JP2016048188A - Distance measuring apparatus - Google Patents

Distance measuring apparatus Download PDF

Info

Publication number
JP2016048188A
JP2016048188A JP2014172930A JP2014172930A JP2016048188A JP 2016048188 A JP2016048188 A JP 2016048188A JP 2014172930 A JP2014172930 A JP 2014172930A JP 2014172930 A JP2014172930 A JP 2014172930A JP 2016048188 A JP2016048188 A JP 2016048188A
Authority
JP
Japan
Prior art keywords
optical path
light
distance
measurement
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014172930A
Other languages
Japanese (ja)
Other versions
JP6836048B2 (en
Inventor
薫 美濃島
Kaoru Minojima
薫 美濃島
善晶 中嶋
Yoshiaki Nakajima
善晶 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electro Communications NUC
Original Assignee
University of Electro Communications NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electro Communications NUC filed Critical University of Electro Communications NUC
Priority to JP2014172930A priority Critical patent/JP6836048B2/en
Publication of JP2016048188A publication Critical patent/JP2016048188A/en
Priority to JP2020182381A priority patent/JP6895192B2/en
Application granted granted Critical
Publication of JP6836048B2 publication Critical patent/JP6836048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high accurate measurement by extending the variable range of an optical path length difference, in distance measurement using an optical frequency com.SOLUTION: A distance measuring apparatus includes a pulse light source which generates a longitudinal mode of a fixed interval in a frequency region, a frequency control part which changes the repetition frequency of the pulse light source, a splitter which divides pulse light outputted from the pulse light source into reference light and measurement light, a photodetector which detects the reference light and the measurement light reflected by the measuring surface of a measuring object, and a signal processing part which calculates a distance from the detected light and the measuring surface. The frequency control part changes the repetition frequency of the pulse light source, to effectively change the optical path length difference between the reference light and the measurement light. The signal processing part calculates the distance up to the measuring surface in the optical path length difference effectively changed.SELECTED DRAWING: Figure 1

Description

本発明は、光周波数コムを利用した距離測定技術に関する。   The present invention relates to a distance measurement technique using an optical frequency comb.

測定対象物までの距離を非接触で測定する方法として、光学的測定が適しており、干渉計や距離計が用いられている。干渉計は、別々の光路(参照光路と測定光路)を通った光の重ね合わせたときの干渉縞から距離を求める計器である。距離計は、出力波と対象物からの反射波の時間差、位相差、周波数差変化などから距離を求める計器である。   As a method for measuring the distance to the measurement object in a non-contact manner, optical measurement is suitable, and an interferometer or a distance meter is used. The interferometer is an instrument that obtains a distance from interference fringes when light beams that have passed through different optical paths (reference optical path and measurement optical path) are superimposed. The distance meter is a meter that obtains a distance from a time difference, a phase difference, a frequency difference change, and the like between an output wave and a reflected wave from an object.

近年では、光コムあるいは光周波数コム(optical frequency comb)と呼ばれる光源を用いた測距技術が開発されている。光周波数コムは、モード同期パルスレーザ(超短パルスレーザ)から得られるスペクトルである。等間隔に並ぶ多数の周波数成分(縦モード)を有するスペクトルの形状が櫛(コム)に似ていることから、光周波数コム(光コム)と呼ばれている。   In recent years, a ranging technique using a light source called an optical comb or an optical frequency comb has been developed. The optical frequency comb is a spectrum obtained from a mode-locked pulse laser (ultra-short pulse laser). Since the shape of a spectrum having a number of frequency components (longitudinal modes) arranged at equal intervals resembles a comb, it is called an optical frequency comb (optical comb).

光コムを用いた距離計として、基準光のビート信号と測定対象物で反射された測距光のビート信号の位相差に基づいて対象物までの距離を求める方法が知られている(たとえば、特許文献1及び2参照)。これらの文献では、レーザ共振器から出力されるパルスの繰り返し周波数を変えて光コムの間隔を変え、ビート周波数を変えることで、測定可能な距離範囲を広げることが提案されている。   As a distance meter using an optical comb, a method for obtaining a distance to an object based on a phase difference between a beat signal of reference light and a beat signal of distance measuring light reflected by the measurement object is known (for example, (See Patent Documents 1 and 2). In these documents, it is proposed that the measurable distance range is widened by changing the repetition frequency of the pulses output from the laser resonator, changing the interval of the optical comb, and changing the beat frequency.

また、光コムの基本波と第2高調波を用いた2色のパルス間干渉計(光コム干渉計)において、光コムの繰り返し周波数frepを変化させることで光路長を変化させる手法が提案されている(たとえば、非特許文献1参照)。   In addition, in a two-color interpulse interferometer (optical comb interferometer) using the fundamental wave and the second harmonic of the optical comb, a method for changing the optical path length by changing the repetition frequency frep of the optical comb is proposed. (For example, refer nonpatent literature 1).

光コム干渉計では、異なるパルス間の干渉縞の発生位置から距離を求めるため、別々のパルス同士が重なり合うように参照光路とプローブ光路の間に光路長差を設けることが必要である。干渉次数を精度よく決定するためには、光路長差を広範囲に変える手段が必要である。   In an optical comb interferometer, in order to obtain the distance from the occurrence position of interference fringes between different pulses, it is necessary to provide an optical path length difference between the reference optical path and the probe optical path so that different pulses overlap each other. In order to accurately determine the interference order, means for changing the optical path length difference over a wide range is required.

特開2006−184181号公報(特許第4617434号)JP 2006-184181 A (Patent No. 4617434) 特開2006−300753号公報(特許第4793675号)JP 2006-300753 A (Patent No. 4793675)

“High-accuracy self-correction of refractive index of air usingtwo-color interferometry of optical frequency combs”, K. Minoshima, et al.,Optics Express, vol. 19, 26095, 2011“High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs”, K. Minoshima, et al., Optics Express, vol. 19, 26095, 2011

移動ステージを用いて光路長を変化させる手法では、大きな光路長を与えるために大きな移動ステージが必要となり、機械的変動や空気揺らぎによる測定信号の変動が生じる。   In the method of changing the optical path length by using the moving stage, a large moving stage is required to give a large optical path length, and the measurement signal fluctuates due to mechanical fluctuation or air fluctuation.

他方、光コムの繰り返し周波数を変化させて光路長の可変範囲や測距範囲を広げる場合、周波数可変の範囲には限界がある。   On the other hand, when the variable range of optical path length and the distance measurement range are expanded by changing the repetition frequency of the optical comb, there is a limit to the frequency variable range.

そこで、光路長の可変範囲を拡張して任意の距離で高精度かつ安定した測定を可能にする距離測定技術を提供することを課題とする。   Therefore, it is an object to provide a distance measurement technique that enables highly accurate and stable measurement at an arbitrary distance by extending the variable range of the optical path length.

機械的な移動手段を用いずに光路長を変化させるために、光コム光源の繰り返し周波数を変化させることで、実効的な光路長差を変化させる。   In order to change the optical path length without using mechanical moving means, the effective optical path length difference is changed by changing the repetition frequency of the optical comb light source.

距離測定装置のひとつの構成例として、本発明をパルス間干渉計に適用することができる。パルス間干渉計で光路長の可変範囲を拡張するために、互いに干渉する基準光パルスと測定光パルスの光路長差を大きくして、個数の離れたパルス同士を干渉させる。この方法は長い距離の測定に有効だが、短い距離に適用するには制限がある。一方、短い距離の精密な測定を可能にするためには、参照光の光路長を長く設定する。参照光の光路長を長くする場合、外乱の影響を抑制するために光ファイバの参照光路を用いるのが望ましい。距離測定装置の別の構成例として、本発明を光コムを用いた距離計に適用することができる。   As an example of the configuration of the distance measuring device, the present invention can be applied to an interpulse interferometer. In order to extend the variable range of the optical path length with the interpulse interferometer, the optical path length difference between the reference optical pulse and the measurement optical pulse that interfere with each other is increased to cause interference between a number of distant pulses. This method is effective for measuring long distances, but has limitations in applying to short distances. On the other hand, in order to enable precise measurement at a short distance, the optical path length of the reference light is set to be long. When the optical path length of the reference light is increased, it is desirable to use the reference optical path of the optical fiber in order to suppress the influence of disturbance. As another configuration example of the distance measuring device, the present invention can be applied to a distance meter using an optical comb.

具体的には、本発明の一態様である光学測定装置は、
周波数領域で一定間隔の縦モードを発生させるパルス光源と、
前記パルス光源の繰り返し周波数を変化させる周波数制御部と、
前記パルス光源から出力されるパルス光を基準光と測定光に分割するスプリッタと、
前記基準光と、測定対象物の測定面で反射された前記測定光とを検出する光検出器と、
前記検出された光から、前記測定面までの距離を算出する信号処理部と、
を有し、
前記周波数制御部は、前記繰り返し周波数を変化させることで、前記基準光と前記測定光の間の光路長差を実効的に変化させ、
前記信号処理部は、前記実効的に変化された光路長差において前記測定面までの距離を算出することを特徴とする。
Specifically, the optical measurement device which is one embodiment of the present invention includes:
A pulsed light source that generates a longitudinal mode at regular intervals in the frequency domain;
A frequency controller for changing the repetition frequency of the pulsed light source;
A splitter that divides the pulsed light output from the pulsed light source into reference light and measurement light;
A photodetector for detecting the reference light and the measurement light reflected by the measurement surface of the measurement object;
A signal processing unit that calculates a distance from the detected light to the measurement surface;
Have
The frequency control unit effectively changes the optical path length difference between the reference light and the measurement light by changing the repetition frequency,
The signal processing unit calculates a distance to the measurement surface based on the effectively changed optical path length difference.

光路長の可変範囲を拡張し、任意の距離で高精度かつ安定した距離測定が可能になる。   The variable range of the optical path length can be expanded to enable highly accurate and stable distance measurement at any distance.

距離測定装置の一例としてのパルス間干渉計の概略構成図である。It is a schematic block diagram of the interpulse interferometer as an example of a distance measuring device. フェムト秒レーザパルスと光コムの関係を示す図である。It is a figure which shows the relationship between a femtosecond laser pulse and an optical comb. 光コムの繰り返し周波数frepを変化させたときに現れる干渉縞を示す図である。It is a figure which shows the interference fringe which appears when the repetition frequency frep of an optical comb is changed. 図1のパルス間干渉計の展開例を示す図である。It is a figure which shows the development example of the interpulse interferometer of FIG. 図4の構成で参照光路を安定化する構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example for stabilizing a reference optical path in the configuration of FIG. 4. 図4の構成で参照光路を安定化する別の構成例を示す図である。It is a figure which shows another structural example which stabilizes a reference optical path with the structure of FIG. 距離測定装置の一例としての光コム距離計の概略構成図である。It is a schematic block diagram of the optical comb rangefinder as an example of a distance measuring device. 光コムによる距離測定を説明する図である。It is a figure explaining the distance measurement by an optical comb. 光コムのモード間隔の変化Δfrepと位相差φの関係を示す図である。It is a figure which shows the change (DELTA) frep of mode space | interval of an optical comb, and the phase difference (phi).

<光路長可変範囲の拡張>
図1は、実施形態の距離測定装置の一例としてパルス間干渉計10の概略構成を示す。パルス間干渉計10は、光コム光源11と、光コム光源11の繰り返し周波数を変化させる周波数制御部12と、光コム光源11からのパルス列を参照光とプローブ光に分割するビームスプリッタ13と、光検出器17と、信号処理部21とを含む。
<Expansion of variable optical path length>
FIG. 1 shows a schematic configuration of an interpulse interferometer 10 as an example of a distance measuring apparatus according to an embodiment. The interpulse interferometer 10 includes an optical comb light source 11, a frequency control unit 12 that changes the repetition frequency of the optical comb light source 11, a beam splitter 13 that splits a pulse train from the optical comb light source 11 into reference light and probe light, A photodetector 17 and a signal processing unit 21 are included.

光コム光源11は、たとえばモード同期(ロック)されたフェムト秒パルスレーザで構成される。フェムト秒パルスレーザのような超短パルスレーザで構成される光コム光源11は、後述するように、周波数領域で一定の間隔で現れる複数の縦モードを発生させる。光コム光源11から出力されるパルス光(パルス列)は、ビームスプリッタ13で分割される。一方のパルス列成分は、参照光路15を通ってミラー等の基準面14で反射され、ビームスプリッタ13で反射されて光検出器17に入射する。他方のパルス列成分は、プローブ光路16を通って測定対象物20の測定面20aで反射され、ビームスプリッタ13を透過して光検出器17に入射する。基準面14と測定面20aは、ともに固定であってもよい。   The optical comb light source 11 is composed of, for example, a femtosecond pulse laser that is mode-locked (locked). As will be described later, the optical comb light source 11 configured by an ultrashort pulse laser such as a femtosecond pulse laser generates a plurality of longitudinal modes that appear at regular intervals in the frequency domain. The pulsed light (pulse train) output from the optical comb light source 11 is split by the beam splitter 13. One pulse train component is reflected by the reference surface 14 such as a mirror through the reference optical path 15, is reflected by the beam splitter 13, and enters the photodetector 17. The other pulse train component passes through the probe optical path 16, is reflected by the measurement surface 20 a of the measurement target 20, passes through the beam splitter 13, and enters the photodetector 17. Both the reference surface 14 and the measurement surface 20a may be fixed.

光検出器17の出力は信号処理部21に入力される。信号処理装置は、参照光路15を通るパルス列とプローブ光路16を通るパルス列との干渉縞に基づいて、測定対象物20までの距離を算出する。干渉縞はパルスとパルスの重ね合わせにより生じ、パルスの包絡線3の中にキャリア波2(電界振動)が含まれる。   The output of the photodetector 17 is input to the signal processing unit 21. The signal processing device calculates the distance to the measurement object 20 based on interference fringes between the pulse train passing through the reference optical path 15 and the pulse train passing through the probe optical path 16. The interference fringes are generated by superposition of the pulses, and the carrier wave 2 (electric field oscillation) is included in the envelope 3 of the pulse.

光周波数コムを利用したパルス間干渉計10の場合、超短パルスの空間局在性のため、参照光路15の光路長とプローブ光路16の光路長の差がパルスの繰り返し間隔の整数倍になった位置にだけ干渉縞が発生する。そして、干渉縞の振幅は、2つの光路を伝搬するパルスのピークが完全に重なったときに最大になる。パルスの繰り返し間隔を長さの尺度として測定対象物20までの距離L1を求めるには、基準面14の位置を干渉縞が発生する位置に調整する必要がある。   In the case of the interpulse interferometer 10 using the optical frequency comb, due to the spatial localization of the ultrashort pulse, the difference between the optical path length of the reference optical path 15 and the optical path length of the probe optical path 16 is an integral multiple of the pulse repetition interval. Interference fringes are generated only at the positions. The amplitude of the interference fringes is maximized when the peaks of the pulses propagating through the two optical paths completely overlap. In order to obtain the distance L1 to the measurement object 20 using the pulse repetition interval as a measure of length, it is necessary to adjust the position of the reference surface 14 to a position where an interference fringe is generated.

従来法では、基準面14の位置をモーターステージ等で機械的に変化させて基準面14までの距離L2を調整する。これに対し、実施形態のパルス間干渉計10では、周波数制御部12により光コム光源11の繰り返し周波数、すなわちパルスの繰り返し間隔を変えることで、基準面14と測定面20aの間の実効光路長差を干渉縞が観察される位置に調整する。これにより、機械的振動やサーボ機構のドリフトを抑制して光学系全体の安定性を維持し、高精度の測定が可能になる。   In the conventional method, the distance L2 to the reference surface 14 is adjusted by mechanically changing the position of the reference surface 14 with a motor stage or the like. On the other hand, in the interpulse interferometer 10 of the embodiment, the effective optical path length between the reference surface 14 and the measurement surface 20a is changed by changing the repetition frequency of the optical comb light source 11, that is, the pulse repetition interval, by the frequency control unit 12. The difference is adjusted to a position where interference fringes are observed. As a result, mechanical vibration and drift of the servo mechanism are suppressed, the stability of the entire optical system is maintained, and high-precision measurement is possible.

図2は、フェムト秒レーザパルスと光コムの関係を示す図である。光コム光源11から出力されるパルス幅はフェムト秒のオーダーであり、たとえば100フェムト秒(fs)である。この超短パルスは、時間軸上で一定の繰り返し間隔Trepで出力される。この例では、繰り返し間隔Trepは20ナノ秒(ns)である。 FIG. 2 is a diagram showing the relationship between femtosecond laser pulses and optical combs. The pulse width output from the optical comb light source 11 is on the order of femtoseconds, for example, 100 femtoseconds (fs). This ultrashort pulse is output at a constant repetition interval T rep on the time axis. In this example, the repetition interval T rep is 20 nanoseconds (ns).

時間軸上の超短パルス列をフーリエ変換して周波数軸上で観測すると、図2の右図のように、Trepの逆数に相当する繰り返し周波数frepで並ぶ多数の縦モードが観測される。この意味で、繰り返し周波数frepを「モード間隔」と呼んでもよい。この例では、繰り返し周波数frepは50MHzとなる。 When an ultrashort pulse train on the time axis is Fourier-transformed and observed on the frequency axis, as shown in the right diagram of FIG. 2, a number of longitudinal modes arranged at a repetition frequency f rep corresponding to the reciprocal of T rep are observed. In this sense, the repetition frequency f rep may be called a “mode interval”. In this example, the repetition frequency f rep is 50 MHz.

パルス間干渉における干渉縞の発生条件は、2つの光路の光路長差Lが式(1)で表されるときである。   The condition for generating interference fringes in the interpulse interference is when the optical path length difference L between the two optical paths is expressed by equation (1).

L=m×c/(n×frep) (1)
ここでmは干渉するパルス間を隔てるパルスの個数(以下では、「パルス数」と呼ぶ。mは整数)、nは伝搬媒体(空気)の屈折率、cは光速である。
L = m × c / (n × f rep ) (1)
Here, m is the number of pulses separating the interfering pulses (hereinafter referred to as “number of pulses”, m is an integer), n is the refractive index of the propagation medium (air), and c is the speed of light.

ここで光コム光源11のレーザ共振器の長さなどの条件を変えて繰り返し周波数frepを変えることができる。光コム光源11の繰り返し周波数を、干渉縞が観察されるところに制御することで、基準面14の位置を機械的に動かして光路長を変化させるのと同一の効果を得ることができる。 Here, it is possible to change the repetition frequency f rep by changing conditions such as the length of the laser resonator of the optical comb light source 11. By controlling the repetition frequency of the optical comb light source 11 so that interference fringes are observed, the same effect as changing the optical path length by mechanically moving the position of the reference plane 14 can be obtained.

ただし、繰り返し周波数frepの可変範囲には限界がある。そこで、実効光路長の可変範囲を拡張するために、パルス数mを大きくすることが考えられる。 However, the variable range of the repetition frequency f rep has a limit. Therefore, in order to expand the variable range of the effective optical path length, it is conceivable to increase the number of pulses m.

繰り返し周波数frepとパルスの繰り返し間隔Trepは相関するため、繰り返し周波数frepをΔfrepだけ変化させた場合、空気の屈折率を1として、m個離れたパルス同士の干渉では、その光路長差の変化量は式(2)で示すように、m倍される。 Since the repetition frequency f rep correlates with the pulse repetition interval T rep , when the repetition frequency f rep is changed by Δf rep , when the refractive index of the air is 1, and the interference between the m separated pulses, the optical path length The change amount of the difference is multiplied by m as shown in the equation (2).

ΔnL=m×(c/frep)×(Δfrep/frep) (2)
したがって、mを大きくして、互いに離れた2つのパルス間の干渉を得ることで、実効光路長差の可変範囲を増大させることができる。ここで、パルス数mは、式(2)より、既知のΔfrepだけ変化させた場合に、干渉縞の位相変化を検出するか、もしくは、干渉縞の現れるピーク位置の変化を測定して、光路長差を算出することによって求められる。
ΔnL = m × (c / f rep ) × (Δf rep / f rep ) (2)
Therefore, the variable range of the effective optical path length difference can be increased by increasing m and obtaining interference between two pulses separated from each other. Here, when the number of pulses m is changed by the known Δf rep from the equation (2), the phase change of the interference fringes is detected, or the change of the peak position where the interference fringes appear is measured, It is obtained by calculating the optical path length difference.

図3は、繰り返し周波数frepを変化させたときに現れる干渉縞の包絡線強度を示す図である。パルス間干渉計10では、前述のように、参照光路の光路長とプローブ光路の光路長の差がパルスの繰り返し間隔の整数倍になった位置にだけ干渉縞が発生する。また、距離測定のために干渉縞の包絡線のピーク位置の決定が重要である。干渉縞の包絡線が最大振幅となるときのfrepの値をfpeakとする。 FIG. 3 is a diagram showing the envelope intensity of interference fringes that appear when the repetition frequency f rep is changed. In the interpulse interferometer 10, as described above, interference fringes are generated only at positions where the difference between the optical path length of the reference optical path and the optical path length of the probe optical path is an integral multiple of the pulse repetition interval. It is also important to determine the peak position of the interference fringe envelope for distance measurement. Let f peak be the value of f rep when the envelope of the interference fringe has the maximum amplitude.

反射鏡で折り返されている光学系を考えた場合、光路長変化の効果は折り返しにより2倍になるので、干渉縞信号を検出するため、および、最大振幅位置を見つけるのに必要なfrepの変化量Δfrepは、最大でfrep/4だけ必要になる(Δfrep≦frep/4)。これは配置された基準面(ミラー)14の位置に依らず、frepを変化させることで干渉縞の包絡線の最大振幅位置をスイープできるためである。この特性を利用すると、基準面(ミラー)14を任意の位置に設定し、光学系の幾何学長を変えることなく、干渉縞の最大振幅位置を見つけることができる。 Considering the optical system folded by the reflector, the effect of the optical path length change is doubled by folding, so that the f rep necessary for detecting the interference fringe signal and finding the maximum amplitude position is required. The amount of change Δf rep is required to be f rep / 4 at maximum (Δf rep ≦ f rep / 4). This is because the maximum amplitude position of the interference fringe envelope can be swept by changing f rep regardless of the position of the arranged reference plane (mirror) 14. By utilizing this characteristic, the reference plane (mirror) 14 can be set at an arbitrary position, and the maximum amplitude position of the interference fringes can be found without changing the geometric length of the optical system.

たとえば、図2の例でfrep=50MHzである。frepを最大900kHzまで変化させることができ(Δfrep=900kHz)、また、パルス数mが10であるとする(10個離れたパルス同士の干渉)。この場合、式(2)から、光路長を10.8m変化させたのと等価になる。
<短い測定距離への適用>
図4は、図1のパルス間干渉計10の展開例としてのパルス間干渉計30を示す。図1のように、測定対象物20までの距離L1が、基準面14までの距離L2よりもずっと大きい場合(L1>>L2)は、光コム光源11の繰り返し周波数を変え、かつ、離れたパルス間を干渉させる(パルス数mを大きくする)ことで光路長の可変範囲を増大できる。
For example, f rep = 50 MHz in the example of FIG. f rep can be changed up to 900 kHz (Δf rep = 900 kHz), and the number of pulses m is 10 (interference between 10 pulses apart). In this case, the equation (2) is equivalent to changing the optical path length by 10.8 m.
<Application to short measurement distance>
FIG. 4 shows an interpulse interferometer 30 as a development example of the interpulse interferometer 10 of FIG. As shown in FIG. 1, when the distance L1 to the measurement object 20 is much larger than the distance L2 to the reference plane 14 (L1 >> L2), the repetition frequency of the optical comb light source 11 is changed and the distance is increased. By interfering between pulses (increasing the number of pulses m), the variable range of the optical path length can be increased.

これに対し、測定対象物20までの距離L1が小さい場合、離れたパルス間の干渉を得ることが困難になる。パルス数mが小さいと、frepを変化させることによる光路長差の拡張の効果を十分に得ることができない。 On the other hand, when the distance L1 to the measuring object 20 is small, it becomes difficult to obtain interference between the separated pulses. When the number of pulses m is small, the effect of extending the optical path length difference by changing f rep cannot be obtained sufficiently.

そこで、図4では、参照光の光路15の長さをプローブ光の光路16の長さに比較して大きく設定することで、パルス数mを大きくする。基準面14までの距離L2を測定面20aまでの距離L1よりもずっと大きくすることで(L2>>L1)、近くに位置する測定対象物20の距離L1を正確に測定することができる。   Therefore, in FIG. 4, the number of pulses m is increased by setting the length of the optical path 15 of the reference light larger than the length of the optical path 16 of the probe light. By making the distance L2 to the reference surface 14 much larger than the distance L1 to the measurement surface 20a (L2 >> L1), the distance L1 of the measurement object 20 located nearby can be accurately measured.

基準面14までの距離L2を大きくすると、外乱の影響が大きくなり、高精度測定の妨げとなる場合もある。そこで、図4の例では参照光の光路を光ファイバ31で構成する。これにより、光路長差を安定化制御することができる。また、光ファイバ31を用いることで、参照光の光路長を長くしつつ、パルス間干渉計30をコンパクトに構成することができる。また、光ファイバ31の屈折率は空気の屈折率よりも大きいことから、プローブ光路が空気中の光路であった場合には、空気中を伝搬するプローブ光のパルスよりも参照光パルスを遅延させることができ、frepの変化による光路長差の変化を実効的に大きくすることができる。 Increasing the distance L2 to the reference surface 14 increases the influence of disturbance and may hinder high-accuracy measurement. Therefore, in the example of FIG. 4, the optical path of the reference light is configured by the optical fiber 31. Thereby, stabilization control of the optical path length difference can be performed. Moreover, by using the optical fiber 31, the interpulse interferometer 30 can be configured in a compact manner while increasing the optical path length of the reference light. Further, since the refractive index of the optical fiber 31 is larger than the refractive index of air, when the probe optical path is an optical path in the air, the reference light pulse is delayed from the pulse of the probe light propagating in the air. The change in the optical path length difference due to the change in f rep can be effectively increased.

図5及び図6は、伸長された参照光の光路15を安定化するための構成例を示す。光ファイバ31の長さを長くすることで、温度変化による光路長の変動や位相雑音等により干渉縞信号の強度が変動するおそれがある場合は、たとえば光ファイバ伝送に用いられているファイバノイズキャンセルの手法を適用することで、参照光路を安定化することができる。図5のパルス間干渉計30Aでは、参照光の光路15に、光分離器41と42、位相比較素子43、信号処理部44、及び光路長変化補償素子45を挿入する。光分離器41で、ビームスプリッタ13を出た参照光の一部を分岐して位相比較素子43の一方の入力に接続する。光分離器42で、光ファイバ31を出射した参照光の一部を分岐して、位相比較素子43の他方の入力に接続する。位相比較素子43で光ファイバ31の入射側の光の位相と出射側の光の位相を比較し、比較結果を信号処理部44に出力する。信号処理部44は、位相差を光路長変化の補償量を表わす電気信号に変換して、光路長変化補償素子45に電気信号を出力する。光路長変化補償素子45は、信号処理部44からの信号に基づいて、光路長の変化を補償する。これにより、伸長された参照光路を安定化して、検出される干渉縞の強度の変動を抑制することができる。   5 and 6 show a configuration example for stabilizing the optical path 15 of the extended reference light. When the length of the optical fiber 31 is increased, there is a possibility that the intensity of the interference fringe signal may fluctuate due to fluctuations in the optical path length due to temperature changes, phase noise, or the like. For example, fiber noise cancellation used in optical fiber transmission By applying this method, the reference optical path can be stabilized. In the interpulse interferometer 30A of FIG. 5, optical separators 41 and 42, a phase comparison element 43, a signal processing unit 44, and an optical path length change compensation element 45 are inserted into the optical path 15 of the reference light. In the optical separator 41, a part of the reference light exiting the beam splitter 13 is branched and connected to one input of the phase comparison element 43. In the optical separator 42, a part of the reference light emitted from the optical fiber 31 is branched and connected to the other input of the phase comparison element 43. The phase comparison element 43 compares the phase of light on the incident side of the optical fiber 31 with the phase of light on the output side, and outputs the comparison result to the signal processing unit 44. The signal processing unit 44 converts the phase difference into an electrical signal representing the compensation amount of the optical path length change, and outputs the electrical signal to the optical path length change compensation element 45. The optical path length change compensation element 45 compensates for the change in the optical path length based on the signal from the signal processing unit 44. Thereby, the extended reference optical path can be stabilized, and fluctuations in the intensity of detected interference fringes can be suppressed.

図6は参照光の光路15の安定化の別の例を示す。図6のパルス間干渉計30Bでは、光分離器41で、ビームスプリッタ13を出た参照光の一部を分岐して位相比較素子43の一方の入力に接続する。光ファイバ31を伝搬して出射した光の一部を折り返しミラー47で折り返し、光ファイバ31を伝搬した戻り光の一部を光分離器46で分岐して位相比較素子43の他方の入力に接続する。位相比較素子43で光ファイバ31の入射側の光の位相と光ファイバ31を往復した光の位相を比較し、比較結果を信号処理部44に出力する。信号処理部44は、位相差を光路長変化の補償量を表わす電気信号に変換して、光路長変化補償素子45に電気信号を出力する。光路長変化補償素子45は、信号処理部44からの信号に基づいて、光路長の変化を補償する。この構成でも参照光路を安定化して検出される干渉縞の強度の変動を抑制することができる。
<光コム距離計への適用>
図7は、距離測定装置の別の例として、光コム距離計40の概略構成を示す。光コム光源11から出力される出力光は、ビームスプリッタ13により基準光と測距光に分割される。基準光は光検出器42(図7では不図示)で検出されて、そのまま信号処理部41に入力される。測距光は測定対象物20に導かれ、測定対象物からの反射光が光検出器(図7では不図示)で検出されて信号処理部41に入力される。信号処理部41では、多数のビート信号が生成され、そのうち測定に利用される周波数成分が選別され、そのビート周波数成分における基準光と反射光の位相差に基づいて、測定対象物20までの距離Dを算出する。
FIG. 6 shows another example of stabilization of the optical path 15 of the reference light. In the interpulse interferometer 30 </ b> B of FIG. 6, the optical separator 41 branches a part of the reference light emitted from the beam splitter 13 and connects it to one input of the phase comparison element 43. Part of the light propagating through the optical fiber 31 is folded back by the folding mirror 47, and part of the return light propagating through the optical fiber 31 is branched by the optical separator 46 and connected to the other input of the phase comparison element 43. To do. The phase comparison element 43 compares the phase of the light on the incident side of the optical fiber 31 with the phase of the light reciprocating through the optical fiber 31, and outputs the comparison result to the signal processing unit 44. The signal processing unit 44 converts the phase difference into an electrical signal representing the compensation amount of the optical path length change, and outputs the electrical signal to the optical path length change compensation element 45. The optical path length change compensation element 45 compensates for the change in the optical path length based on the signal from the signal processing unit 44. Even with this configuration, it is possible to suppress fluctuations in the intensity of interference fringes detected by stabilizing the reference optical path.
<Application to optical comb rangefinder>
FIG. 7 shows a schematic configuration of an optical comb rangefinder 40 as another example of the distance measuring device. The output light output from the optical comb light source 11 is split into reference light and ranging light by the beam splitter 13. The reference light is detected by a photodetector 42 (not shown in FIG. 7) and input to the signal processing unit 41 as it is. The distance measuring light is guided to the measurement object 20, and the reflected light from the measurement object is detected by a photodetector (not shown in FIG. 7) and input to the signal processing unit 41. The signal processing unit 41 generates a large number of beat signals, of which frequency components used for measurement are selected, and the distance to the measurement object 20 based on the phase difference between the reference light and the reflected light in the beat frequency components. D is calculated.

図8は、光コム距離計40による距離算出を説明する図である。光コム光源11から出力される出力光が、測定対象物20で反射されて光検出器42で受光されるときに、光コムの繰り返し周波数frepの整数倍に相当する多数のビート信号が生成される。そのうち、測定に用いるビート周波数fをフィルタ等で選別する。基準光についても同様に検出し、両者の位相差を電気的に測定する。このとき、両者の光路長差は、ビート周波数fに相当する変調波N個分の波長と端数(位相差φ)に相当する。そのため、測距光と基準光の位相差測定から光路長差を算出することができる。周波数制御部12で光コム光源11の繰り返し周波数を変えることで、位相差φが変化する。これは、測定対象物20までの光路長を変化させているのと同様の効果を奏し、光路長を実効的に可変にできることを意味する。 FIG. 8 is a diagram for explaining distance calculation by the optical comb distance meter 40. When the output light output from the optical comb light source 11 is reflected by the measurement object 20 and received by the photodetector 42, a large number of beat signals corresponding to an integral multiple of the optical comb repetition frequency f rep are generated. Is done. Among them, the beat frequency f used for measurement is selected by a filter or the like. The reference light is similarly detected and the phase difference between the two is electrically measured. At this time, the optical path length difference between them corresponds to the wavelength and fraction (phase difference φ) of N modulation waves corresponding to the beat frequency f. Therefore, the optical path length difference can be calculated from the phase difference measurement between the distance measuring light and the reference light. The phase difference φ is changed by changing the repetition frequency of the optical comb light source 11 by the frequency control unit 12. This means that the same effect as changing the optical path length to the measuring object 20 is obtained, and the optical path length can be effectively varied.

ビート周波数をf=Mfrep(Mは既知の整数)、空気群屈折率をng、光速をcとすると、変調波の波長はc/(ng×Mfrep)となる。 If the beat frequency is f = Mf rep (M is a known integer), the air group refractive index is ng , and the speed of light is c, the wavelength of the modulated wave is c / ( ng × Mf rep ).

往復でN個のパルスと位相差φがある場合、測定対象物20までの距離Dは、
D=(c/2ngMfrep)×(N+φ/2π) (3)
と表される。整数Nと位相差φを特定することで、絶対距離を測定することができる。
When there are N pulses and a phase difference φ in a round trip, the distance D to the measurement object 20 is
D = (c / 2n g Mf rep) × (N + φ / 2π) (3)
It is expressed. By specifying the integer N and the phase difference φ, the absolute distance can be measured.

光コム光源11の繰り返し周波数frepを少しずつ変化させると、その整数倍に相当するビート信号の周波数fも変化し、位相差φも変化し、式(3)について多数の連立方程式が立つ。これを解くことで、整数Nと位相差φ、すなわち距離Dを求めることができる。 When the repetition frequency f rep of the optical comb light source 11 is changed little by little, the frequency f of the beat signal corresponding to an integral multiple thereof also changes, and the phase difference φ also changes, and a number of simultaneous equations are established for the equation (3). By solving this, the integer N and the phase difference φ, that is, the distance D can be obtained.

図9は、繰り返し周波数の変化Δfrepと、位相差φの変化の関係を示すグラフである。式(3)から、位相差φを繰り返し周波数frepの関数として表すことができる。 FIG. 9 is a graph showing the relationship between the change Δf rep in the repetition frequency and the change in the phase difference φ. From equation (3), the phase difference φ can be expressed as a function of the repetition frequency f rep .

φ=(4πngD/c)×Mfrep−2πN (4)
繰り返し周波数frepを変えて多数のデータ点をとることで、傾き(4πngDM/c)をより正確に求めることができる。これは、絶対距離の概算値を求めることに相当するので、整数Nを決定することができる。その際、図9の測定例に見られるように位相測定データのばらつきなどによって位相差φの測定精度には限界があり、測定分解能以下の微小な位相変化量は正しく測定できない。そのため、位相変化の範囲を大きく取れるようにすることが重要である。そのための解決法として、前述のパルス間干渉計のときと同様に、基準光路と測距光路の間の光路長差を大きくすることが挙げられる。すなわち、式(4)において実効的な距離Dを大きくして変化の傾きを大きくすることに相当し、同じfrepの変化に対する位相差の変化を大きくとることができる。言い換えれば、測定する光路長差を大きく取ることにより、変調波の数Nを実効的に増やすことができるため、繰り返し周波数の変化Δfrepによる変調波長変化の効果が増倍され、結果的に位相差φの変化も増倍される。すなわち、パルス間干渉計においてパルス数mを大きくするのと同様の効果が得られる。このときも、パルス間干渉計の場合と同様に、基準光路を長くすることで、短い距離の測定においても大きな光路差を得ることができる。
φ = (4πn g D / c ) × Mf rep -2πN (4)
By taking a large number of data points by changing the repetition frequency f rep, it can be obtained gradient (4πn g DM / c) more accurately. Since this corresponds to obtaining an approximate value of the absolute distance, the integer N can be determined. At that time, as shown in the measurement example of FIG. 9, there is a limit to the measurement accuracy of the phase difference φ due to variations in phase measurement data, and a minute phase change amount less than the measurement resolution cannot be measured correctly. For this reason, it is important to ensure a large range of phase change. As a solution for that, it is possible to increase the optical path length difference between the reference optical path and the distance measuring optical path as in the case of the interpulse interferometer described above. That is, this corresponds to increasing the effective distance D in Formula (4) to increase the slope of the change, and the change in phase difference with respect to the same change in f rep can be increased. In other words, since the number N of modulated waves can be effectively increased by increasing the optical path length difference to be measured, the effect of the modulation wavelength change due to the repetition frequency change Δf rep is multiplied, and as a result Changes in the phase difference φ are also multiplied. That is, the same effect as increasing the number of pulses m in the interpulse interferometer can be obtained. Also in this case, as in the case of the interpulse interferometer, by increasing the reference optical path, a large optical path difference can be obtained even when measuring a short distance.

上述のように、実施形態の構成、手法によれば、光コム光源の繰り返し周波数を変化させることで、光路長を可変にするのと同様の効果を得ることができる。   As described above, according to the configuration and method of the embodiment, it is possible to obtain the same effect as changing the optical path length by changing the repetition frequency of the optical comb light source.

また、パルス数mを高くして離れたパルス同士を干渉させる、もしくは、測定光路差を大きく取り変調波の数Nを大きくすることにより光路長差の可変範囲を拡張することができる。   Further, the variable range of the optical path length difference can be expanded by increasing the number of pulses m to cause interference between pulses that are separated from each other, or by increasing the measurement optical path difference and increasing the number N of modulated waves.

さらに、参照光路もしくは基準光路を長くすることで、短い距離の測定においても大きな光路長差からパルス数mもしくは変調波の数Nを正確に決定することができる。   Furthermore, by increasing the reference optical path or the reference optical path, the number of pulses m or the number N of modulated waves can be accurately determined from a large optical path length difference even when measuring a short distance.

参照光路を光ファイバで構成することで、計測装置をコンパクトに構成し光路の安定化を図ることができる。   By configuring the reference optical path with an optical fiber, the measurement apparatus can be configured compactly and the optical path can be stabilized.

10,30、30A、30B パルス間干渉計(距離測定装置)
11 光コム光源
12 周波数制御部12
13 ビームスプリッタ
14 基準面
17 光検出器
20 測定対象物
20a 測定面
21、41 信号処理部
31 光ファイバ
40 光コム距離計(距離測定装置)
10, 30, 30A, 30B Interpulse interferometer (distance measuring device)
11 Optical Comb Light Source 12 Frequency Control Unit 12
13 Beam splitter 14 Reference surface 17 Photo detector 20 Measurement object 20a Measurement surface 21, 41 Signal processing unit 31 Optical fiber 40 Optical comb distance meter (distance measuring device)

Claims (6)

周波数領域で一定間隔の縦モードを発生させるパルス光源と、
前記パルス光源の繰り返し周波数を変化させる周波数制御部と、
前記パルス光源から出力されるパルス光を基準光と測定光に分割するスプリッタと、
前記基準光と、測定対象物の測定面で反射された前記測定光とを検出する光検出器と、
前記検出された光から、前記測定面までの距離を算出する信号処理部と、
を有し、
前記周波数制御部は、前記前記パルス光源の前記繰り返し周波数を変化させることで、前記基準光と前記測定光の光路長差を実効的に変化させ、
前記信号処理部は、前記実効的に変化された光路長差において前記測定面までの距離を算出することを特徴とする距離測定装置。
A pulsed light source that generates a longitudinal mode at regular intervals in the frequency domain;
A frequency controller for changing the repetition frequency of the pulsed light source;
A splitter that divides the pulsed light output from the pulsed light source into reference light and measurement light;
A photodetector for detecting the reference light and the measurement light reflected by the measurement surface of the measurement object;
A signal processing unit that calculates a distance from the detected light to the measurement surface;
Have
The frequency control unit effectively changes the optical path length difference between the reference light and the measurement light by changing the repetition frequency of the pulse light source,
The said signal processing part calculates the distance to the said measurement surface in the said optical path length difference changed effectively, The distance measuring apparatus characterized by the above-mentioned.
前記基準光を反射させる基準面、
をさらに有し、
前記光検出器は、前記基準面で反射された第1パルス光と、前記測定面で反射された第2パルス光を検出し、
前記周波数制御部は、前記第1パルス光と前記第2パルス光の干渉が観察される位置へ前記パルス光源の前記繰り返し周波数を変化させることで、前記光路長差を実効的に変化させ、
前記信号処理部は、前記実効的に変化された光路長差において互いに干渉する前記第1パルス光と前記第2パルス光の間のパルス数に基づいて、前記測定面までの距離を算出することを特徴とする距離測定装置。
A reference surface for reflecting the reference light;
Further comprising
The photodetector detects the first pulsed light reflected by the reference surface and the second pulsed light reflected by the measurement surface;
The frequency control unit effectively changes the optical path length difference by changing the repetition frequency of the pulsed light source to a position where interference between the first pulsed light and the second pulsed light is observed.
The signal processing unit calculates a distance to the measurement surface based on the number of pulses between the first pulsed light and the second pulsed light that interfere with each other in the effectively changed optical path length difference. A distance measuring device characterized by.
前記実効光路長差をL、前記縦モードの繰り返し周波数をfrep、前記繰り返し周波数の変化量をΔfrep、前記第1パルス光と前記第2パルス光の間のパルス数をm(mは整数)、パルス光伝搬媒体の屈折率をnとすると、前記光路長差の変化量は、
ΔnL=m×(c/frep)×(Δfrep/frep
で表されることを特徴とする請求項2に記載の距離測定装置。
The effective optical path length difference is L, the repetition frequency of the longitudinal mode is frep, the amount of change of the repetition frequency is Δfrep, the number of pulses between the first pulse light and the second pulse light is m (m is an integer), When the refractive index of the pulsed light propagation medium is n, the amount of change in the optical path length difference is
ΔnL = m × (c / f rep ) × (Δf rep / f rep )
The distance measuring device according to claim 2, wherein
前記スプリッタから前記測定面までの距離をL1、前記スプリッタから前記基準面までの距離をL2とすると、L2>>L1であることを特徴とする請求項2に記載の距離測定装置。   3. The distance measuring device according to claim 2, wherein L2 >> L1, where L1 is a distance from the splitter to the measurement surface and L2 is a distance from the splitter to the reference surface. 前記スプリッタから前記基準面までの光路を光ファイバで構成することを特徴とする請求項4に記載の距離測定装置。   The distance measuring device according to claim 4, wherein an optical path from the splitter to the reference plane is configured by an optical fiber. 前記周波数制御部は、前記パルス光源の前記繰り返し周波数を変化させることで、前記実効的な光路長差を変化させてビート周波数における前記基準光と前記測定光の位相差を変化させ、
前記信号処理部は、前記繰り返し周波数の変化量と前記位相差の変化量の相関関係に基づいて前記測定面までの距離を算出する、
ことを特徴とする請求項1に記載の距離測定装置。
The frequency control unit changes the phase difference between the reference light and the measurement light at a beat frequency by changing the effective optical path length difference by changing the repetition frequency of the pulse light source,
The signal processing unit calculates a distance to the measurement surface based on a correlation between the change amount of the repetition frequency and the change amount of the phase difference;
The distance measuring device according to claim 1.
JP2014172930A 2014-08-27 2014-08-27 Distance measuring device Active JP6836048B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014172930A JP6836048B2 (en) 2014-08-27 2014-08-27 Distance measuring device
JP2020182381A JP6895192B2 (en) 2014-08-27 2020-10-30 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172930A JP6836048B2 (en) 2014-08-27 2014-08-27 Distance measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020182381A Division JP6895192B2 (en) 2014-08-27 2020-10-30 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2016048188A true JP2016048188A (en) 2016-04-07
JP6836048B2 JP6836048B2 (en) 2021-02-24

Family

ID=55649179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172930A Active JP6836048B2 (en) 2014-08-27 2014-08-27 Distance measuring device

Country Status (1)

Country Link
JP (1) JP6836048B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169265A (en) * 2017-03-29 2018-11-01 株式会社東京精密 Distance measuring device and distance measuring method
CN110865382A (en) * 2019-11-12 2020-03-06 天津大学 Absolute distance measuring device and method of dynamic optical frequency comb
WO2021024480A1 (en) * 2019-08-08 2021-02-11 株式会社ニコン Processing apparatus
JPWO2021038821A1 (en) * 2019-08-30 2021-03-04
CN115031630A (en) * 2022-06-10 2022-09-09 天津大学 Optical frequency comb dispersion interference plane pose measuring device and measuring method
CN116047535A (en) * 2022-12-30 2023-05-02 电子科技大学 Dual-optical frequency comb time-of-flight ranging system based on dispersion Fourier transform
WO2024157700A1 (en) * 2023-01-27 2024-08-02 パナソニックIpマネジメント株式会社 Measurement device and measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235045A1 (en) * 2008-10-10 2011-09-29 Universitaet Stuttgart Method and apparatus for interferometry
JP2012154728A (en) * 2011-01-25 2012-08-16 Tokyo Univ Of Agriculture & Technology Method and device for measuring structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235045A1 (en) * 2008-10-10 2011-09-29 Universitaet Stuttgart Method and apparatus for interferometry
JP2012154728A (en) * 2011-01-25 2012-08-16 Tokyo Univ Of Agriculture & Technology Method and device for measuring structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI, S. 外5名: ""Frequency-comb-based interferometer for profilometry and tomography"", OPTICS LETTERS, vol. Volume 31, Number 13, JPN6018020815, 1 July 2006 (2006-07-01), pages 1976 - 1978, ISSN: 0004099615 *
MATSUMOTO, H. 外3名: ""Absolute Measurement of Baseline up to 403m Using Heterodyne Temporal Coherence Interferometer wit", APPLIED PHYSICS EXPRESS, vol. 5, JPN6018020818, 29 March 2012 (2012-03-29), pages 046601 - 3, ISSN: 0004099616 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169265A (en) * 2017-03-29 2018-11-01 株式会社東京精密 Distance measuring device and distance measuring method
CN114206538A (en) * 2019-08-08 2022-03-18 株式会社尼康 Processing device
JPWO2021024480A1 (en) * 2019-08-08 2021-02-11
WO2021024480A1 (en) * 2019-08-08 2021-02-11 株式会社ニコン Processing apparatus
EP4011542A4 (en) * 2019-08-08 2023-09-20 Nikon Corporation Processing device
JP7416069B2 (en) 2019-08-08 2024-01-17 株式会社ニコン processing equipment
JP7464055B2 (en) 2019-08-30 2024-04-09 株式会社ニコン Processing system and robot system
JPWO2021038821A1 (en) * 2019-08-30 2021-03-04
WO2021038821A1 (en) * 2019-08-30 2021-03-04 株式会社ニコン Processing system and robot system
JP7540441B2 (en) 2019-08-30 2024-08-27 株式会社ニコン Processing System
CN110865382A (en) * 2019-11-12 2020-03-06 天津大学 Absolute distance measuring device and method of dynamic optical frequency comb
CN115031630A (en) * 2022-06-10 2022-09-09 天津大学 Optical frequency comb dispersion interference plane pose measuring device and measuring method
CN116047535A (en) * 2022-12-30 2023-05-02 电子科技大学 Dual-optical frequency comb time-of-flight ranging system based on dispersion Fourier transform
CN116047535B (en) * 2022-12-30 2024-03-22 电子科技大学 Dual-optical frequency comb time-of-flight ranging system based on dispersion Fourier transform
WO2024157700A1 (en) * 2023-01-27 2024-08-02 パナソニックIpマネジメント株式会社 Measurement device and measurement method

Also Published As

Publication number Publication date
JP6836048B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6836048B2 (en) Distance measuring device
US10436569B2 (en) Interferometric distance measurement based on compression of chirped interferogram from cross-chirped interference
KR101645274B1 (en) Interferometric distance measuring method for measuring surfaces, and such a measuring arrangement
CN110646805B (en) Frequency modulation continuous wave laser ranging system based on virtual sweep frequency light source
GB2529752A (en) Dual laser frequency sweep interferometry system and method
JP6448236B2 (en) Laser frequency measuring method and apparatus using optical frequency comb
CN108873007B (en) Frequency modulation continuous wave laser ranging device for inhibiting vibration effect
JP6895192B2 (en) Distance measuring device
Jiang et al. Vibration measurement based on multiple self-mixing interferometry
JPWO2014203654A1 (en) Distance measuring device, shape measuring device, processing system, distance measuring method, shape measuring method and processing method
CN109031340B (en) Continuous frequency modulation laser radar device for measuring object movement speed
JP5421013B2 (en) Positioning device and positioning method
CN116338710A (en) Interferometric double-comb distance measuring device and measuring method
US9273948B2 (en) Optical fiber sensor
JP5511162B2 (en) Multi-wavelength interference displacement measuring method and apparatus
JP6264547B2 (en) Optical signal generation apparatus, distance measurement apparatus, spectral characteristic measurement apparatus, frequency characteristic measurement apparatus, and optical signal generation method
JP2013083581A (en) Measuring device
JP6628030B2 (en) Distance measuring device and method
CN109031341B (en) Object movement speed measuring method using continuous frequency modulation laser radar device
JP6635758B2 (en) Refractive index correction method, distance measuring method and distance measuring device
JP2014149190A (en) Measuring device, measuring method, light source device, and article manufacturing method
US20220206145A1 (en) Optical distance measurement device and machining device
KR101448831B1 (en) Distance measuring apparatus using phase-locked synthetic wavelength interferometer based on femtosecond laser
JP7128516B2 (en) How to measure interference signals in dual comb spectroscopy
JP2012184967A (en) Wavelength scanning interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191126

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200110

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200121

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200623

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200714

C30 Protocol of an oral hearing

Free format text: JAPANESE INTERMEDIATE CODE: C30

Effective date: 20200924

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210112

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6836048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150