JP6875795B2 - Internal combustion engine piston and its manufacturing method - Google Patents

Internal combustion engine piston and its manufacturing method Download PDF

Info

Publication number
JP6875795B2
JP6875795B2 JP2016108881A JP2016108881A JP6875795B2 JP 6875795 B2 JP6875795 B2 JP 6875795B2 JP 2016108881 A JP2016108881 A JP 2016108881A JP 2016108881 A JP2016108881 A JP 2016108881A JP 6875795 B2 JP6875795 B2 JP 6875795B2
Authority
JP
Japan
Prior art keywords
mass
piston
particulate
precipitates
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016108881A
Other languages
Japanese (ja)
Other versions
JP2017214870A (en
Inventor
俊彦 岡澤
俊彦 岡澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Art Metal Manufacturing Co Ltd
Original Assignee
Art Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Art Metal Manufacturing Co Ltd filed Critical Art Metal Manufacturing Co Ltd
Priority to JP2016108881A priority Critical patent/JP6875795B2/en
Publication of JP2017214870A publication Critical patent/JP2017214870A/en
Application granted granted Critical
Publication of JP6875795B2 publication Critical patent/JP6875795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Description

本発明は、耐摩耗性及び耐熱強度に優れた内燃機関用ピストン及びその製造方法に関する。 The present invention relates to a piston for an internal combustion engine having excellent wear resistance and heat resistance and a method for manufacturing the same.

内燃機関用ピストンは、鋳造法や鍛造法で製造されている。鋳造法では、アルミニウム合金の溶湯を金型に流し込んでピストン形状とし、時効処理等の熱処理を経た後に機械加工を行って内燃機関用ピストンを製造する。一方、鍛造法では、まず、溶解したアルミニウム合金を連続鋳造して押出用ビレットとし、均質化処理等の熱処理を経た後に細径丸棒に押出加工するか、又は、連続鋳造法で丸棒とし、均質化処理等の熱処理を経た後に細径丸棒に切削加工する。その後、細径丸棒を切断して鍛造用素材とし、その鍛造用素材を熱間鍛造してピストン形状とし、時効処理等の熱処理を経て機械加工して内燃機関用ピストンを製造する。 Pistons for internal combustion engines are manufactured by a casting method or a forging method. In the casting method, a molten aluminum alloy is poured into a mold to form a piston shape, and after heat treatment such as aging treatment, machining is performed to manufacture a piston for an internal combustion engine. On the other hand, in the forging method, first, the melted aluminum alloy is continuously cast into a billet for extrusion, and after being heat-treated such as homogenization, it is extruded into a small-diameter round bar, or it is made into a round bar by the continuous casting method. After undergoing heat treatment such as homogenization, it is cut into a small diameter round bar. After that, a small-diameter round bar is cut into a forging material, and the forging material is hot-forged into a piston shape, which is then machined through heat treatment such as aging treatment to manufacture a piston for an internal combustion engine.

鍛造法による内燃機関用ピストンに関しては、特許文献1では、200〜250℃の高温域においても優れた疲労強度を示すアルミニウム合金製ピストンの提供を目的とした技術が提案されている。この技術は、鍛造後にSi:11〜13%,Fe:0.2〜1.2%,Cu:3.5〜4.5%,Mn:0.2〜0.5%,Mg:0.3〜1.0%,Ti:0.01〜0.2%,B:0.0002〜0.02%,P:0.005〜0.02%を含み、Caを0.005%以下に規制し、鋳造時に晶出したSi及び金属間化合物が鍛造後に平均粒径5〜35μmでマトリックスに均一分散し、ガス含有量が0.25cc/100g−Al以下に規制された鍛造組織を持ち、鋳塊段階で介在物平均個数がK10値で0.01個/cm2以下に規制され、鍛造加工で成形されたアルミニウム合金製ピストンについてのものである。 Regarding the piston for an internal combustion engine by the forging method, Patent Document 1 proposes a technique for providing an aluminum alloy piston that exhibits excellent fatigue strength even in a high temperature range of 200 to 250 ° C. In this technique, after forging, Si: 11 to 13%, Fe: 0.2 to 1.2%, Cu: 3.5 to 4.5%, Mn: 0.2 to 0.5%, Mg: 0. Contains 3 to 1.0%, Ti: 0.01 to 0.2%, B: 0.0002 to 0.02%, P: 0.005 to 0.02%, and Ca to 0.005% or less. It has a forged structure in which Si and intermetallic compounds crystallized during casting are uniformly dispersed in the matrix with an average particle size of 5 to 35 μm after forging, and the gas content is regulated to 0.25 cc / 100 g-Al or less. This is for an aluminum alloy piston formed by forging, in which the average number of inclusions is regulated to 0.01 pieces / cm 2 or less in the K10 value at the ingot stage.

特許文献2では、ヘッド面及びピストンピン部高温強度特性が優れ、スカート部の鍛造成形性が優れ、オイルリング溝部の機械加工性、耐摩耗性が安定している内燃機関用鍛造ピストンの提供を目的とした技術が提案されている。この技術は、ケイ素を6〜25質量%含有するアルミニウム合金からなる内燃機関用鍛造ピストンであって、オイルリング溝部の共晶ケイ素平均粒径(A)とスカート部先端部の共晶ケイ素平均粒径(B)との比(A/B)が1.5以上であって、かつオイルリング溝部の共晶ケイ素平均粒径(A)が4μm以上であること、またはさらにオイルリング溝部の初晶ケイ素平均粒径(C)と、スカート部先端部の初晶ケイ素平均粒径(D)との比(C/D)が1.3以上であり、かつオイルリング溝部の初晶ケイ素平均粒径(C)が15μm以上である内燃機関用鍛造ピストンについてのものである。 Patent Document 2 provides a forged piston for an internal combustion engine, which has excellent high-temperature strength characteristics of a head surface and a piston pin portion, excellent forging formability of a skirt portion, and stable machinability and wear resistance of an oil ring groove portion. The target technology has been proposed. This technique is a forged piston for an internal combustion engine made of an aluminum alloy containing 6 to 25% by mass of silicon, and has an average grain size of eutectic silicon (A) in the oil ring groove and an average grain size of eutectic silicon at the tip of the skirt. The ratio (A / B) to the diameter (B) is 1.5 or more, and the average particle size of eutectic silicon (A) in the oil ring groove is 4 μm or more, or the primary crystal in the oil ring groove. The ratio (C / D) of the silicon average particle size (C) to the primary silicon silicon average particle size (D) at the tip of the skirt is 1.3 or more, and the primary silicon average particle size of the oil ring groove is 1. (C) is for a forged piston for an internal combustion engine having a diameter of 15 μm or more.

特開2000−265232号公報Japanese Unexamined Patent Publication No. 2000-265232 特開2003−035198号公報Japanese Unexamined Patent Publication No. 2003-035198

自動車等の内燃機関エンジンにおいては、内燃機関用ピストンのより一層の軽量化と、耐摩耗性及び耐熱強度の向上が求められている。 In an internal combustion engine engine of an automobile or the like, further weight reduction of the piston for the internal combustion engine and improvement of wear resistance and heat resistance are required.

本発明の目的は、耐摩耗性及び耐熱強度に優れた内燃機関用ピストン及びその製造方法を提供することにある。 An object of the present invention is to provide a piston for an internal combustion engine having excellent wear resistance and heat resistance and a method for manufacturing the piston.

(1)本発明に係る内燃機関用ピストンは、Si:0.4〜0.7質量%、Fe:1.4〜2.0質量%、Cu:3.5〜5.5質量%、Ni:0.3〜0.8質量%、Mg:1.5〜2.0質量%を少なくとも含有するアルミニウム合金からなり、断面の粒界部及び粒内部には粒子状析出物が存在し、前記粒界部に存在する粒子状析出物は、FeとCuとNiとを有していることを特徴とする。 (1) The piston for an internal combustion engine according to the present invention has Si: 0.4 to 0.7% by mass, Fe: 1.4 to 2.0% by mass, Cu: 3.5 to 5.5% by mass, and Ni. It is made of an aluminum alloy containing at least 0.3 to 0.8% by mass and Mg: 1.5 to 2.0% by mass, and particulate precipitates are present at the grain boundary and inside the grains in the cross section. The particulate precipitate present at the grain boundary is characterized by having Fe, Cu, and Ni.

この発明によれば、断面の粒界部及び粒内部には粒子状析出物が存在し、その粒界部に存在する粒子状析出物はFeとCuとNiとを有しているので、その粒子状析出物が、耐摩耗性及び耐熱強度を向上させるように作用しているものと考えられる。また、粒内部に存在する粒子状析出物も、耐摩耗性及び耐熱強度の向上に寄与しているものと考えられる。 According to the present invention, particulate precipitates are present at the grain boundaries and inside the grains in the cross section, and the particulate precipitates present at the grain boundaries have Fe, Cu, and Ni. It is considered that the particulate precipitate acts to improve the wear resistance and the heat resistance. It is also considered that the particulate precipitates existing inside the grains also contribute to the improvement of wear resistance and heat resistance.

本発明に係る内燃機関用ピストンにいて、前記粒界部の粒子状析出物は、粒径が3μm以上30μm以下の範囲内であり、断面各部で単位面積あたり12%以上22%以下の面積割合の範囲内で存在している。この発明によれば、上記粒径の粒子状析出物が断面各部で上記割合で粒界部に存在するので、耐摩耗性及び耐熱強度の向上に寄与していると考えられる。 In the piston for an internal combustion engine according to the present invention, the particle size of the particulate precipitate at the grain boundary is in the range of 3 μm or more and 30 μm or less, and the area ratio of 12% or more and 22% or less per unit area in each part of the cross section. It exists within the range of. According to the present invention, since the particulate precipitates having the above particle size are present at the grain boundary in each part of the cross section at the above ratio, it is considered that they contribute to the improvement of wear resistance and heat resistance.

本発明に係る内燃機関用ピストンにおいて、前記粒界部の粒子状析出物の粒径(D1)は前記粒内部の粒子状析出物の粒径(D2)よりも大きく、その比(D1/D2)が5以上である。この発明によれば、粒界部に存在する大きな粒子状析出物が耐摩耗性及び耐熱強度に寄与していると考えられる。 In the piston for an internal combustion engine according to the present invention, the particle size (D1) of the particulate precipitate at the grain boundary is larger than the particle size (D2) of the particulate precipitate inside the grain, and the ratio (D1 / D2) thereof. ) Is 5 or more. According to the present invention, it is considered that the large particulate precipitate present at the grain boundary contributes to the wear resistance and the heat resistance.

本発明に係る内燃機関用ピストンにおいて、前記断面に存在する粒子状析出物のうち、前記粒界部の粒子状析出物の割合(P1)は前記粒内部の粒子状析出物の割合(P2)よりも大きく、その比(P1/P2)が、6以上11以下の範囲内である。この発明によれば、粒界部に存在する粒子状析出物が断面各部で上記範囲で存在するので、その粒子状析出物が耐摩耗性及び耐熱強度に寄与していると考えられる。 In the piston for an internal combustion engine according to the present invention, the ratio (P1) of the particulate precipitates at the grain boundary portion among the particulate precipitates existing in the cross section is the ratio of the particulate precipitates inside the grains (P2). The ratio (P1 / P2) is in the range of 6 or more and 11 or less. According to the present invention, since the particulate precipitates present at the grain boundary are present in each part of the cross section in the above range, it is considered that the particulate precipitates contribute to wear resistance and heat resistance.

(2)本発明に係る内燃機関用ピストンの製造方法は、Si:0.4〜0.7質量%、Fe:1.4〜2.0質量%、Cu:3.5〜5.5質量%、Ni:0.3〜0.8質量%、Mg:1.5〜2.0質量%を少なくとも含有するアルミニウム合金連続鋳造材を準備する工程と、前記アルミニウム合金連続鋳造材を熱間鍛造する工程と、熱間鍛造後に熱処理する工程と、熱処理後に機械加工する工程とを少なくとも有し、製造された内燃機関用ピストンの断面の粒界部及び粒内部には粒子状析出物が存在し、前記粒界部に存在する粒子状析出物は、FeとCuとNiとを有していることを特徴とする。 (2) The method for manufacturing a piston for an internal combustion engine according to the present invention is as follows: Si: 0.4 to 0.7% by mass, Fe: 1.4 to 2.0% by mass, Cu: 3.5 to 5.5% by mass. A step of preparing an aluminum alloy continuous casting material containing at least%, Ni: 0.3 to 0.8% by mass, and Mg: 1.5 to 2.0% by mass, and a hot forging of the aluminum alloy continuous casting material. It has at least a step of heat-treating after hot forging and a step of machining after heat-treating, and particulate precipitates are present in the grain boundary portion and the inside of the grain of the cross section of the manufactured internal combustion engine piston. The particulate precipitate present at the grain boundary portion is characterized by having Fe, Cu, and Ni.

この発明によれば、準備された上記組成のアルミニウム合金連続鋳造材を熱間鍛造、熱処理、機械加工の各工程を順次経て製造された内燃機関用ピストンは、断面の粒界部及び粒内部に粒子状析出物が存在し、その粒界部に存在する粒子状析出物はFeとCuとNiとを有しているので、その粒子状析出物が耐摩耗性及び耐熱強度を向上させるように作用しているものと考えられる。また、粒内部に存在する粒子状析出物も、耐摩耗性及び耐熱強度の向上に寄与しているものと考えられる。 According to the present invention, the piston for an internal combustion engine manufactured by sequentially performing the hot forging, heat treatment, and machining steps of the prepared aluminum alloy continuous casting material having the above composition is formed in the grain boundary portion and the inside of the grain in the cross section. Since the particulate precipitate exists and the particulate precipitate existing at the grain boundary portion has Fe, Cu, and Ni, the particulate precipitate may improve the abrasion resistance and the heat resistance strength. It is considered to be working. It is also considered that the particulate precipitates existing inside the grains also contribute to the improvement of wear resistance and heat resistance.

本発明によれば、耐摩耗性及び耐熱強度が向上した内燃機関用ピストン及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a piston for an internal combustion engine having improved wear resistance and heat resistance and a method for manufacturing the piston.

本発明に係る内燃機関用ピストンの一例を示す模式的な形態図である。It is a schematic form diagram which shows an example of the piston for an internal combustion engine which concerns on this invention. 実施例1の内燃機関用ピストンの頂部の断面写真である。It is sectional drawing of the top of the piston for an internal combustion engine of Example 1. FIG. 図2に示すピストン頂部の断面各部での組織写真である。It is a structure photograph of each part of the cross section of the piston top shown in FIG. 実施例1の内燃機関用ピストンの断面の元素マッピングである。It is element mapping of the cross section of the piston for an internal combustion engine of Example 1. 実施例1の内燃機関用ピストンの断面に現れる粒子状析出物の粒径と面積割合の分析結果である。It is an analysis result of the particle size and the area ratio of the particulate precipitate appearing in the cross section of the piston for an internal combustion engine of Example 1. 比較例1,2の内燃機関用ピストンの頂部の断面写真である。It is a cross-sectional photograph of the top of the piston for an internal combustion engine of Comparative Examples 1 and 2. 比較例1のピストン頂部の断面各部での組織写真である。It is a structure photograph of each part of the cross section of the piston top of Comparative Example 1. 比較例2のピストン頂部の断面各部での組織写真である。It is a structure photograph of each part of the cross section of the piston top of Comparative Example 2. 比較例1の内燃機関用ピストンの断面の元素マッピングである。It is an element mapping of the cross section of the piston for an internal combustion engine of Comparative Example 1. 比較例2の内燃機関用ピストンの断面の元素マッピングである。It is an elemental mapping of the cross section of the piston for an internal combustion engine of Comparative Example 2. 比較例1,2の内燃機関用ピストンの断面に現れる粒子状析出物の粒径と面積割合の分析結果である。It is an analysis result of the particle size and the area ratio of the particulate precipitate appearing in the cross section of the piston for an internal combustion engine of Comparative Examples 1 and 2. 実施例1、比較例1及び比較例2で得た内燃機関用ピストンの耐摩耗性の評価結果を示すグラフである。It is a graph which shows the evaluation result of the wear resistance of the piston for an internal combustion engine obtained in Example 1, Comparative Example 1 and Comparative Example 2. 実施例1、比較例1及び比較例2で得た内燃機関用ピストンの引張強度の評価結果を示すグラフである。It is a graph which shows the evaluation result of the tensile strength of the piston for an internal combustion engine obtained in Example 1, Comparative Example 1 and Comparative Example 2. 実施例1、比較例1及び比較例2で得た内燃機関用ピストンの0.2%耐力の評価結果を示すグラフである。It is a graph which shows the evaluation result of the 0.2% proof stress of the piston for an internal combustion engine obtained in Example 1, Comparative Example 1 and Comparative Example 2. 実施例1、比較例1及び比較例2で得た内燃機関用ピストンの疲労強度の評価結果を示すグラフである。It is a graph which shows the evaluation result of the fatigue strength of the piston for an internal combustion engine obtained in Example 1, Comparative Example 1 and Comparative Example 2.

本発明に係る内燃機関用ピストン及びその製造方法について図面を参照しつつ説明する。なお、本発明は、その要旨の範囲内であれば、以下の実施形態に限定されない。 A piston for an internal combustion engine and a method for manufacturing the piston according to the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments as long as it is within the scope of the gist thereof.

[内燃機関用ピストン]
本発明に係る内燃機関用ピストン1は、図1に示すように、上側の頂部11と、下側のスカート部12とで構成されている。頂部11の外周には、複数のピストンリング溝が設けられている。ピストンリング溝としては、頂部11の側からスカート部12の側に向かって、例えば第1圧縮リング溝11a、第2圧縮リング溝11b、及びオイルリング溝11c等を挙げることができる。この各溝には、それぞれに応じたピストンリングが装着される。符号11dは頂部11の表面であり、符号2はピン穴である。頂部11の構造や寸法等は、図1の例に限定されず、他の構造形態や寸法等であってもよいし、ピストン全体の形態や大きさも図1の例に限定されず、他の形態や大きさであってもよい。
[Piston for internal combustion engine]
As shown in FIG. 1, the piston 1 for an internal combustion engine according to the present invention is composed of an upper top portion 11 and a lower skirt portion 12. A plurality of piston ring grooves are provided on the outer circumference of the top portion 11. Examples of the piston ring groove include a first compression ring groove 11a, a second compression ring groove 11b, an oil ring groove 11c, and the like from the side of the top portion 11 toward the side of the skirt portion 12. A piston ring corresponding to each is mounted on each of the grooves. Reference numeral 11d is the surface of the top portion 11, and reference numeral 2 is a pin hole. The structure and dimensions of the top 11 are not limited to the example of FIG. 1, and may be other structural forms and dimensions, and the shape and size of the entire piston are not limited to the example of FIG. It may be in shape or size.

この内燃機関用ピストン1は、Si:0.4〜0.7質量%、Fe:1.4〜2.0質量%、Cu:3.5〜5.5質量%、Ni:0.3〜0.8質量%、Mg:1.5〜2.0質量%を少なくとも含有するアルミニウム合金で構成されている。そして、断面の粒界部及び粒内部には粒子状析出物が存在し、その粒界部に存在する粒子状析出物は、FeとCuとNiとを有している。こうした構成により、耐摩耗性及び耐熱強度が向上した内燃機関用ピストンを提供することができる。 The piston 1 for an internal combustion engine has Si: 0.4 to 0.7% by mass, Fe: 1.4 to 2.0% by mass, Cu: 3.5 to 5.5% by mass, Ni: 0.3 to 0.3 to It is composed of an aluminum alloy containing at least 0.8% by mass and Mg: 1.5 to 2.0% by mass. Then, particulate precipitates are present at the grain boundaries and inside the grains in the cross section, and the particulate precipitates existing at the grain boundaries have Fe, Cu, and Ni. With such a configuration, it is possible to provide a piston for an internal combustion engine having improved wear resistance and heat resistance.

以下、内燃機関用ピストンの構成要素を詳しく説明する。なお、内燃機関用ピストンを単に「ピストン」という。 Hereinafter, the components of the piston for an internal combustion engine will be described in detail. The piston for an internal combustion engine is simply called a "piston".

(成分組成)
ピストンの成分組成は、Si:0.4〜0.7質量%、Fe:1.4〜2.0質量%、Cu:3.5〜5.5質量%、Ni:0.3〜0.8質量%、Mg:1.5〜2.0質量%を少なくとも含有し、残りがアルミニウム合金で構成されている。上記以外の成分は、ピストン用のアルミニウム合金材料に通常含まれる微量成分(不可避不純物を含む。)である。微量成分としては、Ti、Mn、Cr、Zn等を挙げることができる。
(Ingredient composition)
The composition of the piston is Si: 0.4 to 0.7% by mass, Fe: 1.4 to 2.0% by mass, Cu: 3.5 to 5.5% by mass, Ni: 0.3 to 0. It contains at least 8% by mass and Mg: 1.5 to 2.0% by mass, and the rest is composed of an aluminum alloy. The components other than the above are trace components (including unavoidable impurities) usually contained in the aluminum alloy material for pistons. Examples of the trace component include Ti, Mn, Cr, Zn and the like.

Siは、0.4質量%以上、0.7質量%以下の範囲内で含まれており、機械的強度(耐熱強度と耐摩耗性)を向上させるように作用する。なお、Si含有量が0.4質量%未満では、耐熱強度と耐摩耗性が十分に向上しないことがあり、Si含有量が0.7質量%を超える場合も、耐熱強度と耐摩耗性が十分に向上しないことがある。 Si is contained in the range of 0.4% by mass or more and 0.7% by mass or less, and acts to improve the mechanical strength (heat resistance and wear resistance). If the Si content is less than 0.4% by mass, the heat resistance and wear resistance may not be sufficiently improved, and if the Si content exceeds 0.7% by mass, the heat resistance and wear resistance are high. It may not improve sufficiently.

Feは、1.4質量%以上、2.0質量%以下の範囲内で含まれており、CuとNiとともに粒子状析出物を構成し、その粒子状析出物がピストンの耐摩耗性及び耐熱強度の向上に寄与する。なお、Fe含有量が1.4質量%未満では、耐熱強度と耐摩耗性が十分に向上しないことがあり、Fe含有量が2.0質量%を超える場合も、耐熱強度が十分に向上しないことがある。 Fe is contained in the range of 1.4% by mass or more and 2.0% by mass or less, and forms a particulate precipitate together with Cu and Ni, and the particulate precipitate forms abrasion resistance and heat resistance of the piston. Contributes to the improvement of strength. If the Fe content is less than 1.4% by mass, the heat resistance and abrasion resistance may not be sufficiently improved, and if the Fe content exceeds 2.0% by mass, the heat resistance is not sufficiently improved. Sometimes.

Cuは、3.5質量%以上、5.5質量%以下の範囲内で含まれており、FeとNiとともに粒子状析出物を構成し、その粒子状析出物がピストンの耐摩耗性及び耐熱強度の向上に寄与する。なお、Cu含有量が3.5質量%未満では、耐熱強度と耐摩耗性が十分に向上しないことがあり、Cu含有量が5.5質量%を超えると、耐熱強度が十分に向上しないことがある。 Cu is contained in the range of 3.5% by mass or more and 5.5% by mass or less, and constitutes a particulate precipitate together with Fe and Ni, and the particulate precipitate forms abrasion resistance and heat resistance of the piston. Contributes to the improvement of strength. If the Cu content is less than 3.5% by mass, the heat resistance and abrasion resistance may not be sufficiently improved, and if the Cu content exceeds 5.5% by mass, the heat resistance is not sufficiently improved. There is.

Niは、0.3質量%以上、0.8質量%以下の範囲内で含まれている。この範囲で含まれるNiは、その耐熱性から高温強度を高めるように作用するとともに、FeとCuとともに粒子状析出物を構成し、その粒子状析出物がピストンの耐摩耗性及び耐熱強度の向上に寄与する。なお、Ni含有量が0.3質量%未満では、耐熱強度と耐摩耗性が十分に向上しないことがあり、Ni含有量が0.8質量%を超えると、耐熱強度が十分に向上しないことがある。 Ni is contained in the range of 0.3% by mass or more and 0.8% by mass or less. Ni contained in this range acts to increase high-temperature strength due to its heat resistance, and forms particulate precipitates together with Fe and Cu, and the particulate precipitates improve the abrasion resistance and heat resistance of the piston. Contribute to. If the Ni content is less than 0.3% by mass, the heat resistance and wear resistance may not be sufficiently improved, and if the Ni content exceeds 0.8% by mass, the heat resistance is not sufficiently improved. There is.

Mgは、1.5質量%以上、2.0質量%以下の範囲内で含まれており、機械的強度(耐熱強度と耐摩耗性)を上昇させるように作用する。なお、Mg含有量が1.5質量%未満では、耐熱強度と耐摩耗性が十分に向上しないことがあり、Mg含有量が2.0質量%を超えると、耐熱強度と耐摩耗性が十分に向上しないことがある。 Mg is contained in the range of 1.5% by mass or more and 2.0% by mass or less, and acts to increase the mechanical strength (heat resistance and wear resistance). If the Mg content is less than 1.5% by mass, the heat resistance and wear resistance may not be sufficiently improved, and if the Mg content exceeds 2.0% by mass, the heat resistance and wear resistance are sufficient. May not improve.

その他の成分としては、例えば、Tiは、0.05質量%以上、0.10質量%以下の範囲内で含まれている。この範囲で含まれるTiは、鋳造結晶粒を微細化するように作用する。また、Mn、Cr、Zn等を不可避不純物として0.05質量%以下程度含んでいてもよい。また、P、S等も不可避不純物として含まれてもよい。 As other components, for example, Ti is contained in the range of 0.05% by mass or more and 0.10% by mass or less. Ti contained in this range acts to make the cast crystal grains finer. Further, Mn, Cr, Zn and the like may be contained as unavoidable impurities in an amount of about 0.05% by mass or less. Further, P, S and the like may also be contained as unavoidable impurities.

(断面形態)
図2及び図3は、本発明に係るピストン(後述の実施例1)の頂部をエッチングした後の断面写真である。図2はピン穴2を機械加工する前のピストン頂部の断面であり、図3はその拡大写真である。図3(A)は上部の組織であり、図3(B)は中央部の組織であり、図3(C)は下部の組織である。これらの写真は、図6(A)及び図7に示すピストン(後述の比較例1)の断面写真や、図6(B)及び図8に示すピストン(後述の比較例2)の断面写真とは明らかに異なる組織形態を示している。
(Cross-sectional shape)
2 and 3 are cross-sectional photographs of the piston according to the present invention (Example 1 described later) after etching. FIG. 2 is a cross section of the top of the piston before machining the pin hole 2, and FIG. 3 is an enlarged photograph thereof. FIG. 3 (A) is the upper tissue, FIG. 3 (B) is the central tissue, and FIG. 3 (C) is the lower tissue. These photographs are a cross-sectional photograph of the piston shown in FIGS. 6 (A) and 7 (comparative example 1 described later) and a cross-sectional photograph of the piston shown in FIGS. 6 (B) and 8 (comparative example 2 described later). Shows a distinctly different tissue morphology.

本発明に係るピストンの断面組織は、図2及び図3に示すように、粒界が存在し、粒界部と粒内部とが現れている。粒界部と粒内部は、そのいずれにも粒子状析出物が存在している。粒子状析出物は、粒界部では粒径が大きいが、粒内部では粒界部のものよりも粒径が小さい。 As shown in FIGS. 2 and 3, the cross-sectional structure of the piston according to the present invention has grain boundaries, and the grain boundaries and the inside of the grains appear. Particulate precipitates are present at both the grain boundary and the inside of the grain. The particulate precipitate has a large particle size at the grain boundary, but has a smaller particle size inside the grain than that at the grain boundary.

粒界部に存在する大きな多数の粒子状析出物は、図4に示す元素マッピングより、FeとCuとNiとを有している。FeとCuとNiとが金属間化合物であるか複合物であるか混合物であるかは現時点では明らかではないが、後述の実施例と比較例の結果より、FeとCuとNiとを有した粒子状析出物が耐摩耗性及び耐熱強度を向上させるように作用しているものと考えられる。 A large number of large particulate precipitates present at the grain boundaries have Fe, Cu, and Ni according to the element mapping shown in FIG. It is not clear at this time whether Fe, Cu and Ni are intermetallic compounds, composites or mixtures, but from the results of Examples and Comparative Examples described later, Fe, Cu and Ni were provided. It is considered that the particulate precipitate acts to improve the wear resistance and the heat resistance.

粒界部の粒子状析出物は、粒径が3μm以上、30μm以下の範囲内で存在している。そして、その存在割合は、断面の各部において単位面積あたりの面積割合で12%以上、22%以下の範囲内である。本発明では、上記粒径の粒子状析出物が上記割合で粒界部に存在するので、耐摩耗性及び耐熱強度の向上に寄与していると考えられる。 The particulate precipitate at the grain boundary exists in the range of the particle size of 3 μm or more and 30 μm or less. The abundance ratio is within the range of 12% or more and 22% or less in terms of the area ratio per unit area in each part of the cross section. In the present invention, since the particulate precipitate having the above particle size is present at the grain boundary in the above ratio, it is considered that it contributes to the improvement of wear resistance and heat resistance.

粒内部の粒子状析出物は、粒径が粒界部の粒子状析出物の粒径よりも小さく且つ3μm以下の大きさで存在している。粒内部の微細な粒子状析出物は、FeとCuとNiとを有する粒界部の粒子状析出物とは異なり、MgとNiとを有し、粒界部の粒子状析出物とともに耐摩耗性や耐熱強度の向上に寄与していると考えられる。なお、粒内部の粒子状析出物はかなり小さいものも存在するので、粒径の下限は特に限定されないが、0.1μm程度である。 The particle size of the particulate precipitate inside the grain is smaller than the particle size of the particulate precipitate at the grain boundary and exists in a size of 3 μm or less. The fine particulate precipitates inside the grains have Mg and Ni, unlike the particulate precipitates at the grain boundaries having Fe, Cu, and Ni, and are abrasion resistant together with the particulate precipitates at the grain boundaries. It is considered that it contributes to the improvement of properties and heat resistance. Since some of the particulate precipitates inside the grains are quite small, the lower limit of the particle size is not particularly limited, but is about 0.1 μm.

粒界部の粒子状析出物の粒径(D1)は粒内部の粒子状析出物の粒径(D2)よりもかなり大きく、その比(D1/D2)は5以上であった。D1/D2が5以上である意義は現時点では明らかではないが、その大きさの差は耐摩耗性及び耐熱強度の向上に寄与していると考えられる。なお、D1/D2の上限は、粒内部の粒子状析出物がかなり小さいものも少し存在するために明確ではないが、50程度であった。 The particle size (D1) of the particulate precipitate at the grain boundary was considerably larger than the particle size (D2) of the particulate precipitate inside the grain, and the ratio (D1 / D2) was 5 or more. The significance of D1 / D2 being 5 or more is not clear at present, but it is considered that the difference in size contributes to the improvement of wear resistance and heat resistance. The upper limit of D1 / D2 was about 50, although it is not clear because some of the particulate precipitates inside the grains are quite small.

断面に存在する粒子状析出物のうち、粒界部の粒子状析出物の割合(P1:12%以上22%以下)は粒内部の粒子状析出物の割合(P2)よりも大きく、その比(P1/P2)は6以上11以下の範囲内であった。P1/P2が上記範囲内である意義は現時点では明らかではないが、その割合の差は耐摩耗性及び耐熱強度の向上に寄与していると考えられる。なお、P1/P2比(6以上11以下)より、粒界部の粒子状析出物の割合(P1)が下限の12%である場合は、粒内部の粒子状析出物の割合(P2)は2%〜約1.1%の範囲であり、粒界部の粒子状析出物の割合(P1)が上限の22%である場合は、粒内部の粒子状析出物の割合(P2)は約3.7%〜2%の範囲である。 Of the particulate precipitates present in the cross section, the proportion of particulate precipitates at the grain boundaries (P1: 12% or more and 22% or less) is larger than the proportion of particulate precipitates inside the grains (P2), and the ratio thereof. (P1 / P2) was in the range of 6 or more and 11 or less. The significance of P1 / P2 being within the above range is not clear at present, but it is considered that the difference in the ratio contributes to the improvement of wear resistance and heat resistance. From the P1 / P2 ratio (6 or more and 11 or less), when the ratio of granular precipitates at the grain boundaries (P1) is 12%, which is the lower limit, the ratio of granular precipitates inside the grains (P2) is When the ratio is in the range of 2% to about 1.1% and the ratio of granular precipitates at the grain boundaries (P1) is 22%, which is the upper limit, the ratio of particulate precipitates inside the grains (P2) is about. It is in the range of 3.7% to 2%.

以上、本発明に係る内燃機関用ピストンによれば、耐摩耗性及び耐熱強度に優れている。耐摩耗性と耐熱強度に優れる原因は現時点では明らかではないが、粒界部に存在するFeとCuとNiを有する粒子状析出物が大きく寄与しているとともに、粒内部の粒子状析出物も寄与しているものと考えられる。 As described above, the piston for an internal combustion engine according to the present invention is excellent in wear resistance and heat resistance. The cause of the excellent wear resistance and heat resistance is not clear at this time, but the particulate precipitates having Fe, Cu, and Ni present at the grain boundaries contribute significantly, and the particulate precipitates inside the grains also contribute. It is considered to be contributing.

[内燃機関用ピストンの製造方法]
本発明に係る内燃機関用ピストンの製造方法は、Si:0.4〜0.7質量%、Fe:1.4〜2.0質量%、Cu:3.5〜5.5質量%、Ni:0.3〜0.8質量%、Mg:1.5〜2.0質量%を少なくとも含有するアルミニウム合金連続鋳造材を準備する工程(準備工程)と、前記アルミニウム合金連続鋳造材を熱間鍛造する工程(熱間鍛造工程)と、熱間鍛造後に熱処理する工程(熱処理工程)と、熱処理後に機械加工する工程(加工工程)とを少なくとも有している。製造された内燃機関用ピストンの断面の粒界部及び粒内部には、粒子状析出物が存在し、粒界部に存在する粒子状析出物は、FeとCuとNiとを有している。
[Manufacturing method of piston for internal combustion engine]
The method for manufacturing a piston for an internal combustion engine according to the present invention is Si: 0.4 to 0.7% by mass, Fe: 1.4 to 2.0% by mass, Cu: 3.5 to 5.5% by mass, Ni. A step of preparing an aluminum alloy continuous casting material containing at least 0.3 to 0.8% by mass and Mg: 1.5 to 2.0% by mass (preparation step) and hot the aluminum alloy continuous casting material. It has at least a step of forging (hot forging step), a step of heat treatment after hot forging (heat treatment step), and a step of machining after heat treatment (processing step). Particulate precipitates are present at the grain boundaries and inside of the grains in the cross section of the manufactured piston for internal combustion engine, and the particulate precipitates existing at the grain boundaries have Fe, Cu, and Ni. ..

(準備工程)
準備工程は、上記成分組成を少なくとも含有するアルミニウム合金連続鋳造材(以下、連続鋳造材という。)を準備する工程である。連続鋳造材は、上記した成分組成のアルミニウム合金を用いること以外は、従来公知の一般的な方法で準備することができる。例えば、溶解した上記成分組成のアルミニウム合金を連続鋳造して押出用ビレットとし、均質化処理を経て、所定寸法の細径丸棒に押出加工し、その後に所定寸法に切断して準備することができる。又は、溶解した上記成分組成のアルミニウム合金を連続鋳造して丸棒とし、均質化処理を経て、所定寸法の細径丸棒に切削加工し、その後に切断して準備することもできる。なお、連続鋳造に先立って、必要に応じて脱ガス処理や介在物の浮上分離処理を行ってもよい。また、連続鋳造後においては、均質化処理を行ってもよい。
(Preparation process)
The preparation step is a step of preparing an aluminum alloy continuous cast material (hereinafter, referred to as a continuous cast material) containing at least the above component composition. The continuous cast material can be prepared by a conventionally known general method except that an aluminum alloy having the above-mentioned composition is used. For example, a melted aluminum alloy having the above component composition can be continuously cast into a billet for extrusion, homogenized, extruded into a small-diameter round bar having a predetermined size, and then cut to a predetermined size for preparation. it can. Alternatively, the melted aluminum alloy having the above component composition may be continuously cast into a round bar, homogenized, cut into a small-diameter round bar having a predetermined size, and then cut to prepare. Prior to continuous casting, degassing treatment and floating separation treatment of inclusions may be performed, if necessary. Further, after continuous casting, homogenization treatment may be performed.

(熱間鍛造工程)
熱間鍛造工程は、準備された連続鋳造材を熱間鍛造する工程である。熱間鍛造も上記した成分組成の連続鋳造材を用いること以外は、従来公知の一般的な方法で熱間鍛造することができる。例えば、所定寸法に切断された鍛造用素材を金型に押し付け、鍛造用素材を金型内に流動させる後方押出法でもよいし、固定した金型に鍛造用素材を押し付け、鍛造用素材を金型内に流動させる前方押出法であってもよい。なお、熱間鍛造前には、必要に応じて連続鋳造材や金型を予備加熱してもよい。
(Hot forging process)
The hot forging step is a step of hot forging the prepared continuous cast material. Hot forging can also be performed by a conventionally known general method except that a continuous cast material having the above-mentioned composition is used. For example, a rear extrusion method in which a forging material cut to a predetermined size is pressed against a die and the forging material is allowed to flow in the die may be used, or a forging material is pressed against a fixed die and the forging material is pressed into a die. It may be a forward extrusion method in which the mold is allowed to flow. Before hot forging, the continuous casting material or the die may be preheated if necessary.

(熱処理工程)
熱処理工程は、熱間鍛造後に熱処理する工程である。熱処理工程も上記した成分組成の連続鋳造材を用いること以外は、従来公知の一般的な熱処理を施すことができる。例えば、鍛造品を加熱した後に水冷する溶体化処理を行い、その後に時効処理する方法を挙げることができる。
(Heat treatment process)
The heat treatment step is a step of heat-treating after hot forging. As for the heat treatment step, a general heat treatment known in the past can be performed except that the continuous cast material having the above-mentioned component composition is used. For example, a method of heating the forged product, then performing a solution treatment of cooling with water, and then performing an aging treatment can be mentioned.

(加工工程)
加工工程は、熱処理後に機械加工する工程である。機械加工も従来公知の一般的な方法で加工することができる。例えば、鍛造済みピストンに対し、ピストンピン用の穴明け加工、ピストン面削加工、オイルリング溝加工、その他の加工を施し、ピストン形状に仕上げる。
(Processing process)
The processing process is a process of machining after heat treatment. Machining can also be performed by a conventionally known general method. For example, the forged piston is subjected to drilling for a piston pin, piston surface drilling, oil ring groove processing, and other processing to finish the piston shape.

こうした工程を有する内燃機関用ピストンの製造方法によれば、準備された上記組成のアルミニウム合金連続鋳造材を熱間鍛造、熱処理、機械加工の各工程を順次経て製造するので、その成分組成特有の形態が現れる。すなわち、断面の粒界部及び粒内部に粒子状析出物が存在し、その粒界部に存在する粒子状析出物はFeとCuとNiとを有しているので、その粒子状析出物が耐摩耗性及び耐熱強度を向上させるように作用しているものと考えられる。また、粒内部に存在する粒子状析出物も、耐摩耗性及び耐熱強度の向上に寄与しているものと考えられる。 According to the method for manufacturing a piston for an internal combustion engine having such a step, the prepared continuous aluminum alloy casting material having the above composition is manufactured through each step of hot forging, heat treatment, and machining in sequence, and thus is peculiar to the component composition. The morphology appears. That is, since particulate precipitates are present at the grain boundaries and inside the grains in the cross section, and the particulate precipitates existing at the grain boundaries have Fe, Cu, and Ni, the particulate precipitates are present. It is considered that it acts to improve wear resistance and heat resistance. It is also considered that the particulate precipitates existing inside the grains also contribute to the improvement of wear resistance and heat resistance.

実施例と比較例により本発明を具体的に説明する。 The present invention will be specifically described with reference to Examples and Comparative Examples.

[実施例1]
Si:0.50質量%、Fe:1.70質量%、Cu:4.1質量%、Ni:0.60質量%、Mg:1.80質量%、Ti:0.07質量%及び微量不可避不純物、残部:アルミニウムからなるアルミニウム合金の連続鋳造材を準備した。このアルミニウム合金の組成はスパーク放電発光分光分析装置(型名:SPECTRO LAB、SPECTRO社製)によって測定した結果である(下記の実施例2,3も同じ。)。この連続鋳造材は、およそ700℃〜800℃に溶解したアルミニウム合金を連続鋳造して直径100mmの押出し用ビレットとし、その押出し用ビレットを切断して、長さ30mmで直径95mmの連続鋳造材とした。なお、この連続鋳造材には、押出し用ビレットを切断する前に約500℃で8時間の均質化処理を行った。
[Example 1]
Si: 0.50% by mass, Fe: 1.70% by mass, Cu: 4.1% by mass, Ni: 0.60% by mass, Mg: 1.80% by mass, Ti: 0.07% by mass, and trace amounts are inevitable. Impurities, balance: A continuous cast material of an aluminum alloy composed of aluminum was prepared. The composition of this aluminum alloy is the result of measurement by a spark discharge emission spectrophotometer (model name: SPECTRO LAB, manufactured by SPECTRO) (the same applies to Examples 2 and 3 below). In this continuous casting material, an aluminum alloy melted at about 700 ° C. to 800 ° C. is continuously cast to obtain a billet for extrusion having a diameter of 100 mm, and the billet for extrusion is cut to obtain a continuous casting material having a length of 30 mm and a diameter of 95 mm. did. The continuous cast material was homogenized at about 500 ° C. for 8 hours before cutting the extrusion billet.

準備された連続鋳造材と金型を約400℃に予備加熱した後に熱間鍛造した。熱間鍛造としては、前方押出法で行った。熱間鍛造後には、約530℃で2時間に保持した後、約100℃の水中に入れて溶体化処理した。その後、約200℃で20時間の時効処理を行った。その後、機械加工により、ピン穴、ピストンリング溝等を加工して仕上げ、実施例1の内燃機関用ピストンを作製した。 The prepared continuous casting material and the die were preheated to about 400 ° C. and then hot forged. The hot forging was performed by the forward extrusion method. After hot forging, it was held at about 530 ° C. for 2 hours and then put into water at about 100 ° C. for solution treatment. Then, the aging treatment was carried out at about 200 ° C. for 20 hours. Then, the pin hole, the piston ring groove, and the like were machined and finished by machining to produce the piston for the internal combustion engine of Example 1.

[比較例1]
A2618合金の連続鋳造材を準備した。A2618合金は、JIS(日本工業規格)、AA(US規格)に基づき、Si:0.10〜0.25質量%、Fe:0.9〜1.3質量%、Cu:1.9〜2.7質量%、Ni:0.9〜1.2質量%、Mg:1.3〜1.8質量%、Ti:0.04〜0.10質量%、Zn:0.10質量%以下、及び微量不可避不純物、残部:アルミニウムとして規格化されているアルミニウム合金である。それ以外は、実施例1と同様にして、比較例1の内燃機関用ピストンを作製した。
[Comparative Example 1]
A continuous cast material of A2618 alloy was prepared. The A2618 alloy is based on JIS (Japanese industrial standard) and AA (US standard), Si: 0.10 to 0.25% by mass, Fe: 0.9 to 1.3% by mass, Cu: 1.9 to 2 .7% by mass, Ni: 0.9 to 1.2% by mass, Mg: 1.3 to 1.8% by mass, Ti: 0.04 to 0.10% by mass, Zn: 0.10% by mass or less, And trace unavoidable impurities, balance: Aluminum alloy standardized as aluminum. Other than that, the piston for the internal combustion engine of Comparative Example 1 was produced in the same manner as in Example 1.

[比較例2]
A4032合金の連続鋳造材を準備した。A4032合金は、JIS(日本工業規格)、AA(US規格)、NF(フランス規格)、CSA(カナダ規格)に基づき、Si:11.0〜13.5質量%、Fe:1.0質量%以下、Cu:0.5〜1.3質量%、Ni:0.5〜1.3質量%、Mg:0.8〜1.3質量%、Cr:1.0質量%以下、Zn:0.25質量%以下、及び微量不可避不純物、残部:アルミニウムとして規格化されているアルミニウム合金である。それ以外は、実施例1と同様にして、比較例2の内燃機関用ピストンを作製した。
[Comparative Example 2]
A continuous cast material of A4032 alloy was prepared. The A4032 alloy is based on JIS (Japanese Industrial Standards), AA (US Standards), NF (French Standards), and CSA (Canada Standards), Si: 11.0-13.5% by mass, Fe: 1.0% by mass. Hereinafter, Cu: 0.5 to 1.3% by mass, Ni: 0.5 to 1.3% by mass, Mg: 0.8 to 1.3% by mass, Cr: 1.0% by mass or less, Zn: 0 .25% by mass or less, trace amount of unavoidable impurities, balance: Aluminum alloy standardized as aluminum. Other than that, the piston for the internal combustion engine of Comparative Example 2 was produced in the same manner as in Example 1.

[実施例2]
実施例1において、Si:0.40質量%、Fe:2.0質量%、Cu:3.5質量%、Ni:0.30質量%、Mg:2.00質量%、Ti:0.07質量%及び微量不可避不純物、残部:アルミニウムからなるアルミニウム合金の連続鋳造材を準備した。それ以外は、実施例1と同様にして、実施例2の内燃機関用ピストンを作製した。
[Example 2]
In Example 1, Si: 0.40% by mass, Fe: 2.0% by mass, Cu: 3.5% by mass, Ni: 0.30% by mass, Mg: 2.00% by mass, Ti: 0.07 Mass% and trace amount of unavoidable impurities, balance: A continuous cast material of an aluminum alloy composed of aluminum was prepared. Other than that, the piston for the internal combustion engine of Example 2 was produced in the same manner as in Example 1.

[実施例3]
実施例1において、Si:0.70質量%、Fe:1.40質量%、Cu:5.5質量%、Ni:0.80質量%、Mg:1.50質量%、Ti:0.09質量%及び微量不可避不純物、残部:アルミニウムからなるアルミニウム合金の連続鋳造材を準備した。それ以下は、実施例1と同様にして、実施例3の内燃機関用ピストンを作製した。
[Example 3]
In Example 1, Si: 0.70% by mass, Fe: 1.40% by mass, Cu: 5.5% by mass, Ni: 0.80% by mass, Mg: 1.50% by mass, Ti: 0.09. Mass% and trace amount of unavoidable impurities, balance: A continuous cast material of an aluminum alloy composed of aluminum was prepared. Below that, the piston for the internal combustion engine of Example 3 was produced in the same manner as in Example 1.

[断面組織と粒子状析出物]
(実施例1のピストン)
図2及び図3に示す実施例1のピストンは、粒界の存在により粒界部と粒内部とが現れており、その粒界部と粒内部は、そのいずれにも粒子状析出物が存在していた。粒子状析出物は、粒界部では粒径が大きいが、粒内部では粒径が粒界部のものよりも小さい。粒界部の粒子状析出物は、図4に示す元素マッピングより、FeとCuとNiとを有するものであった。一方、粒内部の粒子状析出物は、図示しないが、元素マッピングの結果では、MgとNiとを有するものであった。
[Cross-sectional structure and particulate precipitate]
(Piston of Example 1)
In the piston of Example 1 shown in FIGS. 2 and 3, the grain boundary portion and the inside of the grain appear due to the presence of the grain boundary, and the grain boundary portion and the inside of the grain have particulate precipitates in both of them. Was. The particulate precipitate has a large particle size at the grain boundary, but the particle size inside the grain is smaller than that at the grain boundary. The particulate precipitate at the grain boundary had Fe, Cu, and Ni according to the element mapping shown in FIG. On the other hand, although not shown, the particulate precipitate inside the grains had Mg and Ni as a result of element mapping.

粒子状析出物の大きさと存在割合について、図5に示すように倒立型金属顕微鏡(型名:DMI5000M、ライカ社製。以下同じ。)で撮影した写真を画像解析ソフト(製品名:WinRooF Ner.7.4、三谷商事株式会社製。以下同じ。)で画像処理して詳しく測定したところ、断面の各部でその範囲はやや異なっていたが、粒界部の粒子状析出物は粒径が3μm以上30μm以下の範囲内で、その平均粒径が8.1μmであり、各部での単位面積あたりの面積割合は12%以上22%以下の範囲内で存在していることが確認できた。また、粒内部の粒子状析出物は粒径が約0.6μm程度であり、各部での単位面積あたりの面積割合は約2%程度であることが確認できた。このことから、粒界部の粒子状析出物の粒径(D1:3μm〜30μm)と粒内部の粒子状析出物の粒径(D2:約0.6μm)との比(D1/D2)は、5〜50の範囲であった。また、粒界部の粒子状析出物の割合(P1:12%〜22%)と粒内部の粒子状析出物の割合(P2:約2%)との比(P1/P2)は、6〜11の範囲であった。 Regarding the size and abundance ratio of the particulate precipitates, as shown in FIG. 5, an image analysis software (product name: WinRooF Ner. 7.4, manufactured by Mitani Shoji Co., Ltd. The same applies hereinafter.) When the image was processed and measured in detail, the range was slightly different in each part of the cross section, but the particle size of the particulate precipitate at the grain boundary was 3 μm. It was confirmed that the average particle size was 8.1 μm in the range of 30 μm or less, and the area ratio per unit area in each part was in the range of 12% or more and 22% or less. Further, it was confirmed that the particle size of the particulate precipitate inside the grains was about 0.6 μm, and the area ratio per unit area in each part was about 2%. From this, the ratio (D1 / D2) of the particle size of the particulate precipitate at the grain boundary (D1: 3 μm to 30 μm) and the particle size of the particulate precipitate inside the grain (D2: about 0.6 μm) is , 5 to 50. The ratio (P1 / P2) of the ratio of particulate precipitates at the grain boundaries (P1: 12% to 22%) to the ratio of particulate precipitates inside the grains (P2: about 2%) is 6 to P2. It was in the range of 11.

(比較例1のピストン)
図6(A)及び図7に示す比較例1のピストンも粒界の存在により粒界部と粒内部とが現れており、その粒界部と粒内部は、そのいずれにも粒子状析出物が存在していた。しかし、粒界部の粒子状析出物は、実施例1の場合に比べて、粒径が小さかった。粒界部の粒子状析出物は、図9に示す元素マッピングより、実施例1と同様、FeとCuとNiとを有するものであった。一方、粒内部の粒子状析出物は、図示しないが、元素マッピングの結果では、実施例1とは異なり、MgとSiとを有するものであった。
(Piston of Comparative Example 1)
The pistons of Comparative Example 1 shown in FIGS. 6 (A) and 7 also have grain boundaries and grain interiors due to the presence of grain boundaries, and the grain boundaries and grain interiors are both particulate precipitates. Was present. However, the particle size of the particulate precipitate at the grain boundary was smaller than that of Example 1. According to the element mapping shown in FIG. 9, the particulate precipitate at the grain boundary had Fe, Cu, and Ni as in Example 1. On the other hand, although the particulate precipitate inside the grains is not shown, the elemental mapping results show that the precipitates have Mg and Si, unlike in Example 1.

粒子状析出物の大きさと存在割合について、図11(A)に示すように倒立型金属顕微鏡写真を画像解析ソフトで画像処理して詳しく測定したところ、断面の各部でその範囲はやや異なっていたが、粒界部の粒子状析出物は、粒径は3μm以上25μm以下の範囲内で、その平均粒径が6.3μmであったが、単位面積あたりの面積割合は約10%程度であり、実施例1の場合よりも小さいことが確認できた。また、粒内部の粒子状析出物は粒径が約0.4μm程度であり、単位面積あたりの面積割合が約7%程度であることが確認できた。このことから、粒界部の粒子状析出物の粒径(D1:3μm〜25μm)と粒内部の粒子状析出物の粒径(D2:約0.4μm)との比(D1/D2)は、実施例1の場合とは異なり、7.5〜62.5の範囲であった。また、粒界部の粒子状析出物の面積割合(P1:約10%)と粒内部の粒子状析出物の割合(P2:約7%)との比(P1/P2)も、実施例1の場合とは異なり、約1.4であった。 As shown in FIG. 11 (A), the size and abundance ratio of the particulate precipitates were measured in detail by image processing an inverted metal micrograph with image analysis software, and the range was slightly different in each part of the cross section. However, the particle size of the particulate precipitate at the grain boundary was in the range of 3 μm or more and 25 μm or less, and the average particle size was 6.3 μm, but the area ratio per unit area was about 10%. , It was confirmed that it was smaller than the case of Example 1. Further, it was confirmed that the particle size of the particulate precipitate inside the grains was about 0.4 μm, and the area ratio per unit area was about 7%. From this, the ratio (D1 / D2) of the particle size of the particulate precipitate at the grain boundary (D1: 3 μm to 25 μm) and the particle size of the particulate precipitate inside the grain (D2: about 0.4 μm) is , Unlike the case of Example 1, it was in the range of 7.5 to 62.5. Further, the ratio (P1 / P2) of the area ratio of the particulate precipitates at the grain boundaries (P1: about 10%) to the ratio of the particulate precipitates inside the grains (P2: about 7%) is also shown in Example 1. Unlike the case of, it was about 1.4.

(比較例2のピストン)
図6(B)及び図8に示す比較例2のピストンも粒界の存在により粒界部と粒内部とが現れており、その粒界部には粒子状析出物が存在していたが、粒内部には粒子状析出物があまり存在していなかった。粒界部の粒子状析出物は、実施例1の場合よりも粒径が大きかった。粒界部の粒子状析出物は、図10に示す元素マッピングより、実施例1や比較例1とは異なり、Siを有するものであった。
(Piston of Comparative Example 2)
The pistons of Comparative Example 2 shown in FIGS. 6 (B) and 8 also had grain boundaries and grain interiors due to the presence of grain boundaries, and particulate precipitates were present at the grain boundaries. There were not many particulate precipitates inside the grains. The particle size of the particulate precipitate at the grain boundary was larger than that in Example 1. According to the element mapping shown in FIG. 10, the particulate precipitate at the grain boundary had Si, unlike Example 1 and Comparative Example 1.

粒子状析出物の大きさと存在割合について、図11(B)に示すように倒立型金属顕微鏡写真を画像解析ソフトで画像処理して詳しく測定したところ、断面の各部でその範囲はやや異なっていたが、粒界部の粒子状析出物は、粒径が3μm以上45μm以下の範囲内で、その平均粒径が8.4μmであったが、単位面積あたりの面積割合が約35%程度であり、実施例1や比較例1の場合よりもかなり大きいことが確認できた。粒内部の粒子状析出物はほとんど存在しなかったので、粒界部の粒子状析出物の平均粒径(D1)と粒内部の粒子状析出物の平均粒径(D2)との比(D1/D2)は算出しなかった。また、粒界部の粒子状析出物の割合(P1:約35%)と粒内部の粒子状析出物の割合(P2)との比(P1/P2)も算出しなかった。なお、A4032合金は、一般的なSi系アルミニウム合金であり、Siを含有することにより、熱膨張を抑え、耐摩耗性の向上を狙ったものである。 As shown in FIG. 11 (B), the size and abundance ratio of the particulate precipitates were measured in detail by image processing an inverted metal micrograph with image analysis software, and the range was slightly different in each part of the cross section. However, the particle size of the granular precipitate at the grain boundary was in the range of 3 μm or more and 45 μm or less, and the average particle size was 8.4 μm, but the area ratio per unit area was about 35%. It was confirmed that the size was considerably larger than that of Example 1 and Comparative Example 1. Since there was almost no particulate precipitate inside the grain, the ratio of the average particle size (D1) of the particulate precipitate at the grain boundary to the average particle size (D2) of the particulate precipitate inside the grain (D1). / D2) was not calculated. In addition, the ratio (P1 / P2) of the ratio of particulate precipitates at the grain boundaries (P1: about 35%) to the proportion of particulate precipitates inside the grains (P2) was not calculated. The A4032 alloy is a general Si-based aluminum alloy, and is intended to suppress thermal expansion and improve wear resistance by containing Si.

[耐摩耗性と耐熱強度]
実施例1及び比較例1,2のピストンについて、耐摩耗性と耐熱強度を測定した。耐摩耗性については、ピストン実体から試験片を採取し、ピンオンディスクによる往復動の摺動試験により測定し、摺動部の摩耗量の測定値を相対比較して評価した。相対比較は、実施例1のピストンの結果を100とし、比較例1,2の各ピストンの結果を相対値として表1及び図12に示した。一方、耐熱強度については、ピストン実体から試験片を採取し、高温引張試験と高温回転曲げ疲労試験を行って、引張強度(表1及び図13)、0.2%耐力(表1及び図14)、1×10サイクルの破断応力(疲労強度:表1及び図15)の測定値を相対比較した。相対比較は、実施例1のピストンの結果を100とし、比較例1,2の各ピストンの結果を相対値として示した。なお、耐摩耗性は値が小さいほどよく、引張強度、0.2%耐力及び疲労強度は値が大きいほど耐熱強度がよい。
[Abrasion resistance and heat resistance]
The wear resistance and heat resistance of the pistons of Example 1 and Comparative Examples 1 and 2 were measured. The wear resistance was evaluated by collecting a test piece from the piston body, measuring it by a reciprocating sliding test using a pin-on disk, and comparing the measured values of the amount of wear of the sliding part relative to each other. In the relative comparison, the result of the piston of Example 1 was set to 100, and the result of each piston of Comparative Examples 1 and 2 was shown as a relative value in Table 1 and FIG. On the other hand, regarding the heat resistance, a test piece was taken from the piston body and subjected to a high temperature tensile test and a high temperature rotational bending fatigue test, and the tensile strength (Tables 1 and 13) and 0.2% proof stress (Tables 1 and 14) were performed. ), The measured values of breaking stress (fatigue strength: Table 1 and FIG. 15) of 1 × 10 7 cycles were compared relative to each other. In the relative comparison, the result of the piston of Example 1 was set to 100, and the result of each piston of Comparative Examples 1 and 2 was shown as a relative value. The smaller the value of wear resistance, the better, and the larger the value of tensile strength, 0.2% proof stress, and fatigue strength, the better the heat resistance.

Figure 0006875795
Figure 0006875795

表1及び図12〜図15の結果より、実施例1のピストンは、比較例1,2のピストンと比較して、耐摩耗性と耐熱強度とが向上しているのが確認できた。本発明のピストンが耐摩耗性と耐熱強度に優れている理由としては、断面の粒界部及び粒内部に粒子状析出物が存在し、その粒界部に存在する粒子状析出物がFeとCuとNiとを有しているためであり、その粒子状析出物が、耐摩耗性及び耐熱強度を向上させるように作用しているものと考えられた。また、粒内部に存在する粒子状析出物も、耐摩耗性及び耐熱強度の向上に寄与しているものと考えられた。 From the results of Table 1 and FIGS. 12 to 15, it was confirmed that the piston of Example 1 had improved wear resistance and heat resistance as compared with the pistons of Comparative Examples 1 and 2. The reason why the piston of the present invention is excellent in abrasion resistance and heat resistance is that particulate precipitates are present at the grain boundaries and inside the grains in the cross section, and the particulate precipitates existing at the grain boundaries are Fe. This is because it has Cu and Ni, and it is considered that the particulate precipitates act to improve the wear resistance and the heat resistance. It was also considered that the particulate precipitates present inside the grains also contributed to the improvement of wear resistance and heat resistance.

[実施例2及び実施例3で作製した内燃機関用ピストンの断面]
実施例2及び実施例3のアルミニウム合金で作製した内燃機関用ピストンも、実施例1のアルミニウム合金で作製した内燃機関用ピストンと同様の断面形態を観察することができた。すなわち、断面の粒界部及び粒内部には粒子状析出物が存在し、その粒界部に存在する粒子状析出物は、FeとCuとNiとを有していた。それ以外の特徴要素についても、実施例1の内燃機関用ピストンと同様であったることを確認できた。
[Cross section of piston for internal combustion engine produced in Example 2 and Example 3]
The pistons for internal combustion engines made of the aluminum alloys of Examples 2 and 3 were also able to observe the same cross-sectional morphology as the pistons for internal combustion engines made of the aluminum alloys of Example 1. That is, particulate precipitates were present at the grain boundaries and inside the grains in the cross section, and the particulate precipitates present at the grain boundaries contained Fe, Cu, and Ni. It was confirmed that the other characteristic elements were the same as those of the piston for the internal combustion engine of Example 1.

1 ピストン
2 ピン穴
11 頂部
11a 第1圧縮リング溝
11b 第2圧縮リング溝
11c オイルリング溝
11d ピストン本体の頂面
12 スカート部
1 Piston 2 Pin hole 11 Top 11a 1st compression ring groove 11b 2nd compression ring groove 11c Oil ring groove 11d Top surface of piston body 12 Skirt

Claims (3)

Si:0.4〜0.7質量%、Fe:1.4〜2.0質量%、Cu:3.5〜5.5質量%、Ni:0.3〜0.8質量%(ただし0.8質量%を除く。)、Mg:1.5〜2.0質量%、Ti:0.05〜0.10質量%を少なくとも含有し、Mn,Cr,Zrは必須に含まず不可避不純部として含んでいてもよいアルミニウム合金からなり、
断面の粒界部及び粒内部には粒子状析出物が存在し、前記粒界部に存在する粒子状析出物は、FeとCuとNiとを有しており、前記粒界部の粒子状析出物は、粒径が3μm以上30μm以下の範囲内であり、断面各部で単位面積あたり12%以上22%以下の面積割合の範囲内で存在しており、前記断面に存在する粒子状析出物のうち、前記粒界部の粒子状析出物の割合(P1)と前記粒内部の粒子状析出物の割合(P2)との比(P1/P2)が、6以上11以下の範囲内である、ことを特徴とする内燃機関用ピストン。
Si: 0.4 to 0.7% by mass, Fe: 1.4 to 2.0% by mass, Cu: 3.5 to 5.5% by mass, Ni: 0.3 to 0.8% by mass (however, 0) .) , Mg: 1.5 to 2.0% by mass, Ti: 0.05 to 0.10% by mass, Mn, Cr, Zr are not essential and inevitable impure part Consists of an aluminum alloy that may be included as
Particle-like precipitates are present at the grain boundaries and inside the grains in the cross section, and the particle-like precipitates present at the grain boundaries have Fe, Cu, and Ni, and are in the form of particles at the grain boundaries. The precipitate has a particle size in the range of 3 μm or more and 30 μm or less, exists in the range of an area ratio of 12% or more and 22% or less per unit area in each part of the cross section, and is a particulate precipitate existing in the cross section. Of these, the ratio (P1 / P2) of the ratio (P1) of the particulate precipitates at the grain boundaries to the ratio (P2) of the particulate precipitates inside the grains is in the range of 6 or more and 11 or less. , A piston for an internal combustion engine.
前記粒界部の粒子状析出物の粒径(D1)は前記粒内部の粒子状析出物の粒径(D2)よりも大きく、そとの比(D1/D2)が5以上である、請求項1に記載の内燃機関用ピストン。 Particle size (D1) of the particulate precipitate of the grain boundary portion is larger than the particle size (D2) of the particle inside of the particulate precipitate is the ratio of the outer (D1 / D2) is 5 or more, wherein Item 2. The piston for an internal combustion engine according to Item 1. Si:0.4〜0.7質量%、Fe:1.4〜2.0質量%、Cu:3.5〜5.5質量%、Ni:0.3〜0.8質量%(ただし0.8質量%を除く。)、Mg:1.5〜2.0質量%、Ti:0.05〜0.10質量%を少なくとも含有し、Mn,Cr,Zrは必須に含まず不可避不純部として含んでいてもよいアルミニウム合金連続鋳造材を準備する工程と、前記アルミニウム合金連続鋳造材を熱間鍛造する工程と、熱間鍛造後に熱処理する工程と、熱処理後に機械加工する工程とを少なくとも有し、
製造された内燃機関用ピストンの断面の粒界部及び粒内部には粒子状析出物が存在し、前記粒界部に存在する粒子状析出物は、FeとCuとNiとを有しており、前記粒界部の粒子状析出物は、粒径が3μm以上30μm以下の範囲内であり、断面各部で単位面積あたり12%以上22%以下の面積割合の範囲内で存在しており、前記断面に存在する粒子状析出物のうち、前記粒界部の粒子状析出物の割合(P1)と前記粒内部の粒子状析出物の割合(P2)との比(P1/P2)が、6以上11以下の範囲内である、ことを特徴とする内燃機関用ピストンの製造方法。
Si: 0.4 to 0.7% by mass, Fe: 1.4 to 2.0% by mass, Cu: 3.5 to 5.5% by mass, Ni: 0.3 to 0.8% by mass (however, 0) .) , Mg: 1.5 to 2.0% by mass, Ti: 0.05 to 0.10% by mass at least, Mn, Cr, Zr are not essential and inevitable impure part There are at least a step of preparing an aluminum alloy continuous casting material which may be included as, a step of hot forging the aluminum alloy continuous casting material, a step of heat treatment after hot forging, and a step of machining after the heat treatment. And
The grain boundary and the grain interior of the cross-section of a piston for an internal combustion engine produced there particulate precipitate particulate precipitates present in the grain boundary portion has Fe and Cu and Ni The granular precipitates at the grain boundary have a particle size in the range of 3 μm or more and 30 μm or less, and are present in each part of the cross section within an area ratio of 12% or more and 22% or less per unit area. Of the particulate precipitates present in the cross section, the ratio (P1 / P2) of the ratio of the granular precipitates at the grain boundaries (P1) to the proportion of the particulate precipitates inside the grains (P2) is 6. A method for manufacturing a piston for an internal combustion engine , which is within the range of 11 or less.
JP2016108881A 2016-05-31 2016-05-31 Internal combustion engine piston and its manufacturing method Active JP6875795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016108881A JP6875795B2 (en) 2016-05-31 2016-05-31 Internal combustion engine piston and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016108881A JP6875795B2 (en) 2016-05-31 2016-05-31 Internal combustion engine piston and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017214870A JP2017214870A (en) 2017-12-07
JP6875795B2 true JP6875795B2 (en) 2021-05-26

Family

ID=60575421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016108881A Active JP6875795B2 (en) 2016-05-31 2016-05-31 Internal combustion engine piston and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6875795B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6896040B2 (en) * 2019-10-10 2021-06-30 Tpr株式会社 Combination of piston and piston ring for internal combustion engine
CN111155041B (en) * 2020-01-19 2021-08-03 北京科技大学 Method for composite strengthening and toughening of regenerated wrought aluminum alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202737A (en) * 1990-11-30 1992-07-23 Showa Alum Corp Wear resistant aluminum alloy excellent in strength
JP4764094B2 (en) * 2005-08-03 2011-08-31 株式会社神戸製鋼所 Heat-resistant Al-based alloy
JP4958292B2 (en) * 2007-07-19 2012-06-20 日立金属株式会社 Aluminum die-cast alloy, cast compressor impeller made of this alloy, and method for manufacturing the same
JP6905388B2 (en) * 2016-05-31 2021-07-21 三協立山株式会社 Aluminum alloy

Also Published As

Publication number Publication date
JP2017214870A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP5526130B2 (en) Manufacturing method of engine piston profile
JP5048996B2 (en) Wear-resistant aluminum alloy material excellent in workability and method for producing the same
CN101311283B (en) High-temperature aluminium alloy
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JP4764094B2 (en) Heat-resistant Al-based alloy
JP2017503086A (en) Aluminum casting alloy with improved high temperature performance
JP6875795B2 (en) Internal combustion engine piston and its manufacturing method
JP4511156B2 (en) Aluminum alloy manufacturing method and aluminum alloy, rod-shaped material, sliding part, forged molded product and machined molded product manufactured thereby
EP3257957A1 (en) Aluminum alloy forging and method of producing the same
JP2001020047A (en) Stock for aluminum alloy forging and its production
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP6905388B2 (en) Aluminum alloy
JP5689423B2 (en) Manufacturing method of engine piston profile
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JP4312037B2 (en) Heat-resistant and high-toughness aluminum alloy, method for producing the same, and engine parts
JP7358759B2 (en) Scroll member and scroll forging product manufacturing method
JP7033481B2 (en) Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH09209069A (en) Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
JPH05287427A (en) Wear resistant aluminum alloy for cold forging and its manufacture
JP7118705B2 (en) Compressor part for transportation machine made of aluminum alloy with excellent mechanical properties at high temperature and method for manufacturing the same
JP5560549B2 (en) Aluminum sintered alloy and powder for aluminum sintered alloy
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
CN110317981A (en) High-strength, high-anti-friction cast aluminium alloy gold
JP7318283B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210423

R150 Certificate of patent or registration of utility model

Ref document number: 6875795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150