power feeding terminal for supplying electric power is connected to a total of three ends including both ends.

本発明によれば、前記給電端子に電力、例えば交流電力を供給する際に、三相電力調整器(三相サイリスタ)などの電力調整手段を用いることによって、各発熱抵抗要素群に流れる電流を別個にするように制御することが可能となる。これにより、各発熱抵抗要素群での発熱をそれぞれ別個に制御することが可能であると共に、上記従来のセラミックスヒータと比較して給電端子の個数を削減することが可能となり、ひいては支持部材の内径の小径化を図ることができる。 According to the present invention, when power is supplied to the power supply terminal, for example, AC power, the current flowing through each heat generation resistance element group is generated by using a power adjusting means such as a three-phase power regulator (three-phase thyristor). It becomes possible to control so as to be separate. As a result, it is possible to control the heat generation in each heat generation resistance element group separately, and it is possible to reduce the number of power supply terminals as compared with the above-mentioned conventional ceramic heater, and by extension, the inner diameter of the support member. The diameter can be reduced.

また、三相電力調整器を用いる以外に、直流電力や単相交流電力をスイッチングによって各給電端子に供給する電力を調整する電力調整器を用いてもよい。 In addition to using the three-phase power regulator, a power regulator that adjusts the power supplied to each power supply terminal by switching DC power or single-phase AC power may be used.

なお、発熱抵抗体は、それぞれが1の又は1以上の発熱抵抗要素が直列又は並列に接続されていればよい。 The heat generation resistor may have one or one or more heat generation resistance elements connected in series or in parallel.

本発明において、前記少なくとも3つの発熱抵抗要素群は3つの発熱抵抗要素群であり、前記3つの発熱抵抗要素群は、それぞれ、前記両端部に、前記3つの発熱抵抗要素群のうち他の1つの前記発熱抵抗要素群の端部が直接的に接続され、前記両端部からなる合計3つの端部は、それぞれ、前記3つの発熱抵抗要素群とは異なる前記発熱抵抗要素群を介して接地されていることが好ましい。 In the present invention, the at least three heat generation resistance element groups are three heat generation resistance element groups, and the three heat generation resistance element groups are located at both ends of the three heat generation resistance element groups, respectively, and the other one of the three heat generation resistance element groups. The ends of the heat generation resistance element group are directly connected, and a total of three ends including the both ends are grounded via the heat generation resistance element group different from the three heat generation resistance element groups. Is preferable.

また、本発明において、前記少なくとも3つの発熱抵抗要素群は4つの発熱抵抗要素群であり、前記4つの発熱抵抗要素群は、それぞれ、前記両端部に、前記4つの発熱抵抗要素群のうち他の1つの前記発熱抵抗要素群の端部が直接的に接続され、前記両端部は、それぞれ、当該両端部と接続されている前記4つの発熱抵抗要素群とは異なる他の1つの発熱抵抗要素群の端部と接続されていてもよい。 Further, in the present invention, the at least three heat generation resistance element groups are four heat generation resistance element groups, and the four heat generation resistance element groups are located at both ends of the four heat generation resistance element groups, respectively. The ends of the one heat-generating resistance element group of the above are directly connected, and the both ends are each of the other one heat-generating resistance element different from the four heat-generating resistance element groups connected to the both ends. It may be connected to the end of the group.

本発明の第1実施形態に係るセラミックスヒータの模式断面図。The schematic sectional view of the ceramics heater which concerns on 1st Embodiment of this invention. 図1のIIA−IIA線模式断面図。FIG. 1 is a schematic cross-sectional view taken along the line IIA-IIA of FIG. 図1のIIB−IIB線模式断面図。FIG. 1 is a schematic cross-sectional view taken along the line IIB-IIB of FIG. 発熱抵抗体の模式的等価回路図。Schematic equivalent circuit diagram of a heating resistor. 本発明の第2実施形態に係る発熱抵抗体の模式断面図。The schematic sectional view of the heat generation resistor which concerns on 2nd Embodiment of this invention. 発熱抵抗体の模式的等価回路図。Schematic equivalent circuit diagram of a heating resistor. 本発明の第3実施形態に係る下側発熱抵抗体の模式断面図。FIG. 3 is a schematic cross-sectional view of a lower heat generating resistor according to a third embodiment of the present invention. 中側発熱抵抗体の模式断面図。Schematic cross-sectional view of the middle heat generating resistor. 上側発熱抵抗体の模式断面図。Schematic cross-sectional view of the upper heating resistor. 発熱抵抗体の模式的等価回路図。Schematic equivalent circuit diagram of a heating resistor. 実施例に係るセラミックスヒータの模式下面図。Schematic bottom view of the ceramic heater according to the embodiment. 比較例に係るセラミックスヒータの模式下面図。Schematic bottom view of the ceramic heater according to the comparative example. 実施例においてOX間の端子間に供給した電圧の波形を示すグラフ。The graph which shows the waveform of the voltage supplied between the terminals between OXs in an Example. 実施例においてOY間の端子間に供給した電圧の波形を示すグラフ。The graph which shows the waveform of the voltage supplied between the terminals between OYs in an Example. 実施例においてOZ間の端子間に供給した電圧の波形を示すグラフ。The graph which shows the waveform of the voltage supplied between the terminals between OZs in an Example. 発熱抵抗体の別例の模式的等価回路図。Schematic equivalent circuit diagram of another example of a heating resistor.

[第1実施形態]
本発明の第1実施形態に係るセラミックスヒータ100について図1から図3を参照して、説明する。
[First Embodiment]
The ceramic heater 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.

図1に示すように、セラミックスヒータ100は、図示しないウエハ(基板)を保持するための略円板状の絶縁体からなる基体10と、相互に短絡しないように基体10に埋設されている発熱抵抗体20と、基体10の下面の中心部に接続された中空のシャフト(支持部材)30とを備えている。 As shown in FIG. 1, the ceramic heater 100 has a base 10 made of a substantially disk-shaped insulator for holding a wafer (board) (not shown), and heat generation embedded in the base 10 so as not to short-circuit each other. It includes a resistor 20 and a hollow shaft (support member) 30 connected to a central portion of the lower surface of the substrate 10.

シャフト30は、大略円筒形状であり、基体10との接合部分の外径が他の円筒部31より拡径した拡径部32を有し、拡径部32の上面が基体10との接合面となっている。シャフト30の材質は、基体10の材質と同等でよいが、断熱性を高めるために、基体10の素材より熱伝導率の低い素材から形成されていてもよい。 The shaft 30 has a substantially cylindrical shape, has an enlarged diameter portion 32 in which the outer diameter of the joint portion with the base 10 is larger than that of the other cylindrical portion 31, and the upper surface of the enlarged diameter portion 32 is a joint surface with the base 10. It has become. The material of the shaft 30 may be the same as the material of the substrate 10, but may be formed of a material having a lower thermal conductivity than the material of the substrate 10 in order to improve the heat insulating property.

基体10の下面とシャフト30の上端面とが、拡散接合又はセラミックス若しくはガラス等の接合材による固相接合によって接合されている。なお、基体10とシャフト30とは、ねじ止めやろう付けなどによって接続されてもよい。 The lower surface of the substrate 10 and the upper end surface of the shaft 30 are bonded by diffusion bonding or solid phase bonding using a bonding material such as ceramics or glass. The substrate 10 and the shaft 30 may be connected by screwing or brazing.

なお、基体10には、発熱抵抗体20のほか、ウエハをクーロン力により載置面に引き付けるための静電チャック電極及び基体10の上方にプラズマを発生させるためのプラズマ電極のうち少なくとも一方が埋設されていてもよい。 In addition to the heat generating resistor 20, at least one of an electrostatic chuck electrode for attracting the wafer to the mounting surface by Coulomb force and a plasma electrode for generating plasma above the substrate 10 is embedded in the substrate 10. It may have been done.

また、適切なローパス又はハイパスフィルタを介することによって、セラミックスヒータ100は、電極に給電ロッドから電圧が印加されることによって発生するクーロン力により、基体10の表面に基板を吸引する静電チャックを兼用してもよい。 Further, the ceramic heater 100 also serves as an electrostatic chuck that sucks the substrate onto the surface of the substrate 10 by the Coulomb force generated by applying a voltage from the feeding rod to the electrodes through an appropriate low-pass or high-pass filter. You may.

さらに、セラミックスヒータ100は、発熱抵抗体20に対して電力を供給するための3つの給電端子40を備えている。 Further, the ceramic heater 100 includes three power supply terminals 40 for supplying electric power to the heat generating resistor 20.

給電端子40には、それぞれ基体10に埋設されている図示しない給電部材に接続されており、給電部材は、シャフト30の内部を挿通する導線に接続されている。なお、給電端子40自身がシャフト30の内部を挿通してシャフト30の外部で導線に接続されていてもよい。 Each of the power supply terminals 40 is connected to a power supply member (not shown) embedded in the substrate 10, and the power supply member is connected to a conducting wire that inserts the inside of the shaft 30. The power feeding terminal 40 itself may be inserted through the inside of the shaft 30 and connected to the conducting wire outside the shaft 30.

給電端子40と給電部材とはろう付け又は溶接されている。給電端子40は、箔、板、塊状のニッケル(Ni)、コバール(登録商標)(Fe−Ni−Co)、モリブデン(Mo)、タングステン(W)、又はモリブデン(Mo)及びタングステン(W)を主成分とする耐熱合金などの耐熱金属から構成される。給電部材はモリブデン(Mo)又はタングステン(W)などからなる。 The power supply terminal 40 and the power supply member are brazed or welded. The power supply terminal 40 is made of foil, plate, massive nickel (Ni), Kovar (registered trademark) (Fe-Ni-Co), molybdenum (Mo), tungsten (W), or molybdenum (Mo) and tungsten (W). It is composed of heat-resistant metal such as heat-resistant alloy as the main component. The feeding member is made of molybdenum (Mo), tungsten (W) or the like.

基体10は、例えば、アルミナ、窒化アルミニウム、窒化ケイ素等からなるセラミックス焼結体である。基体10は、上記の材料を所定形状の型に入れて成形し、緻密化させるため、例えばホットプレス焼成等によって円板状に作製すればよい。 The substrate 10 is, for example, a ceramics sintered body made of alumina, aluminum nitride, silicon nitride, or the like. The substrate 10 may be formed into a disk shape by, for example, hot press firing or the like in order to mold the above material in a mold having a predetermined shape and densify the substrate 10.

発熱抵抗体20は、本実施形態では、モリブデン(Mo)又はタングステン(W)等の耐熱金属の箔からなり、平面状の形態をしている。ただし、発熱抵抗体20は、耐熱金属からなる膜、板、線、メッシュ、繊維、コイル、リボン状など構成であってもよい。 In the present embodiment, the heat generating resistor 20 is made of a foil of a heat-resistant metal such as molybdenum (Mo) or tungsten (W), and has a flat shape. However, the heat generating resistor 20 may have a structure such as a film made of a heat-resistant metal, a plate, a wire, a mesh, a fiber, a coil, or a ribbon.

基体10の間に発熱抵抗体20を挟み込んだ状態で、基体10は焼成される。 The substrate 10 is fired with the heat generating resistor 20 sandwiched between the substrates 10.

発熱抵抗体20のパターンの一例を主に図2A及び図2Bを参照して説明する。 An example of the pattern of the heat generating resistor 20 will be described mainly with reference to FIGS. 2A and 2B.

図1を参照して、発熱抵抗体20は、下側発熱抵抗体21と、下側発熱抵抗体21の上方に配置された上側発熱抵抗体22とからなっている。 With reference to FIG. 1, the heat generation resistor 20 includes a lower heat generation resistor 21 and an upper heat generation resistor 22 arranged above the lower heat generation resistor 21.

ここでは、下側発熱抵抗体21は、一方の端部が中央部Oで共に直接的に接続され、他方の端部A1,B1,C1が中央部O付近でそれぞれ別個の給電端子40に直接的に接続される3つの発熱抵抗要素群21A,21B,21Cから構成されている。 Here, one end of the lower heat generating resistor 21 is directly connected to each other at the central portion O, and the other end portions A1, B1 and C1 are directly connected to separate power supply terminals 40 near the central portion O. It is composed of three heat generation resistance element groups 21A, 21B, and 21C that are connected to each other.

発熱抵抗要素群21Aは、図2Aに示すように中央部Oから直線状発熱抵抗要素21A1aが直線状に周縁側に向って延びる方向を0時の方向として、0時から4時の扇状領域内に存在している。発熱抵抗要素群21Aは、2つの直線状発熱抵抗要素21A1a,21A1b、3つの円弧状発熱抵抗要素21A2a〜21A2c、及び2つの直線状発熱抵抗要素21A3a,21A3bが直列に接続されることにより構成されている。 As shown in FIG. 2A, the heat generation resistance element group 21A is within the fan-shaped region from 0 o'clock to 4 o'clock, with the direction in which the linear heat generation resistance element 21A1a extends linearly from the central portion O toward the peripheral side as the 0 o'clock direction. Exists in. The heat generation resistance element group 21A is configured by connecting two linear heat generation resistance elements 21A1a and 21A1b, three arcuate heat generation resistance elements 21A2a to 21A2c, and two linear heat generation resistance elements 21A3a and 21A3b in series. ing.

具体的には、中央部Oから周縁部まで0時の方向に長い直線状に直線状発熱抵抗要素21A1aが延在している。この直線状発熱抵抗要素21A1aの中央部Oとは反対側の周縁側の端部は、時計回りに0時から4時の方向まで円弧状に延在する円弧状発熱抵抗要素21A2aの0時側の端部に接続されている。この円弧状発熱抵抗要素21A2aの4時側の端部は、この端部から周縁方向に向って短い直線状に延在する直線状発熱抵抗要素21A3aの中央部O側の端部が接続されている。そして、この直線状発熱抵抗要素21A3aの周縁側の端部は、反時計回りに4時から0時の方向まで円弧状に延在する円弧状発熱抵抗要素21A2bの4時側の端部に接続されている。 Specifically, the linear heat generation resistance element 21A1a extends linearly from the central portion O to the peripheral portion in the direction of 0 o'clock. The edge on the peripheral edge side of the linear heat generation resistance element 21A1a opposite to the central portion O is the 0 o'clock side of the arcuate heat generation resistance element 21A2a extending clockwise from 0 o'clock to 4 o'clock in an arc shape. It is connected to the end of. The end of the arc-shaped heat-generating resistance element 21A2a on the 4 o'clock side is connected to the end of the linear heat-generating resistance element 21A3a on the central portion O side extending in a short straight line from this end toward the peripheral edge. There is. Then, the peripheral end of the linear heat generation resistance element 21A3a is connected to the 4 o'clock end of the arcuate heat generation resistance element 21A2b extending in an arc shape from 4 o'clock to 0 o'clock counterclockwise. Has been done.

この円弧状発熱抵抗要素21A2bの0時側の端部は、この端部から周縁方向に向って短い直線状に延在する直線状発熱抵抗要素21A3bの中央部O側の端部が接続されている。そして、この直線状発熱抵抗要素21A3bの周縁側の端部は、時計回りに0時から4時の方向まで円弧状に延在する円弧状発熱抵抗要素21A2cの0時側の端部に接続されている。この円弧状発熱抵抗要素21A2cの4時側の端部は、この端部から中央部Oに大略向って長い直線状に延在する直線状発熱抵抗要素21A1bの周縁側の端部が接続されている。直線状発熱抵抗要素21A1bは、この端部から中央部Oの2時方向近傍に位置する端部A1まで直線状に延びている。 The end of the arc-shaped heat-generating resistance element 21A2b on the 0 o'clock side is connected to the end of the linear heat-generating resistance element 21A3b on the O-side at the center, which extends in a short straight line from this end toward the peripheral edge. There is. The peripheral end of the linear heat generation resistance element 21A3b is connected to the end of the arcuate heat generation resistance element 21A2c extending clockwise from 0 o'clock to 4 o'clock on the 0 o'clock side. ing. The end of the arc-shaped heat-generating resistance element 21A2c on the 4 o'clock side is connected to the peripheral end of the linear heat-generating resistance element 21A1b extending in a long straight line from this end to the central portion O. There is. The linear heat generation resistance element 21A1b extends linearly from this end portion to the end portion A1 located near the central portion O in the 2 o'clock direction.

発熱抵抗要素群21Bは、8時から12時の扇状領域内に存在している。発熱抵抗要素群21Bは、2つの直線状発熱抵抗要素21B1a,21B1b、3つの円弧状発熱抵抗要素21B2a〜21B2c、及び2つの直線状発熱抵抗要素21B3a,21B3bが直列に接続されることにより構成されている。 The heat generation resistance element group 21B exists in the fan-shaped region from 8:00 to 12:00. The heat generation resistance element group 21B is configured by connecting two linear heat generation resistance elements 21B1a and 21B1b, three arcuate heat generation resistance elements 21B2a to 21B2c, and two linear heat generation resistance elements 21B3a and 21B3b in series. ing.

発熱抵抗要素群21Cは、4時から8時の扇状領域内に存在している。発熱抵抗要素群21Cは、2つの直線状発熱抵抗要素21C1a,21C1b、3つの円弧状発熱抵抗要素21C2a〜21C2c、及び2つの直線状発熱抵抗要素21C3a,21C3bが直列に接続されることにより構成されている。 The heat generation resistance element group 21C exists in the fan-shaped region from 4 o'clock to 8 o'clock. The heat generation resistance element group 21C is configured by connecting two linear heat generation resistance elements 21C1a and 21C1b, three arcuate heat generation resistance elements 21C2a to 21C2c, and two linear heat generation resistance elements 21C3a and 21C3b in series. ing.

発熱抵抗要素群21B,21Cの具体的な構成は、発熱抵抗要素群21Aと同様であるので、その説明は省略する。 Since the specific configuration of the heat generation resistance element groups 21B and 21C is the same as that of the heat generation resistance element group 21A, the description thereof will be omitted.

一方、上側発熱抵抗体22は、端部が他の端部とそれぞれ直接的に接続され、これら端部A2,B2,C2がそれぞれ別個の給電端子40に直接的に接続される3つの発熱抵抗要素群22A,22B,22Cが接続されて構成されている。 On the other hand, the upper heat generating resistor 22 has three heat generating resistors whose ends are directly connected to the other ends and the ends A2, B2, and C2 are directly connected to separate power feeding terminals 40. The element groups 22A, 22B, and 22C are connected to each other.

発熱抵抗要素群22Aは、0時から4時の扇状領域内に存在している。発熱抵抗要素群22Aは、1つの直線状発熱抵抗要素22A1、4つの円弧状発熱抵抗要素22A2a〜21A2d、4つの直線状発熱抵抗要素22A3a〜22A3d、及び1つの直線状連絡発熱抵抗要素22A4が直列に接続されることにより構成されている。 The heat generation resistance element group 22A exists in the fan-shaped region from 0:00 to 4:00. In the heat generation resistance element group 22A, one linear heat generation resistance element 22A1, four arcuate heat generation resistance elements 22A2a to 21A2d, four linear heat generation resistance elements 22A3a to 22A3d, and one linear communication heat generation resistance element 22A4 are connected in series. It is configured by being connected to.

具体的には、上記端部A1の直上に位置し端部A1と直接的に接続された端部A2から0時方向に周縁側に向って短い直線状に直線状発熱抵抗要素22A3aが延在している。この直線状発熱抵抗要素22A3aの周縁側の端部は、この端部から時計回りに0時から4時の方向に円弧状に延在する円弧状発熱抵抗要素22A2aの0時側の端部に接続されている。この円弧状発熱抵抗要素22A2aの4時側の端部は、この端部から周縁部に向って4時の方向に短い直線状に延在する直線状発熱抵抗要素22A3bの中央部側の端部が接続されている。そして、この直線状発熱抵抗要素22A3bの周縁側の端部は、反時計回りに4時から0時の方向に円弧状に延在する円弧状発熱抵抗要素22A2bの4時側の端部に接続されている。 Specifically, the linear heat generation resistance element 22A3a extends in a short linear direction from the end A2 located directly above the end A1 and directly connected to the end A1 toward the peripheral edge in the 0 o'clock direction. doing. The peripheral end of the linear heat generation resistance element 22A3a extends from this end clockwise in an arc shape from 0 o'clock to 4 o'clock to the end of the arcuate heat generation resistance element 22A2a on the 0 o'clock side. It is connected. The end portion of the arc-shaped heat generation resistance element 22A2a on the 4 o'clock side is the end portion on the central portion side of the linear heat generation resistance element 22A3b extending in a short linear direction from this end portion toward the peripheral edge portion in the direction of 4 o'clock. Is connected. The peripheral end of the linear heat generation resistance element 22A3b is connected to the 4 o'clock end of the arcuate heat generation resistance element 22A2b extending counterclockwise in an arc shape from 4 o'clock to 0 o'clock. Has been done.

この円弧状発熱抵抗要素22A2bの0時側の端部は、この端部から周縁方向に向って0時方向に短い直線状に延在する直線状発熱抵抗要素22A3cの中央部側の端部に接続されている。そして、この直線状発熱抵抗要素22A3cの周縁側の端部は、時計回りに0時から4時の方向に円弧状に延在する円弧状発熱抵抗要素22A2cの0時側の端部に接続されている。この円弧状発熱抵抗要素22A2cの4時側の端部は、この端部から周縁方向に向って4時方向に短い直線状に延在する直線状発熱抵抗要素22A3dの中央側の端部に接続されている。この直線状発熱抵抗要素22A3dの周縁側の端部は、反時計回りに4時から0時の方向に円弧状に延在する円弧状発熱抵抗要素22A2dの4時側の端部に接続されている。 The end portion of the arc-shaped heat generation resistance element 22A2b on the 0 o'clock side is located at the end portion on the central portion side of the linear heat generation resistance element 22A3c extending in a short linear shape in the 0 o'clock direction from this end portion toward the peripheral edge direction. It is connected. The peripheral end of the linear heat generation resistance element 22A3c is connected to the end of the arcuate heat generation resistance element 22A2c extending clockwise from 0 o'clock to 4 o'clock on the 0 o'clock side. ing. The 4 o'clock side end of the arc-shaped heat generation resistance element 22A2c is connected to the central end of the linear heat generation resistance element 22A3d extending in a short linear direction from this end toward the peripheral edge in the 4 o'clock direction. Has been done. The peripheral end of the linear heat generation resistance element 22A3d is connected to the 4 o'clock end of the arcuate heat generation resistance element 22A2d extending counterclockwise in an arc shape from 4 o'clock to 0 o'clock. There is.

この円弧状発熱抵抗要素22A2dの0時側の端部は、この端部から中央部方向に向って0時方向に長い直線状に延在するに直線状発熱抵抗要素22A1の周縁側の端部に接続されている。そして、この直線状発熱抵抗要素22A1の中央部側の端部は、この端部から8時の方向に短い直線状に延在する直線状連絡発熱抵抗要素22A4の2時側の端部に接続されている。この直線状連絡発熱抵抗要素22A4は、この端部から発熱抵抗要素群22Bの端部B2まで直線状に延びている。 The end portion of the arc-shaped heat generation resistance element 22A2d on the 0 o'clock side extends linearly from this end portion toward the central portion in the 0 o'clock direction, and is the end portion on the peripheral edge side of the linear heat generation resistance element 22A1. It is connected to the. Then, the end portion of the linear heat generation resistance element 22A1 on the central portion side is connected to the end portion of the linear communication heat generation resistance element 22A4 on the 2 o'clock side extending in a short linear direction from this end portion in the direction of 8 o'clock. Has been done. The linear communication heat generation resistance element 22A4 extends linearly from this end portion to the end portion B2 of the heat generation resistance element group 22B.

発熱抵抗要素群22Bは、8時から12時の扇状領域内に存在している。発熱抵抗要素群22Bは、1つの直線状発熱抵抗要素22B1、4つの円弧状発熱抵抗要素22B2a〜21B2d、4つの直線状発熱抵抗要素22B3a〜22B3d、及び1つの直線状連絡発熱抵抗要素22B4が直列に接続されることにより構成されている。 The heat generation resistance element group 22B exists in the fan-shaped region from 8:00 to 12:00. In the heat generation resistance element group 22B, one linear heat generation resistance element 22B1, four arcuate heat generation resistance elements 22B2a to 21B2d, four linear heat generation resistance elements 22B3a to 22B3d, and one linear communication heat generation resistance element 22B4 are connected in series. It is configured by being connected to.

発熱抵抗要素群22Cは、4時から8時の扇状領域内に存在している。発熱抵抗要素群22Cは、1つの直線状発熱抵抗要素22C1、4つの円弧状発熱抵抗要素22C2a〜21C2d、4つの直線状発熱抵抗要素22C3a〜22C3d、及び1つの直線状連絡発熱抵抗要素22C4が直列に接続されることにより構成されている。 The heat generation resistance element group 22C exists in the fan-shaped region from 4 o'clock to 8 o'clock. In the heat generation resistance element group 22C, one linear heat generation resistance element 22C1, four arcuate heat generation resistance elements 22C2a to 21C2d, four linear heat generation resistance elements 22C3a to 22C3d, and one linear communication heat generation resistance element 22C4 are connected in series. It is configured by being connected to.

発熱抵抗要素群22B,22Cの具体的な構成は、発熱抵抗要素群22Aと同様であるので、その説明は省略する。 Since the specific configuration of the heat generation resistance element groups 22B and 22C is the same as that of the heat generation resistance element group 22A, the description thereof will be omitted.

なお、上側発熱抵抗体22は、その領域の外縁を図2Aに2点鎖線で示すように、下側発熱抵抗体21を構成する円弧状発熱抵抗要素の内側に位置することが好ましい。 The upper heat-generating resistor 22 is preferably located inside the arc-shaped heat-generating resistance element constituting the lower heat-generating resistor 21 as the outer edge of the region is shown by a two-dot chain line in FIG. 2A.

このように構成された発熱抵抗体20の等価回路図は、図3にように模式的に示される。図3から分かるように、発熱抵抗体20は、中央部Oが接地(アース)されており、6ゾーンの発熱抵抗要素群21A,21B,21C,22A,22B,22CからなるY(スター)結線構造体となっている。 The equivalent circuit diagram of the heat generating resistor 20 configured in this way is schematically shown as shown in FIG. As can be seen from FIG. 3, in the heat generating resistor 20, the central portion O is grounded, and the Y (star) connection consisting of the heat generating resistance element groups 21A, 21B, 21C, 22A, 22B, 22C of 6 zones is formed. It is a structure.

そして、端部A1,A2に直接的に接続された給電端子40、端部B1,B2に直接的に接続された給電端子40及び端部C1,C2に直接的に接続された給電端子40の合計3つの給電端子40に対して、交流3相電源の給電端子を前記導線及び前記給電部材を介して接続する。これにより、三相電力調整器(三相サイリスタ)などの電力調整手段を用いることにより、各発熱抵抗要素群21A,21B,21C,22A,22B,22Cに流れる電流を、別個となるように制御することが可能となる。3つの発熱抵抗要素群22A,22B,22Cのうち、例えば、発熱抵抗要素群22Aが「第1発熱抵抗要素群」に該当し、発熱抵抗要素群22Bが「第2発熱抵抗要素群」に該当し、発熱抵抗要素群22Cが「第3発熱抵抗要素群」に該当する。 Then, the power supply terminal 40 directly connected to the ends A1 and A2, the power supply terminal 40 directly connected to the ends B1 and B2, and the power supply terminal 40 directly connected to the ends C1 and C2. The power supply terminals of the AC three-phase power supply are connected to the total of three power supply terminals 40 via the conductor and the power supply member. As a result, by using a power adjusting means such as a three-phase power regulator (three-phase thyristor), the current flowing through each heat generation resistance element group 21A, 21B, 21C, 22A, 22B, 22C is controlled so as to be separate. It becomes possible to do. Of the three heat generation resistance element groups 22A, 22B, and 22C, for example, the heat generation resistance element group 22A corresponds to the "first heat generation resistance element group", and the heat generation resistance element group 22B corresponds to the "second heat generation resistance element group". However, the heat generation resistance element group 22C corresponds to the "third heat generation resistance element group".

これにより、6つのゾーンからなる発熱抵抗要素群21A,21B,21C,22A,22B,22Cに対して給電端子40の数が3つと少なく、シャフト30の内径の小径化を図ることが可能となる。なお、21A、21B、21Cは共通のアース端子を設けてもよい。この場合、給電端子の数は4つであり依然としてゾーン数以下である。 As a result, the number of power supply terminals 40 is as small as three with respect to the heat generation resistance element groups 21A, 21B, 21C, 22A, 22B, 22C consisting of six zones, and it is possible to reduce the inner diameter of the shaft 30. .. The 21A, 21B, and 21C may be provided with a common ground terminal. In this case, the number of power supply terminals is four, which is still less than or equal to the number of zones.

[第2実施形態]
次に、本発明の第2実施形態に係るセラミックスヒータ200について主に図4及び図5を参照して、説明する。セラミックスヒータ200は前述したセラミックスヒータ100と類似するので、相違点についてのみ説明する。
[Second Embodiment]
Next, the ceramic heater 200 according to the second embodiment of the present invention will be described mainly with reference to FIGS. 4 and 5. Since the ceramic heater 200 is similar to the ceramic heater 100 described above, only the differences will be described.

図1を参照して、セラミックスヒータ200は、図示しないウエハ(基板)を吸着保持するための略円板状の絶縁体からなる基体10と、相互に短絡しないように基体10に埋設されている発熱抵抗体120と、基体10の下面の中心部に接続された中空のシャフト130とを備えている。 With reference to FIG. 1, the ceramic heater 200 is embedded in a base 10 made of a substantially disk-shaped insulator for sucking and holding a wafer (board) (not shown) so as not to be short-circuited with each other. It includes a heat generating resistor 120 and a hollow shaft 130 connected to a central portion of the lower surface of the substrate 10.

さらに、セラミックスヒータ200は、発熱抵抗体120に対して電力を供給するための3つの給電端子40を備えている。 Further, the ceramic heater 200 includes three power supply terminals 40 for supplying electric power to the heat generating resistor 120.

発熱抵抗体120のパターンの一例を図4を参照して説明する。 An example of the pattern of the heat generating resistor 120 will be described with reference to FIG.

ここでは、発熱抵抗体120は、一方の端部X,Y,Zがそれぞれ中央部O付近に位置する3つの発熱抵抗要素群121A,121B,121Cと、一方の端部が中央部Oにそれぞれ位置し、他方の端部が発熱抵抗要素群121A,121B,121Cの端部X,Y,Zとは異なる他方の端部とそれぞれ直接的に接続される3つの発熱抵抗要素群122A,122B,122Cとから構成されている。 Here, in the heat generation resistor 120, three heat generation resistance element groups 121A, 121B, 121C in which one end portion X, Y, Z is located near the central portion O, respectively, and one end portion is located in the central portion O, respectively. Three heat resistance element groups 122A, 122B, which are located and whose other end is directly connected to the other end, which is different from the ends X, Y, Z of the heat generation resistance element groups 121A, 121B, 121C, respectively. It is composed of 122C.

発熱抵抗要素群121Aは、図4に示すように一方の端部Yから直線状に延在する直線状発熱抵抗要素121A1が周縁側に向って延びる方向を0時の方向として、0時から4時の扇状領域の周縁側部に存在している。発熱抵抗要素群121Aは、1つの直線状発熱抵抗要素121A1、3つの円弧状発熱抵抗要素121A2a〜121A2c、及び2つの直線状発熱抵抗要素121A3a,121A3bが直列に接続されることにより構成されている。 As shown in FIG. 4, the heat generation resistance element group 121A has a direction in which the linear heat generation resistance element 121A1 extending linearly from one end Y extends toward the peripheral edge side as the direction at 0 o'clock, and is 4 from 0 o'clock. It exists on the veranda of the fan-shaped region of time. The heat generation resistance element group 121A is configured by connecting one linear heat generation resistance element 121A1, three arcuate heat generation resistance elements 121A2a to 121A2c, and two linear heat generation resistance elements 121A3a, 121A3b in series. ..

具体的には、中央部Oの0時の方向に少し離れて位置する端部Yから周縁部まで0時方向に長い直線状に直線状発熱抵抗要素121A1が延在している。この直線状発熱抵抗要
素121A1の端部Yとは反対側の周縁側の端部は、この端部から時計回りに0時から4時の方向に円弧状に延在する円弧状発熱抵抗要素121A2aの0時側の端部に接続されている。この円弧状発熱抵抗要素121A2aの4時側の端部は、この端部から中央部O方向に10時の方向に短い直線状に延在する直線状発熱抵抗要素121A3aの周縁側の端部が接続されている。そして、この直線状発熱抵抗要素121A3aの中央部O側の端部は、この端部から反時計回りに4時から0時の方向に円弧状に延在する円弧状発熱抵抗要素121A2bの4時側の端部に接続されている。
Specifically, the linear heat generation resistance element 121A1 extends linearly from the end portion Y located slightly away from the central portion O in the 0 o'clock direction to the peripheral portion in the 0 o'clock direction. The end of the linear heat generation resistance element 121A1 on the peripheral edge side opposite to the end Y is an arcuate heat generation resistance element 121A2a extending clockwise from this end in the direction of 0 o'clock to 4 o'clock. It is connected to the end on the 0 o'clock side of. The end of the arc-shaped heat-generating resistance element 121A2a on the 4 o'clock side is a linear end of the linear heat-generating resistance element 121A3a extending in a short linear direction from this end in the direction of 10 o'clock in the central O direction. It is connected. The end of the linear heat generation resistance element 121A3a on the central portion O side extends counterclockwise from this end in an arc shape extending from 4 o'clock to 0 o'clock at 4 o'clock of the arcuate heat generation resistance element 121A2b. It is connected to the end on the side.

この円弧状発熱抵抗要素121A2bの0時側の端部は、この端部から中央部O方向に6時の方向に短い直線状に延在するに直線状発熱抵抗要素121A3bの周縁側の端部が接続されている。そして、この直線状発熱抵抗要素121A3bの中央部O側の端部は、この端部から時計回りに0時から4時の方向に円弧状に延在する円弧状発熱抵抗要素121A2cの0時側の端部に接続されている。この円弧状発熱抵抗要素121A2cの4時側の端部は、発熱抵抗要素群121Cの直線状発熱抵抗要素121C1の途中部に接続されている。 The end portion of the arc-shaped heat generation resistance element 121A2b on the 0 o'clock side extends from this end portion in a short linear shape in the direction of 6 o'clock in the central O direction, and is the end portion on the peripheral side of the linear heat generation resistance element 121A3b. Is connected. The end of the linear heat generation resistance element 121A3b on the O side at the center is the end of the arcuate heat generation resistance element 121A2c extending clockwise from this end in the direction of 0 o'clock to 4 o'clock on the 0 o'clock side. It is connected to the end of. The end portion of the arc-shaped heat generation resistance element 121A2c on the 4 o'clock side is connected to the middle portion of the linear heat generation resistance element 121C1 of the heat generation resistance element group 121C.

発熱抵抗要素群121Bは、8時から12時の扇状領域の周縁側部に存在している。発熱抵抗要素群121Bは、1つの直線状発熱抵抗要素121B1、3つの円弧状発熱抵抗要素121B2a〜121B2c、及び2つの直線状発熱抵抗要素121B3a,121B3bが直列に接続されることにより構成されている。 The heat generation resistance element group 121B exists on the peripheral side of the fan-shaped region from 8:00 to 12:00. The heat generation resistance element group 121B is configured by connecting one linear heat generation resistance element 121B1, three arcuate heat generation resistance elements 121B2a to 121B2c, and two linear heat generation resistance elements 121B3a and 121B3b in series. ..

発熱抵抗要素群121Cは、4時から8時の扇状領域の周縁側部に存在している。発熱抵抗要素群121Cは、1つの直線状発熱抵抗要素121C1、3つの円弧状発熱抵抗要素121C2a〜121C2c、及び2つの直線状発熱抵抗要素121C3a,121C3bが直列に接続されることにより構成されている。 The heat generation resistance element group 121C exists on the peripheral side of the fan-shaped region from 4 o'clock to 8 o'clock. The heat generation resistance element group 121C is configured by connecting one linear heat generation resistance element 121C1, three arcuate heat generation resistance elements 121C2a to 121C2c, and two linear heat generation resistance elements 121C3a and 121C3b in series. ..

発熱抵抗要素群121B,121Cの具体的な構成は、発熱抵抗要素群121Aと同様であるので、その説明は省略する。 Since the specific configuration of the heat generation resistance element groups 121B and 121C is the same as that of the heat generation resistance element group 121A, the description thereof will be omitted.

発熱抵抗要素群122Aは、0時から4時の扇状領域の内周側部に存在している。発熱抵抗要素群122Aは、4つの円弧状発熱抵抗要素122A1a〜122A1d、3つの直線状発熱抵抗要素122A2a〜122A2c、及び1つの直線状中央発熱抵抗要素122A3が直列に接続されることにより構成されている。 The heat generation resistance element group 122A exists on the inner peripheral side portion of the fan-shaped region from 0:00 to 4:00. The heat generation resistance element group 122A is composed of four arcuate heat generation resistance elements 122A1a to 122A1d, three linear heat generation resistance elements 122A2a to 122A2c, and one linear central heat generation resistance element 122A3 connected in series. There is.

具体的には、直線状発熱抵抗要素121C1の中間部Lから反時計回りに4時から0時方向に円弧状に円弧状発熱抵抗要素122A1aが延在している。そして、この円弧状発熱抵抗要素122A1aの0時側の端部は、この端部から中央部O側に向って0時方向に短い直線状に延在する直線状発熱抵抗要素122A2aの周縁側の端部に接続されている。そして、この直線状発熱抵抗要素122A2aの中央部O側の端部は、この端部から時計回りに0時から4時方向に円弧状に延在する円弧状発熱抵抗要素122A1bの6時側の端部に接続されている。 Specifically, the arc-shaped heat-generating resistance element 122A1a extends in an arc shape from 4 o'clock to 0 o'clock counterclockwise from the intermediate portion L of the linear heat-generating resistance element 121C1. The end of the arcuate heat generation resistance element 122A1a on the 0 o'clock side is on the peripheral edge side of the linear heat generation resistance element 122A2a extending in a short linear shape in the 0 o'clock direction from this end toward the central O side. It is connected to the end. The end of the linear heat generation resistance element 122A2a on the central portion O side is located on the 6 o'clock side of the arcuate heat generation resistance element 122A1b extending clockwise from this end in an arc shape from 0 o'clock to 4 o'clock. It is connected to the end.

この円弧状発熱抵抗要素122A1bの4時側の端部は、この端部から中央部O側に向って4時方向に短い直線状に延在する直線状発熱抵抗要素122A2bの周縁側の端部に接続されている。そして、この直線状発熱抵抗要素122A2bの中央部O側の端部は、この端部から反時計回りに4時から0時方向に円弧状に延在する円弧状発熱抵抗要素122A1cの10時側の端部に接続されている。 The end portion of the arc-shaped heat generation resistance element 122A1b on the 4 o'clock side is a peripheral end portion of the linear heat generation resistance element 122A2b extending in a short linear shape in the 4 o'clock direction from this end portion toward the central portion O side. It is connected to the. The end of the linear heat generation resistance element 122A2b on the O side at the center is the 10 o'clock side of the arcuate heat generation resistance element 122A1c extending in an arc shape from 4 o'clock to 0 o'clock counterclockwise from this end. It is connected to the end of.

この円弧状発熱抵抗要素122A1cの0時側の端部は、この端部から中央部O側に向って0時方向に短い直線状に延在する直線状発熱抵抗要素122A2cの周縁側の端部に接続されている。そして、この直線状発熱抵抗要素122A2cの中央部O側の端部は、この端部から時計回りに0時から2時方向に円弧状に延在する円弧状発熱抵抗要素1
22A1dの0時側の端部に接続されている。この円弧状発熱抵抗要素122A2dの2時側の端部は、この端部から中央部Oまで8時方向に短い直線状に延在する直線状中央発熱抵抗要素122A3の周縁側の端部に接続されている。
The end portion of the arc-shaped heat generation resistance element 122A1c on the 0 o'clock side is a peripheral end portion of the linear heat generation resistance element 122A2c extending in a short linear shape in the 0 o'clock direction from this end portion toward the central portion O side. It is connected to the. The end of the linear heat generation resistance element 122A2c on the O side of the central portion is an arcuate heat generation resistance element 1 extending clockwise from this end in an arc shape from 0 o'clock to 2 o'clock.
It is connected to the end of 22A1d on the 0 o'clock side. The 2 o'clock side end of the arc-shaped heat generation resistance element 122A2d is connected to the peripheral end of the linear central heat generation resistance element 122A3 extending in a short straight line from this end to the center O in the 8 o'clock direction. Has been done.

発熱抵抗要素群122Bは、8時から12時の扇状領域の内周側部に存在している。発熱抵抗要素群122Bは、4つの円弧状発熱抵抗要素122B1a〜122B1d、3つの3つの直線状発熱抵抗要素122B2a〜122B2c、及び1つの直線状中央発熱抵抗要素122B3が直列に接続されることにより構成されている。 The heat generation resistance element group 122B exists on the inner peripheral side portion of the fan-shaped region from 8:00 to 12:00. The heat generation resistance element group 122B is configured by connecting four arc-shaped heat generation resistance elements 122B1a to 122B1d, three linear heat generation resistance elements 122B2a to 122B2c, and one linear central heat generation resistance element 122B3 in series. Has been done.

発熱抵抗要素群122Cは、4時から8時の扇状領域の内周側部に存在している。発熱抵抗要素群122Cは、4つの円弧状発熱抵抗要素122C1a〜122C1d、3つの直線状発熱抵抗要素122C2a〜122C2c、及び1つの直線状中央発熱抵抗要素122C3が直列に接続されることにより構成されている。 The heat generation resistance element group 122C exists on the inner peripheral side portion of the fan-shaped region from 4 o'clock to 8 o'clock. The heat generation resistance element group 122C is composed of four arcuate heat generation resistance elements 122C1a to 122C1d, three linear heat generation resistance elements 122C2a to 122C2c, and one linear central heat generation resistance element 122C3 connected in series. There is.

発熱抵抗要素群122B,122Cの具体的な構成は、発熱抵抗要素群122Aと同様であるので、その説明は省略する。 Since the specific configuration of the heat generation resistance element groups 122B and 122C is the same as that of the heat generation resistance element group 122A, the description thereof will be omitted.

このように構成された発熱抵抗体120の等価回路図は、図5のように模式的に示される。図5から分かるように、発熱抵抗体120は、中央部Oが接地(アース)されており、6ゾーンの発熱抵抗要素群121A,121B,121C,122A,122B,122CからなるY(スター)結線構造体となっている。 The equivalent circuit diagram of the heat generating resistor 120 configured in this way is schematically shown as shown in FIG. As can be seen from FIG. 5, in the heat generating resistor 120, the central portion O is grounded (earth), and the Y (star) connection consisting of the heat generating resistance element groups 121A, 121B, 121C, 122A, 122B, 122C of 6 zones is formed. It is a structure.

そして、端部X,Y,Zにそれぞれ直接的に接続される合計3つの給電端子40に対して、交流3相電源の給電端子を前記導線及び前記給電部材を介して接続する。これにより、三相電力調整器(三相サイリスタ)などの電力調整手段を用いることにより、各発熱抵抗要素群121A,121B,121C,122A,122B,122Cに流れる電流を、別個となるように制御することが可能となる。3つの発熱抵抗要素群121A,121B,121Cのうち、例えば、発熱抵抗要素群121Aが「第1発熱抵抗要素群」に該当し、発熱抵抗要素群121Bが「第2発熱抵抗要素群」に該当し、発熱抵抗要素群121Cが「第3発熱抵抗要素群」に該当する。 Then, the power supply terminals of the AC three-phase power supply are connected to the total of three power supply terminals 40 directly connected to the ends X, Y, and Z via the conductor and the power supply member. As a result, by using a power adjusting means such as a three-phase power regulator (three-phase thyristor), the current flowing through each heat generation resistance element group 121A, 121B, 121C, 122A, 122B, 122C is controlled so as to be separate. It becomes possible to do. Of the three heat generation resistance element groups 121A, 121B, 121C, for example, the heat generation resistance element group 121A corresponds to the "first heat generation resistance element group", and the heat generation resistance element group 121B corresponds to the "second heat generation resistance element group". However, the heat generation resistance element group 121C corresponds to the "third heat generation resistance element group".

これにより、6ゾーンの発熱抵抗要素群121A,121B,121C,122A,122B,122Cに対して給電端子40の数が3つと少なく、シャフト30の内径の小径化を図ることが可能となる。 As a result, the number of power supply terminals 40 is as small as three with respect to the heat generation resistance element groups 121A, 121B, 121C, 122A, 122B, 122C in the six zones, and the inner diameter of the shaft 30 can be reduced.

なお、発熱抵抗要素群122A,122B,122Cに共通したアース端子を設けてもよい。この場合は、給電端子の数は4つであり、依然としてゾーン数以下である。 A ground terminal common to the heat generation resistance element groups 122A, 122B, and 122C may be provided. In this case, the number of power supply terminals is four, which is still less than or equal to the number of zones.

なお、図5から理解されように、例えば、発熱抵抗要素群121A,121C,122Aは端部Xの1点で結合されていることが好ましい。しかし、図4から理解されるように、発熱抵抗要素群121A,121Cは直線状発熱抵抗要素121C1の途中部で、発熱抵抗要素群121A,122Aとは直線状発熱抵抗要素121C1の途中部Lでそれぞれ接続されており、直線状発熱抵抗要素121C1の一部を共有している。そのため、端部 Xから途中部Lまでの部分および発熱抵抗要素群121Aとの交点までの部分の抵抗値は できる限り小さいほうが好ましい。端部Yから途中部Mまでの部分及び発熱抵抗要素群1 21Bとの交点までの部分,端部Zから途中部Nまでの部分及び発熱抵抗要素群121C との交点までの部分も同様である。 As can be understood from FIG. 5, for example, the heat generation resistance element groups 121A, 121C, 122A are preferably connected at one point of the end portion X. However, as can be understood from FIG. 4, the heat generation resistance element groups 121A and 121C are in the middle part of the linear heat generation resistance element 121C1, and the heat generation resistance element groups 121A and 122A are in the middle part L of the linear heat generation resistance element 121C1. They are connected to each other and share a part of the linear heat generation resistance element 121C1. Therefore, it is preferable that the resistance value of the portion from the end portion X to the intermediate portion L and the portion up to the intersection with the heat generation resistance element group 121A is as small as possible. The same applies to the portion from the end portion Y to the intermediate portion M, the portion up to the intersection with the heat generation resistance element group 1 21B, the portion from the end portion Z to the intermediate portion N, and the portion up to the intersection with the heat generation resistance element group 121C. ..

このように本実施例では、すべての発熱抵抗体120が基体10内の同一面内に配置できる点に特徴がある。 As described above, the present embodiment is characterized in that all the heat generating resistors 120 can be arranged in the same plane in the substrate 10.

[第3実施形態]
次に、本発明の第3実施形態に係るセラミックスヒータ300について図6から図8を参照して、説明する。
[Third Embodiment]
Next, the ceramic heater 300 according to the third embodiment of the present invention will be described with reference to FIGS. 6 to 8.

図1を参照して、セラミックスヒータ300は、図示しないウエハ(基板)を吸着保持
するための略円板状の絶縁体からなる基体10と、基体10に埋設されている発熱抵抗体220と、基体10の下面の中心部に接続された中空のシャフト30とを備えている。
With reference to FIG. 1, the ceramic heater 300 includes a substrate 10 made of a substantially disk-shaped insulator for adsorbing and holding a wafer (substrate) (not shown), a heat generating resistor 220 embedded in the substrate 10, and a heat generating resistor 220. It includes a hollow shaft 30 connected to the center of the lower surface of the substrate 10.

さらに、セラミックスヒータ300は、発熱抵抗体220に対して電力を供給するための複数の給電端子40を備えている。 Further, the ceramic heater 300 includes a plurality of power supply terminals 40 for supplying electric power to the heat generating resistor 220.

発熱抵抗体220のパターンの一例を図6、図7A及び図7Bを参照して説明する。 An example of the pattern of the heat generating resistor 220 will be described with reference to FIGS. 6, 7A and 7B.

発熱抵抗体220は、下側発熱抵抗体221と、下側発熱抵抗体221の上方に配置された中側発熱抵抗体222と、中側発熱抵抗体222の上方に配置された上側発熱抵抗体223とからなっている。 The heating resistor 220 includes a lower heating resistor 221 and an upper heating resistor 222 arranged above the lower heating resistor 221 and an upper heating resistor 222 arranged above the middle heating resistor 222. It consists of 223.

ここでは、下側発熱抵抗体221は、端部A1,B1,C1,D1にそれぞれ直接的に接続される4つの発熱抵抗要素群221A,221B,221C,221Dから構成されている。 Here, the lower heat-generating resistor 221 is composed of four heat-generating resistance element groups 221A, 221B, 221C, and 221D that are directly connected to the ends A1, B1, C1, and D1, respectively.

発熱抵抗要素群221Aは、図6Aに示すように中心近傍に位置する一方の端部A1から直線状に直線状発熱抵抗要素221A1が周縁側に向って延びる方向を0時の方向として、0時から3時の扇状領域の周縁側部に存在している。発熱抵抗要素群221Aは、1つの直線状発熱抵抗要素221A1、3つの円弧状発熱抵抗要素221A2a〜221A2c、及び2つの直線状発熱抵抗要素221A3a,221A3bが直列に接続されることにより構成されている。 As shown in FIG. 6A, the heat generation resistance element group 221A has a linear heat generation resistance element 221A1 extending linearly from one end A1 located near the center toward the peripheral edge side at 0 o'clock. It exists on the peripheral side of the fan-shaped region at 3 o'clock. The heat generation resistance element group 221A is configured by connecting one linear heat generation resistance element 221A1, three arcuate heat generation resistance elements 221A2a to 221A2c, and two linear heat generation resistance elements 221A3a, 221A3b in series. ..

具体的には、直線状発熱抵抗要素221A1は、端部A1から周縁側に向って0時の方向に長い直線状に延在している。直線状発熱抵抗要素221A1の途中部Pに、この途中部Pから時計回りに0時から3時方向に円弧状に延在する円弧状発熱抵抗要素221A2aの0時側の端部が接続されている。この円弧状発熱抵抗要素221A2cの3時側の端部は、この端部から周縁側に向って3時の方向に短い直線状に延在する直線状発熱抵抗要素221A3bの中央部側の端部が接続されている。そして、短い直線状発熱抵抗要素221A3bの周縁側の端部は、この端部から反時計回りに3時から0時方向に円弧状に延在する円弧状発熱抵抗要素221A2bの3時側の端部に接続されている。 Specifically, the linear heat generation resistance element 221A1 extends in a long linear shape from the end portion A1 toward the peripheral edge side in the 0 o'clock direction. An end portion on the 0 o'clock side of the arcuate heat generation resistance element 221A2a extending clockwise from 0 o'clock to 3 o'clock in an arc shape is connected to the intermediate portion P of the linear heat generation resistance element 221A1. There is. The end portion of the arc-shaped heat generation resistance element 221A2c on the 3 o'clock side is the end portion on the central portion side of the linear heat generation resistance element 221A3b extending in a short linear direction from this end portion toward the peripheral edge side in the 3 o'clock direction. Is connected. The peripheral end of the short linear heat generation resistance element 221A3b extends counterclockwise from this end in an arc shape from 3 o'clock to 0 o'clock, and the end on the 3 o'clock side of the arcuate heat generation resistance element 221A2b. It is connected to the part.

この円弧状発熱抵抗要素221A2bの0時側の端部は、この端部から周縁側に向って0時の方向に短い直線状に延在する直線状発熱抵抗要素221A3aの中央部側の端部が接続されている。そして、直線状発熱抵抗要素221A3aの周縁側の端部は、この端部から時計回りに0時から3時方向に円弧状に延在する円弧状発熱抵抗要素221A2aの0時側の端部に接続されている。この円弧状発熱抵抗要素221A2aの3時側の端部は、発熱抵抗要素群221Dの直線状発熱抵抗要素221D1の周縁側の端部に接続されている。 The end portion of the arc-shaped heat generation resistance element 221A2b on the 0 o'clock side is the end portion on the central portion side of the linear heat generation resistance element 221A3a extending in a short straight line from this end portion toward the peripheral edge side in the direction of 0 o'clock. Is connected. The peripheral end of the linear heat generation resistance element 221A3a extends clockwise from this end in an arc shape from 0 o'clock to 3 o'clock to the end of the arcuate heat generation resistance element 221A2a on the 0 o'clock side. It is connected. The end portion of the arc-shaped heat generation resistance element 221A2a on the 3 o'clock side is connected to the peripheral end portion of the linear heat generation resistance element 221D1 of the heat generation resistance element group 221D.

発熱抵抗要素群221Bは、9時から12時の扇状領域の周縁側部に存在している。発熱抵抗要素群221Bは、1つの直線状発熱抵抗要素221B1、3つの円弧状発熱抵抗要素221B2a〜221B2c、及び2つの直線状発熱抵抗要素221B3a,221B3bが直列に接続されることにより構成されている。 The heat generation resistance element group 221B exists on the peripheral side of the fan-shaped region from 9:00 to 12:00. The heat generation resistance element group 221B is configured by connecting one linear heat generation resistance element 221B1, three arcuate heat generation resistance elements 221B2a to 221B2c, and two linear heat generation resistance elements 221B3a and 221B3b in series. ..

発熱抵抗要素群221Cは、6時から9時の扇状領域の周縁側部に存在している。発熱抵抗要素群221Cは、1つの直線状発熱抵抗要素221C1、3つの円弧状発熱抵抗要素221C2a〜221C2c、及び2つの直線状発熱抵抗要素221C3a,221C3bが直列に接続されることにより構成されている。 The heat generation resistance element group 221C exists on the peripheral side of the fan-shaped region from 6 o'clock to 9 o'clock. The heat generation resistance element group 221C is configured by connecting one linear heat generation resistance element 221C1, three arcuate heat generation resistance elements 221C2a to 221C2c, and two linear heat generation resistance elements 221C3a and 221C3b in series. ..

発熱抵抗要素群221Dは、3時から6時の扇状領域の周縁側部に存在している。発熱抵抗要素群221Dは、1つの直線状発熱抵抗要素221D1、3つの円弧状発熱抵抗要素221D2a〜221D2c、及び2つの直線状発熱抵抗要素221D3a,221D3bが直列に接続されることにより構成されている。 The heat generation resistance element group 221D exists on the peripheral side of the fan-shaped region from 3 o'clock to 6 o'clock. The heat generation resistance element group 221D is configured by connecting one linear heat generation resistance element 221D1, three arcuate heat generation resistance elements 221D2a to 221D2c, and two linear heat generation resistance elements 221D3a and 221D3b in series. ..

発熱抵抗要素群221B〜221Dの具体的な構成は、発熱抵抗要素群221Aと同様であるので、その説明は省略する。 Since the specific configuration of the heat generation resistance element groups 221B to 221D is the same as that of the heat generation resistance element group 221A, the description thereof will be omitted.

中側発熱抵抗体222は、端部A1,C1の直上に位置し、端部A1,C1とそれぞれ直接的に接続されている端部A2,C2を両端部として有する1つの発熱抵抗要素群222から構成されている。 The middle heat-generating resistor 222 is one heat-generating resistance element group 222 that is located directly above the ends A1 and C1 and has ends A2 and C2 that are directly connected to the ends A1 and C1 as both ends. It is composed of.

発熱抵抗要素群222は、図7Aに示すように、円環状領域内に存在している。発熱抵抗要素群222は、3つの直線状発熱抵抗要素222A1a〜222A1c、2つの半円弧状発熱抵抗要素222A2b、222A2cからなる第1発熱抵抗要素群222Aと、3つの直線状発熱抵抗要素222B1a〜222B1c、2つの半円弧状発熱抵抗要素222B2b、222B2cからなる第2発熱抵抗要素群222Bと、1つの円環状発熱抵抗要素222Cとが接続されることにより構成されている。 The heat generation resistance element group 222 exists in the annular region as shown in FIG. 7A. The heat generation resistance element group 222 includes a first heat generation resistance element group 222A composed of three linear heat generation resistance elements 222A1a to 222A1c, two semi-arc-shaped heat generation resistance elements 222A2b and 222A2c, and three linear heat generation resistance elements 222B1a to 222B1c. The second heat generation resistance element group 222B composed of two semi-arc-shaped heat generation resistance elements 222B2b and 222B2c and one annular heat generation resistance element 222C are connected to each other.

第1発熱抵抗要素群222Aは、中央部近傍に位置する一方の端部A2から直線状に直線状発熱抵抗要素222A1cが周縁側に向って伸びる方向を0時の方向として、左半分の半円扇状領域の周縁側部に存在している。 The first heat generation resistance element group 222A is a semicircle on the left half, with the direction in which the linear heat generation resistance element 222A1c extends linearly from one end A2 located near the central portion toward the peripheral edge side as the 0 o'clock direction. It exists on the peripheral side of the fan-shaped region.

具体的には、直線状発熱抵抗要素222A1cは、端部A2から周縁側に向って0時の方向に長い直線状に延在している。直線状発熱抵抗要素222A1cの周縁側の端部は、この端部から反時計回りに0時から6時方向に半円弧状に延在する半円弧状発熱抵抗要素222A2cの0時側の端部が接続されている。この半円弧状発熱抵抗要素222A2cの6時側の端部は、この端部から周縁側に向って6時の方向に短い直線状に延在する直線状発熱抵抗要素222A1bの中央部側の端部が接続されている。そして、この直線状発熱抵抗要素222A1bの周縁側の端部は、この端部から時計回りに6時から12時方向に半円弧状に延在する半円弧状発熱抵抗要素222A2bの6時側の端部に接続されている。この半円弧状発熱抵抗要素222A2bの12時側の端部は、この端部から周縁側に向って12時の方向に短い直線状に延在する直線状発熱抵抗要素222A1aの中央部側の端部が接続されている。そして、この直線状発熱抵抗要素222A1aは、この端部から周縁側に向って0時方向に短い直線状に延在し、周縁側の端部が、円環状発熱抵抗要素222Cの0時方向の途中部に接続されている。 Specifically, the linear heat generation resistance element 222A1c extends in a long linear shape from the end portion A2 toward the peripheral edge side in the 0 o'clock direction. The peripheral end of the linear heat generation resistance element 222A1c extends counterclockwise from this end in a semicircular shape from 0 o'clock to 6 o'clock, and the end of the semicircular heat generation resistance element 222A2c on the 0 o'clock side. Is connected. The end of the semicircular heat-generating resistance element 222A2c on the 6 o'clock side is the end of the linear heat-generating resistance element 222A1b on the central portion side extending in a short straight line from this end toward the peripheral edge in the direction of 6 o'clock. The parts are connected. The peripheral end of the linear heat generation resistance element 222A1b extends clockwise from this end in a semicircular shape from 6 o'clock to 12 o'clock on the 6 o'clock side of the semicircular heat generation resistance element 222A2b. It is connected to the end. The 12 o'clock side end of the semicircular heat generation resistance element 222A2b is a central end of the linear heat generation resistance element 222A1a extending in a short straight line from this end toward the peripheral edge in the 12 o'clock direction. The parts are connected. The linear heat generation resistance element 222A1a extends from this end portion toward the peripheral edge side in a short linear shape in the 0 o'clock direction, and the peripheral edge side end portion is the annular heat generation resistance element 222C in the 0 o'clock direction. It is connected to the middle part.

第2発熱抵抗要素群222Bの具体的な構成は、第1発熱抵抗要素群222Aと同様であるので、その説明は省略する。 Since the specific configuration of the second heat generation resistance element group 222B is the same as that of the first heat generation resistance element group 222A, the description thereof will be omitted.

なお、中側発熱抵抗体222は、その領域の外縁を図6に2点鎖線で示すように、下側発熱抵抗体221を構成する円弧状発熱抵抗要素の内側に位置することが好ましい。 The middle heat-generating resistor 222 is preferably located inside the arc-shaped heat-generating resistance element constituting the lower heat-generating resistor 221 as the outer edge of the region is shown by a two-dot chain line in FIG.

下側発熱抵抗体223は、端部B1,D1の直上に位置し、端部B1,D1と直接的にそれぞれ接続されている端部B2,D2を両端部として有する1つの発熱抵抗要素群223から構成されている。 The lower heat-generating resistor 223 is located directly above the ends B1 and D1, and has one heat-generating resistance element group 223 having ends B2 and D2 directly connected to the ends B1 and D1 as both ends. It is composed of.

発熱抵抗要素群223は、図7Bに示すように、円環状領域内に存在している。発熱抵抗要素群223は、2つの直線状発熱抵抗要素223A1a,223A1bと、1つの円環状発熱抵抗要素223A2とが接続されることにより構成されている。 The heat generation resistance element group 223 exists in the annular region as shown in FIG. 7B. The heat generation resistance element group 223 is configured by connecting two linear heat generation resistance elements 223A1a and 223A1b and one annular heat generation resistance element 223A2.

具体的には、発熱抵抗要素群223は、中心近傍に位置する一方の端部B2から直線状に直線状発熱抵抗要素223A1aが周縁側に向って延びる方向を9時の方向として、直線状発熱抵抗要素223A1aの周縁側の端部に円環状発熱抵抗要素222A2の9時側の途中部が接続されている。この円環状発熱抵抗要素223A2の3時側の途中部は、この部分から9時方向に短い直線状に延在する直線状発熱抵抗要素223A1bの周縁側の端部が接続されている。そして、この直線状発熱抵抗要素223A1bは中央部側に向って、端部D2まで延在している。 Specifically, the heat generation resistance element group 223 linearly generates heat with the direction in which the linear heat generation resistance element 223A1a extends linearly from one end B2 located near the center toward the peripheral edge side at 9 o'clock. An annular heat generating resistance element 222A2 at 9 o'clock is connected to an end portion on the peripheral edge side of the resistance element 223A1a. An intermediate portion of the annular heat generation resistance element 223A2 on the 3 o'clock side is connected to an end portion on the peripheral edge side of the linear heat generation resistance element 223A1b extending in a short linear shape in the 9 o'clock direction from this portion. Then, the linear heat generation resistance element 223A1b extends toward the central portion side to the end portion D2.

なお、上側発熱抵抗体223は、その領域の外縁を図7Aに2点鎖線で示すように、中側発熱抵抗体222を構成する円弧状発熱抵抗要素の内側に位置することが好ましい。 The upper heat-generating resistor 223 is preferably located inside the arc-shaped heat-generating resistance element constituting the middle-side heat-generating resistor 222, as the outer edge of the region is shown by a two-dot chain line in FIG. 7A.

このように構成された発熱抵抗体220の等価回路図は、図8のように模式的に示される。図8から分かるように、発熱抵抗体220は6ゾーンの発熱抵抗要素群221A,221B,221C,221D,222,223からなる結線構造体となっている。4つの発熱抵抗要素群221A,221B,221Cおよび221Dのうち、例えば、発熱抵抗要素群221Aが「第1発熱抵抗要素群」に該当し、発熱抵抗要素群221Bが「第2発熱抵抗要素群」に該当し、発熱抵抗要素群221Cが「第3発熱抵抗要素群」に該当し、発熱抵抗要素群221Dが「第4発熱抵抗要素群」に該当する。また、発熱抵抗要素群222が「第5発熱抵抗要素群」に該当し、発熱抵抗要素群223が「第6発熱抵抗要素群」に該当する。 The equivalent circuit diagram of the heat generating resistor 220 configured in this way is schematically shown as shown in FIG. As can be seen from FIG. 8, the heat generation resistor 220 is a connection structure composed of heat generation resistance element groups 221A, 221B, 221C, 221D, 222, 223 in 6 zones. Of the four heat generation resistance element groups 221A, 221B, 221C and 221D, for example, the heat generation resistance element group 221A corresponds to the "first heat generation resistance element group", and the heat generation resistance element group 221B is the "second heat generation resistance element group". The heat generation resistance element group 221C corresponds to the "third heat generation resistance element group", and the heat generation resistance element group 221D corresponds to the "fourth heat generation resistance element group". Further, the heat generation resistance element group 222 corresponds to the "fifth heat generation resistance element group", and the heat generation resistance element group 223 corresponds to the "sixth heat generation resistance element group".

そして、例えば、端部A1,A2に直接的に接続された給電端子40、端部B1,B2に直接的に接続された給電端子40及び端部D1,D2に直接的に接続された給電端子40の合計3つの給電端子40に対して、交流3相電源の給電端子を前記導線及び前記給電部材を介して接続する。これにより、三相電力調整器(三相サイリスタ)などの電力調整手段を用いることによって、各発熱抵抗要素221A,221B,221C,221D,222,223に流れる電流を、別個となるように制御することが可能となる。 Then, for example, the power supply terminal 40 directly connected to the ends A1 and A2, the power supply terminal 40 directly connected to the ends B1 and B2, and the power supply terminal directly connected to the ends D1 and D2. The power supply terminals of the AC three-phase power supply are connected to the total of three power supply terminals 40 of 40 via the conductor and the power supply member. Thereby, by using a power adjusting means such as a three-phase power regulator (three-phase thyristor), the currents flowing through the heat generating resistance elements 221A, 221B, 221C, 221D, 222, 223 are controlled to be separate. It becomes possible.

これにより、6ゾーンの発熱抵抗要素群221A,221B,221C,221D,222,223に対して給電端子40の数が3つと少なく、シャフト30の内径の小径化を図ることが可能となる。 As a result, the number of power supply terminals 40 is as small as three with respect to the heat generation resistance element groups 221A, 221B, 221C, 221D, 222, 223 in the six zones, and the inner diameter of the shaft 30 can be reduced.

なお、図8から理解されように、例えば、発熱抵抗要素群221A,221B,222は端部A1(=A2)の1点で結合されていることが好ましい。しかし、図6から理解されるように、発熱抵抗要素群221A,221Bは直線状発熱抵抗要素221A1の途中部Pで接続されており、直線状発熱抵抗要素221A1の一部を共有している。そのため、端部A1から途中部Pまでの部分の抵抗値はできる限り小さいほうが好ましい。端部B1から途中部Qまで、端部C1から途中部Rまで、端部D1から途中部Sまでの各部分も同様である。 As can be understood from FIG. 8, for example, the heat generation resistance element groups 221A, 221B, and 222 are preferably connected at one point of the end portion A1 (= A2). However, as can be understood from FIG. 6, the heat generation resistance element groups 221A and 221B are connected by an intermediate portion P of the linear heat generation resistance element 221A1 and share a part of the linear heat generation resistance element 221A1. Therefore, it is preferable that the resistance value of the portion from the end portion A1 to the intermediate portion P is as small as possible. The same applies to each portion from the end portion B1 to the intermediate portion Q, from the end portion C1 to the intermediate portion R, and from the end portion D1 to the intermediate portion S.

以上、本発明の実施形態に関して説明したが、これに限定されない。例えば、各発熱抵抗体を構成する発熱抵抗要素群の構成、形状、個数などは上述したものに限定されず、さらに、各発熱抵抗要素群を構成する発熱抵抗要素の構成、形状、個数、接続位置などは上述したものに限定されない。 The embodiments of the present invention have been described above, but the present invention is not limited thereto. For example, the configuration, shape, number, etc. of the heat generation resistance element groups constituting each heat generation resistor are not limited to those described above, and further, the configuration, shape, number, and connection of the heat generation resistance elements constituting each heat generation resistance element group are not limited to those described above. The position and the like are not limited to those described above.

例えば、図3に示した発熱抵抗体20の模式的等価回路図を3個接続したような、図11に示した模式等価回路図となるように発熱抵抗体の発熱抵抗要素群を構成してもよい。 For example, the heat generation resistance element group of the heat generation resistor is configured so as to have the schematic equivalent circuit diagram shown in FIG. 11 such that three schematic equivalent circuit diagrams of the heat generation resistor 20 shown in FIG. 3 are connected. May be good.

以下、本発明の実施例を具体的に挙げ、本発明を説明する。 Hereinafter, the present invention will be described with reference to specific examples of the present invention.

(実施例)
実施例では、金属からなる発熱抵抗体20を埋設した酸化イットリウムを添加した窒化アルミニウムからなる基体10を用いてセラミックスヒータ100を得た。
(Example)
In the example, a ceramic heater 100 was obtained using a substrate 10 made of aluminum nitride added with yttrium oxide in which a heat generating resistor 20 made of metal was embedded.

[セラミックスヒータの作製]
窒化アルミニウム粉末97質量%、酸化イットリウム粉末3質量%からなる粉末混合物を得て、これを型に充填して一軸加圧処理を施した。これによって、直径340mm、厚さ10mmの第一層を形成した。
[Manufacturing of ceramic heater]
A powder mixture composed of 97% by mass of aluminum nitride powder and 3% by mass of yttrium oxide powder was obtained, filled in a mold, and subjected to uniaxial pressure treatment. As a result, a first layer having a diameter of 340 mm and a thickness of 10 mm was formed.

次に、この第一層の上に、図4に示す形状の電極20となる直径290mmのモリブデン製のメッシュ(線径0.1mm、目開き50メッシュ)を載置した。続いて、先に形成した粉末混合物を発熱抵抗体20の上に所定の厚さに充填し、第二層を形成した。そして、10MPaの圧力で、焼成温度1800℃、焼成時間2時間でホットプレス焼成を行い、直径340mm、厚さ20mmのセラミックス焼結体を得た。 Next, a molybdenum mesh (wire diameter 0.1 mm, opening 50 mesh) having a diameter of 290 mm, which serves as the electrode 20 having the shape shown in FIG. 4, was placed on the first layer. Subsequently, the powder mixture formed earlier was filled on the heat generating resistor 20 to a predetermined thickness to form a second layer. Then, hot press firing was performed at a pressure of 10 MPa at a firing temperature of 1800 ° C. and a firing time of 2 hours to obtain a ceramic sintered body having a diameter of 340 mm and a thickness of 20 mm.

その後全面に研削、研磨加工を行い、表面粗さをRa0.4μm、平面度0.9μmとした。 After that, the entire surface was ground and polished to have a surface roughness of Ra 0.4 μm and a flatness of 0.9 μm.

そして、この基体10の下面に、常温の熱伝導率が80kW/(m・k)の窒化アルミニウムからなり、長さ200mmの円筒形状のシャフト30の上端面を拡散接合法によって接合した。シャフト30の円筒部31の寸法は、内径34.14mm、外径40.14mmであった。なお、シャフト30の拡径部32の外径は、円筒部31の外径よりも20mm大きくした。 Then, the upper end surface of a cylindrical shaft 30 having a thermal conductivity of 80 kW / (m · k) at room temperature and having a length of 200 mm was bonded to the lower surface of the substrate 10 by a diffusion bonding method. The dimensions of the cylindrical portion 31 of the shaft 30 were an inner diameter of 34.14 mm and an outer diameter of 40.14 mm. The outer diameter of the enlarged diameter portion 32 of the shaft 30 was made 20 mm larger than the outer diameter of the cylindrical portion 31.

端子40の数は4つとし、図9Aのように配置した。端子40は基体10の裏面より発熱抵抗体20まで直径8mmの穴加工を行い、露出した発熱抵抗体20に直径8mmの円柱状ニッケル製給電端子を銀ロウ付けして形成した。 The number of terminals 40 was four, and they were arranged as shown in FIG. 9A. The terminal 40 was formed by drilling a hole having a diameter of 8 mm from the back surface of the substrate 10 to the heat generating resistor 20, and silver brazing a cylindrical nickel feeding terminal having a diameter of 8 mm to the exposed heat generating resistor 20.

このようにしてセラミックスヒータ100を得た。 In this way, the ceramic heater 100 was obtained.

[評価結果]
セラミックスヒータ100のウエハ載置面に黒色化したダミーウエハを載せ、端子40に電力を供給してセラミックスヒータ100を昇温し、ダミーウエハ表面の温度をIRカメラで測定した。ダミーウエハの表面温度が概ね500℃に到達した時点から15分後のダミーウエハの温度分布を測定した。
[Evaluation results]
A blackened dummy wafer was placed on the wafer mounting surface of the ceramic heater 100, electric power was supplied to the terminal 40 to raise the temperature of the ceramic heater 100, and the temperature of the dummy wafer surface was measured with an IR camera. The temperature distribution of the dummy wafer was measured 15 minutes after the surface temperature of the dummy wafer reached approximately 500 ° C.

なお、このとき、OX間の端子間には図10Aに示した、OY間の端子間には図10Bに示した、OZ間の端子間には図10Cに示した波形の電圧を供給した。電圧は20m秒毎に変化し周期80m秒の波形とした。波高は温度分布が均一になるように適宜調節した。なお、電源はこれに限らず公知の位相制御方式やサイクル制御(ゼロクロス制御)方式 などが適用できる。また交流でも直流でも適用可能である。 At this time, the voltage of the waveform shown in FIG. 10A was supplied between the terminals between OXs, shown in FIG. 10B between the terminals between OYs, and the waveform shown in FIG. 10C was supplied between the terminals between OZs. The voltage was changed every 20 ms to obtain a waveform with a period of 80 ms. The wave height was appropriately adjusted so that the temperature distribution was uniform. The power supply is not limited to this, and a known phase control method or cycle control (zero cross control) method can be applied. It can also be applied to both alternating current and direct current.

中心温度として中心領域(直径20mm内の領域)の平均温度と、周辺温度として3時の方向で半径120mmの位置を中心とした直径20mm内の領域の平均温度とを比較した。 The average temperature of the central region (region within 20 mm in diameter) as the central temperature was compared with the average temperature of the region within 20 mm in diameter centered on the position with a radius of 120 mm in the direction of 3 o'clock as the ambient temperature.

結果は、中心温度502℃、周辺温度505℃であった。これより、セラミックスヒータ100の均熱性は良好であることが分かった。 The result was a central temperature of 502 ° C and an ambient temperature of 505 ° C. From this, it was found that the soaking property of the ceramic heater 100 was good.

(比較例)
端子40を、図9Bに示すように7個配置した。これは、6ゾーンの電極に対応した6個の端子40と、コモン(共通)電極に対応した1個の端子40の計7個の端子40が必要なためである。
(Comparison example)
Seven terminals 40 were arranged as shown in FIG. 9B. This is because six terminals 40 corresponding to the electrodes of the six zones and one terminal 40 corresponding to the common electrode are required, for a total of seven terminals 40.

端子40の数が多いため、シャフト30の形状は、円筒部31の内径が48.14mm、外径が54.14mmとなった。 Due to the large number of terminals 40, the shape of the shaft 30 is that the inner diameter of the cylindrical portion 31 is 48.14 mm and the outer diameter is 54.14 mm.

[評価結果]
温度評価方法は実施例と同一とした。結果は、中心温度498℃、周辺温度505℃であり、実施例と比較して差が大きかった。
[Evaluation results]
The temperature evaluation method was the same as in the examples. The results were a central temperature of 498 ° C. and an ambient temperature of 505 ° C., and the difference was large as compared with the examples.

実施例と比較例を比較すると、端子数が多い場合はシャフトの断面積が増加することによる熱逃げが大きくヒーター表面の温度分布が悪化すると考えられる。 Comparing the examples and the comparative examples, it is considered that when the number of terminals is large, the heat escape due to the increase in the cross-sectional area of the shaft is large and the temperature distribution on the heater surface is deteriorated.

そして、本発明のようにして端子数を削減すれば多ゾーンであっても、シャフト30を備えていても、熱逃げの少ないセラミックスヒータ100を得られることが確かめられた。 Then, it was confirmed that if the number of terminals is reduced as in the present invention, the ceramic heater 100 with less heat escape can be obtained even if the number of zones is increased or the shaft 30 is provided.

本発明によれば、発熱抵抗体20のゾーン数の増加に比して、給電端子40の個数の増加の抑制を図ることができ、あわせてシャフト30を小径化することが可能になるためシャフト30からの熱逃げを抑制し、より均温化を図る効果も奏し得る。 According to the present invention, it is possible to suppress an increase in the number of power feeding terminals 40 as compared with an increase in the number of zones of the heat generating resistor 20, and it is possible to reduce the diameter of the shaft 30 at the same time. It can also have the effect of suppressing heat escape from 30 and further leveling the temperature.

10…基体(セラミックス基体)、20、120,220…発熱抵抗体、21…下側発熱抵抗体、22…上側発熱抵抗体、21A,21B,21C,22A,22B,22C…発熱抵抗要素群、30…シャフト(支持部材)、31…円筒部、32…拡径部、40…給電端子、100,200,300…セラミックスヒータ、120A,120B,120C,120D,120E,120F…発熱抵抗要素群、221…下側発熱抵抗体、221A,221B,221C,221D…発熱抵抗要素群、222…中側発熱抵抗体、222A,222B…発熱抵抗要素群、223…上側発熱抵抗体、発熱抵抗要素群、A1,A2,B1,B2,C1,C2,D1,D2…端部、O…中央部(端部)、X,Y,Z…端部。 10 ... Substrate (ceramics substrate), 20, 120, 220 ... Heat generation resistor, 21 ... Lower heat generation resistor, 22 ... Upper heat generation resistor, 21A, 21B, 21C, 22A, 22B, 22C ... Heat generation resistance element group, 30 ... Shaft (support member), 31 ... Cylindrical part, 32 ... Diameter expansion part, 40 ... Power supply terminal, 100, 200, 300 ... Ceramic heater, 120A, 120B, 120C, 120D, 120E, 120F ... Heat generation resistance element group, 221 ... Lower heat-generating resistor, 221A, 221B, 221C, 221D ... Heat-generating resistance element group, 222 ... Middle-side heat-generating resistor, 222A, 222B ... Heat-generating resistance element group, 223 ... Upper heat-generating resistor, heat-generating resistance element group, A1, A2, B1, B2, C1, C2, D1, D2 ... end, O ... center (end), X, Y, Z ... end.

Claims (7)

セラミックスからなり、上面に被加熱物が載置されるセラミックス基体と、前記セラミックス基体に内蔵された発熱抵抗体と、セラミックスからなり、前記セラミックス基体の下面の中心部に接続された筒状の支持部材とを備えたセラミックスヒータであって、
前記発熱抵抗体は、それぞれが1又は1以上の発熱抵抗要素からなる、3つ以上の発熱抵抗要素群からなり、
前記3つ以上の発熱抵抗要素群のうち少なくとも3つの発熱抵抗要素群は、それぞれ、両端部に、前記少なくとも3つの発熱抵抗要素群のうち他の1つの前記発熱抵抗要素群の端部が直接的に接続され、前記両端部からなる合計3つの端部にそれぞれ電力を供給する給電端子が少なくとも接続されていることを特徴とするセラミックスヒータ。
A cylindrical support made of ceramics, a ceramic substrate on which an object to be heated is placed, a heat generating resistor built in the ceramic substrate, and ceramics, which is connected to the center of the lower surface of the ceramic substrate. A ceramic heater equipped with a member
The heat generation resistor is composed of three or more heat generation resistance element groups, each of which is composed of one or more heat generation resistance elements.
At least three of the three or more heat generation resistance element groups have direct ends at both ends of the other one of the at least three heat generation resistance element groups. A ceramic heater, characterized in that at least power feeding terminals for supplying electric power are connected to a total of three ends including both ends.
前記少なくとも3つの発熱抵抗要素群は3つの発熱抵抗要素群であり、前記3つの発熱抵抗要素群は、それぞれ、前記両端部に、前記3つの発熱抵抗要素群のうち他の1つの前記発熱抵抗要素群の端部が直接的に接続され、前記両端部からなる合計3つの端部は、それぞれ、前記3つの発熱抵抗要素群とは異なる前記発熱抵抗要素群を介して接地されていることを特徴とする請求項1に記載のセラミックスヒータ。 The at least three heat generation resistance element groups are three heat generation resistance element groups, and each of the three heat generation resistance element groups has the heat generation resistance of one of the three heat generation resistance element groups at both ends thereof. The ends of the element group are directly connected, and the total of three ends including the both ends are grounded via the heat generation resistance element group different from the three heat generation resistance element groups. The ceramics heater according to claim 1, wherein the ceramic heater is characterized. 前記少なくとも3つの発熱抵抗要素群は4つの発熱抵抗要素群であり、前記4つの発熱抵抗要素群は、それぞれ、前記両端部に、前記4つの発熱抵抗要素群のうち他の1つの前記発熱抵抗要素群の端部が直接的に接続され、前記両端部は、それぞれ、当該両端部と接続されている前記4つの発熱抵抗要素群とは異なる他の1つの発熱抵抗要素群の端部と接続されていることを特徴とする請求項1に記載のセラミックスヒータ。 The at least three heat generation resistance element groups are four heat generation resistance element groups, and each of the four heat generation resistance element groups has the heat generation resistance of one of the four heat generation resistance element groups at both ends. The ends of the element group are directly connected, and each of the both ends is connected to the end of another heat resistance element group different from the four heat generation resistance element groups connected to the both ends. The ceramics heater according to claim 1, wherein the ceramic heater is provided. セラミックスからなり、上面に被加熱物が載置されるセラミックス基体と、
前記セラミックス基体に内蔵された発熱抵抗体と、
セラミックスからなり、前記セラミックス基体の下面の中心部に接続された筒状の支持部材と、を備えたセラミックスヒータであって、
前記発熱抵抗体は、
第1発熱抵抗要素群と、第2発熱抵抗要素群と、第3発熱抵抗要素群と、を含む3つ以上の発熱抵抗要素群からなり、
前記3つ以上の発熱抵抗要素群のそれぞれは1以上の発熱抵抗要素からなり、
前記3つ以上の発熱抵抗要素群のそれぞれが一端部および他端部を有し、
前記第1発熱抵抗要素群の一端部が前記第2発熱抵抗要素群の一端部と接続される第1端部と、
前記第2発熱抵抗要素群の他端部が前記第3発熱抵抗要素群の一端部と接続される第2端部と、
前記第3発熱抵抗要素群の他端部が前記第1発熱抵抗要素群の他端部と接続される第3端部と、
前記第1端部に接続され当該第1端部に電力を供給する第1給電端子と、
前記第2端部に接続され当該第2端部に電力を供給する第2給電端子と、
前記第3端部に接続され当該第3端部に電力を供給する第3給電端子と、
を有することを特徴とするセラミックスヒータ。
A ceramic substrate made of ceramics on which an object to be heated is placed on the upper surface,
The heat-generating resistor built in the ceramic substrate and
A ceramic heater made of ceramics and provided with a tubular support member connected to the center of the lower surface of the ceramic substrate.
The heat generating resistor is
It is composed of three or more heat generation resistance element groups including a first heat generation resistance element group, a second heat generation resistance element group, and a third heat generation resistance element group.
Each of the three or more heat generation resistance element groups is composed of one or more heat generation resistance elements.
Each of the three or more heat generation resistance element groups has one end and the other end.
A first end portion in which one end of the first heat generation resistance element group is connected to one end of the second heat generation resistance element group, and
A second end portion in which the other end of the second heat generation resistance element group is connected to one end of the third heat generation resistance element group, and
A third end portion in which the other end portion of the third heat generation resistance element group is connected to the other end portion of the first heat generation resistance element group, and
A first power supply terminal connected to the first end and supplying power to the first end,
A second power supply terminal that is connected to the second end and supplies power to the second end.
A third power supply terminal connected to the third end and supplying power to the third end,
A ceramic heater characterized by having.
前記第1端部、前記第2端部、および前記第3端部からなる3つの端部は、それぞれ、前記第1発熱抵抗要素群、前記第2発熱抵抗要素群、および前記第3発熱抵抗要素群とは異なる前記発熱抵抗要素群を介して接地されていることを特徴とする請求項4に記載のセラミックスヒータ。 The three ends including the first end portion, the second end portion, and the third end portion are the first heat generation resistance element group, the second heat generation resistance element group, and the third heat generation resistance, respectively. The ceramics heater according to claim 4, wherein the heat generating resistance element group different from the element group is grounded. セラミックスからなり、上面に被加熱物が載置されるセラミックス基体と、
前記セラミックス基体に内蔵された発熱抵抗体と、
セラミックスからなり、前記セラミックス基体の下面の中心部に接続された筒状の支持部材とを備えたセラミックスヒータであって、
前記発熱抵抗体は、
第1発熱抵抗要素群と第2発熱抵抗要素群と第3発熱抵抗要素群と第4発熱抵抗要素群を含む4つ以上の発熱抵抗要素群からなり、
前記4つ以上の発熱抵抗要素群のそれぞれは1以上の発熱抵抗要素からなり、
前記4つ以上の発熱抵抗要素群のそれぞれが一端部および他端部を有し、
前記第1発熱抵抗要素群の一端部が前記第2抵抗要素群の一端部と接続される第1端部と、
前記第2発熱抵抗要素群の他端部が前記第3発熱抵抗要素群の一端部と接続される第2端部と、
前記第3発熱抵抗要素群の他端部が前記第4発熱抵抗要素群の一端部と接続される第3端部と、
前記第4発熱抵抗要素群の他端部が前記第1抵抗要素群の他端部に接続される第4端部と、
前記第1端部に接続され当該第1端部に電力を供給する第1給電端子と、
前記第2端部に接続され当該第2端部に電力を供給する第2給電端子と、
前記第3端部に接続され当該第3端部に電力を供給する第3給電端子と、
前記第4端部に接続され当該第4端部に電力を供給する第4給電端子と、
を有することを特徴とするセラミックスヒータ。
A ceramic substrate made of ceramics on which an object to be heated is placed on the upper surface,
The heat-generating resistor built in the ceramic substrate and
A ceramic heater made of ceramics and provided with a tubular support member connected to the center of the lower surface of the ceramic substrate.
The heat generating resistor is
It consists of four or more heat generation resistance element groups including the first heat generation resistance element group, the second heat generation resistance element group, the third heat generation resistance element group, and the fourth heat generation resistance element group.
Each of the four or more heat generation resistance element groups is composed of one or more heat generation resistance elements.
Each of the four or more heat generation resistance element groups has one end and the other end.
A first end portion in which one end portion of the first heat generation resistance element group is connected to one end portion of the second resistance element group, and
A second end portion in which the other end of the second heat generation resistance element group is connected to one end of the third heat generation resistance element group, and
A third end portion in which the other end of the third heat generation resistance element group is connected to one end of the fourth heat generation resistance element group, and
A fourth end portion in which the other end portion of the fourth heat generation resistance element group is connected to the other end portion of the first resistance element group, and
A first power supply terminal connected to the first end and supplying power to the first end,
A second power supply terminal that is connected to the second end and supplies power to the second end.
A third power supply terminal connected to the third end and supplying power to the third end,
A fourth power supply terminal that is connected to the fourth end and supplies power to the fourth end.
A ceramic heater characterized by having.
前記第1端部と前記第3端部との間は、前記第1発熱抵抗要素群、前記第2発熱抵抗要素群、前記第3発熱抵抗要素群および前記第4発熱抵抗要素群とは異なる前記発熱抵抗要素群である第5発熱抵抗要素群を介して接続され、
前記第2端部と前記第4端部との間は、前記第1発熱抵抗要素群、前記第2発熱抵抗要素群、前記第3発熱抵抗要素群、前記第4発熱抵抗要素群および前記第5発熱抵抗要素群とは異なる前記発熱抵抗要素群である第6の発熱抵抗要素群を介して接続されていることを特徴とする請求項6に記載のセラミックスヒータ。
The area between the first end and the third end is different from the first heat generation resistance element group, the second heat generation resistance element group, the third heat generation resistance element group, and the fourth heat generation resistance element group. It is connected via the fifth heat generation resistance element group, which is the heat generation resistance element group, and is connected.
Between the second end and the fourth end are the first heat generation resistance element group, the second heat generation resistance element group, the third heat generation resistance element group, the fourth heat generation resistance element group, and the second. 5. The ceramic heater according to claim 6, wherein the ceramic heater is connected via a sixth heat generation resistance element group, which is a heat generation resistance element group different from the heat generation resistance element group.
JP2017170427A 2016-09-30 2017-09-05 Ceramic heater Active JP6877301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/718,953 US10679873B2 (en) 2016-09-30 2017-09-28 Ceramic heater

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016195050 2016-09-30
JP2016195050 2016-09-30
JP2017124211 2017-06-26
JP2017124211 2017-06-26

Publications (2)

Publication Number Publication Date
JP2019003924A JP2019003924A (en) 2019-01-10
JP6877301B2 true JP6877301B2 (en) 2021-05-26

Family

ID=65007870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170427A Active JP6877301B2 (en) 2016-09-30 2017-09-05 Ceramic heater

Country Status (1)

Country Link
JP (1) JP6877301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3864575A4 (en) 2018-10-09 2021-12-01 Magic Leap, Inc. Systems and methods for virtual and augmented reality
KR20210139368A (en) * 2019-07-01 2021-11-22 엔지케이 인슐레이터 엘티디 ceramic heater with shaft

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951488U (en) * 1982-09-28 1984-04-04 株式会社村田製作所 Positive temperature coefficient thermistor heating element
JP4761723B2 (en) * 2004-04-12 2011-08-31 日本碍子株式会社 Substrate heating device
JP2014029784A (en) * 2012-07-31 2014-02-13 Sumitomo Electric Ind Ltd Heater including connection structure consisting of three zone resistors

Also Published As

Publication number Publication date
JP2019003924A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US11004715B2 (en) Substrate supporting device
JP5018244B2 (en) Electrostatic chuck
JP5117146B2 (en) Heating device
JP3381909B2 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
JPWO2002084717A1 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
JP2003017224A (en) Resistive heating element circuit pattern and substrate processing equipment using the same
JP6796436B2 (en) Ceramic heater and its manufacturing method.
JP6877301B2 (en) Ceramic heater
KR20180117546A (en) Ceramic Member
US10679873B2 (en) Ceramic heater
JP2003077783A (en) Ceramic heater for semiconductor manufacturing/ inspecting device and manufacturing method therefor
JP2022543587A (en) Electrostatic chuck heater and manufacturing method thereof
JP2018005998A (en) Ceramic heater
JP4122723B2 (en) Object holder
JP6903525B2 (en) Ceramic member
JP6973995B2 (en) Ceramic heater
JP5562086B2 (en) Heating member and heating apparatus using the same
JP2005026585A (en) Ceramic joined body
JP4975146B2 (en) Wafer heating device
JP2022552776A (en) Ceramic heater and its manufacturing method
JP3752376B2 (en) Terminal structure
JP4069875B2 (en) Wafer holding member
JP2017188262A (en) Ceramic heater
JP6867907B2 (en) Ceramic joints and methods for manufacturing ceramic joints
JP2002334820A (en) Ceramic heater for heating semiconductor wafer or liquid crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210427

R150 Certificate of patent or registration of utility model

Ref document number: 6877301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6877301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250