JP6872884B2 - Laser frequency measuring device using optical frequency comb - Google Patents

Laser frequency measuring device using optical frequency comb Download PDF

Info

Publication number
JP6872884B2
JP6872884B2 JP2016220000A JP2016220000A JP6872884B2 JP 6872884 B2 JP6872884 B2 JP 6872884B2 JP 2016220000 A JP2016220000 A JP 2016220000A JP 2016220000 A JP2016220000 A JP 2016220000A JP 6872884 B2 JP6872884 B2 JP 6872884B2
Authority
JP
Japan
Prior art keywords
frequency
laser
comb
beat
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220000A
Other languages
Japanese (ja)
Other versions
JP2018077169A (en
Inventor
和彦 川▲崎▼
和彦 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2016220000A priority Critical patent/JP6872884B2/en
Publication of JP2018077169A publication Critical patent/JP2018077169A/en
Application granted granted Critical
Publication of JP6872884B2 publication Critical patent/JP6872884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Lasers (AREA)

Description

本発明は、光周波数コムを使ったレーザ周波数測定装置に係り、特に、平均化時間(測定時間)に応じて、より高い精度(小さい不確かさ)でレーザの周波数を測定可能な、光周波数コムを使ったレーザ周波数測定装置に関する。 The present invention relates to a laser frequency measuring device using an optical frequency comb, and in particular, an optical frequency comb capable of measuring a laser frequency with higher accuracy (small uncertainty) according to an averaging time (measurement time). Regarding a laser frequency measuring device using.

周波数測定は、ある測定時間内に波が何回振動するかを測定するものであり、1秒当たりに振動する回数として表現する。一般に、測定時間(平均化時間)の大小は平均化効果の大小につながるため、測定時間によって周波数の安定度は変わり、それに応じて測定の不確かさも変わる。したがって、レーザの周波数測定では、その目的に応じて平均化時間を設定して値付けすることが求められる。 Frequency measurement measures how many times a wave vibrates within a certain measurement time, and is expressed as the number of vibrations per second. In general, the magnitude of the measurement time (averaging time) is linked to the magnitude of the averaging effect, so that the frequency stability changes depending on the measurement time, and the measurement uncertainty also changes accordingly. Therefore, in the frequency measurement of the laser, it is required to set and price the averaging time according to the purpose.

近年の光周波数コム装置(光周波数コム又は光コムと称する)の発明により、レーザの周波数を周波数の国家標準にトレーサブルな基準周波数発振器を使って高精度に測定することができるようになった(特許文献1、2参照)。光周波数コムは縦モードの間隔、即ち繰り返し周波数がfrepで櫛状のスペクトルのレーザを出力する装置であり、frepがどの波長帯においても正確に等しいという性質を持っている(非特許文献1参照)。 Recent inventions of optical frequency comb devices (referred to as optical frequency combs or optical combs) have made it possible to measure laser frequencies with high accuracy using a reference frequency oscillator that is traceable to national standards of frequency (referred to as optical frequency combs or optical combs). See Patent Documents 1 and 2). An optical frequency comb is a device that outputs a laser with a comb-shaped spectrum with a vertical mode interval, that is, a repetition frequency of f rep , and has the property that f rep is exactly equal in any wavelength band (Non-Patent Document). 1).

図1に、光周波数コムと測定対象となるレーザ(測定対象レーザと称する)の周波数スペクトルの模式図を示す。 FIG. 1 shows a schematic diagram of the frequency spectra of an optical frequency comb and a laser to be measured (referred to as a laser to be measured).

光コムにおけるn番目のコムモードの発振周波数νnは、以下の式により表わすことができる。
νn=n・frep+fCEO …(1)
The oscillation frequency ν n of the nth comb mode in the optical comb can be expressed by the following equation.
ν n = n · f rep + f CEO … (1)

ここで、fCEOは端数のキャリアエンベロップオフセット周波数(CEO周波数と称する)、nはモード次数であり、最初のモードをゼロ番目としたとき、何番目のモードかを示す。 Here, f CEO is a fractional carrier envelope offset frequency (referred to as CEO frequency), n is a mode order, and indicates which mode the first mode is when the zeroth mode is set.

repとfCEOを基準周波数発振器に安定化させた光コムの発振周波数νnと測定対象レーザ(周波数νDUT)とを干渉させて発生するビート周波数fBを測定することで、測定対象レーザの絶対周波数νDUTを得ることができる。
νDUT=νn+fB …(2)
By measuring the beat frequency f B generated by interfering the oscillation frequency ν n of the optical comb with f rep and f CEO stabilized on the reference frequency oscillator and the laser to be measured (frequency ν DUT ), the laser to be measured Absolute frequency ν DUT can be obtained.
ν DUT = ν n + f B … (2)

このため、基準周波数発振器を周波数の国家標準に同期させてレーザの周波数を測定することで国家標準にトレーサブルに測定することができる。 Therefore, by synchronizing the reference frequency oscillator with the national standard of frequency and measuring the frequency of the laser, it is possible to measure traceably to the national standard.

特開2007−256365号公報JP-A-2007-256365 特開2016−17892号公報Japanese Unexamined Patent Publication No. 2016-17892

H.Inaba,Y.Nakajima,F.L.Hong,K.Minoshima,J.Ishikawa,A.Onae,H.Matsumoto,M.Wouters,B.Warrington,and N.Brown,"Frequency Mesurement Capability of a Fiber-Based Frequency Comb at 633nm,"IEEE Transactions on Instrumentation and Measurement,vol.58,pp.1234-1240,April 2009.H.Inaba, Y.Nakajima, FLHong, K.Minoshima, J.Ishikawa, A.Onae, H.Matsumoto, M.Wouters, B.Warrington, and N.Brown, "Frequency Mesurement Capability of a Fiber-Based Frequency" Comb at 633nm, "IEEE Transactions on Instrumentation and Measurement, vol.58, pp.1234-1240, April 2009.

ここで、レーザの周波数を測定する際の標準として古くから用いられてきた、よう素安定化He−Neレーザについて、その特徴を上げて光周波数コムとの違いについて述べる。 Here, the iodine-stabilized He-Ne laser, which has been used for a long time as a standard for measuring the frequency of the laser, will be described by raising its characteristics and different from the optical frequency comb.

よう素安定化He−Neレーザは、国際度量衡委員会CIPMが不確かさ2.1×10-11で勧告する分子吸収線に安定化したレーザである。分子吸収線の周波数の不確かさに加えて、吸収線に安定化する際の電気的な調整誤差などによる周波数のオフセットや長期的なドリフトや発振再現性に伴う周波数変動などにより、その絶対周波数は11乗台で不確かなレーザである。しかしながら、オフセット量を中心とした比較的短い時間の周波数安定度は極めて高く、例えば、平均化時間1秒で12乗台、1000秒で13乗台前半になるといった特徴がある。 The iodine-stabilized He-Ne laser is a laser stabilized to the molecular absorption line recommended by the International Committee for Weights and Measures CIPM with an uncertainty of 2.1 × 10 -11. In addition to the uncertainty of the frequency of the molecular absorption line, the absolute frequency is due to the frequency offset due to the electrical adjustment error when stabilizing the absorption line, the long-term drift, and the frequency fluctuation due to the oscillation reproducibility. It is an uncertain laser at the 11th platform. However, the frequency stability for a relatively short time centered on the offset amount is extremely high, and for example, the averaging time is 1 second, which is 12th power, and 1000 seconds, which is the first half of 13th power.

これに対して光周波数コムの場合は、マイクロ波の基準周波数発振器に位相同期をかけて発振周波数を安定化する。また、基準周波数発振器はGPS信号の時間間隔の測定とインターネットによる測定結果の比較システムを利用することで、周波数の国家標準に同期をかけて安定化することができる。これにより、平均化時間1日(8640秒)で評価した場合には不確かさは1.1×10-13に到達する。しかしながら同期のメカニズム上、比較的短い時間の安定度はあまり良くない。例えば1000秒平均では12乗台であるため、よう素安定化He−Neレーザと比較すると1桁劣る。また、基準周波数発振器そのものの安定度についても、ユーザが比較的手ごろな値段で入手できるルビジウムRbの場合では1秒平均で11乗台であり、よう素安定化He−Neレーザと比較すると悪くなる。一般に測定値の不確かさは、測定値の偏り(真値に対するオフセット量)とばらつきによって表現されることから、安定度が悪いとその分不確かさは大きくなってしまう。 On the other hand, in the case of an optical frequency comb, the oscillation frequency is stabilized by performing phase synchronization on the microwave reference frequency oscillator. In addition, the reference frequency oscillator can be stabilized by synchronizing with the national standard of frequency by using the measurement of the time interval of the GPS signal and the comparison system of the measurement result by the Internet. As a result, the uncertainty reaches 1.1 × 10 -13 when evaluated with an averaging time of 1 day (8640 seconds). However, due to the synchronization mechanism, the stability for a relatively short time is not very good. For example, since the average for 1000 seconds is 12th power, it is an order of magnitude inferior to the iodine-stabilized He-Ne laser. In addition, the stability of the reference frequency oscillator itself is 11th power on average per second in the case of rubidium Rb, which can be obtained at a relatively reasonable price by the user, which is worse than that of the iodine-stabilized He-Ne laser. .. In general, the uncertainty of the measured value is expressed by the bias (offset amount with respect to the true value) and the variation of the measured value. Therefore, if the stability is poor, the uncertainty increases accordingly.

つまり、光周波数コムは周波数の国家標準にトレーサブルで不確かさの小さい高精度な測定装置と言われるが、実際に、一般のユーザが使用できる基準周波数発振器には限りがあるため、平均化時間によっては安定度が悪く測定の不確かさが大きくなるという問題があった。 In other words, the optical frequency comb is said to be a high-precision measuring device that is traceable to the national standard of frequency and has low uncertainty, but in reality, the reference frequency oscillator that can be used by general users is limited, so depending on the averaging time. Has a problem of poor stability and increased measurement uncertainty.

本発明は、前記従来の問題点を解決するべくなされたもので、平均化時間(測定時間)に応じて、より高い精度(小さい不確かさ)でレーザの周波数を測定可能とすることを課題とする。 The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to make it possible to measure a laser frequency with higher accuracy (small uncertainty) according to an averaging time (measurement time). To do.

一般に周波数安定化レーザは短い平均化時間での安定度は高い。これに対して光周波数コムの方は絶対値は正確で、さらには、長い平均化時間で周波数を測定すれば、ばらつきも小さくなり正確な値に収束するといった性質がある。本発明は、両者の長所を組み合わせることによって、目的に応じて求められるさまざまな平均化時間で、より高い精度(小さい不確かさ)でレーザ周波数を測定できる装置を提供する。 In general, frequency-stabilized lasers are highly stable over short averaging times. On the other hand, the optical frequency comb has the property that the absolute value is accurate, and if the frequency is measured with a long averaging time, the variation becomes small and the value converges to an accurate value. The present invention provides an apparatus capable of measuring a laser frequency with higher accuracy (small uncertainty) at various averaging times required according to an object by combining the advantages of both.

即ち、本発明は、光周波数コムと、周波数安定化レーザと、前記光周波数コムと前記周波数安定化レーザとを干渉させた際に発生する第1のビート周波数を測定する第1の周波数カウンタと、前記周波数安定化レーザと測定対象レーザとの間で発生する第2のビート周波数を測定する第2の周波数カウンタと、前記第1及び第2のビート周波数に基づき前記測定対象レーザの周波数を算出する演算部とを備え、周波数測定の際の平均化時間に応じて、前記第2のビート周波数または前記第1及び第2のビート周波数を用いて、前記測定対象レーザの周波数を測定することにより、前記課題を解決するものである。 That is, the present invention comprises an optical frequency comb, a frequency stabilizing laser, and a first frequency counter that measures a first beat frequency generated when the optical frequency comb and the frequency stabilizing laser interfere with each other. , The frequency of the measurement target laser is calculated based on the second frequency counter for measuring the second beat frequency generated between the frequency stabilization laser and the measurement target laser and the first and second beat frequencies. By measuring the frequency of the measurement target laser using the second beat frequency or the first and second beat frequencies according to the averaging time at the time of frequency measurement. , The problem is solved.

ここで、周波数測定の際の前記平均化時間に関して、所定の平均化時間の領域においては、前記第2のビート周波数のみを用いて、前記測定対象レーザの周波数を測定することができる。 Here, with respect to the averaging time at the time of frequency measurement, the frequency of the measurement target laser can be measured using only the second beat frequency in the region of the predetermined averaging time.

又、前記所定の平均化時間の領域は、前記周波数安定化レーザの安定度が前記光周波数コムの安定度よりも高い平均化時間領域とすることができる。 Further, the region of the predetermined averaging time can be an averaging time region in which the stability of the frequency-stabilized laser is higher than the stability of the optical frequency comb.

又、前記所定の平均化時間の領域は、前記周波数安定化レーザによる測定の不確かさが前記光周波数コムの不確かさよりも小さい平均化時間領域とすることができる。 Further, the region of the predetermined averaging time can be an averaging time region in which the uncertainty of measurement by the frequency-stabilized laser is smaller than the uncertainty of the optical frequency comb.

又、前記所定の平均化時間の領域は、前記第2のビート周波数のばらつきが、前記第1のビート周波数と前記第2のビート周波数を加算または減算した値のばらつきよりも小さい領域とすることができる。 Further, the region of the predetermined averaging time is a region in which the variation of the second beat frequency is smaller than the variation of the values obtained by adding or subtracting the first beat frequency and the second beat frequency. Can be done.

又、前記所定の平均化時間の領域は、前記第2のビート周波数のばらつきと前記周波数安定化レーザの発振周波数の偏りを加味した不確かさが、前記第1のビート周波数と前記第2のビート周波数を加算または減算した値のばらつきと前記光周波数コムの発振周波数の偏りを加味した不確かさよりも小さい領域とすることができる。 Further, in the region of the predetermined averaging time, the uncertainty in consideration of the variation of the second beat frequency and the deviation of the oscillation frequency of the frequency stabilization laser is the uncertainty of the first beat frequency and the second beat. The region can be set to be smaller than the uncertainty considering the variation of the value obtained by adding or subtracting the frequency and the deviation of the oscillation frequency of the optical frequency comb.

本発明は、又、光周波数コムと、周波数安定化レーザと、前記光周波数コムと前記周波数安定化レーザとを干渉させた際に発生する第1のビート周波数を測定する第1の周波数カウンタと、前記周波数安定化レーザと測定対象レーザとの間で発生する第2のビート周波数を測定する第2の周波数カウンタと、前記光周波数コムと前記測定対象レーザとを干渉させた際に発生する第3のビート周波数を測定する第3の周波数カウンタとを備え、前記光周波数コムと前記周波数安定化レーザとを干渉させた際に発生する前記第1のビート周波数及び前記周波数安定化レーザと測定対象レーザとの間で発生する前記第2のビート周波数に加えて、前記光周波数コムと前記測定対象レーザとを干渉させた際に発生する前記第3のビート周波数を測定することで、周波数変動の違いを判断することができるようにしたものである The present invention also comprises an optical frequency comb, a frequency stabilizing laser, and a first frequency counter that measures a first beat frequency generated when the optical frequency comb and the frequency stabilizing laser interfere with each other. , A second frequency counter that measures the second beat frequency generated between the frequency-stabilized laser and the measurement target laser, and a second frequency counter that is generated when the optical frequency comb and the measurement target laser interfere with each other. A third frequency counter for measuring the beat frequency of 3 is provided, and the first beat frequency generated when the optical frequency comb and the frequency stabilizing laser interfere with each other, the frequency stabilizing laser, and the measurement target. By measuring the third beat frequency generated when the optical frequency comb and the measurement target laser interfere with each other in addition to the second beat frequency generated between the lasers, the frequency fluctuation can be changed. it is obtained to be able to determine the difference.

レーザの周波数評価では、目的に応じてさまざまな平均化時間での周波数測定が求められるが、本発明によれば、各平均化時間(測定時間)に対して、より高い精度(小さい不確かさ)で周波数を測定することが可能となる。 In the frequency evaluation of a laser, frequency measurement at various averaging times is required depending on the purpose, but according to the present invention, higher accuracy (small uncertainty) is required for each averaging time (measurement time). It is possible to measure the frequency with.

光周波数コムと測定対象レーザの周波数スペクトルを模式的に示す図The figure which shows typically the frequency spectrum of an optical frequency comb and a laser to be measured. 本発明に係るレーザ周波数測定装置の第1実施形態の構成を示す図The figure which shows the structure of 1st Embodiment of the laser frequency measuring apparatus which concerns on this invention. 光周波数コムと周波数安定化レーザの安定度の模式図Schematic diagram of stability of optical frequency comb and frequency stabilization laser 安定度評価方法の例を示す図The figure which shows the example of the stability evaluation method 測定の不確かさの概要を示す図Diagram outlining measurement uncertainty 基準周波数と周波数安定化レーザの不確かさの大小関係の説明図Explanatory diagram of the magnitude relationship between the reference frequency and the uncertainty of the frequency-stabilized laser 光周波数コムと周波数安定化レーザの不確かさの模式図Schematic diagram of uncertainty of optical frequency comb and frequency stabilization laser 周波数安定化レーザの発振周波数の偏りを測定する方法の例を示す図The figure which shows the example of the method of measuring the deviation of the oscillation frequency of a frequency-stabilized laser. シミュレーション上想定した周波数変動の一例を示す図Diagram showing an example of frequency fluctuation assumed in simulation 図9の場合のシミュレーション結果の例を示す図The figure which shows the example of the simulation result in the case of FIG. シミュレーション上想定した周波数変動の他の例を示す図Diagram showing other examples of frequency fluctuations assumed in the simulation 図11の場合のシミュレーション結果の例を示す図The figure which shows the example of the simulation result in the case of FIG. シミュレーション上想定した周波数変動の更に他の例を示す図Diagram showing yet another example of frequency fluctuation assumed in the simulation 図13の場合のシミュレーション結果の例を示す図The figure which shows the example of the simulation result in the case of FIG. 本発明に係るレーザ周波数測定装置の第2実施形態の構成を示す図The figure which shows the structure of the 2nd Embodiment of the laser frequency measuring apparatus which concerns on this invention.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the following embodiments and examples. Further, the constituent requirements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those in a so-called equal range. Further, the components disclosed in the embodiments and examples described below may be appropriately combined or appropriately selected and used.

図2に、本発明に係るレーザ周波数測定装置の第1実施形態の模式図を示す。基本構成は、周波数νCombの出力光を発する光周波数コム20と、周波数νLaserの出力光を発する周波数安定化レーザ30と、光周波数コム20の出力光νCombと周波数安定化レーザ30の出力光νLaserとを干渉させた際に発生する第1のビート周波数fLCを測定する第1の周波数カウンタ41と、周波数安定化レーザ30の出力光νLaserと測定対象レーザ10の出力光νDUTとの間で発生する第2のビート周波数fDLを測定する第2の周波数カウンタ42と、ビート周波数測定部40の各周波数カウンタ41、42による測定に基づき測定対象レーザ10の周波数νDUTを算出する演算部50のコンピュータ(PC)51からなる。 FIG. 2 shows a schematic diagram of a first embodiment of the laser frequency measuring device according to the present invention. The basic configuration is an optical frequency com 20 that emits output light of frequency ν Comb, a frequency stabilizing laser 30 that emits output light of frequency ν Laser , an output light ν Comb of optical frequency com 20, and an output of a frequency stabilizing laser 30. The first frequency counter 41 that measures the first beat frequency f LC generated when the light ν Laser interferes, the output light ν Laser of the frequency stabilization laser 30, and the output light ν DUT of the measurement target laser 10. The frequency ν DUT of the laser 10 to be measured is calculated based on the measurement by the second frequency counter 42 for measuring the second beat frequency f DL generated between the two and the frequency counters 41 and 42 of the beat frequency measuring unit 40. It is composed of a computer (PC) 51 of a calculation unit 50.

図において、11は、測定対象レーザ10の出力光を反射する反射ミラー、31は、周波数安定化レーザ30の出力光を透過しつつ反射するビームスプリッタ(例えばハーフミラー)、21は、ビームスプリッタ31で反射された光を光周波数コム20の出力光と合成するビームスプリッタ(例えばハーフミラー)、32は、反射ミラー11で反射された光を周波数安定化レーザ30の出力光と合成するビームスプリッタ(例えばハーフミラー)、24は、ビームスプリッタ21で合成された光の強度を検出する第1のフォトディテクタ、34は、ビームスプリッタ32で合成された光の強度を検出する第2のフォトディテクタである。 In the figure, 11 is a reflection mirror that reflects the output light of the laser 10 to be measured, 31 is a beam splitter (for example, a half mirror) that reflects the output light of the frequency stabilization laser 30, and 21 is a beam splitter 31. A beam splitter (for example, a half mirror) that combines the light reflected by the light frequency com 20 with the output light of the optical frequency com 20, 32 is a beam splitter (for example, a beam splitter) that combines the light reflected by the reflection mirror 11 with the output light of the frequency stabilization laser 30. (For example, half mirror), 24 is a first photodetector that detects the intensity of the light synthesized by the beam splitter 21, and 34 is a second photodetector that detects the intensity of the light synthesized by the beam splitter 32.

本発明では、周波数測定における平均化時間TGateが所定の時間領域TRangeの場合には、測定対象レーザ10と周波数安定化レーザ30の第2のビート周波数fDLの測定結果を用いて測定対象レーザ10の周波数νDUTを算出する。これにより光周波数コム20の安定度が低い平均化時間領域でも、光周波数コム20の精度よりも高い精度でレーザ周波数νDUTを測定できる。一方、平均化時間TGateが所定の時間領域TRange以外の場合には、第2のビート周波数fDLと第1のビート周波数fLCを同時に測定し、両測定値の和または差を取る。これにより、周波数安定化レーザ30の周波数変動が相殺され、光周波数コム20に対する測定対象レーザ10の周波数νDUTが測定できる。 In the present invention, when the averaging time T Gate in the frequency measurement is in the predetermined time region T Range , the measurement target is measured using the measurement results of the second beat frequency f DL of the measurement target laser 10 and the frequency stabilization laser 30. Calculate the frequency ν DUT of the laser 10. As a result, the laser frequency ν DUT can be measured with an accuracy higher than that of the optical frequency comb 20 even in the averaging time region where the stability of the optical frequency comb 20 is low. On the other hand, when the averaging time T Gate is other than the predetermined time domain T Range , the second beat frequency f DL and the first beat frequency f LC are measured at the same time, and the sum or difference between the measured values is taken. As a result, the frequency fluctuation of the frequency stabilization laser 30 is canceled out, and the frequency ν DUT of the measurement target laser 10 with respect to the optical frequency comb 20 can be measured.

ここで、所定の時間領域TRangeの決め方の例を図3に示す。予め光周波数コム20の安定度σCombと周波数安定化レーザ30の安定度σLaserを各々測定して、周波数安定化レーザ30の安定度σLaserが高い(値が小さい)領域をTRangeとする。 Here, an example of how to determine the predetermined time domain T Range is shown in FIG. The stability σ Comb of the optical frequency comb 20 and the stability σ Laser of the frequency stabilization laser 30 are measured in advance, and the region where the stability σ Laser of the frequency stabilization laser 30 is high (small value) is defined as T Range. ..

σCombとσLaserをそれぞれ測定する方法として、一般的には2台の同じ装置を使った相対安定度測定が用いられるが、その方法を図4を参照して簡単に説明する。相対比較のために用意した2台の評価対象物それぞれの周波数ν1とν2とその揺らぎをδf1とδf2とする。2台の評価対象物の周波数信号を比較装置60に入力し偏差を計測する。比較装置60における一般的な方法は、レーザのような光周波数領域では、2台のレーザを干渉させて発生するビート周波数を測定する。一方、基準周波数発振器のようなマイクロ波の周波数領域の場合には、2つの基準周波数のそれぞれの電気信号の位相差を電気的に比較する仕組みであることが多い。2台の評価対象物の周波数差Δfと周波数ν1とν2の関係は次のように示される。
Δf=ν1 − ν2 …(3)
As a method for measuring σ Comb and σ Laser , respectively, relative stability measurement using two same devices is generally used, and the method will be briefly described with reference to FIG. Let the frequencies ν 1 and ν 2 and their fluctuations of the two evaluation objects prepared for relative comparison be δf 1 and δf 2 . The frequency signals of the two evaluation objects are input to the comparison device 60 and the deviation is measured. A common method in the comparison device 60 is to measure the beat frequency generated by interfering two lasers in an optical frequency region such as a laser. On the other hand, in the case of a microwave frequency domain such as a reference frequency oscillator, it is often a mechanism for electrically comparing the phase difference of each electric signal of two reference frequencies. The relationship between the frequency difference Δf of the two evaluation objects and the frequencies ν 1 and ν 2 is shown as follows.
Δf = ν 1 − ν 2 … (3)

2台の評価対象物が独立な装置であるため揺らぎに相関がないと考えると、Δfの揺らぎδfの2乗平均はδf1とδf2の2乗平均の和となる。

Figure 0006872884
Considering that there is no correlation between the fluctuations of the two evaluation objects because they are independent devices, the squared average of the fluctuations δf of Δf is the sum of the squared averages of δf 1 and δf 2.
Figure 0006872884

2台の評価対象物が同様に製作された同じ品質の装置であるとすれば、次式のようになると考えても差し支えない。

Figure 0006872884
Assuming that the two evaluation objects are similarly manufactured devices of the same quality, it is safe to assume that the following equation is obtained.
Figure 0006872884

したがって、式(4)は式(5)に変形できるため、比較装置60によって得られる測定結果から対象物の周波数変動(安定度)を評価することができる。

Figure 0006872884
Therefore, since the equation (4) can be transformed into the equation (5), the frequency fluctuation (stability) of the object can be evaluated from the measurement result obtained by the comparison device 60.
Figure 0006872884

次に、所定の時間領域TRangeの別の決定方法を示す。測定の不確かさは安定度(ばらつき)と偏り(真値に対するオフセット)によって決定される。その様子を横軸が周波数で縦軸が頻度を表す確立密度分布という形で表したものを図5に示す。安定度は、中心値や平均値といった代表値からのばらつきの幅を数値化したものである。一方、偏りの方は、代表値が真値からどれだけずれているかを表す。不確かさは、測定値が真値からどれだけ離れている恐れがあるかを表すものであるため、安定度(ばらつき)や偏りといった要因を組み合わせて見積もられる。ここでは、不確かさが安定度と偏りの単純加算で表現される場合を例に基準周波数と周波数安定化レーザ30の平均化時間TGateに対する不確かさの関係を説明する。 Next, another method for determining the predetermined time domain T Range is shown. Measurement uncertainty is determined by stability (variation) and bias (offset to true value). FIG. 5 shows the situation in the form of a probability density distribution in which the horizontal axis represents frequency and the vertical axis represents frequency. The stability is a numerical value of the range of variation from the representative values such as the center value and the average value. On the other hand, the bias indicates how much the representative value deviates from the true value. Uncertainty indicates how far the measured value may deviate from the true value, so it is estimated by combining factors such as stability (variation) and bias. Here, the relationship between the reference frequency and the uncertainty with respect to the averaging time T Gate of the frequency stabilization laser 30 will be described by taking the case where the uncertainty is expressed by the simple addition of stability and bias as an example.

平均化時間TGateが短い時は、図6(a)に例示する如く、基準周波数の安定度は低い(ばらつきが大きい)ため、発振周波数に偏りがあったとしても安定度の高い(ばらつきが小さい)周波数安定化レーザ30の不確かさULaserの方が基準周波数の不確かさ、すなわち光周波数コム20の不確かさUCombよりも小さくなる。これに対して、平均化時間TGateが長くなると、図6(b)に例示する如く、基準周波数の安定度が高くなるために、不確かさUCombは偏りを持つ不確かさULaserよりも小さくなる。 When the averaging time T Gate is short, the stability of the reference frequency is low (large variation) as illustrated in FIG. 6A, so that the stability is high (variation is large) even if the oscillation frequency is biased. The uncertainty of the frequency-stabilized laser 30 (smaller) The uncertainty of the U Laser is smaller than the uncertainty of the reference frequency, that is, the uncertainty of the optical frequency com 20 U Comb. On the other hand, as the averaging time T Gate becomes longer, the uncertainty U Comb becomes smaller than the biased uncertainty U Laser because the stability of the reference frequency becomes higher as illustrated in FIG. 6 (b). Become.

そこで、周波数安定化レーザ30の周波数の安定度だけではなく偏り分も加味した不確かさを算出する。そして、図7に示すように、基準周波数発振器すなわち光周波数コム20の不確かさに対して周波数安定化レーザ30の不確かさが小さくなる平均化時間領域をTRangeとして、周波数安定化レーザ30を使って測定対象レーザ10の周波数を測定する。 Therefore, the uncertainty is calculated in consideration of not only the frequency stability of the frequency stabilization laser 30 but also the bias. Then, as shown in FIG. 7, the frequency-stabilized laser 30 is used with the averaging time region in which the uncertainty of the frequency-stabilized laser 30 becomes smaller than the uncertainty of the reference frequency oscillator, that is, the optical frequency comb 20, as the T Range. The frequency of the laser 10 to be measured is measured.

なお、周波数安定化レーザ30の不確かさを算出するために発振周波数の偏りを測定する方法として光周波数コム20を使用しても良い。図8に示した測定系で得られる光周波数コム20とのビート周波数fLCの測定結果を式(2)のfBに代入することでνDUTとして周波数安定化レーザ30の絶対周波数νLaserを測定することができる。これにより周波数の代表値の偏り分を光周波数コム20の不確かさまで小さくすることができる。光周波数コム20による測定の不確かさは平均化時間に依存するために、周波数安定化レーザ30の絶対周波数νLaserを校正(偏りを測定)する場合には、十分に長い時間をかけて校正する。そうすれば、その分だけ周波数の偏りが少ない不確かさの小さなレーザとして利用できるため、より効果的になる。その際、光周波数コム20は図8に示したように、本発明において提案するレーザ周波数測定装置内のものを利用したとしても、あるいは、校正用に別途光周波数コムを用意したとしても、測定の手間に違いがあれども効果に違いはないことは明らかである。 The optical frequency comb 20 may be used as a method for measuring the deviation of the oscillation frequency in order to calculate the uncertainty of the frequency stabilization laser 30. By substituting the measurement result of the beat frequency f LC with the optical frequency comb 20 obtained by the measurement system shown in FIG. 8 into f B of the equation (2), the absolute frequency ν Laser of the frequency stabilization laser 30 is set as ν DUT. Can be measured. As a result, the deviation of the representative value of the frequency can be reduced to the uncertainty of the optical frequency comb 20. Since the uncertainty of measurement by the optical frequency comb 20 depends on the averaging time, when calibrating the absolute frequency ν Laser of the frequency stabilization laser 30 (measuring the bias), it takes a sufficiently long time to calibrate. .. By doing so, it becomes more effective because it can be used as a laser with less uncertainty with less frequency bias. At that time, as shown in FIG. 8, the optical frequency comb 20 is measured even if the one in the laser frequency measuring device proposed in the present invention is used, or even if a separate optical frequency comb is prepared for calibration. It is clear that there is no difference in the effect even though there is a difference in the effort.

前記第1実施形態では、予め光周波数コム20および周波数安定化レーザ30の周波数を測定しておき、平均化時間に応じて安定度が高い、または、不確かさが小さい方を選択して測定するというものであった。 In the first embodiment, the frequencies of the optical frequency comb 20 and the frequency stabilization laser 30 are measured in advance, and the one having higher stability or less uncertainty is selected and measured according to the averaging time. It was that.

これに対して、次に説明する変形例のように、第1及び第2の周波数カウンタ41、42より得られるビート周波数測定結果を使って、どちらを使用するのかを選択しても良い。周波数安定化レーザ30を使用する場合と光周波数コム20を使用する場合の測定対象レーザ10の周波数νDUTの算出式を、それぞれ式(7)と式(8)に示す。
νDUT = νLaser+fDL …(7)
νDUT = νComb+fLC+fDL …(8)
On the other hand, as in the modified example described below, which one may be used may be selected by using the beat frequency measurement results obtained from the first and second frequency counters 41 and 42. The formulas for calculating the frequency ν DUT of the laser 10 to be measured when the frequency-stabilized laser 30 is used and when the optical frequency comb 20 is used are shown in equations (7) and (8), respectively.
ν DUT = ν Laser + f DL … (7)
ν DUT = ν Comb + f LC + f DL … (8)

式(7)の算出式では、第2の周波数カウンタ42より得られる第2のビート周波数fDLのみを使用して、周波数安定化レーザ30を基準として測定対象レーザ10の周波数を測定する。これに対して、式(8)の算出式では、第2の周波数カウンタ42で得られる第2のビート周波数fDLと第1の周波数カウンタ41で得られる第1のビート周波数fLCの和(符号によっては差)を計算する。fLCとfDLの両測定値の和(または差)をとることで周波数安定化レーザ30の周波数は演算上相殺されるため、光周波数コム20に対する測定対象レーザ10の差周波数を測定していることになる。したがって、光周波数コム20の絶対周波数を加算することで、光周波数コム20を基準とした周波数測定が実施されることになる。 In the calculation formula of the formula (7), the frequency of the measurement target laser 10 is measured with the frequency stabilization laser 30 as a reference by using only the second beat frequency f DL obtained from the second frequency counter 42. On the other hand, in the calculation formula of the formula (8), the sum of the second beat frequency f DL obtained by the second frequency counter 42 and the first beat frequency f LC obtained by the first frequency counter 41 ( Calculate the difference) depending on the sign. Since the frequency of the frequency-stabilized laser 30 is computationally canceled by taking the sum (or difference) of both the measured values of f LC and f DL, the difference frequency of the laser 10 to be measured with respect to the optical frequency comb 20 is measured. Will be there. Therefore, by adding the absolute frequencies of the optical frequency combs 20, frequency measurement based on the optical frequency combs 20 is performed.

以下、測定対象レーザ10と光周波数コム20と周波数安定化レーザ30の周波数の変動量を設定し、その際に得られた測定値からfLC+fDLとfDLをシミュレーションにより見積もった例を示す。 The following is an example in which the frequency fluctuations of the laser 10 to be measured, the optical frequency comb 20, and the frequency stabilization laser 30 are set, and f LC + f DL and f DL are estimated by simulation from the measured values obtained at that time. ..

図9は、横軸時間に対する周波数の変動の様子を表しており、(a)(b)(c)は順に、測定対象レーザ10、光周波数コム20、周波数安定化レーザ30を表している。縦軸は(a)(b)(c)ともに同じ幅で相対的な変動幅の割合を表している。このような周波数変動を想定した場合に得られるビート周波数をシミュレーションした結果を図10に示す。光周波数コム20の周波数の変動が小さいため、同図中(a)に示したfLC+fDLにおいては測定対象レーザ10のばらつきが良く反映されたデータとなっている。これに対して図10(b)のfDLでは、周波数安定化レーザ30の大きな周波数変動が影響して、測定対象レーザ10の変動量よりもデータが大きくばらついた結果になっている。 FIG. 9 shows the state of frequency fluctuation with respect to the horizontal axis time, and (a), (b), and (c) represent the measurement target laser 10, the optical frequency comb 20, and the frequency stabilization laser 30 in this order. The vertical axis represents the ratio of the relative fluctuation width with the same width in all of (a), (b), and (c). FIG. 10 shows the result of simulating the beat frequency obtained when such frequency fluctuation is assumed. Since the fluctuation of the frequency of the optical frequency comb 20 is small, the f LC + f DL shown in (a) of the figure is data that well reflects the variation of the laser 10 to be measured. On the other hand, in the f DL of FIG. 10B, the large frequency fluctuation of the frequency-stabilized laser 30 has an effect, and the result is that the data varies more than the fluctuation amount of the measurement target laser 10.

一方、図11に示すように、光周波数コム20の周波数変動が大きい場合には、fLC+fDLの値はfDLよりも大きくばらついている。そのため、この場合は、図12に示すように、fDLを選択した方が測定対象レーザ10の安定度をより正確に測定できていることになる。 On the other hand, as shown in FIG. 11, when the frequency fluctuation of the optical frequency comb 20 is large, the value of f LC + f DL varies more than that of f DL. Therefore, in this case, as shown in FIG. 12, the stability of the measurement target laser 10 can be measured more accurately when f DL is selected.

つまり、fLC+fDLとfDLを比較してばらつきが小さい方を選択して、式(7)または、式(8)に代入することにより、より測定対象レーザ10の安定度に近い正確な測定ができることになる。 That is, by comparing f LC + f DL and f DL , selecting the one with the smaller variation, and substituting it into the equation (7) or the equation (8), the accuracy is closer to the stability of the laser 10 to be measured. You will be able to measure.

DLとfLC+fDLのどちらかを選ぶ際には、発振周波数の偏り分を加味した周波数安定化レーザ30と光周波数コム20の不確かさを見積もり、不確かさの大小関係を考慮して、式(7)と式(8)のいずれかを使って決定することでも、より高い精度で測定対象レーザ10の周波数を測定することができる。例えば図13では測定対象レーザ10と光周波数コム20と周波数安定化レーザ30の周波数変動の例を縦軸が同じ範囲で任意の値で表現している。また同図中では、縦軸の中心であるゼロをそれぞれのレーザにおける理想的な値とし、周波数安定化レーザ30の場合は周波数変動の中心がプラス方向にオフセットしている様子を同図(c)で表している。周波数安定化レーザ30の場合は、周波数変動が小さくても中心周波数にオフセットがあるため、図14(b)に示すようにfDLの値は真値よりも周波数安定化レーザ30の周波数オフセット分だけずれた結果となる。この場合、図14の(a)と(b)を見比べても分かるように、fLC+fDLの測定値の方がfDLの測定値よりも不確かさが小さいことになる。ビート周波数測定だけでは、周波数の変動の幅しか分からないため、図13に示したような周波数の偏りを把握しておき、その量を加味したうえでfDLとfLC+fDLのどちらを使用するかを判定する。これにより、不確かさの小さい周波数測定結果を得ることができる。 In choosing either the f DL and f LC + f DL is the uncertainty of the frequency stabilized laser 30 and the optical frequency comb 20 in consideration of the deviation amount of the oscillation frequency estimate, in view of the magnitude of uncertainty, The frequency of the laser 10 to be measured can be measured with higher accuracy by determining using either the formula (7) or the formula (8). For example, in FIG. 13, an example of frequency fluctuation of the measurement target laser 10, the optical frequency comb 20, and the frequency stabilization laser 30 is represented by an arbitrary value within the same range on the vertical axis. Further, in the figure, zero, which is the center of the vertical axis, is set as an ideal value for each laser, and in the case of the frequency-stabilized laser 30, the center of frequency fluctuation is offset in the positive direction. ). For frequency-stabilized laser 30, since the frequency variation is offset to the center frequency be small, Figure 14 the value of f DL, as shown in (b) the frequency offset of the frequency stabilized laser 30 than the true value The result is a deviation. In this case, as can be seen by comparing (a) and (b) of FIG. 14, the uncertainty of the measured value of f LC + f DL is smaller than that of the measured value of f DL. Alone beat frequency measurement, since only know the width of variation in the frequency, to keep tabs bias frequency as shown in FIG. 13, using either f DL and f LC + f DL upon adding the amount Determine if you want to. As a result, it is possible to obtain a frequency measurement result with low uncertainty.

この方法においては、予め、光周波数コム20と周波数安定化レーザ30のそれぞれの安定度を測定しておく必要がないため、使い勝手が良い。 In this method, it is not necessary to measure the stability of each of the optical frequency comb 20 and the frequency stabilization laser 30 in advance, which is convenient.

本発明に係るレーザ周波数測定装置は図15に示す第2実施形態においても実現することができる。 The laser frequency measuring device according to the present invention can also be realized in the second embodiment shown in FIG.

この第2実施形態は、第1実施形態のビームスプリッタ32を省略して、測定対象レーザ10の出力光をビームスプリッタ31に入力する一方、第1のフォトディテクタ24の出力側に分岐デバイス80を設け、その出力をfLC用フィルタ81とfDC用フィルタ82により分けると共に、ビート周波数測定部40にfDC用フィルタ82の出力を計数する第3の周波数カウンタ43を設けたものである。この第2実施形態は、測定対象レーザ10が十分なS/Nの干渉ビート信号を得るのに十分なパワーがあるときに用いることができる。 In this second embodiment, the beam splitter 32 of the first embodiment is omitted, and the output light of the laser 10 to be measured is input to the beam splitter 31, while the branching device 80 is provided on the output side of the first photodetector 24. The output is divided by the f LC filter 81 and the f DC filter 82, and the beat frequency measuring unit 40 is provided with a third frequency counter 43 for counting the output of the f DC filter 82. This second embodiment can be used when the laser 10 to be measured has sufficient power to obtain an interference beat signal with sufficient S / N.

この第2実施形態では、測定対象レーザ10の出力光を2つに分岐して、光周波数コム20の出力光とのビート周波数fDCと周波数安定化レーザ30の出力光とのビート周波数fDLを測定する。 In this second embodiment, the output light of the laser 10 to be measured is branched into two, and the beat frequency f DC with the output light of the optical frequency comb 20 and the beat frequency f DL with the output light of the frequency stabilization laser 30. To measure.

この第2実施形態では、第1のフォトディテクタ24より得られるビート信号には、光周波数コム20と周波数安定化レーザ30によるビート周波数fLCと光周波数コム20と測定対象レーザ10によるビート周波数fDCの両方が含まれる。そこで、分岐デバイス80によって信号を2つに分けて、それぞれの信号線にフィルタ81、82を入れることによって、fLCとfDCを取り出し、それぞれの周波数を周波数カウンタ41、43で測定する。 In this second embodiment, the beat signal obtained from the first photodetector 24 includes the beat frequency f LC by the optical frequency comb 20 and the frequency stabilization laser 30, and the beat frequency f DC by the optical frequency comb 20 and the measurement target laser 10. Both are included. Therefore, the signal is divided into two by the branch device 80, and the filters 81 and 82 are inserted in the respective signal lines to take out f LC and f DC , and the respective frequencies are measured by the frequency counters 41 and 43.

この第2実施形態においては、光周波数コム20と周波数安定化レーザ30の各々で測定対象レーザ10とのビート周波数を直接測定するために、簡単に周波数変動の違いを判断することができ、どちらを使用して測定対象レーザ10の周波数を測定するかをより簡単に決定することができる。 In this second embodiment, since the beat frequency of the laser 10 to be measured is directly measured by each of the optical frequency comb 20 and the frequency stabilization laser 30, the difference in frequency fluctuation can be easily determined. Can be used to more easily determine whether to measure the frequency of the laser 10 to be measured.

なお、第2実施形態においては、第1のフォトディテクタ24より得られた信号を分岐デバイス80により2つに分岐し、それぞれにフィルタ81、82と周波数カウンタ41、43を配置して測定する系を示したが、分岐デバイス80を使用することなく、フィルタ81、82を切り替えて1台の周波数カウンタ(41又は43)でビート周波数を測定するという方法を用いても同等の効果が得られる。 In the second embodiment, the signal obtained from the first photodetector 24 is branched into two by the branching device 80, and the filters 81 and 82 and the frequency counters 41 and 43 are arranged and measured in each of the two. As shown, the same effect can be obtained by using the method of switching the filters 81 and 82 and measuring the beat frequency with one frequency counter (41 or 43) without using the branching device 80.

10…測定対象レーザ
20…光周波数コム
24、34…フォトディテクタ
30…周波数安定化レーザ
40…ビート周波数測定部
41、42、43…周波数カウンタ
50…演算部
51…コンピュータ(PC)
60…比較装置
80…分岐デバイス
81、82…フィルタ
LC、fDL、fDC…ビート周波数
10 ... Laser to be measured 20 ... Optical frequency com 24, 34 ... Photodetector 30 ... Frequency stabilization laser 40 ... Beat frequency measurement unit 41, 42, 43 ... Frequency counter 50 ... Calculation unit 51 ... Computer (PC)
60 ... Comparison device 80 ... Branch device 81, 82 ... Filter f LC , f DL , f DC ... Beat frequency

Claims (7)

光周波数コムと、
周波数安定化レーザと、
前記光周波数コムと前記周波数安定化レーザとを干渉させた際に発生する第1のビート周波数を測定する第1の周波数カウンタと、
前記周波数安定化レーザと測定対象レーザとの間で発生する第2のビート周波数を測定する第2の周波数カウンタと、
前記第1及び第2のビート周波数に基づき前記測定対象レーザの周波数を算出する演算部とを備え、
周波数測定の際の平均化時間に応じて、前記第2のビート周波数または前記第1及び第2のビート周波数を用いて、前記測定対象レーザの周波数を測定することを特徴とする光周波数コムを使ったレーザ周波数測定装置。
Optical frequency comb and
Frequency-stabilized laser and
A first frequency counter that measures the first beat frequency generated when the optical frequency comb and the frequency stabilizing laser interfere with each other.
A second frequency counter that measures the second beat frequency generated between the frequency-stabilized laser and the laser to be measured, and
It is provided with a calculation unit that calculates the frequency of the laser to be measured based on the first and second beat frequencies.
An optical frequency comb characterized in that the frequency of the laser to be measured is measured by using the second beat frequency or the first and second beat frequencies according to the averaging time at the time of frequency measurement. Laser frequency measuring device used.
周波数測定の際の前記平均化時間に関して、
所定の平均化時間の領域においては、前記第2のビート周波数のみを用いて、前記測定対象レーザの周波数を測定することを特徴とする請求項1に記載の光周波数コムを使ったレーザ周波数測定装置。
Regarding the averaging time during frequency measurement
The laser frequency measurement using the optical frequency comb according to claim 1, wherein in the region of a predetermined averaging time, the frequency of the measurement target laser is measured using only the second beat frequency. apparatus.
前記所定の平均化時間の領域は、
前記周波数安定化レーザの安定度が前記光周波数コムの安定度よりも高い平均化時間領域であることを特徴とする請求項2に記載の光周波数コムを使ったレーザ周波数測定装置。
The area of the predetermined averaging time is
The laser frequency measuring apparatus using an optical frequency comb according to claim 2, wherein the stability of the frequency-stabilized laser is in an averaging time region higher than the stability of the optical frequency comb.
前記所定の平均化時間の領域は、
前記周波数安定化レーザによる測定の不確かさが前記光周波数コムの不確かさよりも小さい平均化時間領域であることを特徴とする請求項2に記載の光周波数コムを使ったレーザ周波数測定装置。
The area of the predetermined averaging time is
The laser frequency measuring apparatus using an optical frequency comb according to claim 2, wherein the uncertainty of measurement by the frequency-stabilized laser is an averaging time region smaller than the uncertainty of the optical frequency comb.
前記所定の平均化時間の領域は、
前記第2のビート周波数のばらつきが、前記第1のビート周波数と前記第2のビート周波数を加算または減算した値のばらつきよりも小さい領域であることを特徴とする請求項2に記載の光周波数コムを使ったレーザ周波数測定装置。
The area of the predetermined averaging time is
The optical frequency according to claim 2, wherein the variation of the second beat frequency is a region smaller than the variation of the value obtained by adding or subtracting the first beat frequency and the second beat frequency. Laser frequency measuring device using a comb.
前記所定の平均化時間の領域は、
前記第2のビート周波数のばらつきと前記周波数安定化レーザの発振周波数の偏りを加味した不確かさが、前記第1のビート周波数と前記第2のビート周波数を加算または減算した値のばらつきと前記光周波数コムの発振周波数の偏りを加味した不確かさよりも小さい領域であることを特徴とする請求項2に記載の光周波数コムを使ったレーザ周波数測定装置。
The area of the predetermined averaging time is
The uncertainty in consideration of the variation of the second beat frequency and the bias of the oscillation frequency of the frequency stabilization laser is the variation of the value obtained by adding or subtracting the first beat frequency and the second beat frequency and the light. The laser frequency measuring device using an optical frequency comb according to claim 2, wherein the region is smaller than the uncertainty in consideration of the bias of the oscillation frequency of the frequency comb.
光周波数コムと、
周波数安定化レーザと、
前記光周波数コムと前記周波数安定化レーザとを干渉させた際に発生する第1のビート周波数を測定する第1の周波数カウンタと、
前記周波数安定化レーザと測定対象レーザとの間で発生する第2のビート周波数を測定する第2の周波数カウンタと、
前記光周波数コムと前記測定対象レーザとを干渉させた際に発生する第3のビート周波数を測定する第3の周波数カウンタとを備え、
前記光周波数コムと前記周波数安定化レーザとを干渉させた際に発生する前記第1のビート周波数及び前記周波数安定化レーザと測定対象レーザとの間で発生する前記第2のビート周波数に加えて、前記光周波数コムと前記測定対象レーザとを干渉させた際に発生する前記第3のビート周波数を測定することで、周波数変動の違いを判断できるようにされていることを特徴とする光周波数コムを使ったレーザ周波数測定装置。
Optical frequency comb and
Frequency-stabilized laser and
A first frequency counter that measures the first beat frequency generated when the optical frequency comb and the frequency stabilizing laser interfere with each other.
A second frequency counter that measures the second beat frequency generated between the frequency-stabilized laser and the laser to be measured, and
It is provided with a third frequency counter that measures a third beat frequency generated when the optical frequency comb and the laser to be measured interfere with each other.
In addition to the first beat frequency generated when the optical frequency comb interferes with the frequency stabilizing laser and the second beat frequency generated between the frequency stabilizing laser and the measurement target laser. , by measuring the third beat frequency generated when causing interference and the optical frequency comb and the measurement target laser, light you characterized in that it is to be determined the difference in frequency variation Laser frequency measuring device using frequency comb.
JP2016220000A 2016-11-10 2016-11-10 Laser frequency measuring device using optical frequency comb Active JP6872884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220000A JP6872884B2 (en) 2016-11-10 2016-11-10 Laser frequency measuring device using optical frequency comb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220000A JP6872884B2 (en) 2016-11-10 2016-11-10 Laser frequency measuring device using optical frequency comb

Publications (2)

Publication Number Publication Date
JP2018077169A JP2018077169A (en) 2018-05-17
JP6872884B2 true JP6872884B2 (en) 2021-05-19

Family

ID=62149147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220000A Active JP6872884B2 (en) 2016-11-10 2016-11-10 Laser frequency measuring device using optical frequency comb

Country Status (1)

Country Link
JP (1) JP6872884B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005065B2 (en) * 1991-04-06 2000-01-31 科学技術振興事業団 Reference frequency light source and ultra-high precision optical frequency measurement system using the same
JP2001274482A (en) * 2000-03-24 2001-10-05 Neoark Corp Apparatus for measurement and calibration of frequency of laser beam and method for measurement and calibration of frequency of laser beam
WO2005093385A1 (en) * 2004-03-26 2005-10-06 Advantest Corporation Optical frequency measuring apparatus and optical frequency measuring method
JP3989470B2 (en) * 2004-07-12 2007-10-10 株式会社 光コム Optical frequency measurement system
US9097656B2 (en) * 2012-03-29 2015-08-04 Imra America, Inc. Methods for precision optical frequency synthesis and molecular detection
JP6370633B2 (en) * 2014-08-07 2018-08-08 株式会社ミツトヨ Accuracy evaluation method and apparatus for laser frequency measurement by optical frequency comb

Also Published As

Publication number Publication date
JP2018077169A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
Han et al. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses
KR100951618B1 (en) Absolute distance measurement method and system using optical frequency generator
Wei et al. Time-of-flight method using multiple pulse train interference as a time recorder
Jang et al. Comb-referenced laser distance interferometer for industrial nanotechnology
JP2010112768A (en) Measurement apparatus
Falke et al. Delivering pulsed and phase stable light to atoms of an optical clock
US8363226B2 (en) Optical interference measuring apparatus
JP6293762B2 (en) Position monitoring system with reduced noise
EP2945013B1 (en) Mutually-referenced optical frequency combs
Wu et al. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser
Zhou et al. Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement
Pollinger et al. Diode-laser-based high-precision absolute distance interferometer of 20 m range
Lešundák et al. High-accuracy long distance measurements with a mode-filtered frequency comb
JP2016048188A (en) Distance measuring apparatus
JP2014190759A (en) Frequency measuring apparatus and frequency measurement method
Beica et al. Characterization and applications of auto-locked vacuum-sealed diode lasers for precision metrology
McFerran et al. Fractional frequency instability in the 10− 14 range with a thermal beam optical frequency reference
Ray et al. High-precision intermode beating electro-optic distance measurement for mitigation of atmospheric delays
US5249030A (en) Method and apparatus for determining the position of a moving body and the time of the position measurement
US9621335B2 (en) Interferometric precise timing distribution with a precision phase detector
JP6872884B2 (en) Laser frequency measuring device using optical frequency comb
Zhou et al. Digital long-term laser frequency stabilization with an optical frequency comb
CN112114325A (en) Measuring device and measuring method
JP6370633B2 (en) Accuracy evaluation method and apparatus for laser frequency measurement by optical frequency comb
US8797539B2 (en) System and method for a virtual reference interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210420

R150 Certificate of patent or registration of utility model

Ref document number: 6872884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250