JP6876527B2 - Tunnel temperature improvement system - Google Patents

Tunnel temperature improvement system Download PDF

Info

Publication number
JP6876527B2
JP6876527B2 JP2017106197A JP2017106197A JP6876527B2 JP 6876527 B2 JP6876527 B2 JP 6876527B2 JP 2017106197 A JP2017106197 A JP 2017106197A JP 2017106197 A JP2017106197 A JP 2017106197A JP 6876527 B2 JP6876527 B2 JP 6876527B2
Authority
JP
Japan
Prior art keywords
refrigerant
tunnel
heat exchanger
heat
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017106197A
Other languages
Japanese (ja)
Other versions
JP2018199987A (en
Inventor
潔 樋渡
潔 樋渡
勝実 柴田
勝実 柴田
茂夫 国分
茂夫 国分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2017106197A priority Critical patent/JP6876527B2/en
Publication of JP2018199987A publication Critical patent/JP2018199987A/en
Application granted granted Critical
Publication of JP6876527B2 publication Critical patent/JP6876527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、トンネル工事の際のトンネル内温度環境を改善するトンネル内温度改善システムに関するものである。 The present invention relates to an in-tunnel temperature improving system for improving the in-tunnel temperature environment during tunnel construction.

山岳トンネル等のトンネル工事においては、ジャンボやホイールローダー、ダンプトラックや吹付機といった様々な重機がトンネル内で作業に当たるが、各重機ともに駆動時に発する熱量が大きく、複数の重機からの熱量が蓄積されることでトンネル作業時のトンネル内温度は非常に高くなり易く、一般に稼働する重機の多い切羽近傍では高い温度環境が一層顕著になる。さらに、切羽近傍では高温環境になり易いといった課題に加えて重機からの排ガスや排ガス中の粉塵、発破時の粉塵や発破時の後ガスといった空気汚染物質の発生および滞留の問題もある。空気汚染物質対策として、送風機からの新鮮な空気の坑内への供給、トンネル内に設置された集塵機による集塵、空気汚染物質の坑外への排気を組み合わせる方法が適用されている。この際、温度環境の改善のみを目的として送風機に連通するダクトの送気口の位置を随時変更すると、集塵機による集塵機能が十分に発揮されずに、今度は排ガスや粉塵が坑外へ良好に排気されずにトンネル内に拡散するといった別の課題が生じ得ることから、トンネル内温度の昇温抑制と空気汚染物質の拡散抑制の双方を満足する坑内環境改善対策は極めて難しいのが現状である。 In tunnel construction such as mountain tunnels, various heavy machines such as jumbo, wheel loader, dump truck and sprayer work in the tunnel, but each heavy machine generates a large amount of heat when driving, and the amount of heat from multiple heavy machines is accumulated. As a result, the temperature inside the tunnel during tunnel work tends to be very high, and the high temperature environment becomes more prominent in the vicinity of the face where there are many heavy machinery in general operation. Further, in addition to the problem that a high temperature environment is likely to occur in the vicinity of the face, there is also a problem of generation and retention of air pollutants such as exhaust gas from heavy machinery, dust in the exhaust gas, dust at the time of blasting and post-gas at the time of blasting. As measures against air pollutants, a method of supplying fresh air from a blower into the mine, collecting dust by a dust collector installed in a tunnel, and exhausting air pollutants to the outside of the mine is applied. At this time, if the position of the air supply port of the duct communicating with the blower is changed at any time only for the purpose of improving the temperature environment, the dust collection function of the dust collector will not be fully exhibited, and this time the exhaust gas and dust will be satisfactorily discharged to the outside of the tunnel. Since another problem such as diffusion without exhaust gas may occur in the tunnel, it is extremely difficult to take measures to improve the underground environment that satisfy both the suppression of the temperature rise in the tunnel and the suppression of the diffusion of air pollutants. ..

ここで、特許文献1には、トンネルの切羽近傍などの所望の場所を冷却することのできるトンネル内の冷却装置が開示されている。具体的には、氷蓄熱槽とファン・コイルユニットを備えた冷却装置であり、氷蓄熱槽を冷水用配管が通過し、冷水用配管はファン・コイルユニットにおける冷却コイルに接続されている。冷却コイルにはファンから風が吹き付けられ、この風が冷風となって山岳トンネル内に供給され、山岳トンネル内が冷房されるようになっている。氷蓄熱槽の氷が溶けた際には、山岳トンネルの外部に設けられた製氷チラーによって氷蓄熱槽に氷が製造される。特許文献1では実施例として、氷蓄熱槽、冷却コイル、ポンプ、およびファンによって冷却ユニットが構成され、冷却ユニットが搬送装置に搭載されている形態が挙げられている。 Here, Patent Document 1 discloses a cooling device in a tunnel capable of cooling a desired place such as the vicinity of the face of the tunnel. Specifically, it is a cooling device provided with an ice heat storage tank and a fan coil unit. A chilled water pipe passes through the ice heat storage tank, and the chilled water pipe is connected to a cooling coil in the fan coil unit. Wind is blown from the fan to the cooling coil, and this wind becomes cold air and is supplied into the mountain tunnel to cool the inside of the mountain tunnel. When the ice in the ice heat storage tank melts, ice is produced in the ice heat storage tank by an ice chiller provided outside the mountain tunnel. In Patent Document 1, as an example, a mode in which a cooling unit is composed of an ice heat storage tank, a cooling coil, a pump, and a fan, and the cooling unit is mounted on a transfer device is mentioned.

特開2005−139733号公報Japanese Unexamined Patent Publication No. 2005-139733

特許文献1に記載の冷却装置によれば、大掛かりな設備を別途設けることなく、トンネルの切羽近傍などの所望の位置を好適に冷却できるとしている。ところで、ここで開示される実施例は既述するように冷却ユニットが搬送装置に搭載されており、トンネル内を搬送装置が移動してトンネル内の温度上昇を抑制するものであるが、施工工程にもよるものの、トンネル内にはジャンボやホイールローダー、ダンプや吹付機といった様々な重機が点在し、トンネル内のいたるところで各重機から熱が発せられることから、これら全ての発熱を特許文献1で開示される冷却ユニット搭載搬送装置で冷却しようとすると、各重機に固有の冷却ユニット搭載搬送装置を設ける必要があり、温度改善対策コストが嵩むことが容易に想像される。 According to the cooling device described in Patent Document 1, it is possible to suitably cool a desired position such as near the face of a tunnel without separately providing large-scale equipment. By the way, in the embodiment disclosed here, as described above, the cooling unit is mounted on the transport device, and the transport device moves in the tunnel to suppress the temperature rise in the tunnel. Although it depends on the situation, various heavy machines such as jumbo, wheel loader, dump and sprayer are scattered in the tunnel, and heat is generated from each heavy machine everywhere in the tunnel. When attempting to cool with the cooling unit-mounted transport device disclosed in the above, it is necessary to provide a cooling unit-mounted transport device unique to each heavy machine, and it is easily imagined that the cost of temperature improvement measures will increase.

本発明は上記する問題に鑑みてなされたものであり、様々な重機がトンネル内に点在している場合でも、効果的にトンネル内の温度改善を図ることのできるトンネル内温度改善システムを提供することを目的としている。 The present invention has been made in view of the above problems, and provides an in-tunnel temperature improvement system capable of effectively improving the in-tunnel temperature even when various heavy machines are scattered in the tunnel. The purpose is to do.

前記目的を達成すべく、本発明によるトンネル内温度改善システムは、発熱源と、該発熱源の周囲に配設された冷媒配管と、該冷媒配管と第一流路を介して流体連通するラジエータと、該冷媒配管と第二流路を介して流体連通する重機対応熱交換器と、を備え、該第一流路に第一切換弁が介在し、該第二流路に第二切換弁が介在し、双方の切換弁の開閉制御にて冷媒配管−ラジエータ間の流体の還流と、冷媒配管−重機対応熱交換器間の流体の還流と、の切換えが実行されるようになっている、トンネル工事で使用される重機と、トンネルの坑口外側にある冷媒供給源と、トンネルの坑口外側にある熱媒常温化槽と、前記冷媒供給源と前記重機対応熱交換器を繋いで冷媒を該冷媒供給源から該重機対応熱交換器に送る冷媒供給路と、前記重機対応熱交換器と前記熱媒常温化槽を直接的もしくは間接的に繋いで熱媒を該重機対応熱交換器から該熱媒常温化槽に送る熱媒排出路と、を備えているものである。 In order to achieve the above object, the in-tunnel temperature improving system according to the present invention includes a heat generation source, a refrigerant pipe arranged around the heat generation source, and a radiator that communicates fluid with the refrigerant pipe via the first flow path. , The refrigerant pipe and a heat exchanger for heavy machinery that communicates fluid through the second flow path are provided, the first switching valve is interposed in the first flow path, and the second switching valve is interposed in the second flow path. However, switching between the recirculation of the fluid between the refrigerant pipe and the radiator and the recirculation of the fluid between the refrigerant pipe and the heat exchanger for heavy machinery is executed by controlling the opening and closing of both switching valves. The heavy machinery used in the construction, the refrigerant supply source outside the wellhead of the tunnel, the heat medium room temperature tank outside the wellhead of the tunnel, and the refrigerant supply source and the heat exchanger for heavy machinery are connected to use the refrigerant as the refrigerant. The heat medium is transferred from the heavy machine compatible heat exchanger by directly or indirectly connecting the refrigerant supply path sent from the supply source to the heavy machine compatible heat exchanger, the heavy machine compatible heat exchanger, and the heat medium room temperature tank. It is equipped with a heat medium discharge path for sending to the room temperature medium temperature tank.

本発明のトンネル内温度改善システムは、トンネル施工をおこなう各重機がその構成要素の一つであり、各重機がいずれも、発熱源の周囲に冷媒配管を備え、さらに通常のラジエータの他に熱交換器(重機対応熱交換器)を備えていて、冷媒配管とラジエータの間の冷媒還流、および、冷媒配管と重機対応熱交換器の間の冷媒還流を切換え自在になっている点に一つの特徴を有するものである。ここで、「重機」としては、ジャンボやホイールローダー、バックホウ、ブレーカー車、ダンプトラック、吹付機、トラックミキサー車、集塵機などが挙げられる。また、重機に内蔵された「発熱源」としては、エンジンやモータ、コンプレッサーなどが挙げられる。また、重機対応熱交換器は、対応する重機の近傍に載置されている形態であってもよいし、対応する重機に熱交換器が直接搭載されている形態であってもよい。ここで、「前記重機対応熱交換器と前記熱媒常温化槽を直接的もしくは間接的に繋いで」とは、重機対応熱交換器と熱媒常温化槽が熱媒排出路にて直接繋がれる形態(直接的)のほか、重機対応熱交換器と熱媒常温化槽の間に別途の熱交換器等が介在し、重機対応熱交換器から熱媒排出路を経て排出された熱媒がこの別途の熱交換器で所望の温度に低下された後、冷媒供給路に再度戻る形態(間接的)を含む意味である。 In the tunnel temperature improvement system of the present invention, each heavy machine that performs tunnel construction is one of its components, and each heavy machine is provided with a refrigerant pipe around the heat generation source, and further heats in addition to a normal radiator. One of the points is that it is equipped with a exchanger (heat exchanger for heavy machinery), and the refrigerant recirculation between the refrigerant pipe and the radiator and the refrigerant recirculation between the refrigerant pipe and the heat exchanger for heavy machinery can be switched freely. It has characteristics. Here, examples of the "heavy machine" include a jumbo, a wheel loader, a backhoe, a breaker truck, a dump truck, a sprayer, a truck mixer truck, a dust collector, and the like. In addition, examples of the "heat source" built into the heavy equipment include an engine, a motor, and a compressor. Further, the heat exchanger for heavy machinery may be mounted in the vicinity of the corresponding heavy machine, or the heat exchanger may be directly mounted on the corresponding heavy machine. Here, "directly or indirectly connecting the heat exchanger for heavy machinery and the heat medium room temperature tank" means that the heat exchanger for heavy machinery and the heat medium room temperature tank are directly connected by the heat medium discharge path. In addition to the form (direct), a separate heat exchanger or the like is interposed between the heat exchanger for heavy machinery and the heat medium room temperature tank, and the heat medium discharged from the heat exchanger for heavy machinery via the heat medium discharge path. Is meant to include a form (indirect) of returning to the refrigerant supply path again after being lowered to a desired temperature by this separate heat exchanger.

これらエンジンやモータ、コンプレッサーなどの発熱源においては、その周囲にウォータージャケット等の冷媒配管が配設されているのが一般的であり、重機がさらに備えるラジエータと冷媒配管の間で冷水等の冷媒が還流することにより発熱源が駆動する際の熱を冷却するのも一般的であるが、必要に応じて発熱源の周囲に冷媒配管を取り付けてもよく、たとえば、冷媒がエアである空冷方式の場合も発熱源の周囲にウォータージャケット等の冷媒配管を配設する。本発明のシステムでは、重機がラジエータの他に熱交換器(重機対応熱交換器)を備え、冷媒配管とラジエータが第一切換弁を途中に有する第一流路を介して流体連通し、冷媒配管と重機対応熱交換器が第二切換弁を途中に有する第二流路を介して流体連通するとともに、トンネル作業時とトンネル非作業時(作業をおこなっていない重機の移動時等)で双方の切換弁が切換え自在に構成されている。ここで、「双方の切換弁が切換え自在」とは、作業モード、非作業モードでそれぞれ、一方の切換弁が開制御されるとともに他方の切換弁が閉制御されることを意味している。 In these heat generation sources such as engines, motors, and compressors, a refrigerant pipe such as a water jacket is generally arranged around the heat source, and a refrigerant such as cold water is further provided between the radiator and the refrigerant pipe of the heavy machine. It is common to cool the heat when the heat source is driven by circulating the air, but if necessary, a refrigerant pipe may be installed around the heat source. For example, an air cooling method in which the refrigerant is air. In this case as well, a refrigerant pipe such as a water jacket is provided around the heat generation source. In the system of the present invention, the heavy machine is provided with a heat exchanger (heat exchanger for heavy machines) in addition to the radiator, and the refrigerant pipe and the radiator communicate the fluid through the first flow path having the first switching valve in the middle, and the refrigerant pipe. The heat exchanger for heavy machinery communicates fluid through the second flow path that has a second switching valve in the middle, and both during tunnel work and during non-work (when moving heavy machinery that is not working, etc.). The switching valve is configured to be switchable. Here, "both switching valves can be switched freely" means that one switching valve is open-controlled and the other switching valve is closed, respectively, in the working mode and the non-working mode.

第一切換弁と第二切換弁の開閉制御は作業員による手動にておこなう形態や、重機が制御部を備えていてこの制御部にて自動にておこなう形態などが挙げられる。たとえば、後者の自動制御の場合、重機が制御部を備えるとともに発熱源周囲の温度を随時センシングする温度センサを備えていて、一定の温度閾値を超えた段階で重機がトンネル作業モードであると認定して制御部から切換弁に切換え信号が送信され、第二切換弁が開制御されるとともに第一切換弁が閉制御され、冷媒供給源から供給された冷媒が重機対応熱交換器を介し、第二流路を介して重機の発熱源周囲の冷媒配管に提供される。冷媒配管を流通する冷媒はその流通過程で発熱源からの熱を回収して熱媒となり、第二流路を通って重機対応熱交換器に送られる。重機対応熱交換器では、冷媒供給路からの冷媒が、第二流路の熱媒の熱を回収する。その後に熱媒排出路を通って熱媒常温化槽に送られる。 Opening and closing control of the first switching valve and the second switching valve may be performed manually by an operator, or the heavy equipment may be equipped with a control unit and automatically controlled by this control unit. For example, in the latter case of automatic control, the heavy equipment is equipped with a control unit and a temperature sensor that senses the temperature around the heat source at any time, and the heavy equipment is certified as in the tunnel work mode when a certain temperature threshold is exceeded. Then, a switching signal is transmitted from the control unit to the switching valve, the second switching valve is opened and controlled, the first switching valve is closed, and the refrigerant supplied from the refrigerant supply source is passed through the heat exchanger for heavy machinery. It is provided to the refrigerant pipe around the heat source of the heavy equipment via the second flow path. The refrigerant flowing through the refrigerant pipe recovers heat from the heat generating source in the flow process, becomes a heat medium, and is sent to the heat exchanger for heavy machinery through the second flow path. In the heat exchanger for heavy machinery, the refrigerant from the refrigerant supply path recovers the heat of the heat medium in the second flow path. After that, it is sent to the heat medium room temperature tank through the heat medium discharge path.

熱媒を公共用水域等へ放流するに際しては、その温度をたとえば45℃以下等にすることが環境省の一律排水基準等で規制されている。そこで、熱媒常温化槽に送られた熱媒をここで常温化して常温水を生成し、この常温水を公共用水域等へ放流する。このように、本発明のシステムによれば、重機ごとにその発熱源から発せられる熱が冷媒配管を流通する冷媒にて効果的に回収されることから、トンネル内に複数の重機が分散して作業している等の場合であっても、トンネル内を所望の温度環境下に維持することができる。 When the heat medium is discharged into public water areas, the temperature should be 45 ° C or less, for example, according to the Ministry of the Environment's uniform drainage standards. Therefore, the heat medium sent to the heat medium room temperature normalization tank is brought to room temperature here to generate normal temperature water, and this normal temperature water is discharged to a public water area or the like. As described above, according to the system of the present invention, the heat generated from the heat generation source of each heavy machine is effectively recovered by the refrigerant flowing through the refrigerant pipe, so that a plurality of heavy machines are dispersed in the tunnel. Even when working, the inside of the tunnel can be maintained under a desired temperature environment.

ここで、トンネル内に複数の重機が存在する場合に、それぞれの重機が前記冷媒供給路を構成する供給枝管と前記熱媒排出路を構成する排出枝管を備えていて、前記冷媒供給路を構成する供給主管から各供給枝管が分岐し、前記熱媒排出路を構成する排出主管から各排出枝管が分岐している形態を挙げることができる。 Here, when a plurality of heavy machines are present in the tunnel, each heavy machine includes a supply branch pipe constituting the refrigerant supply path and a discharge branch pipe forming the heat medium discharge path, and the refrigerant supply path is provided. It can be mentioned that each supply branch pipe is branched from the supply main pipe constituting the above, and each discharge branch pipe is branched from the discharge main pipe constituting the heat medium discharge passage.

より具体的には、いわゆるリバースリターン方式とダイレクトリターン方式が適用できる。リバースリターン方式の場合、冷媒供給路を構成する供給主管が坑口側から切羽側に延び、供給主管から分岐した各重機に固有の供給枝管が各重機の重機対応熱交換器に接続され、冷媒供給源に近い坑口側の重機から順に冷媒が供給され、一方で、熱媒排出路を構成する排出主管が冷媒供給源に近い坑口側の重機から切羽側の重機まで延びて反転し、坑口外へ出るようにして延び、排出主管から分岐した各重機に固有の排出枝管が各重機の重機対応熱交換器に接続され、冷媒供給源に近い坑口側の重機から順に熱媒が排出されるものである。一方、ダイレクトリターン方式の場合、冷媒供給に関してはリバースリターン方式と同様の構成を取り、一方で熱媒排出に関しては冷媒供給源から最も遠い切羽側の重機から順に熱媒を排出するものである。なお、圧力バランスの観点で言えば、配管長さが冷媒供給系統と熱媒排出系統で等しくなるリバースリターン方式が好ましい。 More specifically, the so-called reverse return method and direct return method can be applied. In the case of the reverse return method, the supply main pipe constituting the refrigerant supply path extends from the wellhead side to the face side, and the supply branch pipe unique to each heavy machine branched from the supply main pipe is connected to the heavy machine compatible heat exchanger of each heavy machine, and the refrigerant is used. Refrigerant is supplied in order from the heavy equipment on the wellhead side near the supply source, while the discharge main pipe constituting the heat medium discharge path extends from the heavy equipment on the wellhead side near the refrigerant supply source to the heavy equipment on the face side and reverses, and is outside the wellhead. The discharge branch pipe, which extends from the discharge main pipe and is unique to each heavy machine, is connected to the heavy machine compatible heat exchanger of each heavy machine, and the heat medium is discharged in order from the heavy machine on the wellhead side near the refrigerant supply source. It is a thing. On the other hand, in the case of the direct return method, the refrigerant supply has the same configuration as the reverse return method, while the heat medium is discharged in order from the heavy machine on the face side farthest from the refrigerant supply source. From the viewpoint of pressure balance, a reverse return method is preferable in which the pipe length is equal in the refrigerant supply system and the heat medium discharge system.

ここで、冷媒供給源には以下で示す様々な形態があり、冷媒供給源の形態の相違に応じてシステムの構成も相違する。 Here, the refrigerant supply source has various forms shown below, and the system configuration also differs depending on the form of the refrigerant supply source.

冷媒供給源の第一の形態は、前記冷媒供給源が泥土の含有されていない水を冷媒として供給する機器からなる形態である。 The first form of the refrigerant supply source is a form in which the refrigerant supply source comprises a device for supplying water containing no mud as a refrigerant.

この機器としては、清水が収容された水タンクと、このタンク内の水を冷媒供給路に送り出すポンプとからなる形態を挙げることができ、冷媒供給路に清水(冷媒)を給水するシステムである。単に冷媒を給水するだけでもよいが、トンネル内に提供する冷媒の温度を所望に調整してもよい。トンネル内で作業する重機の種類や重機の台数等に応じて発熱量が変化することから、重機の種類や重機の台数、複数種類の重機の組み合わせごとに発熱量を予め特定しておき、それぞれの発熱量ごとにトンネル内を最適温度まで冷却する(言い換えれば発熱量を抑制する)のに必要な清水温度や時間当たりの清水供給量を設定しておくこともできる。 This device can include a water tank containing fresh water and a pump that sends the water in the tank to the refrigerant supply path, and is a system that supplies fresh water (refrigerant) to the refrigerant supply path. .. The refrigerant may be simply supplied, but the temperature of the refrigerant provided in the tunnel may be adjusted as desired. Since the amount of heat generated changes depending on the type of heavy equipment and the number of heavy equipment working in the tunnel, the amount of heat generated is specified in advance for each type of heavy equipment, the number of heavy equipment, and the combination of multiple types of heavy equipment. It is also possible to set the fresh water temperature required for cooling the inside of the tunnel to the optimum temperature (in other words, suppressing the calorific value) and the amount of fresh water supplied per hour for each calorific value.

また、冷媒供給源の第二の形態は、前記冷媒供給源が、トンネル内の湧水を坑口外側もしくはトンネル内へ運ぶ湧水流路と、該湧水流路と流体連通する沈殿浄化槽と、から構成され、前記沈殿浄化槽で湧水中の泥土が取り除かれた濾過水が冷媒として前記冷媒供給路を介して前記重機対応熱交換器に送られる形態である。 The second form of the refrigerant supply source includes a spring water flow path that carries the spring water in the tunnel to the outside of the wellhead or into the tunnel, and a settling septic tank that fluidly communicates with the spring water flow path. Then, the filtered water from which the mud in the spring water has been removed in the settling septic tank is sent as a refrigerant to the heat exchanger for heavy machinery via the refrigerant supply path.

トンネル内に湧き出す湧水は一般に冷水であるが、湧水ゆえに多分に泥土を含んでおり、泥土を含んだ状態の湧水をそのまま熱交換器や冷媒配管に提供するとこれらの機器に泥土詰まりが生じてしまうことから、冷媒として湧水を適用する場合には本実施の形態のように湧水を沈殿浄化槽に通してここで泥土を取り除き、泥土が除かれた濾過水を冷媒として冷媒供給路を介して重機対応熱交換器に送るようにする。トンネル内の湧水量が多い場合はこの湧水を有効利用するのが好ましく、本実施の形態の冷媒供給源が好適である。 The spring water that springs out into the tunnel is generally cold water, but because of the spring water, it probably contains mud, and if the spring water containing the mud is provided to the heat exchanger and the refrigerant pipe as it is, these devices will be clogged with mud. When spring water is applied as a refrigerant, the spring water is passed through a settling septic tank to remove mud, and the filtered water from which the mud has been removed is used as a refrigerant to supply the refrigerant. Send it to the heat exchanger for heavy machinery via the road. When the amount of spring water in the tunnel is large, it is preferable to effectively use this spring water, and the refrigerant supply source of the present embodiment is suitable.

さらに、冷媒供給源の第三の形態において、前記冷媒供給源は、トンネル内の湧水を坑口外側へ運ぶ湧水流路と、該湧水流路と流体連通する沈殿浄化槽と、該沈殿浄化槽と流体連通する坑口外熱交換器と、から構成され、前記坑口外熱交換器には、前記沈殿浄化槽で湧水中の泥土が取り除かれた濾過水が送られるとともに、前記熱媒排出路を介して熱媒が送られ、前記坑口外熱交換器において前記熱媒が前記濾過水によって放熱することで冷媒となり、前記冷媒供給路を介して前記重機対応熱交換器に送られるとともに、前記熱媒排出路からの熱媒の熱を該坑口外熱交換器にて回収することで温度上昇した前記濾過水は、前記熱媒常温化槽に排出される形態である。 Further, in the third form of the refrigerant supply source, the refrigerant supply source includes a spring water flow path that carries the spring water in the tunnel to the outside of the wellhead, a sedimentation septic tank that communicates with the spring water flow path, and the sedimentation septic tank and the fluid. It is composed of a wellhead outside heat exchanger that communicates with each other, and filtered water from which the mud in the spring water has been removed in the sedimentation septic tank is sent to the wellhead outside heat exchanger, and heat is sent through the heat medium discharge path. The medium is sent, and the heat medium is dissipated by the filtered water in the heat exchanger outside the wellhead to become a refrigerant, which is sent to the heat exchanger for heavy machinery via the refrigerant supply path and the heat medium discharge path. The filtered water whose temperature has risen by recovering the heat of the heat medium from the outside by the heat exchanger outside the wellhead is discharged to the heat medium room temperature chamber.

この形態の冷媒供給源も、冷媒として湧水を適用するのは第二の形態と同じであるが、この第三の形態では、沈殿浄化槽と熱媒常温化槽の間に坑口外熱交換器を介在させ、この坑口外熱交換器に濾過水とトンネルから排出されてきた熱媒を流通させ、この流通過程で熱媒の温度を低下させて冷媒を再生し、再生された冷媒は再び冷媒供給路を介して重機対応熱交換器に送られ、濾過水は熱媒常温化槽に送られて放流される。 The refrigerant supply source of this form also applies spring water as a refrigerant in the same manner as in the second form, but in this third form, a heat exchanger outside the wellhead between the sedimentation septic tank and the heat medium room temperature tank. The filtered water and the heat medium discharged from the tunnel are circulated to the heat exchanger outside the wellhead, and the temperature of the heat medium is lowered in this flow process to regenerate the refrigerant, and the regenerated refrigerant is again a refrigerant. It is sent to a heat exchanger for heavy machinery via a supply path, and the filtered water is sent to a heat medium room temperature temperature tank and discharged.

以上の説明から理解できるように、本発明のトンネル内温度改善システムによれば、当該システムを構成する重機ごとにその発熱源から発せられる熱が冷媒配管を流通する冷媒にて効果的に回収されることにより、トンネル内で作業する重機の種類や重機の台数、異種重機の組み合わせ等が異なっても、トンネル内の温度環境を所望に調整し、維持することが可能になる。 As can be understood from the above description, according to the tunnel temperature improvement system of the present invention, the heat generated from the heat generation source of each heavy machine constituting the system is effectively recovered by the refrigerant flowing through the refrigerant pipe. As a result, even if the type of heavy machinery working in the tunnel, the number of heavy machinery, the combination of different types of heavy machinery, etc. are different, the temperature environment in the tunnel can be adjusted and maintained as desired.

本発明のトンネル内温度改善システムの実施の形態1を示した模式図である。It is a schematic diagram which showed Embodiment 1 of the temperature improvement system in a tunnel of this invention. 重機内における冷却システムを説明した模式図である。It is a schematic diagram explaining the cooling system in a heavy machine. 本発明のトンネル内温度改善システムの実施の形態2を示した模式図である。It is a schematic diagram which showed Embodiment 2 of the temperature improvement system in a tunnel of this invention. 本発明のトンネル内温度改善システムの実施の形態3を示した模式図である。It is a schematic diagram which showed Embodiment 3 of the temperature improvement system in a tunnel of this invention.

以下、図面を参照して、本発明のトンネル内温度改善システムの実施の形態1〜3を説明する。なお、図示例は、重機として集塵機、トラックミキサー車および吹付機がトンネル内で並行してトンネル作業をおこなっている状態を示しており、これら三種の重機はいずれもトンネル内温度改善システムの構成要素であるが、一台の重機のみがトンネル作業をしている場合はこの一台の重機がシステム構成要素であるし、他種の重機をはじめとして四台以上の重機が並行してトンネル作業をおこなっている場合はこれら全ての重機がシステム構成要素となる。 Hereinafter, embodiments 1 to 3 of the tunnel temperature improving system of the present invention will be described with reference to the drawings. The illustrated example shows a state in which a dust collector, a truck mixer truck, and a sprayer are performing tunnel work in parallel in the tunnel as heavy machinery, and all of these three types of heavy machinery are components of the temperature improvement system in the tunnel. However, if only one heavy machine is doing tunnel work, this one heavy machine is a system component, and four or more heavy machines including other types of heavy machines are doing tunnel work in parallel. If so, all of these heavy equipment are system components.

(トンネル内温度改善システムの実施の形態1)
図1は本発明のトンネル内温度改善システムの実施の形態1を示した模式図であり、図2は重機内における冷却システムを説明した模式図である。
(Embodiment 1 of the tunnel temperature improvement system)
FIG. 1 is a schematic view showing the first embodiment of the tunnel temperature improving system of the present invention, and FIG. 2 is a schematic view illustrating a cooling system in a heavy machine.

図示するトンネル内温度改善システム10は、山岳MにおいてトンネルTを施工する工事に適用されるシステムであり、三種類の重機1(集塵機1A,トラックミキサー車1B,吹付機1D)と、トンネルTの坑口Sの外側にある冷媒供給源2と、熱媒常温化槽4と、から大略構成されている。集塵機1A,トラックミキサー車1B,吹付機1Dはいずれもラジエータ1bと重機対応熱交換器1aを備えている。なお、重機対応熱交換器1aは、集塵機1A等の重機の近傍に載置されてもよいし、重機に直接搭載されてもよいが、図示例は重機に搭載された形態を示す。さらに、トンネルT内の坑口側に配設される送気ダクトの図示は省略している。 The illustrated tunnel temperature improvement system 10 is a system applied to the construction of the tunnel T in the mountain M, and consists of three types of heavy machinery 1 (dust collector 1A, truck mixer truck 1B, sprayer 1D) and the tunnel T. It is roughly composed of a refrigerant supply source 2 outside the wellhead S and a heat medium room temperature cooling tank 4. The dust collector 1A, the truck mixer truck 1B, and the sprayer 1D are all equipped with a radiator 1b and a heat exchanger 1a for heavy machinery. The heat exchanger 1a for heavy machinery may be mounted in the vicinity of a heavy machine such as a dust collector 1A, or may be mounted directly on the heavy machine, but the illustrated example shows a form in which the heat exchanger 1a is mounted on the heavy machine. Further, the illustration of the air supply duct arranged on the wellhead side in the tunnel T is omitted.

冷媒供給源2は、トンネルT内にX1方向で湧き出す湧水を坑口Sの外側へ運ぶ湧水流路3aと、湧水流路3aと流体連通する沈殿浄化槽3とから構成される。なお、図示を省略するが、沈殿浄化槽3には湧水から泥土が濾過されてなる濾過水を送り出すポンプが内蔵されている。 The refrigerant supply source 2 includes a spring water flow path 3a that carries the spring water that springs out in the tunnel T in the X1 direction to the outside of the wellhead S, and a sedimentation septic tank 3 that communicates with the spring water flow path 3a. Although not shown, the settling septic tank 3 has a built-in pump that sends out filtered water obtained by filtering mud from spring water.

沈殿浄化槽3から延びる冷媒供給路5a(供給主管)はトンネルT内の切羽側まで延び、供給主管5aから分岐した供給枝管5bが各重機対応熱交換器1aに流体連通している。一方、熱媒排出路5d(排出主管)が冷媒供給源2に近い坑口側の集塵機1Aから切羽側の吹付機1Dまで延びて反転し、坑口外へ出るようにして延び、排出主管5dから分岐した排出枝管5cが各重機1A,1B,1Dの重機対応熱交換器1aに流体連通している。 The refrigerant supply path 5a (supply main pipe) extending from the settling septic tank 3 extends to the face side in the tunnel T, and the supply branch pipe 5b branched from the supply main pipe 5a communicates fluid with each heavy equipment heat exchanger 1a. On the other hand, the heat medium discharge passage 5d (discharge main pipe) extends from the dust collector 1A on the wellhead side near the refrigerant supply source 2 to the sprayer 1D on the face side, reverses, extends out of the wellhead, and branches from the discharge main pipe 5d. The discharged branch pipe 5c communicates fluidly with the heat exchanger 1a for heavy machinery 1A, 1B, and 1D.

トンネルT内に湧き出す湧水は冷水であり、かつ内部に泥土を含んでいることから、冷媒として湧水を適用するに当たり、トンネルT内で湧き出した湧水を湧水流路3aを介してX2方向で沈殿浄化槽3に送り、ここで泥土を取り除き、泥土が除かれた濾過水を冷媒として供給主管5aを介し(X3方向)、各供給枝管5bを介して(X4方向)各重機1A,1B,1Dの有する重機対応熱交換器1aに送る。一方、各重機1A,1B,1Dに送られた冷媒が発熱源から発せられる熱を回収して熱媒となった後、冷媒供給源2に最も近い坑口側の集塵機1Aから順に熱媒が排出枝管5cを介して排出主管5dに排出され(X5方向)、各排出枝管5cから排出された熱媒は排出主管5dを介して熱媒常温化槽4に送られる(X6方向)。 Since the spring water that springs out in the tunnel T is cold water and contains mud inside, when applying the spring water as a refrigerant, the spring water that springs out in the tunnel T is X2 via the spring water flow path 3a. It is sent to the settling septic tank 3 in the direction, where the mud is removed, and the filtered water from which the mud has been removed is used as a refrigerant through the main supply pipe 5a (X3 direction) and through each supply branch pipe 5b (X4 direction). It is sent to the heat exchanger 1a for heavy machinery possessed by 1B and 1D. On the other hand, after the refrigerant sent to each heavy machine 1A, 1B, 1D recovers the heat generated from the heat generation source and becomes a heat medium, the heat medium is discharged in order from the dust collector 1A on the wellhead side closest to the refrigerant supply source 2. The heat medium is discharged to the discharge main pipe 5d via the branch pipe 5c (X5 direction), and the heat medium discharged from each discharge branch pipe 5c is sent to the heat medium normal temperature tank 4 via the discharge main pipe 5d (X6 direction).

ここで、図2を参照して、トラックミキサー車1Bにおける冷却機構について説明する。図示する発熱源1cはエンジンであり、このエンジン1cには多数の冷媒配管1d(ウォータージャケット)が予め内蔵されており、各冷媒配管1dは相互に流体連通している。なお、発熱源1cであるモータ、コンプレッサー等が既存のウォータージャケットを備えていない場合や、既存のウォータージャケットに別途のウォータージャケットを追加する場合には、これらモータ等に新規のウォータージャケットを加工したものを使用すればよい。トラックミキサー車1Bはラジエータ1bと重機対応熱交換器1aを備えており、冷媒配管1dとラジエータ1bが第一切換弁1fを途中に有する第一流路1eを介して流体連通し、冷媒配管1dと重機対応熱交換器1aが第二切換弁1hを途中に有する第二流路1gを介して流体連通している。 Here, the cooling mechanism in the truck mixer truck 1B will be described with reference to FIG. The heat generation source 1c shown in the figure is an engine, and a large number of refrigerant pipes 1d (water jackets) are built in the engine 1c in advance, and the refrigerant pipes 1d communicate with each other in fluid. If the motor, compressor, etc., which is the heat generation source 1c, does not have an existing water jacket, or if a separate water jacket is added to the existing water jacket, a new water jacket is processed for these motors, etc. You can use the one. The truck mixer vehicle 1B is provided with a radiator 1b and a heat exchanger 1a for heavy machinery, and the refrigerant pipe 1d and the radiator 1b communicate with each other through a first flow path 1e having a first switching valve 1f in the middle, and are connected to the refrigerant pipe 1d. The heat exchanger 1a for heavy machinery communicates with the fluid via the second flow path 1g having the second switching valve 1h in the middle.

トラックミキサー車1Bがトンネル作業モードである場合、作業員が第二切換弁1hを開に切換えるとともに第一切換弁1fを閉に切換え、冷媒供給源2から供給された冷媒(の冷熱)が重機対応熱交換器1aを介し、第二流路1gを介してトラックミキサー車1Bのエンジン1c周囲の冷媒配管1dに提供される。冷媒配管1dを流通する冷媒はその流通過程でエンジン1cからの熱を回収して熱媒となり、熱媒は重機対応熱交換器1aを介して冷媒供給源2から供給された冷媒に熱を伝達することにより、温度が低下する。すなわち、トンネル作業モードでは第二流路1gを冷媒と熱媒が還流する(Y2方向)。エンジンからの熱を回収した熱媒は重機対応熱交換器1aにて冷媒供給源2から供給された冷媒に温熱を放熱することで温度が低下する。重機対応熱交換器1aにて昇温した冷媒供給源2からの冷媒は、排出枝管5cを介し、排出主管5dを介して熱媒常温化槽4に送られる。 When the truck mixer truck 1B is in the tunnel work mode, the worker switches the second switching valve 1h to open and the first switching valve 1f to close, and the refrigerant (cold heat) supplied from the refrigerant supply source 2 is a heavy machine. It is provided to the refrigerant pipe 1d around the engine 1c of the truck mixer truck 1B via the corresponding heat exchanger 1a and the second flow path 1g. The refrigerant flowing through the refrigerant pipe 1d recovers heat from the engine 1c and becomes a heat medium in the flow process, and the heat medium transfers heat to the refrigerant supplied from the refrigerant supply source 2 via the heat exchanger 1a for heavy machinery. By doing so, the temperature is lowered. That is, in the tunnel work mode, the refrigerant and the heat medium return 1 g in the second flow path (Y2 direction). The temperature of the heat medium that has recovered the heat from the engine is lowered by dissipating heat to the refrigerant supplied from the refrigerant supply source 2 by the heat exchanger 1a for heavy machinery. The refrigerant from the refrigerant supply source 2 whose temperature has been raised by the heat exchanger 1a for heavy machinery is sent to the heat medium room temperature tank 4 via the discharge branch pipe 5c and the discharge main pipe 5d.

一方、トラックミキサー車1Bがトンネル非作業モード(作業をおこなっていない状態)である場合、今度は、作業員が第二切換弁1hを閉に切換えるとともに第一切換弁1fを開に切換え、冷媒配管1dを流通する冷媒がエンジン1cから熱を回収して熱媒となり、熱媒が第一流路1eを流通してラジエータ1bに送られ、ここで冷却され、第一流路1eを流通して冷媒配管1dに送られる。すなわち、トンネル非作業モードでは第一流路1eを冷媒と熱媒が還流する(Y1方向)。 On the other hand, when the truck mixer vehicle 1B is in the tunnel non-working mode (in a state where no work is being performed), the worker switches the second switching valve 1h to closed and the first switching valve 1f to open, and the refrigerant is used. The refrigerant flowing through the pipe 1d recovers heat from the engine 1c and becomes a heat medium, and the heat medium flows through the first flow path 1e and is sent to the radiator 1b, where it is cooled and flows through the first flow path 1e as a refrigerant. It is sent to the pipe 1d. That is, in the tunnel non-working mode, the refrigerant and the heat medium return through the first flow path 1e (Y1 direction).

このように、各重機1A,1B,1Dともに固有の冷却システムにてトンネル作業モードとトンネル非作業モードで冷却態様を変更しながら、冷媒による発熱源1cの冷却を随時おこなうことにより、各重機1A,1B,1DからトンネルT内へ放熱された熱が蓄積してトンネルT内温度が上昇するのを効果的に抑制することができる。また、坑口Sにおいては、供給主管5aと排出主管5dがともに一本ずつ通過するのみであることから、坑口Sにてこれらの配管が錯綜するといった課題は生じない。なお、重機種ごとの一台当たりの発熱量を例示すると、削孔作業で使用されるジャンボの発熱量は121kWであり、ずり出し作業で使用されるホイールローダー、バックホウ、ブレーカーの発熱量はそれぞれ122kW、68kW、103kWであり、吹付機の発熱量は177kWであり、集塵機の発熱量は220kWである。 In this way, each heavy machine 1A is cooled by the refrigerant as needed while changing the cooling mode between the tunnel working mode and the tunnel non-working mode with the unique cooling system for each heavy machine 1A, 1B, 1D. , 1B, 1D can effectively prevent the heat radiated from the tunnel T from accumulating and the temperature inside the tunnel T from rising. Further, since only one supply main pipe 5a and one discharge main pipe 5d pass through the wellhead S, there is no problem that these pipes are complicated at the wellhead S. To exemplify the calorific value per unit for each heavy model, the calorific value of the jumbo used in the drilling work is 121 kW, and the calorific value of the wheel loader, backhoe, and breaker used in the sliding work is 121 kW, respectively. It is 122kW, 68kW, 103kW, the calorific value of the sprayer is 177kW, and the calorific value of the dust collector is 220kW.

なお、他の形態として、エンジン1cの近傍に不図示の温度センサを配設しておき、この温度センサでエンジン1cの温度を随時センシングし、センシングデータを不図示の制御装置に送信する形態が挙げられる。この制御装置にはトラックミキサー車1Bがトンネル作業モードにある際のエンジン1cの温度に関する温度閾値が格納されており、センシングデータがこの温度閾値を超えた段階でトラックミキサー車1Bがトンネル作業モードであると認定し、温度閾値以下の場合にはトラックミキサー車1Bがトンネル非作業モードであると認定する。そして、トンネル作業モード、トンネル非作業モードごとに、第一切換弁1fと第二切換弁1hの開閉切換えを自動制御するものである。 As another form, a temperature sensor (not shown) is arranged in the vicinity of the engine 1c, the temperature of the engine 1c is sensed at any time by this temperature sensor, and the sensing data is transmitted to a control device (not shown). Can be mentioned. This control device stores a temperature threshold for the temperature of the engine 1c when the truck mixer truck 1B is in the tunnel work mode, and when the sensing data exceeds this temperature threshold, the truck mixer truck 1B is in the tunnel work mode. If it is below the temperature threshold, it is certified that the truck mixer truck 1B is in the tunnel non-working mode. Then, the opening / closing switching of the first switching valve 1f and the second switching valve 1h is automatically controlled for each of the tunnel working mode and the tunnel non-working mode.

排出主管5dを介してX6方向で熱媒が熱媒常温化槽4に送られた後、熱媒常温化槽4では、熱媒の温度をたとえば45℃以下に低下させ、温度低下した熱媒をX7方向で公共用水域等へ放流する。 After the heat medium is sent to the heat medium room temperature tank 4 in the X6 direction via the discharge main pipe 5d, in the heat medium room temperature tank 4, the temperature of the heat medium is lowered to, for example, 45 ° C. or lower, and the temperature of the heat medium is lowered. Is discharged to public water areas in the X7 direction.

(トンネル内温度改善システムの実施の形態2)
図3は本発明のトンネル内温度改善システムの実施の形態2を示した模式図である。図示するトンネル内温度改善システム10Aは、坑口Sの外側において、湧水流路3aと、湧水流路3aと流体連通する沈殿浄化槽3と、沈殿浄化槽3と流体連通する坑口外熱交換器6とから構成される冷媒供給源2Aを備えるものである。
(Embodiment 2 of the temperature improvement system in the tunnel)
FIG. 3 is a schematic view showing the second embodiment of the temperature improvement system in the tunnel of the present invention. The illustrated tunnel temperature improvement system 10A is composed of a spring water flow path 3a, a sedimentation septic tank 3 that communicates with the spring water flow path 3a, and an external heat exchanger 6 that communicates with the sedimentation septic tank 3 on the outside of the wellhead S. It includes a configured refrigerant supply source 2A.

湧水流路3aをX2方向で流通する湧水は沈殿浄化槽3に送られ、さらにX8方向で坑口外熱交換器6に送られる。一方、トンネル作業モードの場合、各重機1A,1B,1Dから排出された熱媒は排出主管5dを介してX6方向で坑口外熱交換器6に送られる。坑口外熱交換器6では、排出主管5dからの熱媒が沈殿浄化槽からの湧水(冷水)との熱交換により冷却・再生され、再生された冷媒は供給主管5aを介して再度各重機1A,1B,1Dに送られる。一方、熱媒を冷媒に再生させ、温度が上昇した湧水はX9方向で熱媒常温化槽4に送られ、45℃以下に低下された後、温度低下した熱媒はX7方向で公共用水域等へ放流される。 The spring water flowing through the spring water flow path 3a in the X2 direction is sent to the settling septic tank 3, and further sent to the wellhead outside heat exchanger 6 in the X8 direction. On the other hand, in the tunnel work mode, the heat medium discharged from each of the heavy machines 1A, 1B, 1D is sent to the wellhead outside heat exchanger 6 in the X6 direction via the discharge main pipe 5d. In the wellhead outside heat exchanger 6, the heat medium from the discharge main pipe 5d is cooled and regenerated by heat exchange with the spring water (cold water) from the settling septic tank, and the regenerated refrigerant is again passed through the supply main pipe 5a to each heavy machine 1A. , 1B, 1D. On the other hand, the heat medium is regenerated into a refrigerant, and the spring water whose temperature has risen is sent to the heat medium room temperature tank 4 in the X9 direction, and after the temperature is lowered to 45 ° C. or lower, the heat medium whose temperature has dropped is for public use in the X7 direction. It is released to water areas.

(トンネル内温度改善システムの実施の形態3)
図4は本発明のトンネル内温度改善システムの実施の形態3を示した模式図である。図示するトンネル内温度改善システム10Bは、図1で示すトンネル内温度改善システム10の冷媒供給源2を変更したものであり、ここでは、トンネル内から湧き出した湧水を沈殿浄化槽で濾過する代わりに、清水(水道水を含む)を冷媒として収容する清水タンク7と、この清水タンク7内の清水(冷媒)を集塵機1Aの重機対応熱交換器1aに送るポンプ8とから構成される冷媒供給源2Bを備えたものである。
(Embodiment 3 of the tunnel temperature improvement system)
FIG. 4 is a schematic view showing the third embodiment of the temperature improvement system in the tunnel of the present invention. The illustrated tunnel temperature improvement system 10B is a modification of the refrigerant supply source 2 of the tunnel temperature improvement system 10 shown in FIG. 1, and here, instead of filtering the spring water that springs out from the tunnel with a sedimentation septic tank. , A refrigerant supply source composed of a fresh water tank 7 that stores fresh water (including tap water) as a refrigerant and a pump 8 that sends the fresh water (refrigerant) in the fresh water tank 7 to the heat exchanger 1a for heavy machinery of the dust collector 1A. It is equipped with 2B.

なお、この形態は、各重機1A等に清水を給水する給水方式によるものであり、湧水から泥土を濾過する沈殿浄化槽に比べて、清水タンク7とポンプ8とから構成される冷媒供給源2Bは極めて構成がシンプルとなる。 This form is based on a water supply system in which fresh water is supplied to each heavy machine 1A and the like, and a refrigerant supply source 2B composed of a fresh water tank 7 and a pump 8 is compared with a sedimentation septic tank that filters mud from spring water. Is extremely simple in configuration.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like within a range that does not deviate from the gist of the present invention. Also, they are included in the present invention.

1…重機、1A…重機(集塵機),1B…重機(トラックミキサー車),1D…重機(吹付機)、1a…重機対応熱交換器、1b…ラジエータ、1c…発熱源(エンジン)、1d…冷媒配管(ウォータージャケット)、1e…第一流路、1f…第一切換弁、1g…第二流路、1h…第二切換弁、1j…温度センサ、1k…制御装置、2,2A,2B…冷媒供給源、3…沈殿浄化槽、3a…湧水流路、4…熱媒常温化槽、5a…冷媒供給路(供給主管)、5b…冷媒供給路(供給枝管)、5c…熱媒排出路(排出枝管)、5d…熱媒排出路(排出主管)、6…坑口外熱交換器、7…清水タンク、8…ポンプ、10,10A,10B…トンネル内温度改善システム、M…山岳、T…トンネル、F…切羽、S…坑口 1 ... Heavy machine, 1A ... Heavy machine (dust collector), 1B ... Heavy machine (truck mixer car), 1D ... Heavy machine (sprayer), 1a ... Heavy machine compatible heat exchanger, 1b ... Radiator, 1c ... Heat source (engine), 1d ... Refrigerant piping (water jacket), 1e ... 1st flow path, 1f ... 1st switching valve, 1g ... 2nd flow path, 1h ... 2nd switching valve, 1j ... temperature sensor, 1k ... control device, 2,2A, 2B ... Refrigerant supply source, 3 ... Sedimentation septic tank, 3a ... Spring water flow path, 4 ... Heat medium room temperature tank, 5a ... Refrigerant supply path (supply main pipe), 5b ... Refrigerant supply path (supply branch pipe), 5c ... Heat medium discharge path (Discharge branch pipe), 5d ... Heat refrigerant discharge path (Discharge main pipe), 6 ... Outer well heat exchanger, 7 ... Fresh water tank, 8 ... Pump, 10, 10A, 10B ... Tunnel temperature improvement system, M ... Mountain, T ... tunnel, F ... face, S ... wellhead

Claims (5)

発熱源と、該発熱源の周囲に配設された冷媒配管と、該冷媒配管と第一流路を介して流体連通するラジエータと、該冷媒配管と第二流路を介して流体連通する重機対応熱交換器と、を備え、該第一流路に第一切換弁が介在し、該第二流路に第二切換弁が介在し、双方の切換弁の開閉制御にて冷媒配管−ラジエータ間の流体の還流と、冷媒配管−重機対応熱交換器間の流体の還流と、の切換えが実行されるようになっている、トンネル工事で使用される重機と、
トンネルの坑口外側にある冷媒供給源と、
トンネルの坑口外側にある熱媒常温化槽と、
前記冷媒供給源と前記重機対応熱交換器を繋いで冷媒を該冷媒供給源から該重機対応熱交換器に送る冷媒供給路と、
前記重機対応熱交換器と前記熱媒常温化槽を直接的もしくは間接的に繋いで熱媒を該重機対応熱交換器から該熱媒常温化槽に送る熱媒排出路と、を備えている、トンネル内温度改善システム。
Compatible with heat generation sources, refrigerant pipes arranged around the heat generation source, radiators that communicate fluids with the refrigerant pipes via the first flow path, and heavy machinery that communicates fluids through the refrigerant pipes and the second flow path. A heat exchanger is provided, the first switching valve is interposed in the first flow path, the second switching valve is interposed in the second flow path, and the opening / closing control of both switching valves is controlled between the refrigerant pipe and the radiator. Heavy machinery used in tunnel construction, which is designed to switch between fluid recirculation and fluid recirculation between the refrigerant piping and the heat exchanger for heavy machinery.
The refrigerant supply source outside the tunnel entrance and
The heat medium room temperature tank on the outside of the tunnel entrance,
A refrigerant supply path that connects the refrigerant supply source and the heat exchanger for heavy machinery and sends the refrigerant from the refrigerant supply source to the heat exchanger for heavy machinery.
It is provided with a heat medium discharge path for directly or indirectly connecting the heat exchanger for heavy machinery and the heat medium room temperature tank to send a heat medium from the heavy machine compatible heat exchanger to the heat medium room temperature tank. , Temperature improvement system in the tunnel.
前記冷媒供給源は、泥土の含有されていない水を冷媒として供給する機器である請求項1に記載のトンネル内温度改善システム。 The temperature improving system in a tunnel according to claim 1, wherein the refrigerant supply source is a device that supplies water containing no mud as a refrigerant. 前記冷媒供給源は、トンネル内の湧水を坑口外側へ運ぶ湧水流路と、該湧水流路と流体連通する沈殿浄化槽と、から構成され、
前記沈殿浄化槽で湧水中の泥土が取り除かれた濾過水が冷媒として前記冷媒供給路を介して前記重機対応熱交換器に送られる請求項1に記載のトンネル内温度改善システム。
The refrigerant supply source is composed of a spring water flow path that carries the spring water in the tunnel to the outside of the wellhead and a sedimentation septic tank that communicates the fluid with the spring water flow path.
The temperature improving system in a tunnel according to claim 1, wherein the filtered water from which the mud in the spring water has been removed in the settling septic tank is sent as a refrigerant to the heat exchanger for heavy machinery via the refrigerant supply path.
前記冷媒供給源は、トンネル内の湧水を坑口外側へ運ぶ湧水流路と、該湧水流路と流体連通する沈殿浄化槽と、該沈殿浄化槽と流体連通する坑口外熱交換器と、から構成され、
前記坑口外熱交換器には、前記沈殿浄化槽で湧水中の泥土が取り除かれた濾過水が送られるとともに、前記熱媒排出路を介して熱媒が送られ、
前記坑口外熱交換器において前記熱媒が前記濾過水によって放熱することで冷媒となり、前記冷媒供給路を介して前記重機対応熱交換器に送られるとともに、前記熱媒排出路からの熱媒の熱を該坑口外熱交換器にて回収することで温度上昇した前記濾過水は、前記熱媒常温化槽に排出される請求項1に記載のトンネル内温度改善システム。
The refrigerant supply source is composed of a spring water flow path that carries the spring water in the tunnel to the outside of the wellhead, a sedimentation septic tank that communicates with the spring water flow path in fluid communication, and a heat exchanger outside the wellhead that communicates with the sedimentation septic tank. ,
Filtered water from which the mud in the spring water has been removed in the settling septic tank is sent to the heat exchanger outside the wellhead, and a heat medium is sent through the heat medium discharge path.
In the heat exchanger outside the wellhead, the heat medium dissipates heat with the filtered water to become a refrigerant, which is sent to the heat exchanger for heavy machinery via the refrigerant supply path and the heat medium from the heat medium discharge path. The in-tunnel temperature improving system according to claim 1, wherein the filtered water whose temperature has risen by recovering heat by the heat exchanger outside the wellhead is discharged to the heat medium room temperature room temperature tank.
前記重機が複数存在し、それぞれの重機が前記冷媒供給路を構成する供給枝管と前記熱媒排出路を構成する排出枝管を備えていて、前記冷媒供給路を構成する供給主管から各供給枝管が分岐し、前記熱媒排出路を構成する排出主管から各排出枝管が分岐している請求項1〜4のいずれか一項に記載のトンネル内温度改善システム。 There are a plurality of the heavy machines, and each heavy machine includes a supply branch pipe forming the refrigerant supply path and a discharge branch pipe forming the heat medium discharge line, and each of the heavy machines is supplied from a supply main pipe forming the refrigerant supply path. The in-tunnel temperature improving system according to any one of claims 1 to 4, wherein the branch pipes are branched and each discharge branch pipe is branched from the discharge main pipe constituting the heat medium discharge path.
JP2017106197A 2017-05-30 2017-05-30 Tunnel temperature improvement system Active JP6876527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106197A JP6876527B2 (en) 2017-05-30 2017-05-30 Tunnel temperature improvement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106197A JP6876527B2 (en) 2017-05-30 2017-05-30 Tunnel temperature improvement system

Publications (2)

Publication Number Publication Date
JP2018199987A JP2018199987A (en) 2018-12-20
JP6876527B2 true JP6876527B2 (en) 2021-05-26

Family

ID=64667264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106197A Active JP6876527B2 (en) 2017-05-30 2017-05-30 Tunnel temperature improvement system

Country Status (1)

Country Link
JP (1) JP6876527B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027482A (en) * 2021-04-13 2021-06-25 西安科技大学 Cold region tunnel anti-fusion multipoint intelligent control system based on phase change cold accumulation and installation method
CN113464190A (en) * 2021-07-02 2021-10-01 江苏徐工工程机械研究院有限公司 Cooling device for high-ground-temperature geological tunnel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829531A1 (en) * 1988-08-31 1990-03-01 Gewerk Eisenhuette Westfalia DEVICE FOR COOLING THE COOLING MEDIA FOR A DRIVING MACHINE AND / OR THE HYDRAULIC PRESSURE MEDIUM FOR HYDRAULIC DRIVES IN THE HYDRO SHIELD DRIVING
JP2520958Y2 (en) * 1990-07-04 1996-12-18 前田建設工業株式会社 Cooling device for equipment used for tunnel construction
JP5222200B2 (en) * 2009-03-27 2013-06-26 大成建設株式会社 Tunnel cooling system

Also Published As

Publication number Publication date
JP2018199987A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
CN102196931B (en) Method and system for cooling and warming
JP4384066B2 (en) Vehicle cooling system
JP4966100B2 (en) Construction machinery
JP6876527B2 (en) Tunnel temperature improvement system
WO2012091067A1 (en) Cooling system for hybrid work machine
JP6291324B2 (en) Hybrid construction machine
JP2006515052A (en) Cooling circulation, especially for automobile transmissions
CN107444060A (en) Integrated heat management system
KR20010066914A (en) Heating, ventilating and air conditioning system for a skid steer loader
KR20160107749A (en) Air-conditioning system for vehicle using vortex tube
CN102362124B (en) Mixing box for regulating temperature, apparatus for same,and method operating the apparatus
JPH10220985A (en) Heat exchanger assembly
JP2018109397A (en) Control module
JP2014152613A (en) Heat utilization device
JP2011126523A (en) Distribution unit of refrigerant which circulates through air-conditioning circuit and air-conditioning circuit equipped with such a distribution unit
CN102186687B (en) Air conditioning arrangement
US20210180892A1 (en) Method and apparatus for flushing contaminants from a container of fluids
JP2008126843A (en) Cooling device for working machine
CN102991339A (en) Cooling device and method of electric vehicle high-pressure parts
JP2013245457A (en) Hybrid type construction machine
JP2021167161A (en) vehicle
JP4791055B2 (en) Waste heat recovery air conditioner and railway vehicle
KR101389615B1 (en) Heating apparatus of electric excavator
JP6949613B2 (en) Cooling system, cooling method
JP2020122315A (en) Construction machine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6876527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150