JP6874752B2 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
JP6874752B2
JP6874752B2 JP2018195513A JP2018195513A JP6874752B2 JP 6874752 B2 JP6874752 B2 JP 6874752B2 JP 2018195513 A JP2018195513 A JP 2018195513A JP 2018195513 A JP2018195513 A JP 2018195513A JP 6874752 B2 JP6874752 B2 JP 6874752B2
Authority
JP
Japan
Prior art keywords
film
image display
degrees
retardation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018195513A
Other languages
Japanese (ja)
Other versions
JP2019053304A (en
Inventor
佐々木 靖
靖 佐々木
晴信 黒岩
晴信 黒岩
向山 幸伸
幸伸 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2018195513A priority Critical patent/JP6874752B2/en
Publication of JP2019053304A publication Critical patent/JP2019053304A/en
Application granted granted Critical
Publication of JP6874752B2 publication Critical patent/JP6874752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、画像表示装置に関する。 The present invention relates to an image display device.

画像表示装置は、携帯電話、タブレット端末、パーソナルコンピューター、テレビ、PDA、電子辞書、カーナビゲーション、音楽プレーヤー、デジタルカメラ、デジタルビデオカメラ等において幅広く実用化されている。画像表示装置の小型化、軽量化が進むについて、その利用はもはやオフィスや屋内に限られず、屋外及び車や電車等での移動中の利用も拡大している。 Image display devices have been widely put into practical use in mobile phones, tablet terminals, personal computers, televisions, PDAs, electronic dictionaries, car navigation systems, music players, digital cameras, digital video cameras and the like. With the progress of miniaturization and weight reduction of image display devices, their use is no longer limited to offices and indoors, but their use is also expanding outdoors and while traveling by car or train.

そのような中、画像表示装置をサングラス等の偏光フィルタを介して視認する機会が増加している。この点に関連して、特許文献1には、液晶表示装置の視認側の偏光板より視認側にリタデーションが3000nm未満の高分子フィルムを用いた場合に、偏光板を通して画面を観察すると強い干渉色が現れるという問題が報告されている。そして、特許文献1には、前記の問題を解決する手段として、視認側の偏光板より視認側に用いる高分子フィルムのリタデーションを3000〜30000nmにすることが記載されている。 Under such circumstances, the chances of visually recognizing an image display device through a polarizing filter such as sunglasses are increasing. In relation to this point, Patent Document 1 states that when a polymer film having a retardation of less than 3000 nm is used on the viewing side of the polarizing plate on the viewing side of the liquid crystal display device, a strong interference color is observed when the screen is observed through the polarizing plate. Has been reported as a problem. Then, Patent Document 1 describes that, as a means for solving the above-mentioned problem, the retardation of the polymer film used on the viewing side rather than the polarizing plate on the viewing side is set to 3000 to 30,000 nm.

WO2011/058774WO2011 / 058774

本発明者等は、上記のような方法による画像表示装置の実用性について更なる検討を重ねたところ、リタデーションの値が一定以上に制御された配向フィルムを1枚使用する場合には、虹斑等の色調の乱れは生じなくても、そのような配向フィルムを2枚用いた場合には、場合によって顕著な虹斑等の色調の乱れが生じることを見出した。そこで、本発明は、このような問題を解決し、視認性が改善された画像表示装置を提供することを目的とする。 As a result of further studies on the practicality of the image display device by the above method, the present inventors have found that when using one alignment film in which the retardation value is controlled to a certain level or higher, rainbow spots are used. It has been found that, even if the color tone is not disturbed, when two such oriented films are used, the color tone such as rainbow spots is noticeably disturbed in some cases. Therefore, an object of the present invention is to solve such a problem and provide an image display device having improved visibility.

本発明者等は、上記問題を解決すべく日夜研究を重ねたところ、2枚の配向フィルムの配向主軸が互いに平行ではない場合に上記の現象が顕著であること、及び、2枚の配向フィルムのリタデーションに差を設けることにより、2枚の配向フィルムの配向主軸が平行でない場合でも虹斑等の色調の乱れを抑制することが可能であることを見出した。本発明者等は、斯かる知見に基づき更なる検討と改良を重ね、本発明を完成するに至った。 The present inventors have conducted research day and night to solve the above problems, and found that the above phenomenon is remarkable when the orientation principal axes of the two alignment films are not parallel to each other, and that the two alignment films are not parallel to each other. It has been found that it is possible to suppress color disorder such as rainbow spots even when the orientation principal axes of the two alignment films are not parallel by providing a difference in the retardation. Based on such findings, the present inventors have repeated further studies and improvements to complete the present invention.

代表的な本発明は、以下の通りである。
項1.
(1)連続的な発光スペクトルを有する白色光源、
(2)画像表示セル、
(3)前記画像表示セルより視認側に配置される偏光子、及び
(4)前記偏光子より視認側に3000nm以上150000nm以下のリタデーションを有する配向フィルムを2枚有し、
前記2枚の配向フィルムは、それらの配向主軸が互いに略平行であるか、又は互いに異なるリタデーションを有し、その差が1800nm以上である、
画像表示装置。
項2.
前記2枚の配向フィルムのリタデーションの差が3500nm以上である、項1に記載の画像表示装置。
項3.
前記連続的な発光スペクトルを有する白色光源が、白色発光ダイオードである、項1又は2に記載の画像表示装置。
A typical invention is as follows.
Item 1.
(1) A white light source having a continuous emission spectrum,
(2) Image display cell,
(3) A polarizing element arranged on the viewing side of the image display cell, and (4) two alignment films having a retardation of 3000 nm or more and 150,000 nm or less on the viewing side of the polarizing element.
The two alignment films have their orientation principal axes substantially parallel to each other or have different retardations, and the difference is 1800 nm or more.
Image display device.
Item 2.
Item 2. The image display device according to Item 1, wherein the difference in retardation between the two alignment films is 3500 nm or more.
Item 3.
Item 2. The image display device according to Item 1 or 2, wherein the white light source having a continuous emission spectrum is a white light emitting diode.

本発明によれば、画像表示装置の視認性が改善される。特に、偏光フィルタを介して視認した場合に生じる虹斑に代表される色調の乱れによる画質の低下が軽減される。尚、本書において、「虹斑」とは、「色斑」、「色ずれ」及び「干渉色」を含む概念である。 According to the present invention, the visibility of the image display device is improved. In particular, deterioration of image quality due to color tone disorder typified by rainbow spots that occurs when visually recognized through a polarizing filter is reduced. In this document, "rainbow spot" is a concept including "color spot", "color shift", and "interference color".

タッチパネルを備えた画像表示装置の代表的な模式図である。It is a typical schematic diagram of the image display device provided with a touch panel.

画像表示装置は、典型的に、画像表示セル及び偏光板を有する。画像表示セルには、典型的に、液晶セル又は有機ELセルが用いられる。画像表示セルとして液晶セルを用いた画像表示装置の代表的な模式図を図1に示す。 The image display device typically has an image display cell and a polarizing plate. A liquid crystal cell or an organic EL cell is typically used as the image display cell. FIG. 1 shows a typical schematic diagram of an image display device using a liquid crystal cell as an image display cell.

液晶表示装置(1)は、光源(2)、液晶セル(4)、及び機能層としてタッチパネル(6)を有する。ここで、本書において、液晶表示装置の画像が表示される側(ヒトが画像を視認する側)を「視認側」と呼び、視認側と反対側(即ち、液晶表示装置において、通常、バックライト光源と呼ばれる光源が設定される側)を「光源側」と称する。なお、図1では、右側が視認側であり、左側が光源側である。 The liquid crystal display device (1) has a light source (2), a liquid crystal cell (4), and a touch panel (6) as a functional layer. Here, in this document, the side on which the image of the liquid crystal display device is displayed (the side on which a human visually recognizes the image) is referred to as the "viewing side", and the side opposite to the viewing side (that is, in the liquid crystal display device, the backlight is usually used. The side on which the light source called the light source is set) is referred to as the "light source side". In FIG. 1, the right side is the viewing side and the left side is the light source side.

液晶セル(4)の光源側及び視認側の両方にはそれぞれ偏光板(光源側偏光板(3)及び視認側偏光板(5))が設けられている。各偏光板(3,5)は、典型的に、偏光子(7,8)と呼ばれるフィルムの両側に偏光子保護フィルム(9a,9b,10a,10b)が積層された構造を有する。図1の画像表示装置(1)には、視認側偏光板(5)より視認側に、機能層としてタッチパネル(6)が設けられている。図1に示すタッチパネルは、抵抗膜式のタッチパネルである。タッチパネル(6)は、2枚の透明導電性フィルム(11,12)がスペーサー(13)を介して配置された構造を有する。透明導電性フィルム(11,12)は、基材フィルム(11a,12a)と透明導電層(11b,12b)とを積層したものである。また、タッチパネル(6)の光源側及び視認側には、接着層を介して、透明基体である飛散防止フィルム(14,15)が設けられている。 Polarizing plates (light source side polarizing plate (3) and viewing side polarizing plate (5)) are provided on both the light source side and the visual viewing side of the liquid crystal cell (4), respectively. Each polarizing plate (3, 5) typically has a structure in which a polarizing element protective film (9a, 9b, 10a, 10b) is laminated on both sides of a film called a polarizing element (7, 8). The image display device (1) of FIG. 1 is provided with a touch panel (6) as a functional layer on the viewing side of the viewing side polarizing plate (5). The touch panel shown in FIG. 1 is a resistive touch panel. The touch panel (6) has a structure in which two transparent conductive films (11, 12) are arranged via a spacer (13). The transparent conductive film (11, 12) is a laminate of a base film (11a, 12a) and a transparent conductive layer (11b, 12b). Further, on the light source side and the visual recognition side of the touch panel (6), shatterproof films (14, 15) which are transparent substrates are provided via an adhesive layer.

なお、図1においては、視認側偏光板(5)の視認側に設ける機能層としてタッチパネル(6)を記載したが、タッチパネルに限定されるものではなく、フィルムを有する層であればどのような層であってもよい。また、タッチパネルとして、抵抗膜式のタッチパネルを記載したが、投影型静電容量式等の他の方式のタッチパネルを使用することも可能である。図1のタッチパネルは、透明導電性フィルムを2枚有する構造であるが、タッチパネルの構造はこれに限定されず、例えば、透明導電性フィルム及び/又は飛散防止フィルムの数は1枚であってもよい。液晶表示装置(1)において、飛散防止フィルムは、タッチパネル(6)の両側に必ず配置しなければならないわけではなく、どちらか一方に配置した構成でもよいし、又は両側に飛散防止フィルムを配置しない構成でもよい。飛散防止フィルムは、接着層を介してタッチパネル上に配置されてもよく、接着層を介さずにタッチパネル上に配置されても良い。 In FIG. 1, the touch panel (6) is described as a functional layer provided on the viewing side of the viewing side polarizing plate (5), but the touch panel (6) is not limited to the touch panel, and any layer having a film is used. It may be a layer. Further, although the resistance film type touch panel is described as the touch panel, it is also possible to use another type of touch panel such as a projection type capacitance type. The touch panel of FIG. 1 has a structure having two transparent conductive films, but the structure of the touch panel is not limited to this, and for example, the number of transparent conductive films and / or shatterproof films may be one. Good. In the liquid crystal display device (1), the shatterproof films are not necessarily arranged on both sides of the touch panel (6), and may be arranged on either side, or the shatterproof films are not arranged on both sides. It may be configured. The shatterproof film may be arranged on the touch panel via the adhesive layer, or may be arranged on the touch panel without the adhesive layer.

<配向フィルムの位置関係>
画像表示装置には、種々の目的で配向フィルムが使用され得る。尚、本書において、配向フィルムとは、複屈折性を有する高分子フィルムのことを意味する。画像表示装置は、視認性を改善するという観点から、3000nm以上150000nm以下のリタデーションを有する2枚の配向フィルムを有し、これらのリタデーションの値が互いに異なっていることが好ましい。前記2枚の配向フィルムのリタデーションの値の差は、特に制限されないが、視認性を改善するという観点から1800nm以上であることが好ましい。また、前記2枚の配向フィルムは、それらの配向主軸が互いに略平行であるように配置されることが好ましい。図1の液晶表示装置において、配向フィルムは、典型的に、液晶セル(4)より視認側にある偏光子(8)(以下、「視認側偏光子」と称する)の視認側にあるフィルム、すなわち視認側偏光子(8)より視認側にある偏光子保護フィルム(10b)(以下、「視認側偏光子保護フィルム」と称する)、スペーサー(13)より光源側にある透明導電性フィルム(11)の基材フィルム(11a)(以下、「光源側基材フィルム」と称する)、スペーサー(13)より視認側にある透明導電性フィルム(12)の基材フィルム(12a)(以下、「視認側基材フィルム」と称する)、視認側偏光子保護フィルム(10b)と光源側基材フィルム(11a)との間にある飛散防止フィルム(14)(以下、「光源側飛散防止フィルム」と称する)及び視認側基材フィルム12aより視認側にある飛散防止フィルム(15)(以下、「視認側飛散防止フィルム」と称する)に使用され得る。
<Positional relationship of alignment film>
Alignment films can be used in image display devices for a variety of purposes. In this document, the alignment film means a polymer film having birefringence. From the viewpoint of improving visibility, the image display device preferably has two oriented films having retardations of 3000 nm or more and 150,000 nm or less, and the values of these retardations are different from each other. The difference between the retardation values of the two alignment films is not particularly limited, but is preferably 1800 nm or more from the viewpoint of improving visibility. Further, it is preferable that the two alignment films are arranged so that their alignment principal axes are substantially parallel to each other. In the liquid crystal display device of FIG. 1, the alignment film is typically a film on the visual side of a polarizer (8) (hereinafter, referred to as a “visual deflector”) on the visual side of the liquid crystal cell (4). That is, the polarizer protective film (10b) (hereinafter, referred to as "visually visible polarizer protective film") on the visual side of the visible side polarizer (8), and the transparent conductive film (11) on the light source side of the spacer (13). ) Base film (11a) (hereinafter referred to as "light source side base film"), base film (12a) of the transparent conductive film (12) on the visual side of the spacer (13) (hereinafter, "visual recognition"). Side base film (referred to as "side base film"), shatterproof film (14) between the visible side polarizer protective film (10b) and light source side base film (11a) (hereinafter referred to as "light source side shatterproof film"). ) And the anti-scattering film (15) on the visible side of the base film 12a on the visible side (hereinafter, referred to as “the anti-scattering film on the visible side”).

前記2枚の配向フィルムが設けられる位置は、視認側偏光子(8)より視認側である限り特に制限されず任意である。例えば、図1の液晶表示装置の場合、下記表1に例示するような配置を取ることができる。 The position where the two alignment films are provided is not particularly limited as long as it is on the viewing side of the viewing side polarizing element (8) and is arbitrary. For example, in the case of the liquid crystal display device of FIG. 1, the arrangement as illustrated in Table 1 below can be adopted.

Figure 0006874752
Figure 0006874752

上記の通り、前記2枚の配向フィルムは、いずれも視認側偏光子より視認側に存在する限り、それら位置は制限されず、互いの位置関係も特に制限されない。即ち、よりリタデーションが高い配向フィルムが、もう一方の配向フィルムより視認側に配置されてもよく、よりリタデーションが高い配向フィルムがもう一方の配向フィルムより光源側に配置されていてもよい。従って、上記表1に示すパターン1〜10の例には、よりリタデーションが高い配向フィルムが、もう一方の配向フィルムより視認側に配置される場合、及びよりリタデーションが高い配向フィルムがもう一方の配向フィルムより光源側に配置される場合が含まれる。尚、上記表1に示すパターン1〜10は、単なる例示に過ぎず、他の組合せであっても良い。例えば、上記において、飛散防止フィルムは、画像表示装置に設けられ得る、任意の他の機能フィルムであり得る。 As described above, the positions of the two oriented films are not limited as long as they are both present on the viewing side of the viewing-side polarizing element, and the positional relationship with each other is not particularly limited. That is, the alignment film having a higher retardation may be arranged on the visual side of the other alignment film, and the alignment film having a higher retardation may be arranged on the light source side of the other alignment film. Therefore, in the examples of patterns 1 to 10 shown in Table 1 above, when the alignment film having a higher retardation is arranged on the visual side of the other alignment film, and the alignment film having a higher retardation is placed on the other orientation. The case where it is arranged on the light source side of the film is included. The patterns 1 to 10 shown in Table 1 are merely examples, and other combinations may be used. For example, in the above, the shatterproof film can be any other functional film that can be provided on the image display device.

本書において、単一の部材に複数の配向フィルム(フィルム群)が使用される場合、それらは1枚のフィルムとみなす。ここで、部材とは、例えば、偏光子保護フィルム、光源
側飛散防止フィルム、光源側基材フィルム、視認側基材フィルム、視認側飛散防止フィルム等の機能的及び/又は目的の観点から別個の部材と判断されるものを意味する。
In this document, when multiple oriented films (film groups) are used for a single member, they are regarded as one film. Here, the member is separate from the member from the viewpoint of functionality and / or purpose, for example, a polarizer protective film, a light source side shatterproof film, a light source side base film, a visible side base film, a visible side shatterproof film, and the like. It means what is judged to be a member.

画像表示装置が表示する画像における虹斑等の色調の乱れを抑制するという観点から、前記2枚の配向フィルムのリタデーションの差は、好ましくは1800nm以上、好ましくは2500nm以上、好ましくは3200nm以上、好ましくは3500nm以上、好ましくは4000nm以上、好ましくは5000nm以上である。 From the viewpoint of suppressing color disorder such as rainbow spots in the image displayed by the image display device, the difference in retardation between the two oriented films is preferably 1800 nm or more, preferably 2500 nm or more, preferably 3200 nm or more, preferably 3200 nm or more. Is 3500 nm or more, preferably 4000 nm or more, preferably 5000 nm or more.

画像表示装置が表示する画像における虹斑等の色調の乱れを抑制するという観点から、前記2枚の配向フィルムは、それらの配向主軸が互いに略平行であるように配置されることが好ましい。よって、2枚の配向フィルムの配向主軸が形成する角度は、好ましくは0度±20度以下であり、好ましくは0度±15度以下であり、好ましくは0度±10度以下、好ましくは0度±5度以下であり、好ましくは0度±3度以下であり、好ましくは0度±2度以下であり、好ましくは0度±1度以下であり、好ましくは0度である。尚、本書において、「以下」という用語は、「±」の次の数値にのみかかることを意味する。よって、前記「0度±20度以下」とは、0度を中心に上下20度の範囲での変動を許容することを意味する。 From the viewpoint of suppressing color tone disturbance such as rainbow spots in the image displayed by the image display device, it is preferable that the two alignment films are arranged so that their alignment principal axes are substantially parallel to each other. Therefore, the angle formed by the orientation principal axes of the two alignment films is preferably 0 degrees ± 20 degrees or less, preferably 0 degrees ± 15 degrees or less, preferably 0 degrees ± 10 degrees or less, preferably 0 degrees. The degree is ± 5 degrees or less, preferably 0 degrees ± 3 degrees or less, preferably 0 degrees ± 2 degrees or less, preferably 0 degrees ± 1 degree or less, and preferably 0 degrees. In addition, in this document, the term "below" means that it applies only to the numerical value next to "±". Therefore, the above-mentioned "0 degree ± 20 degrees or less" means that fluctuations in the range of 20 degrees up and down around 0 degrees are allowed.

上記のように2枚の配向フィルムは、互いの配向主軸が平行であることが好ましいが、2枚のフィルムのリタデーション差が大きいほど、上記角度の許容範囲は大きくなる。2枚のフィルムのリタデーション差が3500nm以上、好ましくは4000nm以上であれば、上記角度に関係なく虹斑を抑制できる。 As described above, it is preferable that the orientation principal axes of the two oriented films are parallel to each other, but the larger the retardation difference between the two films, the larger the allowable range of the angle. When the retardation difference between the two films is 3500 nm or more, preferably 4000 nm or more, rainbow spots can be suppressed regardless of the above angle.

虹斑を抑制するという観点から2枚の配向フィルムのうち、少なくとも1枚は、その配向主軸と視認側偏光子の偏光軸とが形成する角が略45度であることが好ましい。具体的には、前記角は、45度±30度以下であり、45度±20度以下、好ましくは45度±15度以下、好ましくは45度±10度以下、好ましくは45度±7度以下、好ましくは45度±5度以下、好ましくは45度±3度以下、好ましくは45度である。2枚の配向フィルムのうち、より高いリタデーションを有する配向フィルムについて上記の位置関係を満たすようにすることが好ましい。 From the viewpoint of suppressing rainbow spots, it is preferable that at least one of the two alignment films has an angle formed by the alignment main axis and the polarization axis of the viewing side polarizer of about 45 degrees. Specifically, the angle is 45 degrees ± 30 degrees or less, 45 degrees ± 20 degrees or less, preferably 45 degrees ± 15 degrees or less, preferably 45 degrees ± 10 degrees or less, preferably 45 degrees ± 7 degrees. Hereinafter, it is preferably 45 degrees ± 5 degrees or less, preferably 45 degrees ± 3 degrees or less, and preferably 45 degrees. Of the two alignment films, it is preferable that the alignment film having a higher retardation satisfies the above positional relationship.

上記のような条件を満たすように高リタデーション配向フィルムを配置することは、例えば、切断された高リタデーション配向フィルムをその配向主軸が偏光子の偏光軸と特定の角度になるように配置する方法や、高リタデーション配向フィルムを斜め延伸し、偏光子の偏光軸と特定角度になるように配置する方法により行うことができる。 Placing the high retardation oriented film so as to satisfy the above conditions is, for example, a method of arranging the cut high retardation oriented film so that the main axis of orientation is at a specific angle with the polarization axis of the polarizer. , The high retardation alignment film can be stretched diagonally and arranged at a specific angle with the polarization axis of the polarizer.

<配向フィルムのリタデーション>
前記2枚の配向フィルムのリタデーションは、虹斑を低減するという観点から、3000nm以上150000nm以下であることが好ましい。当該配向フィルムのリタデーションの下限値は、好ましくは4500nm以上、好ましくは6000nm以上、好ましくは8000nm以上、好ましくは10000nm以上である。一方、当該配向フィルムのリタデーションの上限は、それ以上のリタデーションを有するポリエステルフィルムを用いたとしても更なる視認性の改善効果は実質的に得られず、またリタデーションの高さに応じては配向フィルムの厚みも上昇する傾向があるため、薄型化への要請に反し兼ねないという観点から、150000nmと設定されるが、更に高い値とすることもできる。
<Retamination of alignment film>
The retardation of the two alignment films is preferably 3000 nm or more and 150,000 nm or less from the viewpoint of reducing iridescent spots. The lower limit of retardation of the alignment film is preferably 4500 nm or more, preferably 6000 nm or more, preferably 8000 nm or more, and preferably 10000 nm or more. On the other hand, the upper limit of the retardation of the alignment film is that even if a polyester film having a retardation higher than that is used, the effect of further improving the visibility cannot be substantially obtained, and the alignment film depends on the height of the retardation. Since the thickness of the film tends to increase, it is set to 150,000 nm from the viewpoint that it may be contrary to the demand for thinning, but it can be set to a higher value.

本書において、3000nm以上150000nm以下のリタデーションを有する1枚の配向フィルムは、その配向主軸が略平行である限り、隣接する2枚以上の配向フィルムが組合せられることによって構成されるものであっても良い。例えば、2000nmのリタデーションを有する配向フィルムと1000nmの配向フィルムの配向主軸が平行状態
にあるとき、これらは3000nmのリタデーションを有する1枚の配向フィルムとみなすことができる。ここで、略平行とは、2つの配向主軸が形成する角が0度±20度以下、好ましくは0度±15度以下、好ましくは0度±10度以下、好ましくは0度±5度以下、好ましくは0度±3度以内であり、好ましくは0度±2度以下であり、好ましくは0度±1度以下であり、好ましくは0度である。この関係にある場合には複数のフィルムを「フィルム群」として1枚のフィルムとみなすことができる。ここで、「隣接する」とは、隣り合う配向フィルムが貼り合わされている場合及び貼り合わされてない場合の両方を含む。
In this document, one alignment film having a retardation of 3000 nm or more and 150,000 nm or less may be formed by combining two or more adjacent alignment films as long as the alignment principal axes are substantially parallel. .. For example, when the alignment principal axis of the alignment film having a retardation of 2000 nm and the alignment principal axis of the alignment film of 1000 nm are in a parallel state, these can be regarded as one alignment film having a retardation of 3000 nm. Here, substantially parallel means that the angle formed by the two orientation principal axes is 0 degrees ± 20 degrees or less, preferably 0 degrees ± 15 degrees or less, preferably 0 degrees ± 10 degrees or less, preferably 0 degrees ± 5 degrees or less. It is preferably within 0 degrees ± 3 degrees, preferably 0 degrees ± 2 degrees or less, preferably 0 degrees ± 1 degrees or less, and preferably 0 degrees. In this relationship, a plurality of films can be regarded as one film as a "film group". Here, "adjacent" includes both a case where adjacent alignment films are bonded and a case where they are not bonded.

液晶表示装置は、3000nm未満のリタデーションを有する配向フィルムを任意の位置に備えていてもよい。そのような配向フィルムのリタデーションは、例えば、50nm以上、100nm以上、200nm以上、300nm以上、400nm以上、又は500nm以上である。また、そのような配向フィルムのリタデーションの上限は、例えば、3000nm未満、2500nm未満、又は2300nm未満である。 The liquid crystal display device may include an alignment film having a retardation of less than 3000 nm at an arbitrary position. The retardation of such an oriented film is, for example, 50 nm or more, 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or more, or 500 nm or more. Further, the upper limit of retardation of such an oriented film is, for example, less than 3000 nm, less than 2500 nm, or less than 2300 nm.

3000nm未満のリタデーションを有する配向フィルムは、一軸延伸配向フィルムであっても、二軸延伸配向フィルムであってもよいが、フィルムの裂け易さを低減するという観点から、二軸延伸配向フィルムであることが好ましい。 The alignment film having a retardation of less than 3000 nm may be a uniaxially stretched oriented film or a biaxially stretched oriented film, but is a biaxially stretched oriented film from the viewpoint of reducing the easiness of tearing of the film. Is preferable.

配向フィルムのリタデーションは、公知の手法に従って測定することができる。具体的には、2軸方向の屈折率と厚みを測定して求めることができる。また、商業的に入手可能な自動複屈折測定装置(例えば、KOBRA−21ADH:王子計測機器株式会社製)を用いて求めることもできる。 The retardation of the alignment film can be measured according to a known method. Specifically, it can be obtained by measuring the refractive index and the thickness in the biaxial direction. It can also be obtained using a commercially available automatic birefringence measuring device (for example, KOBRA-21ADH: manufactured by Oji Measuring Instruments Co., Ltd.).

虹斑をより効果的に抑制するという観点から、配向フィルムは、そのリタデーション(Re)と厚さ方向リタデーション(Rth)の比(Re/Rth)が、好ましくは0.2以上であり、好ましくは0.5以上、好ましくは0.6以上である。厚さ方向リタデーションは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz及び△Nyzにそれぞれフィルム厚みdを掛けて得られるリタデーションの平均値を意味する。Re/Rthが大きいほど、複屈折の作用は等方性を増し、画面への虹斑の発生をより効果的に抑制することができる。尚、本書において、単に「リタデーション」と記載する場合は、面内リタデーションを意味する。 From the viewpoint of suppressing rainbow spots more effectively, the ratio (Re / Rth) of the retardation (Re) to the thickness direction retardation (Rth) of the alignment film is preferably 0.2 or more, preferably 0.2 or more. It is 0.5 or more, preferably 0.6 or more. The thickness direction retardation means the average value of the retardation obtained by multiplying the two birefringence ΔNxz and ΔNyz when viewed from the cross section in the film thickness direction by the film thickness d, respectively. The larger the Re / Rth, the more isotropic the action of birefringence, and the more effectively the occurrence of iridescent spots on the screen can be suppressed. In addition, when it is simply described as "retamination" in this document, it means in-plane retardation.

Re/Rthの最大値は2.0(即ち、完全な1軸対称性フィルム)であるが、完全な1軸対称性フィルムに近づくにつれて配向方向と直交する方向の機械的強度が低下する傾向がある。よって、ポリエステルフィルムのRe/Rthの上限は、好ましくは1.2以下、好ましくは1.0以下である。上記比率が1.0以下であっても、画像表示装置に求められる視野角特性(左右180度、上下120度程度)を満足することが可能である。 The maximum value of Re / Rth is 2.0 (that is, a perfect axisymmetric film), but the mechanical strength in the direction orthogonal to the orientation direction tends to decrease as the film approaches the perfect axisymmetric film. is there. Therefore, the upper limit of Re / Rth of the polyester film is preferably 1.2 or less, preferably 1.0 or less. Even if the ratio is 1.0 or less, it is possible to satisfy the viewing angle characteristics (about 180 degrees left and right, 120 degrees up and down) required for an image display device.

配向フィルムは、公知の手法を適宜選択して製造することができる。例えば、配向フィルムは、ポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、シクロオレフィン樹脂、液晶性ポリマー樹脂、及びセルロース系樹脂に液晶化合物を添加した樹脂から成る群より選択される一種以上を用いて製造することができる。従って、配向フィルムは、ポリエステルフィルム、ポリカーボネートフィルム、ポリスチレンフィルム、シンジオタクチックポリスチレンフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンサルファイドフィルム、シクロオレフィンフィルム、液晶性フィルム、セルロース系樹脂に液晶化合物が添加されたフィルムであり得る。 The oriented film can be produced by appropriately selecting a known method. For example, the alignment film is obtained by adding a liquid crystal compound to a polyester resin, a polycarbonate resin, a polystyrene resin, a syndiotactic polystyrene resin, a polyether ether ketone resin, a polyphenylene sulfide resin, a cycloolefin resin, a liquid crystal polymer resin, and a cellulose resin. It can be produced using one or more selected from the group consisting of resins. Therefore, the alignment film is a polyester film, a polycarbonate film, a polystyrene film, a syndiotactic polystyrene film, a polyether ether ketone film, a polyphenylene sulfide film, a cycloolefin film, a liquid crystal film, or a film in which a liquid crystal compound is added to a cellulose resin. Can be.

配向フィルムの好ましい原料樹脂は、ポリカーボネート及び/又はポリエステル、シン
ジオタクチックポリスチレンである。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。ポリエチレンテレフタレート及びポリエチレンナフタレートに代表されるポリエステルは固有複屈折が大きく、フィルムの厚みが薄くても比較的容易に大きなリタデーションが得られるので好ましい。特に、ポリエチレンナフタレートは、ポリエステルの中でも固有複屈折率が大きいことから、リタデーションを特に高くしたい場合や、リタデーションを高く保ちながらフィルム厚みを薄くしたい場合に好適である。ポリエステル樹脂を代表例として、より具体的な配向フィルムの製造方法を後述する。
Preferred raw material resins for the alignment film are polycarbonate and / or polyester, syndiotactic polystyrene. These resins are excellent in transparency as well as thermal and mechanical properties, and retardation can be easily controlled by stretching. Polyesters typified by polyethylene terephthalate and polyethylene naphthalate are preferable because they have a large intrinsic birefringence and a large retardation can be obtained relatively easily even if the film thickness is thin. In particular, polyethylene naphthalate has a large intrinsic birefringence among polyesters, and is therefore suitable for cases where it is desired to make the retardation particularly high or when it is desired to reduce the film thickness while keeping the retardation high. A more specific method for producing an oriented film will be described later, using a polyester resin as a typical example.

<配向フィルムの製造方法>
以下に、ポリエステルフィルムを例に、配向フィルムの製造方法を説明する。ポリエステルフィルムは、任意のジカルボン酸とジオールとを縮合させて得ることができる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3−シクロペンタンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3−ジエチルコハク酸、グルタル酸、2,2−ジメチルグルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等を挙げることができる。
<Manufacturing method of alignment film>
Hereinafter, a method for producing an oriented film will be described using a polyester film as an example. The polyester film can be obtained by condensing an arbitrary dicarboxylic acid with a diol. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid. Acid, diphenoxyetanedicarboxylic acid, diphenylsulfoncarboxylic acid, anthracendicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid Acids, malonic acids, dimethylmalonic acids, succinic acids, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid Examples thereof include dimer acid, sebacic acid, suberic acid, and dodecadicarboxylic acid.

ジオールとしては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、デカメチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサジオール、2,2−ビス(4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン等を挙げることができる。 Examples of the diol include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, and 1,4. Examples thereof include -butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl) sulfone.

ポリエステルフィルムを構成するジカルボン酸成分とジオール成分はそれぞれ1種又は2種以上を用いても良い。ポリエステルフィルムを構成する具体的なポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられ、好ましくはポリエチレンテレフタレート及びポリエチレンナフタレートであり、好ましくはポリエチレンテレフタレートである。ポリエステル樹脂は他の共重合成分を含んでも良く、機械強度の点からは共重合成分の割合は3モル%以下が好ましく、好ましくは2モル%以下、更に好ましくは1.5モル%以下である。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れる。また、これらの樹脂は、延伸加工によって容易にリタデーションを制御することができる。 The dicarboxylic acid component and the diol component constituting the polyester film may be used alone or in combination of two or more. Specific examples of the polyester resin constituting the polyester film include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and the like, preferably polyethylene terephthalate and polyethylene terephthalate, preferably polyethylene terephthalate. .. The polyester resin may contain other copolymerization components, and the proportion of the copolymerization components is preferably 3 mol% or less, preferably 2 mol% or less, and further preferably 1.5 mol% or less from the viewpoint of mechanical strength. .. These resins are excellent in transparency as well as thermal and mechanical properties. In addition, the retardation of these resins can be easily controlled by stretching.

ポリエステルフィルムは、一般的な製造方法に従って得ることができる。具体的には、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施すことにより配向ポリエステルフィルムが挙げられる。ポリエステルフィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであっても良い。上記高リタデーション配向フィルムは斜め45度に延伸されたものであってもよい。 The polyester film can be obtained according to a general manufacturing method. Specifically, the polyester resin is melted and extruded into a sheet, and the unoriented polyester is stretched in the vertical direction at a temperature equal to or higher than the glass transition temperature by utilizing the speed difference of the rolls, and then laterally stretched by a tenter. An oriented polyester film can be mentioned by stretching and heat-treating. The polyester film may be a uniaxially stretched film or a biaxially stretched film. The high retardation alignment film may be stretched at an angle of 45 degrees.

ポリエステルフィルムを得るための製造条件は、公知の手法に従って適宜設定することが出来る。例えば、縦延伸温度及び横延伸温度は、通常80〜130℃であり、好ましく
は90〜120℃である。縦延伸倍率は、通常1.0〜3.5倍であり、好ましくは1.0倍〜3.0倍である。また、横延伸倍率は、通常2.5〜6.0倍であり、好ましくは3.0〜5.5倍である。
The production conditions for obtaining the polyester film can be appropriately set according to a known method. For example, the longitudinal stretching temperature and the transverse stretching temperature are usually 80 to 130 ° C., preferably 90 to 120 ° C. The longitudinal stretching ratio is usually 1.0 to 3.5 times, preferably 1.0 to 3.0 times. The lateral stretching ratio is usually 2.5 to 6.0 times, preferably 3.0 to 5.5 times.

リタデーションを特定範囲に制御することは、延伸倍率や延伸温度、フィルムの厚みを適宜設定することにより行うことができる。例えば、縦延伸と横延伸の延伸倍率差が高いほど、延伸温度が低いほど、フィルムの厚みが厚いほど高いリタデーションを得やすくなる。逆に、縦延伸と横延伸の延伸倍率差が低いほど、延伸温度が高いほど、フィルムの厚みが薄いほど低いリタデーションを得やすくなる。また、延伸温度が高いほど、トータル延伸倍率が低いほど、リタデーションと厚さ方向リタデーションの比(Re/Rth)が低いフィルムが得やすくなる。逆に、延伸温度が低いほど、トータル延伸倍率が高いほど、リタデーションと厚さ方向リタデーションの比(Re/Rth)が高いフィルムが得られる。更に、熱処理温度は、通常140〜240℃が好ましく、好ましくは180〜240℃である。 Controlling the retardation within a specific range can be performed by appropriately setting the stretching ratio, stretching temperature, and film thickness. For example, the higher the difference in stretching ratio between longitudinal stretching and transverse stretching, the lower the stretching temperature, and the thicker the film, the easier it is to obtain high retardation. On the contrary, the lower the difference in stretching ratio between the longitudinal stretching and the transverse stretching, the higher the stretching temperature, and the thinner the film thickness, the easier it is to obtain lower retardation. Further, the higher the stretching temperature and the lower the total stretching ratio, the easier it is to obtain a film having a low ratio (Re / Rth) of retardation and retardation in the thickness direction. On the contrary, the lower the stretching temperature and the higher the total stretching ratio, the higher the ratio of retardation to thickness direction retardation (Re / Rth) can be obtained. Further, the heat treatment temperature is usually preferably 140 to 240 ° C, preferably 180 to 240 ° C.

ポリエステルフィルムにおけるリタデーションの変動を抑制する為には、フィルムの厚み斑が小さいことが好ましい。リタデーション差をつけるために縦延伸倍率を低くすると、縦厚み斑の値が高くなる場合がある。縦厚み斑の値は延伸倍率のある特定の範囲で非常に高くなる領域があるため、そのような範囲を外すように製膜条件を設定することが望ましい。 In order to suppress fluctuations in retardation in the polyester film, it is preferable that the thickness unevenness of the film is small. If the longitudinal stretching ratio is lowered in order to make a difference in retardation, the value of the longitudinal thickness spot may increase. Since there is a region where the value of the vertical thickness spot becomes very high in a specific range of the draw ratio, it is desirable to set the film forming conditions so as to exclude such a range.

配向ポリエステルフィルムの厚み斑は5.0%以下であることが好ましく、4.5%以下であることがさらに好ましく、4.0%以下であることがよりさらに好ましく、3.0%以下であることが特に好ましい。フィルムの厚み斑は、任意の手段で測定することができる。例えば、フィルムの流れ方向に連続したテープ状サンプル(長さ3m)を採取し、市販される測定器(例えば、(株)セイコー・イーエム製電子マイクロメータ ミリトロン1240)を用いて、1cmピッチで100点の厚みを測定し、厚みの最大値(dmax)、最小値(dmin)、平均値(d)を求め、下記式にて厚み斑(%)を算出することができる。
厚み斑(%)=((dmax−dmin)/d)×100
The thickness unevenness of the oriented polyester film is preferably 5.0% or less, further preferably 4.5% or less, further preferably 4.0% or less, and 3.0% or less. Is particularly preferred. The thickness unevenness of the film can be measured by any means. For example, a tape-shaped sample (length 3 m) continuous in the flow direction of the film is taken, and a commercially available measuring instrument (for example, an electronic micrometer Millitron 1240 manufactured by Seiko EM Co., Ltd.) is used to measure 100 at a pitch of 1 cm. The thickness of the points is measured, the maximum value (dmax), the minimum value (dmin), and the average value (d) of the thickness are obtained, and the thickness unevenness (%) can be calculated by the following formula.
Thickness spot (%) = ((dmax-dmin) / d) x 100

<画像表示セル及び光源>
画像表示装置は、典型的に画像表示セルとして液晶セル又は有機ELセルを備え得る。また、画像表示装置は、虹斑を抑制するという観点から、連続的で幅広い発光スペクトルを有する白色光源を有することが好ましい。画像表示装置が液晶セルを備える場合、画像表示装置は、そのような光源を画像表示セルとは独立した光源として備えることが好ましい。一方、有機ELセルの場合は、それ自体が光源の機能を有するため、有機ELセル自体が、連続的で幅広い発光スペクトルを有する光を放つことが好ましい。連続的で幅広い発光スペクトルを有する光源の方式及び構造は特に制限されず、例えば、エッジライト方式又は直下型方式であり得る。「連続的で幅広い発光スペクトル」とは、少なくとも450〜650nmの波長領域、好ましくは可視光の領域において光の強度がゼロになる波長領域が存在しない発光スペクトルを意味する。可視光領域とは、例えば、400〜760nmの波長領域であり、360〜760nm、400〜830nm、又は360〜830nmであり得る。
<Image display cell and light source>
The image display device may typically include a liquid crystal cell or an organic EL cell as the image display cell. Further, the image display device preferably has a white light source having a continuous and wide emission spectrum from the viewpoint of suppressing rainbow spots. When the image display device includes a liquid crystal cell, it is preferable that the image display device includes such a light source as a light source independent of the image display cell. On the other hand, in the case of an organic EL cell, since it itself has a function of a light source, it is preferable that the organic EL cell itself emits light having a continuous and wide emission spectrum. The method and structure of the light source having a continuous and wide emission spectrum are not particularly limited, and may be, for example, an edge light method or a direct type method. The "continuous and wide emission spectrum" means an emission spectrum in which there is no wavelength region in which the light intensity becomes zero in a wavelength region of at least 450 to 650 nm, preferably in the visible light region. The visible light region is, for example, a wavelength region of 400 to 760 nm, and may be 360 to 760 nm, 400 to 830 nm, or 360 to 830 nm.

連続的で幅広い発光スペクトルを有する白色光源としては、例えば、白色発光ダイオード(白色LED)を挙げることができる。白色LEDには、蛍光体方式のもの(即ち、化合物半導体を使用した青色光、もしくは紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子)及び有機発光ダイオード(Organic light−emitting diode:OLED)等を挙げることができる。連続的で幅
広い発光スペクトルを有し、且つ、発光効率にも優れているという観点から、化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードが好ましい。
Examples of the white light source having a continuous and wide emission spectrum include a white light emitting diode (white LED). White LEDs include phosphor type (that is, an element that emits white light by combining a phosphor with a light emitting diode that emits blue light using a compound semiconductor or ultraviolet light) and an organic light-emitting diode. : OLED) and the like. White light consisting of a blue light emitting diode using a compound semiconductor and a yttrium aluminum garnet yellow phosphor combined from the viewpoint of having a continuous and wide emission spectrum and excellent luminous efficiency. Light emitting diodes are preferred.

液晶セルは、液晶表示装置において使用され得る任意の液晶セルを適宜選択して使用することができ、その方式や構造は特に制限されない。例えば、VAモード、IPSモード、TNモード、STNモードやベンド配向(π型)等の液晶セルを適宜選択して使用できる。よって、液晶セルは、公知の液晶材料及び今後開発され得る液晶材料で作製された液晶を適宜選択して使用することができる。一実施形態において好ましい液晶セルは、透過型の液晶セルである。 As the liquid crystal cell, any liquid crystal cell that can be used in the liquid crystal display device can be appropriately selected and used, and the method and structure thereof are not particularly limited. For example, a liquid crystal cell such as a VA mode, an IPS mode, a TN mode, an STN mode, or a bend orientation (π type) can be appropriately selected and used. Therefore, as the liquid crystal cell, a liquid crystal made of a known liquid crystal material or a liquid crystal material that can be developed in the future can be appropriately selected and used. A preferred liquid crystal cell in one embodiment is a transmissive liquid crystal cell.

有機ELセルは、当該技術分野において知られる有機ELセルを適宜選択して使用することができる。有機ELセルは、発光体(有機エレクトロルミネセンス発光体)であり、典型的に透明基材上に透明電極と有機発光層と金属電極とを順に積層した構造を有する。有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層とアントラセン等の蛍光性の有機固体からなる発光層との積層体、及び、このような発光層とペリレン誘導体等からなる電子注入層の積層体等を挙げることができる。このように、有機ELセルは、画像表示セルとしての機能と光源としての機能を兼ね備えるため、画像表示装置が有機ELセルを備える場合、独立した光源は不要である。即ち、画像表示装置における光源と画像表示装置は、それらの機能が発揮される限り、互いに独立した存在であっても、一体の形態であってもよい。 As the organic EL cell, an organic EL cell known in the art can be appropriately selected and used. The organic EL cell is a light emitting body (organic electroluminescence light emitting body), and typically has a structure in which a transparent electrode, an organic light emitting layer, and a metal electrode are laminated in this order on a transparent base material. The organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, and such a laminate. Examples thereof include a laminate of an electron injection layer composed of a light emitting layer and a perylene derivative and the like. As described above, since the organic EL cell has both a function as an image display cell and a function as a light source, when the image display device includes the organic EL cell, an independent light source is unnecessary. That is, the light source and the image display device in the image display device may be independent of each other or may be in an integrated form as long as their functions are exhibited.

画像表示セルとして有機ELセルを用いる場合、画像表示装置における偏光板は必須ではない。しかし、有機発光層の厚みが10nm程度ときわめて薄いために、外光が金属電極で反射して再び視認側へ出射され、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える場合がある。このような外光の鏡面反射を遮蔽するために、有機ELセルの視認側に、偏光板及び1/4波長板を設けることが好ましい。よって、画像表示装置が、有機ELセル及び偏光板を有する場合には、図1における液晶セル(4)を有機ELセルと考え、視認側偏光板(5)を偏光板として考えれば、液晶表示装置(1)における配向フィルムの位置関係をそのまま適用することができる。 When an organic EL cell is used as the image display cell, a polarizing plate in the image display device is not essential. However, since the thickness of the organic light emitting layer is as thin as about 10 nm, the external light is reflected by the metal electrode and emitted to the visual recognition side again, and when visually recognized from the outside, the display surface of the organic EL display device looks like a mirror surface. May be visible. In order to shield such specular reflection of external light, it is preferable to provide a polarizing plate and a quarter wave plate on the visible side of the organic EL cell. Therefore, when the image display device has an organic EL cell and a polarizing plate, the liquid crystal cell (4) in FIG. 1 is considered as an organic EL cell, and the viewing side polarizing plate (5) is considered as a polarizing plate. The positional relationship of the alignment film in the apparatus (1) can be applied as it is.

<偏光板及び偏光子保護フィルム>
偏光板は、フィルム状の偏光子の両側を2枚の保護フィルム(「偏光子保護フィルム」と称する場合もある)で挟んだ構造を有する。偏光子は、当該技術分野において使用される任意の偏光子(又は偏光フィルム)を適宜選択して使用することができる。代表的な偏光子としては、ポリビニルアルコール(PVA)フィルム等にヨウ素等の二色性材料を染着させたものを挙げることができるが、これに限定されるものではなく、公知及び今後開発され得る偏光子を適宜選択して用いることができる。
<Polarizer and polarizer protective film>
The polarizing plate has a structure in which both sides of a film-shaped polarizing element are sandwiched between two protective films (sometimes referred to as "polarizer protective film"). As the polarizing element, any polarizing element (or polarizing film) used in the art can be appropriately selected and used. As a typical polarizer, a polyvinyl alcohol (PVA) film or the like dyed with a dichroic material such as iodine can be mentioned, but the present invention is not limited to this, and is known and will be developed in the future. The obtained polarizer can be appropriately selected and used.

PVAフィルムは、市販品を用いることができ、例えば、「クラレビニロン((株)クラレ製)」、「トーセロビニロン(東セロ(株)製)]、「日合ビニロン(日本合成化学(株)製)]等を用いることができる。二色性材料としてはヨウ素、ジアゾ化合物、ポリメチン染料等を挙げることができる。 Commercially available PVA films can be used, for example, "Kuraray Vinylon (manufactured by Kuraray Co., Ltd.)", "Tosero Vinylon (manufactured by Tohcello Co., Ltd.)", "Nippon Synthetic Chemical Industry Co., Ltd. (Manufactured)] and the like. Examples of the bicolor material include iodine, a diazo compound, a polymethine dye and the like.

偏光子は、任意の手法で得ることができ、例えば、PVAフィルムを二色性材料で染着させたものをホウ酸水溶液中で一軸延伸し、延伸状態を保ったまま洗浄及び乾燥を行うことにより得ることができる。一軸延伸の延伸倍率は、通常4〜8倍程度であるが特に制限されない。他の製造条件等は公知の手法に従って適宜設定することができる。 The polarizer can be obtained by any method. For example, a PVA film dyed with a dichroic material is uniaxially stretched in an aqueous boric acid solution, and washed and dried while maintaining the stretched state. Can be obtained by The draw ratio of uniaxial stretching is usually about 4 to 8 times, but is not particularly limited. Other manufacturing conditions and the like can be appropriately set according to a known method.

視認側偏光子の視認側の保護フィルム(視認側偏光子保護フィルム)は、配向フィルム
又は従来から偏光子保護フィルムとして使用される任意のフィルムであり得るが、これらに限定されるものではない。
The protective film on the visual side of the viewing-side polarizing element (visual-side polarizing element protective film) can be an alignment film or any film conventionally used as a polarizing element protective film, but is not limited thereto.

視認側偏光子の光源側の保護フィルム及び光源側偏光子の保護フィルムの種類は任意であり、従来から保護フィルムとして使用されるフィルムを適宜選択して使用することができる。取り扱い性及び入手の容易性といった観点から、例えば、トリアセチルセルロース(TAC)フィルム、アクリルフィルム、及び環状オレフィン系フィルム(例えば、ノルボルネン系フィルム)、ポリプロピレンフィルム、及びポリオレフィン系フィルム(例えば、TPX)等から成る群より選択される一種以上の複屈折性を有さないフィルムを用いることが好ましい。 The type of the protective film on the light source side of the polarizing element on the viewing side and the protective film on the polarizing element on the light source side are arbitrary, and a film conventionally used as a protective film can be appropriately selected and used. From the viewpoint of handleability and availability, for example, triacetyl cellulose (TAC) film, acrylic film, cyclic olefin film (for example, norbornene film), polypropylene film, polyolefin film (for example, TPX) and the like. It is preferable to use one or more non-polyrefractive films selected from the group consisting of.

一実施形態において、視認側偏光子の光源側保護フィルム及び光源側偏光子の視認側保護フィルムは、光学補償機能を有する光学補償フィルムであることが好ましい。そのような光学補償フィルムは液晶の各方式に合わせて適宜選択することができ、例えば、トリアセチルセルロース中に液晶化合物(例えば、ディスコティック液晶化合部及び/又は複屈折性化合物)を分散させた樹脂、環状オレフィン樹脂(例えば、ノルボルネン樹脂)、プロピオニルアセテート樹脂、ポリカーボネートフィルム樹脂、アクリル樹脂、スチレンアクリロニトリル共重合体樹脂、ラクトン環含有樹脂、及びイミド基含有ポリオレフィン樹脂等なら成る群より選択される1種以上から得られるものを挙げることができる。 In one embodiment, the light source side protective film of the viewing side polarizer and the viewing side protective film of the light source side polarizing element are preferably optical compensation films having an optical compensation function. Such an optical compensation film can be appropriately selected according to each method of liquid crystal, for example, a liquid crystal compound (for example, a discotic liquid crystal compounding portion and / or a birefractive compound) is dispersed in triacetyl cellulose. It is selected from the group consisting of resins, cyclic olefin resins (for example, norbornene resins), propionyl acetate resins, polycarbonate film resins, acrylic resins, styrene acrylonitrile copolymer resins, lactone ring-containing resins, and imide group-containing polyolefin resins. The ones obtained from more than seeds can be mentioned.

光学補償フィルムは、商業的に入手可能であるため、それらを適宜選択して使用することも可能である。例えば、TN方式用の「ワイドビュー−EA」及び「ワイドビュー−T」(富士フイルム社製)、VA方式用の「ワイドビュー−B」(富士フイルム社製)、VA−TAC(コニカミノルタ社製)、「ゼオノアフィルム」(日本ゼオン社製)、「アートン」(JSR社製)、「X−plate」(日東電工社製)、並びにIPS方式用の「Z−TAC」(富士フイルム社製)、「CIG」(日東電工社製)、「P−TAC」(大倉工業社製)等が挙げられる。 Since the optical compensation films are commercially available, they can be appropriately selected and used. For example, "Wide View-EA" and "Wide View-T" for TN method (manufactured by Fujifilm), "Wide View-B" for VA method (manufactured by Fujifilm), VA-TAC (manufactured by Konica Minolta). (Manufactured by), "Zeonor Film" (manufactured by Nippon Zeon), "Arton" (manufactured by JSR), "X-plat" (manufactured by Nitto Denko), and "Z-TAC" for IPS system (manufactured by Fujifilm) ), "CIG" (manufactured by Nitto Denko), "P-TAC" (manufactured by Okura Kogyo Co., Ltd.) and the like.

偏光子保護フィルムは偏光子上に直接又は接着剤層を介して積層することができる。接着性向上の点から、接着剤を介して積層することが好ましい。接着剤としては、特に制限されず任意のものを使用できる。接着剤層を薄くする観点から、水系のもの(即ち、接着剤成分を水に溶解したもの又は水に分散させたもの)が好ましい。例えば、偏光子保護フィルムとしてポリエステルフィルムを用いる場合は、主成分としてポリビニルアルコール系樹脂、ウレタン樹脂などを用い、接着性を向上させるために、必要に応じてイソシアネート系化合物、エポキシ化合物などを配合した組成物を接着剤として用いることができる。接着剤層の厚みは10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。 The polarizer protective film can be laminated directly on the polarizer or via an adhesive layer. From the viewpoint of improving adhesiveness, it is preferable to laminate via an adhesive. The adhesive is not particularly limited and any adhesive can be used. From the viewpoint of thinning the adhesive layer, an aqueous type (that is, an adhesive component dissolved in water or dispersed in water) is preferable. For example, when a polyester film is used as the polarizer protective film, a polyvinyl alcohol-based resin, a urethane resin, or the like is used as the main component, and an isocyanate-based compound, an epoxy compound, or the like is blended as necessary in order to improve the adhesiveness. The composition can be used as an adhesive. The thickness of the adhesive layer is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less.

偏光子保護フィルムとしてTACフィルムを用いる場合、ポリビニルアルコール系の接着剤を用いて張り合わせることができる。偏光子保護フィルムとして、アクリルフィルム、環状オレフィン系フィルム、ポリプロピレフィルム、又はTPX等の透湿性の低いフィルムを用いる場合は、接着剤として光硬化性接着剤を用いることが好ましい。光硬化性樹脂としては、例えば、光硬化性エポキシ樹脂と光カチオン重合開始剤との混合物などを挙げることができる。 When a TAC film is used as the polarizer protective film, it can be bonded using a polyvinyl alcohol-based adhesive. When a film having low moisture permeability such as an acrylic film, a cyclic olefin film, a polypropire film, or TPX is used as the polarizer protective film, it is preferable to use a photocurable adhesive as the adhesive. Examples of the photocurable resin include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator.

偏光子保護フィルムの厚みは任意であり、例えば、15〜300μmの範囲、好ましくは30〜200μmの範囲で適宜設定できる。 The thickness of the polarizer protective film is arbitrary, and can be appropriately set, for example, in the range of 15 to 300 μm, preferably in the range of 30 to 200 μm.

<タッチパネル、透明導電性フィルム、基材フィルム、飛散防止フィルム>
画像表示装置は、タッチパネルを備え得る。タッチパネルの種類及び方式は特に制限さ
れないが、例えば、抵抗膜方式タッチパネル及び静電容量方式タッチパネルを挙げることができる。タッチパネルは、その方式に関係なく、通常、1枚又は2枚以上の透明導電性フィルムを有する。透明導電性フィルムは、基材フィルム上に透明導電層が積層された構造を有する。上述したように、基材フィルムには、配向フィルム、又は従来から基材フィルムとして用いられる他のフィルム若しくはガラス板等の剛性板を用いることができる。
<Touch panel, transparent conductive film, base film, shatterproof film>
The image display device may include a touch panel. The type and method of the touch panel are not particularly limited, and examples thereof include a resistive touch panel and a capacitance type touch panel. The touch panel usually has one or more transparent conductive films regardless of the method. The transparent conductive film has a structure in which a transparent conductive layer is laminated on a base film. As described above, as the base film, an alignment film or a rigid plate such as another film or a glass plate conventionally used as a base film can be used.

基材フィルムとして従来から用いられる他のフィルムとしては、透明性を有する各種の樹脂フィルムを挙げることができる。例えば、ポリエステル樹脂、アセテート樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、(メタ)アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、ポリアリレート樹脂、及びポリフェニレンサルファイド樹脂等から成る群から選択される1種以上の樹脂から得られるフィルムを使用することができる。これらの中でも、ポリエステル樹脂、ポリカーボネート樹脂、及びポリオレフィン樹脂が好ましく、好ましくはポリエステル樹脂である。 Examples of other films conventionally used as the base film include various transparent resin films. For example, polyester resin, acetate resin, polyether sulfone resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin, (meth) acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl alcohol resin, polyarylate. A film obtained from one or more kinds of resins selected from the group consisting of resins, polyphenylene sulfide resins and the like can be used. Among these, polyester resin, polycarbonate resin, and polyolefin resin are preferable, and polyester resin is preferable.

基材フィルムの厚みは任意であるが、15〜500μmの範囲が好ましい。 The thickness of the base film is arbitrary, but is preferably in the range of 15 to 500 μm.

基材フィルムは、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化等のエッチング処理や下塗り処理を施してもよい。これにより、基材フィルム上に設けられる透明導電層等との密着性を向上させることができる。また、透明導電層等を設ける前に、必要に応じて基材フィルムの表面を溶剤洗浄や超音波洗浄などにより除塵、清浄化してもよい。 The surface of the base film may be subjected to an etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, or an undercoating treatment in advance. This makes it possible to improve the adhesion with the transparent conductive layer or the like provided on the base film. Further, before providing the transparent conductive layer or the like, the surface of the base film may be dust-removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like, if necessary.

透明導電層は、直接基材フィルムに積層されても良いが、易接着層及び/又は種々の他の層を介して積層することが出来る。他の層としては、例えば、ハードコート層、インデックスマッチング(IM)層、及び低屈折率層等を挙げることができる。代表的な透明導電性フィルムの積層構造としては、次の6パターンを挙げることが出来るが、これらに限定されるわけではない。
(1)基材フィルム/易接着層/透明導電層
(2)基材フィルム/易接着層/ハードコート層/透明導電層
(3)基材フィルム/易接着層/IM(インデックスマッチング)層/透明導電層
(4)基材フィルム/易接着層/ハードコート層/IM(インデックスマッチング)層/透明導電層
(5)基材フィルム/易接着層/ハードコート層(高屈折率でIMを兼ねる)/透明導電層
(6)基材フィルム/易接着層/ハードコート層(高屈折率)/低屈折率層/透明導電性薄膜
The transparent conductive layer may be laminated directly on the base film, but can be laminated via an easy-adhesion layer and / or various other layers. Examples of other layers include a hard coat layer, an index matching (IM) layer, a low refractive index layer, and the like. The following six patterns can be mentioned as a typical laminated structure of the transparent conductive film, but the laminated structure is not limited to these.
(1) Base film / Easy-adhesion layer / Transparent conductive layer (2) Base film / Easy-adhesion layer / Hard coat layer / Transparent conductive layer (3) Base film / Easy-adhesion layer / IM (index matching) layer / Transparent conductive layer (4) Base film / Easy-adhesion layer / Hard coat layer / IM (index matching) layer / Transparent conductive layer (5) Base film / Easy-adhesion layer / Hard coat layer (also serves as IM with high refractive index ) / Transparent conductive layer (6) Base film / Easy-adhesion layer / Hard coat layer (high refractive index) / Low refractive index layer / Transparent conductive thin film

IM層は、それ自体が高屈折率層/低屈折率層の積層構成(透明導電性薄膜側が低屈折
率層)であるため、これを用いることにより、液晶表示画面を見た際にITOパターンを見え難くすることができる。上記(6)のように、IM層の高屈折率層とハードコート層を一体化させることもでき、薄型化の観点から好ましい。
Since the IM layer itself has a laminated structure of a high refractive index layer / a low refractive index layer (the transparent conductive thin film side is a low refractive index layer), by using this, the ITO pattern is displayed when the liquid crystal display screen is viewed. Can be obscured. As described in (6) above, the high refractive index layer of the IM layer and the hard coat layer can be integrated, which is preferable from the viewpoint of thinning.

上記(3)〜(6)の構成は、静電容量式のタッチパネルにおける使用に特に適している。また、上記(2)〜(6)の構成は、基材フィルムの表面にオリゴマーが析出することが防止できるという観点で好ましく、基材フィルムのもう一方の片面にもハードコート層を設けることが好ましい。 The configurations (3) to (6) above are particularly suitable for use in a capacitive touch panel. Further, the above configurations (2) to (6) are preferable from the viewpoint of preventing oligomers from depositing on the surface of the base film, and a hard coat layer may be provided on the other side of the base film. preferable.

基材フィルム上の透明導電層は、導電性金属酸化物により形成される。透明導電層を構成する導電性金属酸化物は特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の導電性金属酸化物
が用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。好ましい透明導電層は、例えば、スズドープ酸化インジウム(ITO)層及びアンチモンドープ酸化スズ(ATO)層であり、好ましくはITO層である。また、透明導電層は、Agナノワイヤー、Agインク、Agインクの自己組織化導電膜、網目状電極、CNTインク、導電性高分子であってもよい。
The transparent conductive layer on the base film is formed of a conductive metal oxide. The conductive metal oxide constituting the transparent conductive layer is not particularly limited, and is composed of a group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium and tungsten. Conductive metal oxides of at least one selected metal are used. The metal oxide may further contain the metal atoms shown in the above group, if necessary. Preferred transparent conductive layers are, for example, a tin-doped indium oxide (ITO) layer and an antimony-doped tin oxide (ATO) layer, preferably an ITO layer. Further, the transparent conductive layer may be Ag nanowire, Ag ink, self-assembled conductive film of Ag ink, mesh-like electrode, CNT ink, or conductive polymer.

透明導電層の厚みは特に制限されないが、10nm以上であることが好ましく、15〜40nmであることがより好ましく、20〜30nmであることがさらに好ましい。透明導電層の厚みが15nm以上であると、表面抵抗が例えば1×103Ω/□以下の良好な
連続被膜が得られ易い。また、透明導電層の厚みが40nm以下であると、より透明性の高い層とすることができる。
The thickness of the transparent conductive layer is not particularly limited, but is preferably 10 nm or more, more preferably 15 to 40 nm, and further preferably 20 to 30 nm. When the thickness of the transparent conductive layer is 15 nm or more, it is easy to obtain a good continuous coating having a surface resistance of, for example, 1 × 10 3 Ω / □ or less. Further, when the thickness of the transparent conductive layer is 40 nm or less, a more transparent layer can be obtained.

透明導電層は、公知の手順に従って形成することができる。例えば、真空蒸着法、スパッタリング法、イオンプレーティング法を例示できる。透明導電層は、アモルファスであってもよく、結晶性のものであってもよい。結晶性の透明導電層を形成する方法としては、一旦基材上にアモルファス膜を形成した後、該アモルファス膜を可撓性透明基材とともに加熱・結晶化することによって形成することが好ましい。 The transparent conductive layer can be formed according to a known procedure. For example, a vacuum vapor deposition method, a sputtering method, and an ion plating method can be exemplified. The transparent conductive layer may be amorphous or crystalline. As a method for forming the crystalline transparent conductive layer, it is preferable to form the amorphous film once on the base material and then heat and crystallize the amorphous film together with the flexible transparent base material.

本発明の透明導電性フィルムは、透明導電層の面内の一部が除去されてパターン化されたものであってもよい。透明導電層がパターン化された透明導電性フィルムは、基材フィルム上に透明導電層が形成されているパターン形成部と、基材フィルム上に透明導電層を有していないパターン開口部とを有する。パターン形成部の形状は、例えば、ストライプ状の他、スクエア状等が挙げられる。 The transparent conductive film of the present invention may be patterned by removing a part of the transparent conductive layer in the plane. The transparent conductive film in which the transparent conductive layer is patterned has a pattern forming portion in which the transparent conductive layer is formed on the base film and a pattern opening having no transparent conductive layer on the base film. Have. Examples of the shape of the pattern forming portion include a square shape and a striped shape.

タッチパネルには、上記透明基体として1枚又は2枚以上の飛散防止フィルムを有することが好ましい。飛散防止フィルムは、配向フィルム、又は従来から飛散防止フィルムとして用いられる各種のフィルム(例えば、上記基材フィルムについて記載した透明樹脂フィルム)を用いることもできる。飛散防止フィルムが2枚以上設けられる場合、それらは同一の材料から形成されていてもよく、異なっていても良い。 The touch panel preferably has one or more anti-scattering films as the transparent substrate. As the shatterproof film, an alignment film or various films conventionally used as a shatterproof film (for example, the transparent resin film described for the above-mentioned base film) can also be used. When two or more shatterproof films are provided, they may be made of the same material or may be different.

偏光子保護フィルム、基材フィルム、及び飛散防止フィルムは、本発明の効果を妨げない範囲で、各種の添加剤を含有させることができる。例えば、紫外線吸収剤、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活性剤等が挙げられる。また、高い透明性を奏するためにはポリエステルフィルムに実質的に粒子を含有しないことも好ましい。「粒子を実質的に含有させない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に重量で50ppm以下、好ましくは10ppm以下、特に好ましくは検出限界以下となる含有量を意味する。 The polarizer protective film, the base film, and the shatterproof film can contain various additives as long as the effects of the present invention are not impaired. For example, UV absorbers, inorganic particles, heat-resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, lightfasteners, flame retardants, heat stabilizers, antioxidants, antigelling agents. , Surfactants and the like. Further, in order to obtain high transparency, it is also preferable that the polyester film contains substantially no particles. "Substantially free of particles" means, for example, in the case of inorganic particles, the content is 50 ppm or less, preferably 10 ppm or less, and particularly preferably the detection limit or less when the inorganic element is quantified by Keiko X-ray analysis. Means quantity.

配向フィルムに種々の機能層を有していても良い。そのような機能層としては、例えば、ハードコート層、防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層、帯電防止層、シリコーン層、粘着層、防汚層、撥水層、及びブルーカット層等からなる群より選択される1種以上を用いることができる。防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層を設けることにより、斜め方向から観察したときの色斑が改善されるという効果も期待できる。 The alignment film may have various functional layers. Such functional layers include, for example, a hard coat layer, an antiglare layer, an antireflection layer, a low reflection layer, a low reflection antiglare layer, an antireflection antiglare layer, an antistatic layer, a silicone layer, an adhesive layer, and an antifouling layer. One or more selected from the group consisting of a layer, a water-repellent layer, a blue-cut layer, and the like can be used. By providing the antiglare layer, the antireflection layer, the low reflection layer, the low reflection antiglare layer, and the antireflection antiglare layer, it is expected that the color spots when observed from an oblique direction are improved.

種々の機能層を設けるに際して、配向フィルムの表面に易接着層を有することが好ましい。その際、反射光による干渉を抑える観点から、易接着層の屈折率を、機能層の屈折率と配向フィルムの屈折率の相乗平均近傍になるように調整することが好ましい。易接着層の屈折率の調整は、公知の方法を採用することができ、例えば、バインダー樹脂に、チタ
ンやジルコニウム、その他の金属種を含有させることで容易に調整することができる。
When providing various functional layers, it is preferable to have an easy-adhesion layer on the surface of the alignment film. At that time, from the viewpoint of suppressing interference due to reflected light, it is preferable to adjust the refractive index of the easy-adhesion layer so as to be close to the geometric mean of the refractive index of the functional layer and the refractive index of the alignment film. A known method can be adopted for adjusting the refractive index of the easy-adhesion layer, and for example, it can be easily adjusted by adding titanium, zirconium, or other metal species to the binder resin.

(ハードコート層)
ハードコート層は、硬度及び透明性を有する層であれば良く、通常、紫外線又は電子線で代表的には硬化させる電離放射線硬化性樹脂、熱で硬化させる熱硬化性樹脂等の各種の硬化性樹脂の硬化樹脂層として形成されたものが利用される。これら硬化性樹脂に、適宜柔軟性、その他物性等を付加する為に、熱可塑性樹脂等も適宜添加してもよい。硬化性樹脂のなかでも、代表的であり且つ優れた硬質塗膜が得られる点で好ましいのが電離放射線硬化性樹脂である。
(Hard coat layer)
The hard coat layer may be a layer having hardness and transparency, and usually has various curability such as an ionizing radiation curable resin that is typically cured by ultraviolet rays or an electron beam, and a thermosetting resin that is cured by heat. What is formed as a cured resin layer of the resin is used. A thermoplastic resin or the like may be appropriately added to these curable resins in order to appropriately add flexibility and other physical properties. Among the curable resins, the ionizing radiation curable resin is preferable in that a typical and excellent hard coating film can be obtained.

上記電離放射線硬化性樹脂としては、従来公知の樹脂を適宜採用すれば良い。なお、電離放射線硬化性樹脂としては、エチレン性二重結合を有するラジカル重合性化合物、エポキシ化合物等の様なカチオン重合性化合物等が代表的に用いられ、これら化合物はモノマー、オリゴマー、プレポリマー等としてこれらを単独で、或いは2種以上を適宜組み合わせて用いることができる。代表的な化合物は、ラジカル重合性化合物である各種(メタ)アクリレート系化合物である。(メタ)アクリレート系化合物の中で、比較的低分子量で用いる化合物としては、例えば、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、等が挙げられる。 As the ionizing radiation curable resin, a conventionally known resin may be appropriately used. As the ionizing radiation curable resin, a radically polymerizable compound having an ethylenic double bond, a cationically polymerizable compound such as an epoxy compound and the like are typically used, and these compounds are monomers, oligomers, prepolymers and the like. These can be used alone or in combination of two or more as appropriate. Typical compounds are various (meth) acrylate compounds which are radically polymerizable compounds. Among the (meth) acrylate-based compounds, examples of the compound used at a relatively low molecular weight include polyester (meth) acrylate, polyether (meth) acrylate, acrylic (meth) acrylate, epoxy (meth) acrylate, and urethane (meth). ) Acrylate, etc. can be mentioned.

モノマーとしては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N−ビニルピロリドン等の単官能モノマー;或いは、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6‐ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能モノマー等も適宜用いられる。(メタ)アクリレートとは、アクリレート或いはメタクリレートを意味する。 Examples of the monomer include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, and N-vinylpyrrolidone; or, for example, trimethylpropantri (meth) acrylate and tripropylene glycol di. (Meta) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc. Polyfunctional monomers and the like are also used as appropriate. (Meta) acrylate means acrylate or methacrylate.

電離放射線硬化性樹脂を電子線で硬化させる場合、光重合開始剤は不要であるが、紫外線で硬化させる場合は、公知の光重合開始剤を用いる。例えば、ラジカル重合系の場合は、光重合開始剤として、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることができる。カチオン重合系の場合は、光重合開始剤として、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタセロン化合物、ベンゾインスルホン酸エステル等を単独又は混合して用いることができる。 When the ionizing radiation curable resin is cured with an electron beam, a photopolymerization initiator is not required, but when it is cured with ultraviolet rays, a known photopolymerization initiator is used. For example, in the case of a radical polymerization system, acetophenones, benzophenones, thioxanthones, benzoins, benzoin methyl ethers and the like can be used alone or in combination as the photopolymerization initiator. In the case of a cationic polymerization system, an aromatic diazonium salt, an aromatic sulfonium salt, an aromatic iodonium salt, a metaserone compound, a benzoin sulfonic acid ester and the like can be used alone or in combination as the photopolymerization initiator.

ハードコート層の厚みは、適宜の厚さとすればよく、例えば0.1〜100μmであるが、通常は1〜30μmとする。また、ハードコート層は公知の各種塗工法を適宜採用して形成することができる。 The thickness of the hard coat layer may be an appropriate thickness, for example, 0.1 to 100 μm, but usually 1 to 30 μm. Further, the hard coat layer can be formed by appropriately adopting various known coating methods.

電離放射線硬化性樹脂には、適宜物性調整等の為に、熱可塑性樹脂又は熱硬化性樹脂等も適宜添加することができる。熱可塑性樹脂又は熱硬化性樹脂としては、各々、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂等が挙げられる。 A thermoplastic resin, a thermosetting resin, or the like can be appropriately added to the ionizing radiation curable resin in order to adjust the physical properties as appropriate. Examples of the thermoplastic resin or the thermosetting resin include acrylic resin, urethane resin, polyester resin and the like.

ハードコート層に耐光性を付与し、日光等に含まれる紫外線による変色、強度劣化、亀裂発生等を防止する為には、電離放射線硬化性樹脂中に紫外線吸収剤を添加することも好ましい。紫外線吸収剤を添加する場合、該紫外線吸収剤によってハードコート層の硬化が阻害されることを確実に防ぐ為、電離放射線硬化性樹脂は電子線で硬化させることが好ましい。紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物等
の有機系紫外線吸収剤、或いは粒径0.2μm以下の微粒子状の酸化亜鉛、酸化チタン、酸化セリウム等の無機系紫外線吸収剤等、公知の物の中から選択して用いれば良い。紫外線吸収剤の添加量は、電離放射線硬化性樹脂組成物中に0.01〜5質量%程度である。耐光性をより向上させる為に、紫外線吸収剤と併用して、ヒンダードアミン系ラジカル捕捉剤等のラジカル捕捉剤を添加するのが好ましい。なお、電子線照射は加速電圧70kV〜1MV、照射線量5〜100kGy(0.5〜10Mrad)程度である。
It is also preferable to add an ultraviolet absorber to the ionizing radiation curable resin in order to impart light resistance to the hard coat layer and prevent discoloration, strength deterioration, crack generation and the like due to ultraviolet rays contained in sunlight and the like. When an ultraviolet absorber is added, the ionizing radiation curable resin is preferably cured by an electron beam in order to prevent the curing of the hard coat layer from being hindered by the ultraviolet absorber. Examples of the ultraviolet absorber include organic ultraviolet absorbers such as benzotriazole compounds and benzophenone compounds, and inorganic ultraviolet absorbers such as fine particle zinc oxide, titanium oxide and cerium oxide having a particle size of 0.2 μm or less. It may be selected from known substances and used. The amount of the ultraviolet absorber added is about 0.01 to 5% by mass in the ionizing radiation curable resin composition. In order to further improve the light resistance, it is preferable to add a radical scavenger such as a hindered amine radical scavenger in combination with an ultraviolet absorber. The electron beam irradiation has an acceleration voltage of 70 kV to 1 MV and an irradiation dose of about 5 to 100 kGy (0.5 to 10 Mrad).

(防眩層)
防眩層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に防眩剤を分散した層として形成される。防眩剤としては、無機系又は有機系の微粒子が用いられる。これら微粒子の形状は、真球状、楕円状等である。微粒子は、好ましくは透明性のものが良い。この様な微粒子は、例えば、無機系微粒子としてはシリカビーズ、有機系微粒子としては樹脂ビーズが挙げられる。樹脂ビーズとしては、例えば、スチレンビーズ、メラミンビーズ、アクリルビーズ、アクリルースチレンビーズ、ポリカーボネートビーズ、ポリエチレンビーズ、ベンゾグアナミン−ホルムアルデヒドビーズなどが挙げられる。微粒子は、通常、樹脂分100質量部に対し、2〜30質量部、好ましくは10〜25質量部程度添加することができる。
(Anti-glare layer)
As the antiglare layer, a conventionally known one may be appropriately adopted, and is generally formed as a layer in which an antiglare agent is dispersed in a resin. As the antiglare agent, inorganic or organic fine particles are used. The shape of these fine particles is a true sphere, an ellipse, or the like. The fine particles are preferably transparent. Examples of such fine particles include silica beads as inorganic fine particles and resin beads as organic fine particles. Examples of the resin beads include styrene beads, melamine beads, acrylic beads, acrylic-styrene beads, polycarbonate beads, polyethylene beads, benzoguanamine-formaldehyde beads and the like. The fine particles can usually be added in an amount of 2 to 30 parts by mass, preferably about 10 to 25 parts by mass, based on 100 parts by mass of the resin content.

防眩剤を分散保持する上記樹脂は、ハードコート層と同じ様に、なるべく硬度が高い方が好ましい。よって、上記樹脂として、例えば、上記ハードコート層で述べた電離放射線硬化性樹脂、熱硬化性樹脂等の硬化性樹脂等を用いることができる。 As with the hard coat layer, the resin that disperses and holds the antiglare agent preferably has as high hardness as possible. Therefore, as the resin, for example, a curable resin such as an ionizing radiation curable resin or a thermosetting resin described in the hard coat layer can be used.

防眩層の厚みは、適宜の厚さとすればよく、通常は1〜20μm程度とする。防眩層は公知の各種塗工法を適宜採用して形成することができる。なお、防眩層を形成する為の塗液中には、防眩剤の沈殿を防ぐ為に、シリカ等の公知の沈降防止剤を適宜添加することが好ましい。 The thickness of the antiglare layer may be an appropriate thickness, and is usually about 1 to 20 μm. The antiglare layer can be formed by appropriately adopting various known coating methods. It is preferable to appropriately add a known anti-precipitation agent such as silica to the coating liquid for forming the anti-glare layer in order to prevent the anti-glare agent from precipitating.

(反射防止層)
反射防止層としては、従来公知のものを適宜採用すれば良い。一般に、反射防止層は少なくとも低屈折率層からなり、更に低屈折率層と(該低屈折率層より屈折率が高い)高屈折率層とを交互に隣接積層し且つ表面側を低屈折率層とした多層の層からなる。低屈折率層及び高屈折率層の各厚みは、用途に応じた適宜厚みとすれば良く、隣接積層時は各々0.1μm前後、低屈折率層単独時は0.1〜1μm程度であることが好ましい。
(Anti-reflective layer)
As the antireflection layer, a conventionally known one may be appropriately adopted. In general, the antireflection layer is composed of at least a low refractive index layer, and further, a low refractive index layer and a high refractive index layer (which has a higher refractive index than the low refractive index layer) are alternately laminated adjacent to each other, and the surface side has a low refractive index. It consists of multiple layers. The thickness of each of the low-refractive-index layer and the high-refractive-index layer may be appropriately set according to the intended use, and is about 0.1 μm each when adjacently laminated, and about 0.1 μm when the low-refractive index layer alone is used. Is preferable.

低屈折率層としては、シリカ、フッ化マグネシウム等の低屈折率物質を樹脂中に含有させた層、フッ素系樹脂等の低屈折率樹脂の層、低屈折率物質を低屈折率樹脂中に含有させた層、シリカ、フッ化マグネシウム等の低屈折率物質からなる層を薄膜形成法(例えば、蒸着、スパッタ、CVD、等の物理的又は化学的気相成長法)で形成した薄膜、酸化ケイ素のゾル液から酸化ケイ素ゲル膜を形成するゾルゲル法で形成した膜、或いは、低屈折率物質として空隙含有微粒子を樹脂中に含有させた層等が挙げられる。 Examples of the low refractive index layer include a layer containing a low refractive index substance such as silica and magnesium fluoride in the resin, a layer of a low refractive index resin such as a fluorine-based resin, and a low refractive index substance in the low refractive index resin. A thin film formed by a thin film forming method (for example, a physical or chemical vapor phase growth method such as vapor deposition, sputtering, CVD, etc.) or oxidation of the contained layer or a layer made of a low refractive index substance such as silica or magnesium fluoride. Examples thereof include a film formed by a sol gel method for forming a silicon oxide gel film from a silicon sol solution, and a layer in which void-containing fine particles are contained in a resin as a low refractive index substance.

上記空隙含有微粒子とは、内部に気体を含む微粒子、気体を含む多孔質構造の微粒子等のことであり、微粒子固体部分の本来の屈折率に対して、該気体による空隙によって微粒子全体としては、見かけ上屈折率が低下した微粒子を意味する。この様な空隙含有微粒子としては、特開2001−233611号公報に開示のシリカ微粒子等が挙げられる。また、空隙含有微粒子としては、シリカの様な無機物以外に、特開2002−805031号公報等に開示の中空ポリマー微粒子も挙げられる。空隙含有微粒子の粒径は、例えば5〜300nm程度である。 The void-containing fine particles are fine particles containing a gas inside, fine particles having a porous structure containing a gas, and the like. It means fine particles with an apparently reduced refractive index. Examples of such void-containing fine particles include silica fine particles disclosed in JP-A-2001-233611. In addition to inorganic substances such as silica, the void-containing fine particles include hollow polymer fine particles disclosed in JP-A-2002-805031 and the like. The particle size of the void-containing fine particles is, for example, about 5 to 300 nm.

高屈折率層としては、酸化チタン、酸化ジルコニウム、酸化亜鉛等の高屈折率物質を樹
脂中に含有させた層、フッ素非含有樹脂等の高屈折率樹脂の層、高屈折率物質を高屈折率樹脂中に含有させた層、酸化チタン、酸化ジルコニウム、酸化亜鉛等の高屈折率物質からなる層を薄膜形成法(例えば、蒸着、スパッタ、CVD、等の物理的乃至は化学的気相成長法)で形成した薄膜等が挙げられる。
Examples of the high refractive index layer include a layer containing a high refractive index substance such as titanium oxide, zirconium oxide, and zinc oxide in the resin, a layer of a high refractive index resin such as a fluorine-free resin, and a high refractive index substance. A thin film forming method (for example, physical or chemical vapor phase growth such as vapor deposition, sputtering, CVD, etc.) is performed by forming a layer contained in a rate resin or a layer made of a high refractive index substance such as titanium oxide, zirconium oxide, or zinc oxide. The thin film formed by the method) can be mentioned.

(帯電防止層)
帯電防止層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に帯電防止層を含有させた層として形成される。帯電防止層としては、有機系や無機系の化合物が用いられる。例えば、有機系化合物の帯電防止層としては、カチオン系帯電防止剤、アニオン系帯電防止剤、両性系帯電防止剤、ノニオン系帯電防止剤、有機金属系帯電防止剤等が挙げられ、またこれら帯電防止剤は低分子化合物として用いられるほか、高分子化合物としても用いられる。また、帯電防止剤としては、ポリチオフェン、ポリアニリン等の導電性ポリマー等も用いられる。また、帯電防止剤として例えば金属酸化物からなる導電性微粒子等も用いられる。導電性微粒子の粒径は透明性の点で、例えば平均粒径0.1nm〜0.1μm程度である。なお、該金属酸化物としては、例えば、ZnO、CeO、Sb、SnO、ITO(インジウムドープ酸化錫)、In、Al、ATO(アンチモンドープ酸化錫)、AZO(アルミニウムドープ酸化亜鉛)等が挙げられる。
(Antistatic layer)
As the antistatic layer, a conventionally known one may be appropriately adopted, and is generally formed as a layer containing an antistatic layer in a resin. As the antistatic layer, an organic compound or an inorganic compound is used. For example, examples of the antistatic layer of the organic compound include a cationic antistatic agent, an anionic antistatic agent, an amphoteric antistatic agent, a nonionic antistatic agent, an organic metal antistatic agent, and the like. The inhibitor is used not only as a low molecular weight compound but also as a high molecular weight compound. Further, as the antistatic agent, a conductive polymer such as polythiophene or polyaniline is also used. Further, as an antistatic agent, for example, conductive fine particles made of a metal oxide or the like are also used. The particle size of the conductive fine particles is, for example, about 0.1 nm to 0.1 μm on average in terms of transparency. Examples of the metal oxide include ZnO, CeO 2 , Sb 2 O 2 , SnO 2 , ITO (indium-doped tin oxide), In 2 O 3 , Al 2 O 3 , ATO (antimony-doped tin oxide), and the like. AZO (aluminum-doped zinc oxide) and the like can be mentioned.

帯電防止層を含有させる上記樹脂としては、例えば、上記ハードコート層で述べた様な、電離放射線硬化性樹脂、熱硬化性樹脂等の硬化性樹脂等が使用される他、帯電防止層を中間層として形成して帯電防止層自体の表面強度が不要な場合には、熱可塑性樹脂等も使用される。帯電防止層の厚みは、適宜厚さとすればよく、通常は0.01〜5μm程度とする。帯電防止層は公知の各種塗工法を適宜採用して形成することができる。 As the resin containing the antistatic layer, for example, a curable resin such as an ionizing radiation curable resin or a thermosetting resin as described in the hard coat layer is used, and an antistatic layer is used as an intermediate. When the antistatic layer itself is formed as a layer and the surface strength of the antistatic layer itself is not required, a thermoplastic resin or the like is also used. The thickness of the antistatic layer may be appropriately adjusted, and is usually about 0.01 to 5 μm. The antistatic layer can be formed by appropriately adopting various known coating methods.

(防汚層)
防汚層としては、従来公知のものを適宜採用すれば良く、一般的に、樹脂中に、シリコーンオイル、シリコーン樹脂等の珪素系化合物;フッ素系界面活性剤、フッ素系樹脂等のフッ素系化合物;ワックス等の防汚染剤を含む塗料を用いて公知の塗工法で形成することができる。防汚層の厚みは、適宜厚さとすればよく、通常は1〜10μm程度とすることが出来る。
(Anti-fouling layer)
As the antifouling layer, a conventionally known one may be appropriately adopted, and generally, a silicon-based compound such as silicone oil or silicone resin; a fluorine-based compound such as a fluorine-based surfactant or a fluorine-based resin is contained in the resin. It can be formed by a known coating method using a paint containing an antifouling agent such as wax. The thickness of the antifouling layer may be appropriately set, and is usually about 1 to 10 μm.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples, and is carried out with appropriate modifications to the extent that it can be adapted to the gist of the present invention. It is also possible, all of which are within the technical scope of the invention.

下記「画像表示装置の構成」の項に示す構成のタッチパネルを備えた画像表示装置を作製し、視認側表面に、視認側表面と平行になるように偏光フィルムを配置して白画像を表示させた。前記平行状態を維持したまま偏光フィルムの偏光軸を360度回転させながら偏光フィルムを介して正面から白画像を眺めて虹斑発生の有無及び程度を確認し、下記の基準に従って評価した。 An image display device equipped with a touch panel having the configuration shown in the section "Configuration of image display device" below is manufactured, and a polarizing film is arranged on the surface on the viewing side so as to be parallel to the surface on the viewing side to display a white image. It was. While maintaining the parallel state, the white image was viewed from the front through the polarizing film while rotating the polarizing axis of the polarizing film 360 degrees to confirm the presence and degree of rainbow spots, and the evaluation was made according to the following criteria.

<評価基準>
◎: 正面から観察したときに、虹斑が観察されない。
○: 正面から観察したときに、弱く虹斑が観察される。
×: 正面から観察したときに、強く虹斑が観察される。
<Evaluation criteria>
⊚: No rainbow spots are observed when observed from the front.
◯: When observed from the front, weak rainbow spots are observed.
X: When observed from the front, a strong rainbow spot is observed.

<画像表示装置の構成>
(1)バックライト光源:白色LED又は冷陰極管
(2)画像表示セル:液晶セル
(3)視認側偏光板:PVAとヨウ素からなる偏光子の両側にTACフィルムを張り合わせた偏光板
(4)光源側飛散防止フィルム:下記の配向フィルムA〜Cを1枚又は2枚組み合わせて使用した(下記表4参照)。2枚の配向フィルムを使用した場合は、互いの配向主軸が平行になるように貼り合わせた。
<Configuration of image display device>
(1) Backlight light source: White LED or cold cathode tube (2) Image display cell: Liquid crystal cell (3) Visualizing side polarizing plate: Polarizing plate in which TAC films are laminated on both sides of a polarizing element made of PVA and iodine (4) Light source side shatterproof film: One or two of the following alignment films A to C were used (see Table 4 below). When two alignment films were used, they were bonded so that their orientation principal axes were parallel to each other.

配向フィルムA
固有粘度0.62dl/gのPET樹脂ペレットを135℃で6時間減圧乾燥(1Torr)した後、押出機に供給し、285℃で溶解した。このポリマーを、ステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。
Orientation film A
PET resin pellets having an intrinsic viscosity of 0.62 dl / g were dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, then supplied to an extruder and dissolved at 285 ° C. This polymer is filtered through a stainless steel sintered filter medium (nominal filtration accuracy of 10 μm particles 95% cut), extruded into a sheet from the base, and then placed on a casting drum with a surface temperature of 30 ° C. using an electrostatic application casting method. It was wound and cooled and solidified to make an unstretched film.

未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約100μmの一軸配向の配向フィルムAを得た。リタデーション値は10200nmであった。Rthは13233nmであり、Re/Rth比は0.771であった。 The unstretched film was guided to a tenter stretching machine, and while gripping the end of the film with a clip, it was guided to a hot air zone having a temperature of 125 ° C. and stretched 4.0 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds, and further subjected to a relaxation treatment of 3% in the width direction to obtain a uniaxially oriented oriented film A having a film thickness of about 100 μm. It was. The retardation value was 10200 nm. The Rth was 13233 nm and the Re / Rth ratio was 0.771.

配向フィルムB
未延伸フィルムの厚みを変更することにより、フィルムの厚みを約80μmとする以外は、配向フィルムAと同様にして一軸配向の配向フィルムBを得た。リタデーション値は8300nmであった。
Orientation film B
By changing the thickness of the unstretched film, a uniaxially oriented oriented film B was obtained in the same manner as the oriented film A except that the film thickness was set to about 80 μm. The retardation value was 8300 nm.

配向フィルムC
未延伸フィルムの厚みを変更することにより、フィルムの厚みを約50μmとする以外は、配向フィルムAと同様にして一軸配向の配向フィルムCを得た。リタデーション値は5200nmであった。Rthは6600nmであり、Re/Rth比は0.788であった。
Orientation film C
A uniaxially oriented oriented film C was obtained in the same manner as the oriented film A except that the thickness of the unstretched film was changed to about 50 μm. The retardation value was 5200 nm. The Rth was 6600 nm and the Re / Rth ratio was 0.788.

(5)タッチパネル:ガラス基材の上にITOからなる透明導電層を設けたITOガラスを用いて作製した抵抗膜方式タッチパネル (5) Touch panel: A resistance film type touch panel manufactured by using ITO glass in which a transparent conductive layer made of ITO is provided on a glass base material.

(6)視認側飛散防止フィルム:下記の配向フィルム1〜5を1枚又は2枚組み合わせて使用した(下記表4参照)。2枚の配向フィルムを使用した場合は、互いの配向主軸が平行になるように貼り合わせた。 (6) Visible side shatterproof film: One or two of the following alignment films 1 to 5 were used (see Table 4 below). When two alignment films were used, they were bonded so that their orientation principal axes were parallel to each other.

配向フィルム1
配向フィルムAと同様にしてリタデーション値が10200nmである配向フィルム1を得た。Rthは13233nmであり、Re/Rth比は0.771であった。
Orientation film 1
An oriented film 1 having a retardation value of 10200 nm was obtained in the same manner as the oriented film A. The Rth was 13233 nm and the Re / Rth ratio was 0.771.

配向フィルム2
配向フィルムBと同様にして、リタデーション値が8300nmである配向フィルム2を得た。
Orientation film 2
In the same manner as the alignment film B, an alignment film 2 having a retardation value of 8300 nm was obtained.

配向フィルム3
未延伸フィルムの厚みを変更することにより、フィルムの厚みを約65μmとする以外は、配向フィルムAと同様にして一軸配向の配向フィルム3を得た。リタデーション値は
6600nmであった。
Orientation film 3
By changing the thickness of the unstretched film, a uniaxially oriented oriented film 3 was obtained in the same manner as the oriented film A except that the film thickness was set to about 65 μm. The retardation value was 6600 nm.

配向フィルム4
配向フィルムCと同様にしてリタデーション値が5200nmである配向フィルム4を得た。Rthは6600nmであり、Re/Rth比は0.788であった。
Orientation film 4
An oriented film 4 having a retardation value of 5200 nm was obtained in the same manner as the oriented film C. The Rth was 6600 nm and the Re / Rth ratio was 0.788.

配向フィルム5
未延伸フィルムを、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に2.0倍延伸した後、配向フィルムAと同様の方法で幅方向に4.0倍延伸した以外は配向フィルムAと同様にして、フィルム厚み約50μmの二軸配向の配向フィルム5を得た。リタデーション値は3200nmであった。Rthは7340nmであり、Re/Rth比は0.436であった。
Orientation film 5
The unstretched film is heated to 105 ° C. using a heated roll group and an infrared heater, then stretched 2.0 times in the traveling direction by the roll group having a peripheral speed difference, and then stretched 2.0 times in the traveling direction, and then in the same manner as the alignment film A. A biaxially oriented oriented film 5 having a film thickness of about 50 μm was obtained in the same manner as the oriented film A except that the film was stretched 4.0 times in the width direction. The retardation value was 3200 nm. The Rth was 7340 nm and the Re / Rth ratio was 0.436.

光源側飛散防止フィルム及び視認側飛散防止フィルムは、これらのうち、リタデーションの高い方の配向フィルムの配向主軸と視認側偏光子の偏光軸とが形成する角度が45度になるように配置した。また、リタデーションの値が低い方の配向フィルムは、その配向主軸とリタデーションが高い方の配向フィルムの配向主軸とが形成する角が30度になるように配置して上記虹斑評価(◎、○、×)を行った。尚、試験No.13において、光源側飛散防止フィルムとして使用した2枚の配向フィルムは、それらの配向主軸が形成する角が7度となるように配置した。また、上記虹斑評価とは別に、視認側の配向フィルムを固定せず、回転させながら虹斑を評価した。 The light source side shatterproof film and the visible side shatterproof film were arranged so that the angle formed by the alignment main axis of the alignment film having the higher retardation and the polarization axis of the viewing side polarizer was 45 degrees. Further, the alignment film having the lower retardation value is arranged so that the angle formed by the alignment spindle of the alignment film and the alignment spindle of the alignment film having the higher retardation is 30 degrees, and the rainbow spot evaluation (◎, ○) is performed. , ×) was performed. In addition, the test No. In No. 13, the two alignment films used as the light source side shatterproof film were arranged so that the angle formed by the alignment principal axes was 7 degrees. In addition to the above rainbow spot evaluation, the rainbow spot was evaluated while rotating the alignment film on the visual side without fixing it.

リタデーション(Re)は、次の通り測定した。即ち、二枚の偏光板を用いて、フィルムの配向主軸方向を求め、配向主軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR−4T)によって求め、前記二軸の屈折率差の絶対値(|Nx−Ny|)を屈折率の異方性(△Nxy)として求めた。フィルムの厚みd(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。また、リタデーションの測定と同様の方法でNx、Ny、Nzとフィルム厚みd(nm)を求め、(△Nxz×d)、(△Nyz×d)の平均値を算出して厚さ方向リタデーション(Rth)を求めた。 The retardation (Re) was measured as follows. That is, the orientation spindle direction of the film was determined using two polarizing plates, and a rectangle of 4 cm × 2 cm was cut out so that the orientation spindle directions were orthogonal to each other, and used as a measurement sample. For this sample, the refractive indexes (Nx, Ny) of the two axes orthogonal to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractive index meter (NAR-4T manufactured by Atago Co., Ltd.), and the refractive indexes of the two axes were obtained. The absolute value of the difference (| Nx-Ny |) was determined as the anisotropy of the refractive index (ΔNxy). The film thickness d (nm) was measured using an electric micrometer (Millitron 1245D, manufactured by Finereuf), and the unit was converted to nm. The retardation (Re) was determined from the product (ΔNxy × d) of the anisotropy of the refractive index (ΔNxy) and the thickness d (nm) of the film. Further, Nx, Ny, Nz and the film thickness d (nm) are obtained by the same method as the measurement of retardation, and the average value of (ΔNxz × d) and (ΔNyz × d) is calculated to perform thickness direction retardation (ΔNyz × d). Rth) was calculated.

評価結果を下記の表2に示す。 The evaluation results are shown in Table 2 below.

Figure 0006874752
Figure 0006874752

上記表2に示される通り、視認側偏光子より視認側に3000nm以上のリタデーションを有する配向フィルムを2枚設け、各配向フィルムのリタデーションが同一である場合、明確な虹斑が発生し、視認性が顕著に低下することが確認された。一方、2枚の配向フィルムのリタデーションの値に1800nm以上の差をつけることにより、虹斑の発生が抑制され、その効果はリタデーションの差をより高くすることにより顕著になることが確認された。また、2枚の配向フィルムのリタデーション差が約3500nm以上、特に4000nm以上であれば、2枚の配向フィルムの配向主軸が形成する角が45度であっても虹斑が目立たず、さらにフィルムの配向角を大きくしても虹斑が目立たないことが確認された。2枚の配向フィルムのリタデーション差が1700nm以下である場合は、両フィルムの配向主軸の角が20度以下で虹斑が目立たず、15度以下でより目立ち難いことが確認された。 As shown in Table 2 above, when two alignment films having a retardation of 3000 nm or more are provided on the viewing side of the polarizing element on the viewing side and the retardation of each alignment film is the same, clear rainbow spots occur and the visibility is visible. Was confirmed to decrease significantly. On the other hand, it was confirmed that the occurrence of iridescent spots was suppressed by making a difference of 1800 nm or more in the retardation values of the two alignment films, and the effect became remarkable by increasing the difference in retardation. Further, if the retardation difference between the two oriented films is about 3500 nm or more, particularly 4000 nm or more, the rainbow spots are not conspicuous even if the angle formed by the orientation principal axis of the two oriented films is 45 degrees, and the film further. It was confirmed that the rainbow spots were not noticeable even if the orientation angle was increased. When the retardation difference between the two oriented films was 1700 nm or less, it was confirmed that the rainbow spots were inconspicuous when the angle of the orientation principal axis of both films was 20 degrees or less, and less noticeable when the angle was 15 degrees or less.

2枚の配向フィルムの配向主軸が形成する角が、20度〜45度である場合は、「当該角(度)≦0.00667×レタデーション差+13」という式を満たせば虹斑が目立たないことが示され、好ましくは「当該角(度)≦0.00667×レタデーション差+23」を満たすことにより、より効果的に虹斑を抑制できることが示された。 When the angle formed by the alignment spindles of the two alignment films is 20 to 45 degrees, the rainbow spots should not be conspicuous if the formula "the angle (degree) ≤ 0.00667 x retardation difference +13" is satisfied. It was shown that rainbow spots can be suppressed more effectively by satisfying "the angle (degree) ≤ 0.00667 x retardation difference +23".

1 液晶表示装置
2 光源
3 光源側偏光板
4 液晶セル
5 視認側偏光板
6 タッチパネル
7 光源側偏光子
8 視認側偏光子
9a 偏光子保護フィルム
9b 偏光子保護フィルム
10a 偏光子保護フィルム
10b 視認側偏光子保護フィルム
11 光源側透明導電性フィルム
11a 光源側基材フィルム
11b 透明導電層
12 視認側透明導電性フィルム
12a 視認側基材フィルム
12b 透明導電層
13 スペーサー
14 光源側飛散防止フィルム
15 視認側飛散防止フィルム
1 Liquid crystal display device 2 Light source 3 Light source side polarizing plate 4 Liquid crystal cell 5 Visualizing side polarizing plate 6 Touch panel 7 Light source side polarizing element 8 Visualizing side polarizer 9a Polarizer protective film 9b Polarizer protective film 10a Polarizer protective film 10b Visualizing side polarizing Child protective film 11 Light source side transparent conductive film 11a Light source side base film 11b Transparent conductive layer 12 Visible side transparent conductive film 12a Visible side base film 12b Transparent conductive layer 13 Spacer 14 Light source side shatterproof film 15 Visible side shatterproof the film

Claims (8)

画像表示セル、
前記画像表示セルより視認側に配置される偏光子、及び
前記偏光子より視認側に3000nm以上150000nm以下のリタデーションを有する2枚の配向フィルム、
を有し、
前記2枚の配向フィルムは、互いに異なるリタデーションを有し、その差が1900nm以上であり、
前記2枚の配向フィルムの配向主軸が形成する角度は0度±20度以下である、
画像表示装置(但し、前記2枚の配向フィルムの配向主軸が形成する角が0.5度以下である画像表示装置、及び、前記偏光子より視認側に3000nm以上のリタデーションを有する配向フィルムが3枚以上積層された画像表示装置を除く)。
Image display cell,
A polarizing element arranged on the viewing side of the image display cell, and two alignment films having a retardation of 3000 nm or more and 150,000 nm or less on the viewing side of the polarizing element.
Have,
Oriented films of two above, have different retardation from each other, the difference is Ri der than 1900 nm,
The angle formed by the orientation spindles of the two alignment films is 0 degrees ± 20 degrees or less.
The image display apparatus (however, the image display equipment angular orientation main axis to form the two alignment films is not more than 0.5 degrees, and the orientation film having a retardation of more than 3000nm the viewing side of the polarizer (Excluding image display devices in which three or more sheets are stacked ).
画像表示セル、
前記画像表示セルより視認側に配置される偏光子、及び
前記偏光子より視認側に3000nm以上150000nm以下のリタデーションを有する2枚の配向フィルム、
を有し、
前記2枚の配向フィルムは、互いに異なるリタデーションを有し、その差が1900nm以上であり、
前記2枚の配向フィルムのうち少なくとも1枚は、その配向主軸と視認側偏光子の偏光軸とが形成する角が45度±30度以下であり
前記2枚の配向フィルムの配向主軸が形成する角度は0度±20度以下である、
画像表示装置(但し、前記2枚の配向フィルムの配向主軸が形成する角が0.5度以下である画像表示装置、及び、前記偏光子より視認側に3000nm以上のリタデーションを有する配向フィルムが3枚以上積層された画像表示装置を除く)。
Image display cell,
A polarizing element arranged on the viewing side of the image display cell, and two alignment films having a retardation of 3000 nm or more and 150,000 nm or less on the viewing side of the polarizing element.
Have,
The two oriented films have different retardations, and the difference is 1900 nm or more.
At least one of the two alignment films, angle and its orientation main axis and the polarization axis of the viewing side polarizer formed is not more than 45 degrees ± 30 degrees,
The angle formed by the orientation spindles of the two alignment films is 0 degrees ± 20 degrees or less.
The image display apparatus (however, the image display equipment angular orientation main axis to form the two alignment films is not more than 0.5 degrees, and the orientation film having a retardation of more than 3000nm the viewing side of the polarizer (Excluding image display devices in which three or more sheets are stacked ).
画像表示セル、
前記画像表示セルより視認側に配置される偏光子、及び
前記偏光子より視認側に3000nm以上150000nm以下のリタデーションを有する2枚の配向フィルム、
を有し、
前記2枚の配向フィルムは、互いに異なるリタデーションを有し、その差が1900nm以上であり、
前記2枚の配向フィルムは、その配向主軸と視認側偏光子の偏光軸とが形成する角が45度±30度以下であり
前記2枚の配向フィルムの配向主軸が形成する角度は0度±20度以下である、
画像表示装置(但し、前記2枚の配向フィルムの配向主軸が形成する角が0.5度以下である画像表示装置、及び、前記偏光子より視認側に3000nm以上のリタデーションを有する配向フィルムが3枚以上積層された画像表示装置を除く)。
Image display cell,
A polarizing element arranged on the viewing side of the image display cell, and two alignment films having a retardation of 3000 nm or more and 150,000 nm or less on the viewing side of the polarizing element.
Have,
The two oriented films have different retardations, and the difference is 1900 nm or more.
Oriented films of two above, angle and its orientation main axis and the polarization axis of the viewing side polarizer formed is not more than 45 degrees ± 30 degrees,
The angle formed by the orientation spindles of the two alignment films is 0 degrees ± 20 degrees or less.
The image display apparatus (however, the image display equipment angular orientation main axis to form the two alignment films is not more than 0.5 degrees, and the orientation film having a retardation of more than 3000nm the viewing side of the polarizer (Excluding image display devices in which three or more sheets are stacked ).
請求項1〜3のいずれかに記載の画像表示装置(但し、前記2枚の配向フィルムの配向主軸が形成する角が1度以下である画像表示装置を除く)。 The image display apparatus according to claim 1 (excluding the image display equipment corner the two orientation main axis of the oriented film is formed is not more than 1 degree). 請求項1〜3のいずれかに記載の画像表示装置(但し、前記2枚の配向フィルムの配向主軸が形成する角が3度以下である画像表示装置を除く)。 The image display apparatus according to claim 1 (excluding the image display equipment angular orientation main axis to form the two alignment films is not more than 3 degrees). 前記2枚の配向フィルムのリタデーションの差が3500nm以上である、請求項1〜のいずれかに記載の画像表示装置。 The image display device according to any one of claims 1 to 5 , wherein the difference in retardation between the two alignment films is 3500 nm or more. 画像表示装置が連続的な発光スペクトルを有する白色光源を有する、請求項1〜のいずれかに記載の画像表示装置。 The image display device according to any one of claims 1 to 6 , wherein the image display device has a white light source having a continuous emission spectrum. 画像表示装置が白色発光ダイオードを有する、請求項1〜のいずれかに記載の画像表示装置。 The image display device according to any one of claims 1 to 6 , wherein the image display device has a white light emitting diode.
JP2018195513A 2018-10-17 2018-10-17 Image display device Active JP6874752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195513A JP6874752B2 (en) 2018-10-17 2018-10-17 Image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195513A JP6874752B2 (en) 2018-10-17 2018-10-17 Image display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013023654A Division JP2014153559A (en) 2013-02-08 2013-02-08 Image display device

Publications (2)

Publication Number Publication Date
JP2019053304A JP2019053304A (en) 2019-04-04
JP6874752B2 true JP6874752B2 (en) 2021-05-19

Family

ID=66014809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195513A Active JP6874752B2 (en) 2018-10-17 2018-10-17 Image display device

Country Status (1)

Country Link
JP (1) JP6874752B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157082A (en) * 2003-11-27 2005-06-16 Stanley Electric Co Ltd Display device
JP2014010315A (en) * 2012-06-29 2014-01-20 Dainippon Printing Co Ltd Sensor film for touch panel and display device using the same
JP2014010316A (en) * 2012-06-29 2014-01-20 Dainippon Printing Co Ltd Functional film for improving image quality and display device using the same
JP6035927B2 (en) * 2012-07-11 2016-11-30 大日本印刷株式会社 Multilayer transparent substrate, laminate using multilayer transparent substrate, and image display apparatus using them
JP2014016589A (en) * 2012-07-11 2014-01-30 Dainippon Printing Co Ltd Polarizing plate-integrated conductive optical laminate and display device using the same
JP6278585B2 (en) * 2012-07-11 2018-02-14 大日本印刷株式会社 Multilayer transparent substrate, laminate using multilayer transparent substrate, and image display apparatus using them

Also Published As

Publication number Publication date
JP2019053304A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP5370601B1 (en) Image display device
WO2014123210A1 (en) Image display device
JP2014157238A (en) Image display device
JP6939833B2 (en) Image display device
JP6102300B2 (en) Image display device
JP6273674B2 (en) Image display device
JP6459159B2 (en) Image display device
JP6874752B2 (en) Image display device
JP6036375B2 (en) Image display device
JP2014157289A (en) Image display device
JP6182892B2 (en) Image display device
JP6604397B2 (en) Image display device
JP6102313B2 (en) Image display device
JP6102311B2 (en) Image display device
JP6102312B2 (en) Image display device
JP6179117B2 (en) Image display device
JP6179118B2 (en) Image display device
JP6182891B2 (en) Image display device
JP6182893B2 (en) Image display device
JP6509478B2 (en) Image display device
JP2014157237A (en) Image display device
JP2014157235A (en) Image display device
JP2018156084A (en) Image display device
WO2014123211A1 (en) Image display device
JP2014157256A (en) Image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R151 Written notification of patent or utility model registration

Ref document number: 6874752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350