JP2016048188A - Distance measuring apparatus - Google Patents
Distance measuring apparatus Download PDFInfo
- Publication number
- JP2016048188A JP2016048188A JP2014172930A JP2014172930A JP2016048188A JP 2016048188 A JP2016048188 A JP 2016048188A JP 2014172930 A JP2014172930 A JP 2014172930A JP 2014172930 A JP2014172930 A JP 2014172930A JP 2016048188 A JP2016048188 A JP 2016048188A
- Authority
- JP
- Japan
- Prior art keywords
- optical path
- light
- distance
- measurement
- path length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
本発明は、光周波数コムを利用した距離測定技術に関する。 The present invention relates to a distance measurement technique using an optical frequency comb.
測定対象物までの距離を非接触で測定する方法として、光学的測定が適しており、干渉計や距離計が用いられている。干渉計は、別々の光路(参照光路と測定光路)を通った光の重ね合わせたときの干渉縞から距離を求める計器である。距離計は、出力波と対象物からの反射波の時間差、位相差、周波数差変化などから距離を求める計器である。 As a method for measuring the distance to the measurement object in a non-contact manner, optical measurement is suitable, and an interferometer or a distance meter is used. The interferometer is an instrument that obtains a distance from interference fringes when light beams that have passed through different optical paths (reference optical path and measurement optical path) are superimposed. The distance meter is a meter that obtains a distance from a time difference, a phase difference, a frequency difference change, and the like between an output wave and a reflected wave from an object.
近年では、光コムあるいは光周波数コム(optical frequency comb)と呼ばれる光源を用いた測距技術が開発されている。光周波数コムは、モード同期パルスレーザ(超短パルスレーザ)から得られるスペクトルである。等間隔に並ぶ多数の周波数成分(縦モード)を有するスペクトルの形状が櫛(コム)に似ていることから、光周波数コム(光コム)と呼ばれている。 In recent years, a ranging technique using a light source called an optical comb or an optical frequency comb has been developed. The optical frequency comb is a spectrum obtained from a mode-locked pulse laser (ultra-short pulse laser). Since the shape of a spectrum having a number of frequency components (longitudinal modes) arranged at equal intervals resembles a comb, it is called an optical frequency comb (optical comb).
光コムを用いた距離計として、基準光のビート信号と測定対象物で反射された測距光のビート信号の位相差に基づいて対象物までの距離を求める方法が知られている(たとえば、特許文献1及び2参照)。これらの文献では、レーザ共振器から出力されるパルスの繰り返し周波数を変えて光コムの間隔を変え、ビート周波数を変えることで、測定可能な距離範囲を広げることが提案されている。
As a distance meter using an optical comb, a method for obtaining a distance to an object based on a phase difference between a beat signal of reference light and a beat signal of distance measuring light reflected by the measurement object is known (for example, (See
また、光コムの基本波と第2高調波を用いた2色のパルス間干渉計(光コム干渉計)において、光コムの繰り返し周波数frepを変化させることで光路長を変化させる手法が提案されている(たとえば、非特許文献1参照)。 In addition, in a two-color interpulse interferometer (optical comb interferometer) using the fundamental wave and the second harmonic of the optical comb, a method for changing the optical path length by changing the repetition frequency frep of the optical comb is proposed. (For example, refer nonpatent literature 1).
光コム干渉計では、異なるパルス間の干渉縞の発生位置から距離を求めるため、別々のパルス同士が重なり合うように参照光路とプローブ光路の間に光路長差を設けることが必要である。干渉次数を精度よく決定するためには、光路長差を広範囲に変える手段が必要である。 In an optical comb interferometer, in order to obtain the distance from the occurrence position of interference fringes between different pulses, it is necessary to provide an optical path length difference between the reference optical path and the probe optical path so that different pulses overlap each other. In order to accurately determine the interference order, means for changing the optical path length difference over a wide range is required.
移動ステージを用いて光路長を変化させる手法では、大きな光路長を与えるために大きな移動ステージが必要となり、機械的変動や空気揺らぎによる測定信号の変動が生じる。 In the method of changing the optical path length by using the moving stage, a large moving stage is required to give a large optical path length, and the measurement signal fluctuates due to mechanical fluctuation or air fluctuation.
他方、光コムの繰り返し周波数を変化させて光路長の可変範囲や測距範囲を広げる場合、周波数可変の範囲には限界がある。 On the other hand, when the variable range of optical path length and the distance measurement range are expanded by changing the repetition frequency of the optical comb, there is a limit to the frequency variable range.
そこで、光路長の可変範囲を拡張して任意の距離で高精度かつ安定した測定を可能にする距離測定技術を提供することを課題とする。 Therefore, it is an object to provide a distance measurement technique that enables highly accurate and stable measurement at an arbitrary distance by extending the variable range of the optical path length.
機械的な移動手段を用いずに光路長を変化させるために、光コム光源の繰り返し周波数を変化させることで、実効的な光路長差を変化させる。 In order to change the optical path length without using mechanical moving means, the effective optical path length difference is changed by changing the repetition frequency of the optical comb light source.
距離測定装置のひとつの構成例として、本発明をパルス間干渉計に適用することができる。パルス間干渉計で光路長の可変範囲を拡張するために、互いに干渉する基準光パルスと測定光パルスの光路長差を大きくして、個数の離れたパルス同士を干渉させる。この方法は長い距離の測定に有効だが、短い距離に適用するには制限がある。一方、短い距離の精密な測定を可能にするためには、参照光の光路長を長く設定する。参照光の光路長を長くする場合、外乱の影響を抑制するために光ファイバの参照光路を用いるのが望ましい。距離測定装置の別の構成例として、本発明を光コムを用いた距離計に適用することができる。 As an example of the configuration of the distance measuring device, the present invention can be applied to an interpulse interferometer. In order to extend the variable range of the optical path length with the interpulse interferometer, the optical path length difference between the reference optical pulse and the measurement optical pulse that interfere with each other is increased to cause interference between a number of distant pulses. This method is effective for measuring long distances, but has limitations in applying to short distances. On the other hand, in order to enable precise measurement at a short distance, the optical path length of the reference light is set to be long. When the optical path length of the reference light is increased, it is desirable to use the reference optical path of the optical fiber in order to suppress the influence of disturbance. As another configuration example of the distance measuring device, the present invention can be applied to a distance meter using an optical comb.
具体的には、本発明の一態様である光学測定装置は、
周波数領域で一定間隔の縦モードを発生させるパルス光源と、
前記パルス光源の繰り返し周波数を変化させる周波数制御部と、
前記パルス光源から出力されるパルス光を基準光と測定光に分割するスプリッタと、
前記基準光と、測定対象物の測定面で反射された前記測定光とを検出する光検出器と、
前記検出された光から、前記測定面までの距離を算出する信号処理部と、
を有し、
前記周波数制御部は、前記繰り返し周波数を変化させることで、前記基準光と前記測定光の間の光路長差を実効的に変化させ、
前記信号処理部は、前記実効的に変化された光路長差において前記測定面までの距離を算出することを特徴とする。
Specifically, the optical measurement device which is one embodiment of the present invention includes:
A pulsed light source that generates a longitudinal mode at regular intervals in the frequency domain;
A frequency controller for changing the repetition frequency of the pulsed light source;
A splitter that divides the pulsed light output from the pulsed light source into reference light and measurement light;
A photodetector for detecting the reference light and the measurement light reflected by the measurement surface of the measurement object;
A signal processing unit that calculates a distance from the detected light to the measurement surface;
Have
The frequency control unit effectively changes the optical path length difference between the reference light and the measurement light by changing the repetition frequency,
The signal processing unit calculates a distance to the measurement surface based on the effectively changed optical path length difference.
光路長の可変範囲を拡張し、任意の距離で高精度かつ安定した距離測定が可能になる。 The variable range of the optical path length can be expanded to enable highly accurate and stable distance measurement at any distance.
<光路長可変範囲の拡張>
図1は、実施形態の距離測定装置の一例としてパルス間干渉計10の概略構成を示す。パルス間干渉計10は、光コム光源11と、光コム光源11の繰り返し周波数を変化させる周波数制御部12と、光コム光源11からのパルス列を参照光とプローブ光に分割するビームスプリッタ13と、光検出器17と、信号処理部21とを含む。
<Expansion of variable optical path length>
FIG. 1 shows a schematic configuration of an
光コム光源11は、たとえばモード同期(ロック)されたフェムト秒パルスレーザで構成される。フェムト秒パルスレーザのような超短パルスレーザで構成される光コム光源11は、後述するように、周波数領域で一定の間隔で現れる複数の縦モードを発生させる。光コム光源11から出力されるパルス光(パルス列)は、ビームスプリッタ13で分割される。一方のパルス列成分は、参照光路15を通ってミラー等の基準面14で反射され、ビームスプリッタ13で反射されて光検出器17に入射する。他方のパルス列成分は、プローブ光路16を通って測定対象物20の測定面20aで反射され、ビームスプリッタ13を透過して光検出器17に入射する。基準面14と測定面20aは、ともに固定であってもよい。
The optical
光検出器17の出力は信号処理部21に入力される。信号処理装置は、参照光路15を通るパルス列とプローブ光路16を通るパルス列との干渉縞に基づいて、測定対象物20までの距離を算出する。干渉縞はパルスとパルスの重ね合わせにより生じ、パルスの包絡線3の中にキャリア波2(電界振動)が含まれる。
The output of the
光周波数コムを利用したパルス間干渉計10の場合、超短パルスの空間局在性のため、参照光路15の光路長とプローブ光路16の光路長の差がパルスの繰り返し間隔の整数倍になった位置にだけ干渉縞が発生する。そして、干渉縞の振幅は、2つの光路を伝搬するパルスのピークが完全に重なったときに最大になる。パルスの繰り返し間隔を長さの尺度として測定対象物20までの距離L1を求めるには、基準面14の位置を干渉縞が発生する位置に調整する必要がある。
In the case of the
従来法では、基準面14の位置をモーターステージ等で機械的に変化させて基準面14までの距離L2を調整する。これに対し、実施形態のパルス間干渉計10では、周波数制御部12により光コム光源11の繰り返し周波数、すなわちパルスの繰り返し間隔を変えることで、基準面14と測定面20aの間の実効光路長差を干渉縞が観察される位置に調整する。これにより、機械的振動やサーボ機構のドリフトを抑制して光学系全体の安定性を維持し、高精度の測定が可能になる。
In the conventional method, the distance L2 to the
図2は、フェムト秒レーザパルスと光コムの関係を示す図である。光コム光源11から出力されるパルス幅はフェムト秒のオーダーであり、たとえば100フェムト秒(fs)である。この超短パルスは、時間軸上で一定の繰り返し間隔Trepで出力される。この例では、繰り返し間隔Trepは20ナノ秒(ns)である。
FIG. 2 is a diagram showing the relationship between femtosecond laser pulses and optical combs. The pulse width output from the optical comb
時間軸上の超短パルス列をフーリエ変換して周波数軸上で観測すると、図2の右図のように、Trepの逆数に相当する繰り返し周波数frepで並ぶ多数の縦モードが観測される。この意味で、繰り返し周波数frepを「モード間隔」と呼んでもよい。この例では、繰り返し周波数frepは50MHzとなる。 When an ultrashort pulse train on the time axis is Fourier-transformed and observed on the frequency axis, as shown in the right diagram of FIG. 2, a number of longitudinal modes arranged at a repetition frequency f rep corresponding to the reciprocal of T rep are observed. In this sense, the repetition frequency f rep may be called a “mode interval”. In this example, the repetition frequency f rep is 50 MHz.
パルス間干渉における干渉縞の発生条件は、2つの光路の光路長差Lが式(1)で表されるときである。 The condition for generating interference fringes in the interpulse interference is when the optical path length difference L between the two optical paths is expressed by equation (1).
L=m×c/(n×frep) (1)
ここでmは干渉するパルス間を隔てるパルスの個数(以下では、「パルス数」と呼ぶ。mは整数)、nは伝搬媒体(空気)の屈折率、cは光速である。
L = m × c / (n × f rep ) (1)
Here, m is the number of pulses separating the interfering pulses (hereinafter referred to as “number of pulses”, m is an integer), n is the refractive index of the propagation medium (air), and c is the speed of light.
ここで光コム光源11のレーザ共振器の長さなどの条件を変えて繰り返し周波数frepを変えることができる。光コム光源11の繰り返し周波数を、干渉縞が観察されるところに制御することで、基準面14の位置を機械的に動かして光路長を変化させるのと同一の効果を得ることができる。
Here, it is possible to change the repetition frequency f rep by changing conditions such as the length of the laser resonator of the optical comb
ただし、繰り返し周波数frepの可変範囲には限界がある。そこで、実効光路長の可変範囲を拡張するために、パルス数mを大きくすることが考えられる。 However, the variable range of the repetition frequency f rep has a limit. Therefore, in order to expand the variable range of the effective optical path length, it is conceivable to increase the number of pulses m.
繰り返し周波数frepとパルスの繰り返し間隔Trepは相関するため、繰り返し周波数frepをΔfrepだけ変化させた場合、空気の屈折率を1として、m個離れたパルス同士の干渉では、その光路長差の変化量は式(2)で示すように、m倍される。 Since the repetition frequency f rep correlates with the pulse repetition interval T rep , when the repetition frequency f rep is changed by Δf rep , when the refractive index of the air is 1, and the interference between the m separated pulses, the optical path length The change amount of the difference is multiplied by m as shown in the equation (2).
ΔnL=m×(c/frep)×(Δfrep/frep) (2)
したがって、mを大きくして、互いに離れた2つのパルス間の干渉を得ることで、実効光路長差の可変範囲を増大させることができる。ここで、パルス数mは、式(2)より、既知のΔfrepだけ変化させた場合に、干渉縞の位相変化を検出するか、もしくは、干渉縞の現れるピーク位置の変化を測定して、光路長差を算出することによって求められる。
ΔnL = m × (c / f rep ) × (Δf rep / f rep ) (2)
Therefore, the variable range of the effective optical path length difference can be increased by increasing m and obtaining interference between two pulses separated from each other. Here, when the number of pulses m is changed by the known Δf rep from the equation (2), the phase change of the interference fringes is detected, or the change of the peak position where the interference fringes appear is measured, It is obtained by calculating the optical path length difference.
図3は、繰り返し周波数frepを変化させたときに現れる干渉縞の包絡線強度を示す図である。パルス間干渉計10では、前述のように、参照光路の光路長とプローブ光路の光路長の差がパルスの繰り返し間隔の整数倍になった位置にだけ干渉縞が発生する。また、距離測定のために干渉縞の包絡線のピーク位置の決定が重要である。干渉縞の包絡線が最大振幅となるときのfrepの値をfpeakとする。
FIG. 3 is a diagram showing the envelope intensity of interference fringes that appear when the repetition frequency f rep is changed. In the
反射鏡で折り返されている光学系を考えた場合、光路長変化の効果は折り返しにより2倍になるので、干渉縞信号を検出するため、および、最大振幅位置を見つけるのに必要なfrepの変化量Δfrepは、最大でfrep/4だけ必要になる(Δfrep≦frep/4)。これは配置された基準面(ミラー)14の位置に依らず、frepを変化させることで干渉縞の包絡線の最大振幅位置をスイープできるためである。この特性を利用すると、基準面(ミラー)14を任意の位置に設定し、光学系の幾何学長を変えることなく、干渉縞の最大振幅位置を見つけることができる。 Considering the optical system folded by the reflector, the effect of the optical path length change is doubled by folding, so that the f rep necessary for detecting the interference fringe signal and finding the maximum amplitude position is required. The amount of change Δf rep is required to be f rep / 4 at maximum (Δf rep ≦ f rep / 4). This is because the maximum amplitude position of the interference fringe envelope can be swept by changing f rep regardless of the position of the arranged reference plane (mirror) 14. By utilizing this characteristic, the reference plane (mirror) 14 can be set at an arbitrary position, and the maximum amplitude position of the interference fringes can be found without changing the geometric length of the optical system.
たとえば、図2の例でfrep=50MHzである。frepを最大900kHzまで変化させることができ(Δfrep=900kHz)、また、パルス数mが10であるとする(10個離れたパルス同士の干渉)。この場合、式(2)から、光路長を10.8m変化させたのと等価になる。
<短い測定距離への適用>
図4は、図1のパルス間干渉計10の展開例としてのパルス間干渉計30を示す。図1のように、測定対象物20までの距離L1が、基準面14までの距離L2よりもずっと大きい場合(L1>>L2)は、光コム光源11の繰り返し周波数を変え、かつ、離れたパルス間を干渉させる(パルス数mを大きくする)ことで光路長の可変範囲を増大できる。
For example, f rep = 50 MHz in the example of FIG. f rep can be changed up to 900 kHz (Δf rep = 900 kHz), and the number of pulses m is 10 (interference between 10 pulses apart). In this case, the equation (2) is equivalent to changing the optical path length by 10.8 m.
<Application to short measurement distance>
FIG. 4 shows an
これに対し、測定対象物20までの距離L1が小さい場合、離れたパルス間の干渉を得ることが困難になる。パルス数mが小さいと、frepを変化させることによる光路長差の拡張の効果を十分に得ることができない。
On the other hand, when the distance L1 to the measuring
そこで、図4では、参照光の光路15の長さをプローブ光の光路16の長さに比較して大きく設定することで、パルス数mを大きくする。基準面14までの距離L2を測定面20aまでの距離L1よりもずっと大きくすることで(L2>>L1)、近くに位置する測定対象物20の距離L1を正確に測定することができる。
Therefore, in FIG. 4, the number of pulses m is increased by setting the length of the
基準面14までの距離L2を大きくすると、外乱の影響が大きくなり、高精度測定の妨げとなる場合もある。そこで、図4の例では参照光の光路を光ファイバ31で構成する。これにより、光路長差を安定化制御することができる。また、光ファイバ31を用いることで、参照光の光路長を長くしつつ、パルス間干渉計30をコンパクトに構成することができる。また、光ファイバ31の屈折率は空気の屈折率よりも大きいことから、プローブ光路が空気中の光路であった場合には、空気中を伝搬するプローブ光のパルスよりも参照光パルスを遅延させることができ、frepの変化による光路長差の変化を実効的に大きくすることができる。
Increasing the distance L2 to the
図5及び図6は、伸長された参照光の光路15を安定化するための構成例を示す。光ファイバ31の長さを長くすることで、温度変化による光路長の変動や位相雑音等により干渉縞信号の強度が変動するおそれがある場合は、たとえば光ファイバ伝送に用いられているファイバノイズキャンセルの手法を適用することで、参照光路を安定化することができる。図5のパルス間干渉計30Aでは、参照光の光路15に、光分離器41と42、位相比較素子43、信号処理部44、及び光路長変化補償素子45を挿入する。光分離器41で、ビームスプリッタ13を出た参照光の一部を分岐して位相比較素子43の一方の入力に接続する。光分離器42で、光ファイバ31を出射した参照光の一部を分岐して、位相比較素子43の他方の入力に接続する。位相比較素子43で光ファイバ31の入射側の光の位相と出射側の光の位相を比較し、比較結果を信号処理部44に出力する。信号処理部44は、位相差を光路長変化の補償量を表わす電気信号に変換して、光路長変化補償素子45に電気信号を出力する。光路長変化補償素子45は、信号処理部44からの信号に基づいて、光路長の変化を補償する。これにより、伸長された参照光路を安定化して、検出される干渉縞の強度の変動を抑制することができる。
5 and 6 show a configuration example for stabilizing the
図6は参照光の光路15の安定化の別の例を示す。図6のパルス間干渉計30Bでは、光分離器41で、ビームスプリッタ13を出た参照光の一部を分岐して位相比較素子43の一方の入力に接続する。光ファイバ31を伝搬して出射した光の一部を折り返しミラー47で折り返し、光ファイバ31を伝搬した戻り光の一部を光分離器46で分岐して位相比較素子43の他方の入力に接続する。位相比較素子43で光ファイバ31の入射側の光の位相と光ファイバ31を往復した光の位相を比較し、比較結果を信号処理部44に出力する。信号処理部44は、位相差を光路長変化の補償量を表わす電気信号に変換して、光路長変化補償素子45に電気信号を出力する。光路長変化補償素子45は、信号処理部44からの信号に基づいて、光路長の変化を補償する。この構成でも参照光路を安定化して検出される干渉縞の強度の変動を抑制することができる。
<光コム距離計への適用>
図7は、距離測定装置の別の例として、光コム距離計40の概略構成を示す。光コム光源11から出力される出力光は、ビームスプリッタ13により基準光と測距光に分割される。基準光は光検出器42(図7では不図示)で検出されて、そのまま信号処理部41に入力される。測距光は測定対象物20に導かれ、測定対象物からの反射光が光検出器(図7では不図示)で検出されて信号処理部41に入力される。信号処理部41では、多数のビート信号が生成され、そのうち測定に利用される周波数成分が選別され、そのビート周波数成分における基準光と反射光の位相差に基づいて、測定対象物20までの距離Dを算出する。
FIG. 6 shows another example of stabilization of the
<Application to optical comb rangefinder>
FIG. 7 shows a schematic configuration of an
図8は、光コム距離計40による距離算出を説明する図である。光コム光源11から出力される出力光が、測定対象物20で反射されて光検出器42で受光されるときに、光コムの繰り返し周波数frepの整数倍に相当する多数のビート信号が生成される。そのうち、測定に用いるビート周波数fをフィルタ等で選別する。基準光についても同様に検出し、両者の位相差を電気的に測定する。このとき、両者の光路長差は、ビート周波数fに相当する変調波N個分の波長と端数(位相差φ)に相当する。そのため、測距光と基準光の位相差測定から光路長差を算出することができる。周波数制御部12で光コム光源11の繰り返し周波数を変えることで、位相差φが変化する。これは、測定対象物20までの光路長を変化させているのと同様の効果を奏し、光路長を実効的に可変にできることを意味する。
FIG. 8 is a diagram for explaining distance calculation by the optical
ビート周波数をf=Mfrep(Mは既知の整数)、空気群屈折率をng、光速をcとすると、変調波の波長はc/(ng×Mfrep)となる。 If the beat frequency is f = Mf rep (M is a known integer), the air group refractive index is ng , and the speed of light is c, the wavelength of the modulated wave is c / ( ng × Mf rep ).
往復でN個のパルスと位相差φがある場合、測定対象物20までの距離Dは、
D=(c/2ngMfrep)×(N+φ/2π) (3)
と表される。整数Nと位相差φを特定することで、絶対距離を測定することができる。
When there are N pulses and a phase difference φ in a round trip, the distance D to the
D = (c / 2n g Mf rep) × (N + φ / 2π) (3)
It is expressed. By specifying the integer N and the phase difference φ, the absolute distance can be measured.
光コム光源11の繰り返し周波数frepを少しずつ変化させると、その整数倍に相当するビート信号の周波数fも変化し、位相差φも変化し、式(3)について多数の連立方程式が立つ。これを解くことで、整数Nと位相差φ、すなわち距離Dを求めることができる。
When the repetition frequency f rep of the optical comb
図9は、繰り返し周波数の変化Δfrepと、位相差φの変化の関係を示すグラフである。式(3)から、位相差φを繰り返し周波数frepの関数として表すことができる。 FIG. 9 is a graph showing the relationship between the change Δf rep in the repetition frequency and the change in the phase difference φ. From equation (3), the phase difference φ can be expressed as a function of the repetition frequency f rep .
φ=(4πngD/c)×Mfrep−2πN (4)
繰り返し周波数frepを変えて多数のデータ点をとることで、傾き(4πngDM/c)をより正確に求めることができる。これは、絶対距離の概算値を求めることに相当するので、整数Nを決定することができる。その際、図9の測定例に見られるように位相測定データのばらつきなどによって位相差φの測定精度には限界があり、測定分解能以下の微小な位相変化量は正しく測定できない。そのため、位相変化の範囲を大きく取れるようにすることが重要である。そのための解決法として、前述のパルス間干渉計のときと同様に、基準光路と測距光路の間の光路長差を大きくすることが挙げられる。すなわち、式(4)において実効的な距離Dを大きくして変化の傾きを大きくすることに相当し、同じfrepの変化に対する位相差の変化を大きくとることができる。言い換えれば、測定する光路長差を大きく取ることにより、変調波の数Nを実効的に増やすことができるため、繰り返し周波数の変化Δfrepによる変調波長変化の効果が増倍され、結果的に位相差φの変化も増倍される。すなわち、パルス間干渉計においてパルス数mを大きくするのと同様の効果が得られる。このときも、パルス間干渉計の場合と同様に、基準光路を長くすることで、短い距離の測定においても大きな光路差を得ることができる。
φ = (4πn g D / c ) × Mf rep -2πN (4)
By taking a large number of data points by changing the repetition frequency f rep, it can be obtained gradient (4πn g DM / c) more accurately. Since this corresponds to obtaining an approximate value of the absolute distance, the integer N can be determined. At that time, as shown in the measurement example of FIG. 9, there is a limit to the measurement accuracy of the phase difference φ due to variations in phase measurement data, and a minute phase change amount less than the measurement resolution cannot be measured correctly. For this reason, it is important to ensure a large range of phase change. As a solution for that, it is possible to increase the optical path length difference between the reference optical path and the distance measuring optical path as in the case of the interpulse interferometer described above. That is, this corresponds to increasing the effective distance D in Formula (4) to increase the slope of the change, and the change in phase difference with respect to the same change in f rep can be increased. In other words, since the number N of modulated waves can be effectively increased by increasing the optical path length difference to be measured, the effect of the modulation wavelength change due to the repetition frequency change Δf rep is multiplied, and as a result Changes in the phase difference φ are also multiplied. That is, the same effect as increasing the number of pulses m in the interpulse interferometer can be obtained. Also in this case, as in the case of the interpulse interferometer, by increasing the reference optical path, a large optical path difference can be obtained even when measuring a short distance.
上述のように、実施形態の構成、手法によれば、光コム光源の繰り返し周波数を変化させることで、光路長を可変にするのと同様の効果を得ることができる。 As described above, according to the configuration and method of the embodiment, it is possible to obtain the same effect as changing the optical path length by changing the repetition frequency of the optical comb light source.
また、パルス数mを高くして離れたパルス同士を干渉させる、もしくは、測定光路差を大きく取り変調波の数Nを大きくすることにより光路長差の可変範囲を拡張することができる。 Further, the variable range of the optical path length difference can be expanded by increasing the number of pulses m to cause interference between pulses that are separated from each other, or by increasing the measurement optical path difference and increasing the number N of modulated waves.
さらに、参照光路もしくは基準光路を長くすることで、短い距離の測定においても大きな光路長差からパルス数mもしくは変調波の数Nを正確に決定することができる。 Furthermore, by increasing the reference optical path or the reference optical path, the number of pulses m or the number N of modulated waves can be accurately determined from a large optical path length difference even when measuring a short distance.
参照光路を光ファイバで構成することで、計測装置をコンパクトに構成し光路の安定化を図ることができる。 By configuring the reference optical path with an optical fiber, the measurement apparatus can be configured compactly and the optical path can be stabilized.
10,30、30A、30B パルス間干渉計(距離測定装置)
11 光コム光源
12 周波数制御部12
13 ビームスプリッタ
14 基準面
17 光検出器
20 測定対象物
20a 測定面
21、41 信号処理部
31 光ファイバ
40 光コム距離計(距離測定装置)
10, 30, 30A, 30B Interpulse interferometer (distance measuring device)
11 Optical
13
Claims (6)
前記パルス光源の繰り返し周波数を変化させる周波数制御部と、
前記パルス光源から出力されるパルス光を基準光と測定光に分割するスプリッタと、
前記基準光と、測定対象物の測定面で反射された前記測定光とを検出する光検出器と、
前記検出された光から、前記測定面までの距離を算出する信号処理部と、
を有し、
前記周波数制御部は、前記前記パルス光源の前記繰り返し周波数を変化させることで、前記基準光と前記測定光の光路長差を実効的に変化させ、
前記信号処理部は、前記実効的に変化された光路長差において前記測定面までの距離を算出することを特徴とする距離測定装置。 A pulsed light source that generates a longitudinal mode at regular intervals in the frequency domain;
A frequency controller for changing the repetition frequency of the pulsed light source;
A splitter that divides the pulsed light output from the pulsed light source into reference light and measurement light;
A photodetector for detecting the reference light and the measurement light reflected by the measurement surface of the measurement object;
A signal processing unit that calculates a distance from the detected light to the measurement surface;
Have
The frequency control unit effectively changes the optical path length difference between the reference light and the measurement light by changing the repetition frequency of the pulse light source,
The said signal processing part calculates the distance to the said measurement surface in the said optical path length difference changed effectively, The distance measuring apparatus characterized by the above-mentioned.
をさらに有し、
前記光検出器は、前記基準面で反射された第1パルス光と、前記測定面で反射された第2パルス光を検出し、
前記周波数制御部は、前記第1パルス光と前記第2パルス光の干渉が観察される位置へ前記パルス光源の前記繰り返し周波数を変化させることで、前記光路長差を実効的に変化させ、
前記信号処理部は、前記実効的に変化された光路長差において互いに干渉する前記第1パルス光と前記第2パルス光の間のパルス数に基づいて、前記測定面までの距離を算出することを特徴とする距離測定装置。 A reference surface for reflecting the reference light;
Further comprising
The photodetector detects the first pulsed light reflected by the reference surface and the second pulsed light reflected by the measurement surface;
The frequency control unit effectively changes the optical path length difference by changing the repetition frequency of the pulsed light source to a position where interference between the first pulsed light and the second pulsed light is observed.
The signal processing unit calculates a distance to the measurement surface based on the number of pulses between the first pulsed light and the second pulsed light that interfere with each other in the effectively changed optical path length difference. A distance measuring device characterized by.
ΔnL=m×(c/frep)×(Δfrep/frep)
で表されることを特徴とする請求項2に記載の距離測定装置。 The effective optical path length difference is L, the repetition frequency of the longitudinal mode is frep, the amount of change of the repetition frequency is Δfrep, the number of pulses between the first pulse light and the second pulse light is m (m is an integer), When the refractive index of the pulsed light propagation medium is n, the amount of change in the optical path length difference is
ΔnL = m × (c / f rep ) × (Δf rep / f rep )
The distance measuring device according to claim 2, wherein
前記信号処理部は、前記繰り返し周波数の変化量と前記位相差の変化量の相関関係に基づいて前記測定面までの距離を算出する、
ことを特徴とする請求項1に記載の距離測定装置。
The frequency control unit changes the phase difference between the reference light and the measurement light at a beat frequency by changing the effective optical path length difference by changing the repetition frequency of the pulse light source,
The signal processing unit calculates a distance to the measurement surface based on a correlation between the change amount of the repetition frequency and the change amount of the phase difference;
The distance measuring device according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014172930A JP6836048B2 (en) | 2014-08-27 | 2014-08-27 | Distance measuring device |
JP2020182381A JP6895192B2 (en) | 2014-08-27 | 2020-10-30 | Distance measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014172930A JP6836048B2 (en) | 2014-08-27 | 2014-08-27 | Distance measuring device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020182381A Division JP6895192B2 (en) | 2014-08-27 | 2020-10-30 | Distance measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016048188A true JP2016048188A (en) | 2016-04-07 |
JP6836048B2 JP6836048B2 (en) | 2021-02-24 |
Family
ID=55649179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014172930A Active JP6836048B2 (en) | 2014-08-27 | 2014-08-27 | Distance measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6836048B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018169265A (en) * | 2017-03-29 | 2018-11-01 | 株式会社東京精密 | Distance measuring device and distance measuring method |
CN110865382A (en) * | 2019-11-12 | 2020-03-06 | 天津大学 | Absolute distance measuring device and method of dynamic optical frequency comb |
WO2021024480A1 (en) * | 2019-08-08 | 2021-02-11 | 株式会社ニコン | Processing apparatus |
JPWO2021038821A1 (en) * | 2019-08-30 | 2021-03-04 | ||
CN115031630A (en) * | 2022-06-10 | 2022-09-09 | 天津大学 | Optical frequency comb dispersion interference plane pose measuring device and measuring method |
CN116047535A (en) * | 2022-12-30 | 2023-05-02 | 电子科技大学 | Dual-optical frequency comb time-of-flight ranging system based on dispersion Fourier transform |
WO2024157700A1 (en) * | 2023-01-27 | 2024-08-02 | パナソニックIpマネジメント株式会社 | Measurement device and measurement method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110235045A1 (en) * | 2008-10-10 | 2011-09-29 | Universitaet Stuttgart | Method and apparatus for interferometry |
JP2012154728A (en) * | 2011-01-25 | 2012-08-16 | Tokyo Univ Of Agriculture & Technology | Method and device for measuring structure |
-
2014
- 2014-08-27 JP JP2014172930A patent/JP6836048B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110235045A1 (en) * | 2008-10-10 | 2011-09-29 | Universitaet Stuttgart | Method and apparatus for interferometry |
JP2012154728A (en) * | 2011-01-25 | 2012-08-16 | Tokyo Univ Of Agriculture & Technology | Method and device for measuring structure |
Non-Patent Citations (2)
Title |
---|
CHOI, S. 外5名: ""Frequency-comb-based interferometer for profilometry and tomography"", OPTICS LETTERS, vol. Volume 31, Number 13, JPN6018020815, 1 July 2006 (2006-07-01), pages 1976 - 1978, ISSN: 0004099615 * |
MATSUMOTO, H. 外3名: ""Absolute Measurement of Baseline up to 403m Using Heterodyne Temporal Coherence Interferometer wit", APPLIED PHYSICS EXPRESS, vol. 5, JPN6018020818, 29 March 2012 (2012-03-29), pages 046601 - 3, ISSN: 0004099616 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018169265A (en) * | 2017-03-29 | 2018-11-01 | 株式会社東京精密 | Distance measuring device and distance measuring method |
CN114206538A (en) * | 2019-08-08 | 2022-03-18 | 株式会社尼康 | Processing device |
JPWO2021024480A1 (en) * | 2019-08-08 | 2021-02-11 | ||
WO2021024480A1 (en) * | 2019-08-08 | 2021-02-11 | 株式会社ニコン | Processing apparatus |
EP4011542A4 (en) * | 2019-08-08 | 2023-09-20 | Nikon Corporation | Processing device |
JP7416069B2 (en) | 2019-08-08 | 2024-01-17 | 株式会社ニコン | processing equipment |
JP7464055B2 (en) | 2019-08-30 | 2024-04-09 | 株式会社ニコン | Processing system and robot system |
JPWO2021038821A1 (en) * | 2019-08-30 | 2021-03-04 | ||
WO2021038821A1 (en) * | 2019-08-30 | 2021-03-04 | 株式会社ニコン | Processing system and robot system |
JP7540441B2 (en) | 2019-08-30 | 2024-08-27 | 株式会社ニコン | Processing System |
CN110865382A (en) * | 2019-11-12 | 2020-03-06 | 天津大学 | Absolute distance measuring device and method of dynamic optical frequency comb |
CN115031630A (en) * | 2022-06-10 | 2022-09-09 | 天津大学 | Optical frequency comb dispersion interference plane pose measuring device and measuring method |
CN116047535A (en) * | 2022-12-30 | 2023-05-02 | 电子科技大学 | Dual-optical frequency comb time-of-flight ranging system based on dispersion Fourier transform |
CN116047535B (en) * | 2022-12-30 | 2024-03-22 | 电子科技大学 | Dual-optical frequency comb time-of-flight ranging system based on dispersion Fourier transform |
WO2024157700A1 (en) * | 2023-01-27 | 2024-08-02 | パナソニックIpマネジメント株式会社 | Measurement device and measurement method |
Also Published As
Publication number | Publication date |
---|---|
JP6836048B2 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6836048B2 (en) | Distance measuring device | |
US10436569B2 (en) | Interferometric distance measurement based on compression of chirped interferogram from cross-chirped interference | |
KR101645274B1 (en) | Interferometric distance measuring method for measuring surfaces, and such a measuring arrangement | |
CN110646805B (en) | Frequency modulation continuous wave laser ranging system based on virtual sweep frequency light source | |
GB2529752A (en) | Dual laser frequency sweep interferometry system and method | |
JP6448236B2 (en) | Laser frequency measuring method and apparatus using optical frequency comb | |
CN108873007B (en) | Frequency modulation continuous wave laser ranging device for inhibiting vibration effect | |
JP6895192B2 (en) | Distance measuring device | |
Jiang et al. | Vibration measurement based on multiple self-mixing interferometry | |
JPWO2014203654A1 (en) | Distance measuring device, shape measuring device, processing system, distance measuring method, shape measuring method and processing method | |
CN109031340B (en) | Continuous frequency modulation laser radar device for measuring object movement speed | |
JP5421013B2 (en) | Positioning device and positioning method | |
CN116338710A (en) | Interferometric double-comb distance measuring device and measuring method | |
US9273948B2 (en) | Optical fiber sensor | |
JP5511162B2 (en) | Multi-wavelength interference displacement measuring method and apparatus | |
JP6264547B2 (en) | Optical signal generation apparatus, distance measurement apparatus, spectral characteristic measurement apparatus, frequency characteristic measurement apparatus, and optical signal generation method | |
JP2013083581A (en) | Measuring device | |
JP6628030B2 (en) | Distance measuring device and method | |
CN109031341B (en) | Object movement speed measuring method using continuous frequency modulation laser radar device | |
JP6635758B2 (en) | Refractive index correction method, distance measuring method and distance measuring device | |
JP2014149190A (en) | Measuring device, measuring method, light source device, and article manufacturing method | |
US20220206145A1 (en) | Optical distance measurement device and machining device | |
KR101448831B1 (en) | Distance measuring apparatus using phase-locked synthetic wavelength interferometer based on femtosecond laser | |
JP7128516B2 (en) | How to measure interference signals in dual comb spectroscopy | |
JP2012184967A (en) | Wavelength scanning interferometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180605 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190404 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191119 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20191119 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20191126 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20191203 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20200110 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20200121 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200623 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200714 |
|
C30 | Protocol of an oral hearing |
Free format text: JAPANESE INTERMEDIATE CODE: C30 Effective date: 20200924 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20200929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201030 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20201208 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20210112 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6836048 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |