JP6872841B2 - Fat reduction composition - Google Patents

Fat reduction composition Download PDF

Info

Publication number
JP6872841B2
JP6872841B2 JP2014093119A JP2014093119A JP6872841B2 JP 6872841 B2 JP6872841 B2 JP 6872841B2 JP 2014093119 A JP2014093119 A JP 2014093119A JP 2014093119 A JP2014093119 A JP 2014093119A JP 6872841 B2 JP6872841 B2 JP 6872841B2
Authority
JP
Japan
Prior art keywords
fat
antibody
endotoxin
bacteria
reducing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014093119A
Other languages
Japanese (ja)
Other versions
JP2015209413A (en
Inventor
塩野谷 博
博 塩野谷
豪 鈴木
豪 鈴木
香織 北村
香織 北村
恵美子 鈴木
恵美子 鈴木
亜友美 伊坂
亜友美 伊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCHANOMIZU UNIVERSITY
Asama Chemical Co Ltd
Original Assignee
OCHANOMIZU UNIVERSITY
Asama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCHANOMIZU UNIVERSITY, Asama Chemical Co Ltd filed Critical OCHANOMIZU UNIVERSITY
Priority to JP2014093119A priority Critical patent/JP6872841B2/en
Publication of JP2015209413A publication Critical patent/JP2015209413A/en
Application granted granted Critical
Publication of JP6872841B2 publication Critical patent/JP6872841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ヒト病原細菌と細菌毒素に対する抗体を有効成分として含有することを特徴とする、体脂肪蓄積抑制、内臓脂肪蓄積抑制組成物及び脂肪蓄積抑制方法に関する。 The present invention relates to a composition for suppressing body fat accumulation, a composition for suppressing visceral fat accumulation, and a method for suppressing fat accumulation, which comprises an antibody against human pathogenic bacteria and a bacterial toxin as an active ingredient.

近年、食生活における脂肪摂取量の増加、日常生活における運動量の減少などの変化により肥満者が増加している。 肥満は体脂肪が蓄積した状態である。体脂肪が腹腔にある脂肪を内臓脂肪と称し、糖尿病、動脈硬化、高血圧、脳梗塞、脂質異常症などの生活習慣病の原因となる。 In recent years, the number of obese people has been increasing due to changes such as an increase in fat intake in the diet and a decrease in the amount of exercise in daily life. Obesity is a condition in which body fat is accumulated. The fat in the abdomen is called visceral fat, which causes lifestyle-related diseases such as diabetes, arteriosclerosis, hypertension, cerebral infarction, and dyslipidemia.

内臓脂肪型肥満とともに、高血糖、高血圧、脂質異常症内蔵型のうちいずれか2つ以上を併発した状態がメタボリックシンドローム(内臓脂肪症候群)である。 メタボリックシンドロームは、エネルギー摂取量と運動不足による正のエネルギーバランスにより過剰エネルギーが脂肪となって蓄積した結果であるが、その原因として不規則な生活習慣があり、生活習慣の改善によって、予防・改善できると考えられている。 Metabolic syndrome (visceral fat syndrome) is a condition in which any two or more of hyperglycemia, hypertension, and dyslipidemia are combined with visceral fat obesity. Metabolic syndrome is the result of excess energy accumulated as fat due to the positive energy balance between energy intake and lack of exercise, but there is an irregular lifestyle as the cause, and it is prevented and improved by improving the lifestyle. It is believed that it can be done.

一方、最近の研究から、腸内細菌叢が内臓脂肪の蓄積に関与する要因であることが、最初は無菌マウスを用いる2004年Gordon JIらの研究、更に2006年以降からヒト研究においても報告されるに至った。 On the other hand, recent studies have reported that the intestinal flora is a factor involved in the accumulation of visceral fat, first in the 2004 Gordon JI et al. Study using sterile mice, and further in human studies from 2006 onwards. It came to.

腸内細菌と動物とヒトにおける研究は、以下のA)、B)の2つに要約することができる。
A)ヒト腸内細菌叢には、食物繊維など、ヒトがエネルギー源として利用できない食品成分を分解して、ヒトが利用可能なエネルギー源とする複数の細菌種が常在する。これらの細菌種と生息数は、遺伝的要因と食事成分などの影響を受け、ヒトのエネルギーバランスに影響を与える。
Studies on gut microbiota, animals and humans can be summarized in the following two categories, A) and B).
A) In the human intestinal flora, there are resident multiple bacterial species such as dietary fiber that decompose food components that cannot be used as an energy source by humans and use them as an energy source that can be used by humans. These bacterial species and abundance are affected by genetic factors and dietary components, and affect human energy balance.

B)腸内細菌叢は、ビフィズス菌、乳酸菌桿菌などのヒトと共生関係にある通称善玉菌、ウェルシュ菌、ブドウ球菌などの有害作用をもたらす病原細菌である通称悪玉菌、そして日和見菌に分類される。日和見菌は腸内細菌叢が善玉菌主体の場合は有害作用をしないが、悪玉菌が主体となる状況では悪玉菌として有害作用をする菌種で、非病原性大腸菌、ユウバクテリウム、連鎖球菌(Peptococcus)などがある。善玉菌、日和見菌、悪玉菌の比率は壮年を境にビフィズス菌の減少とウェルシュ菌、大腸菌などの悪玉菌の増加により悪玉菌化(Dysbiosis)が進行する。悪玉菌化の進行に伴い50歳代以降には、悪玉菌化の指標となるエンドトキシンの体内移行が進行し、慢性炎症の状態に移行する。 B) The gut microbiota is classified into bifidobacteria, lactic acid bacteria and other bacilli that are symbiotic with humans, and bacilli that cause harmful effects such as Clostridium perfringens and bacilli, which are pathogenic bacteria, and opportunistic bacteria. To. Opportunistic bacteria do not have harmful effects when the intestinal flora is mainly good bacteria, but they have harmful effects as bad bacteria in situations where bad bacteria are the main constituents. Non-pathogenic Escherichia coli, Eubacterium, streptococcus (Peptococcus) and the like. The ratio of good bacteria, opportunistic bacteria, and bad bacteria progresses to bad bacteria (Dysbiosis) due to the decrease of bifidobacteria and the increase of bad bacteria such as Clostridium perfringens and Escherichia coli after the middle age. With the progress of bad bacteriolysis, endotoxin, which is an index of bad bacteriolysis, progresses into the body after the 50s, and the state becomes chronically inflamed.

全ての腸内細菌は、菌体の構成成分により、グラム陽性細菌とグラム陰性細菌に分けられる。エンドトキシンはグラム陰性菌の細胞壁構成成分であり、化学的にはリポ蛋白多糖体、リポポリサッカライドで、LPSの略称で記載されることもある。グラム陰性細菌を、ヒトに対する病原性との関係でみると、病原性細菌から、日和見菌、非病原性細菌の広範わたり分布する。細菌グラム陰性細菌の増殖に伴い、消化管内のエンドトキシン濃度は上昇する。 All intestinal bacteria are divided into Gram-positive bacteria and Gram-negative bacteria according to the constituents of the bacterial cells. Endotoxin is a cell wall component of Gram-negative bacteria, is chemically a lipoprotein polysaccharide, lipopolysaccharide, and is sometimes described by the abbreviation of LPS. Looking at the relationship between gram-negative bacteria and their pathogenicity to humans, they are widely distributed from pathogenic bacteria to opportunistic bacteria and non-pathogenic bacteria. Bacterial Gram-negative Bacterial growth increases endotoxin levels in the gastrointestinal tract.

消化管は食物や細菌などの異物の体内移行を避けるバリヤーであり、消化管内エンドトキシンの体内移行は、バリヤー機能によりブロックされている。バリヤー機能は腸内細菌叢の悪玉菌化により障害をうけ、エンドトキシンの体内移行が増大する。エンドトキシンは消化管に常在する最も活性の高い炎症物質であり、腸内細菌叢の悪玉菌化した状態では、エンドトキシンの慢性的な体内移行により、慢性炎症の状態となる。 The gastrointestinal tract is a barrier that avoids the transfer of foreign substances such as food and bacteria into the body, and the transfer of endotoxin in the digestive tract into the body is blocked by the barrier function. The barrier function is impaired by the conversion of the intestinal flora into bad bacteria, and the transfer of endotoxin into the body increases. Endotoxin is the most active inflammatory substance resident in the gastrointestinal tract, and in the bad bacteria state of the intestinal flora, the chronic transfer of endotoxin into the body leads to a state of chronic inflammation.

慢性炎症は血管内皮細胞由来のリパーゼ活性を高め、脂肪細胞における脂質合成を促進し、中高年以降の肥満者の増加の原因となる。 Chronic inflammation enhances lipase activity derived from vascular endothelial cells, promotes lipid synthesis in adipocytes, and causes an increase in obese people after middle and old age.

腸内細菌叢の悪玉菌化を解消し、善玉菌化することによる肥満、脂肪蓄積の抑制する手段として、すでに、生きた乳酸菌であるプロバイオティクス(非特許文献1)、および、乳酸菌の栄養となり、乳酸菌の増殖に作用する難消化性多糖類であるプレバイオティクス(非特許文献2)を用いる試みが知られている。 As a means of eliminating bad bacteria in the intestinal flora and suppressing obesity and fat accumulation by turning them into good bacteria, probiotics (Non-Patent Document 1), which are already living lactic acid bacteria, and nutrition of lactic acid bacteria Therefore, an attempt to use prebiotics (Non-Patent Document 2), which is an indigestible polysaccharide that acts on the growth of lactic acid bacteria, is known.

腸内細菌叢を改善する他の手段として、抗体を用いることも知られている。例えば、特開2007−330193号公報には、発酵乳原料母液に乳清タンパクを添加し、前記母液中の抗ウェルシュ菌抗体が70質量%以上残存する方法で除菌あるいは殺菌した後に、発酵微生物スターターを接種して発酵させた発酵乳製品が、腸内細菌叢改善効果を有する旨が開示されている(特許文献1)。 Antibodies are also known to be used as another means of improving the gut microbiota. For example, in Japanese Patent Application Laid-Open No. 2007-330193, a fermented microorganism is added after adding a milky protein to the fermented milk raw material mother liquor and sterilizing or sterilizing by a method in which 70% by mass or more of the anti-Welsh bacterium antibody in the mother liquor remains. It is disclosed that a fermented dairy product infused with a starter and fermented has an effect of improving the intestinal bacterial flora (Patent Document 1).

特開2007−330193号公報JP-A-2007-330193

Kadooka et al.,(2010):Regulation of abdominal adiposity by probiotics(Lactobaciltus gasseri,SBT2055)in adults with obese ten−dencies in a randomized controlled trial,Eur J Clin Nut.64,636−43.Kadoka et al. , (2010): Regulation of abdominal adipose tissue by probiotics (Lactobacillus gasseri, SBT2055) in adults with obesity ten-dens. 64,636-43. Cani et al.,(2007):Selective increases of bifidobacteria in gut microflora irnprove high−fat−diet−induced diabetes in mice through a mechanism associated with endotoxaemia, Diabetologia,501,2374−2383.Cani et al. , (2007): Selective increases of bifidobacteria in gut microflora irnprove high-fat-diet-induced diabetic diabetes in microbiota

本発明は、抗体、特にヒト病原細菌と細菌毒素(菌体内毒素(エンドトキシン:endotoxin)と菌体外毒素(エキソトキシン:exotoxin))に対する抗体を主成分とする組成物を摂取することにより、体脂肪、内臓脂肪を低減する組成物の提供を目的とする。 The present invention is made by ingesting a composition containing an antibody as a main component, particularly an antibody against human pathogenic bacteria and bacterial toxins (endotoxin (endotoxin) and exotoxin (exotoxin)). An object of the present invention is to provide a composition for reducing fat and visceral fat.

本発明者らは上記課題を解決するために、ヒト病原細菌及びエンドトキシン産生菌に対する抗体および細菌毒素であるエンドトキシン並びにエキソトキシンに対する抗体を摂取することにより、ヒト病原細菌及びエンドトキシン産生菌を排除し、消化管エンドトキシンレベルを下げ、エンドトキシンの体内移行を低減させることによって、体脂肪、内臓脂肪が低減させることが可能であるという仮説のもとに研究を行った。そして、抗体の摂取により体脂肪が低減するとの知見を得るに至り、本発明を完成させた。 In order to solve the above problems, the present inventors eliminate human pathogenic bacteria and endotoxin-producing bacteria by ingesting antibodies against human pathogenic bacteria and endotoxin-producing bacteria and antibodies against the bacterial toxins endotoxin and exotoxin. The study was conducted based on the hypothesis that body fat and visceral fat can be reduced by lowering the level of gastrointestinal endotoxin and reducing the transfer of endotoxin into the body. Then, they came to the finding that body fat was reduced by ingestion of the antibody, and completed the present invention.

本発明における「悪玉菌」、「ヒト病原細菌」、「エンドトキシン産生菌」を以下に定義する。 The "bad bacteria", "human pathogenic bacteria", and "endotoxin-producing bacteria" in the present invention are defined below.

「エンドトキシン産生菌」は細菌菌体の構造成分として、細胞壁にエンドトキシンを有する細菌である。細菌のグラム色素染色による分類ではグラム陰性菌に分類される細菌の全てを含む。例えば、毒素産生性病原性大腸菌O−157や非病原性細菌大腸菌、緑膿菌など、グラム陰性の病原性細菌、日和見菌がこれに含まれる。 An "endotoxin-producing bacterium" is a bacterium having endotoxin on the cell wall as a structural component of a bacterial cell. All bacteria classified as Gram-negative bacteria are included in the classification of bacteria by Gram-pigment staining. For example, this includes gram-negative pathogenic bacteria and opportunistic bacteria such as toxin-producing pathogenic Escherichia coli O-157, non-pathogenic bacteria Escherichia coli, and Pseudomonas aeruginosa.

「ヒト病原細菌」は通常は健常者に生息しない病原性の強い病原細菌から、日和見菌を含み、ヒトと共生関係にある善玉菌以外の細菌である。例として、コレラ菌や志賀赤痢菌、肺炎球菌、ブドウ球菌など、グラム陰性と陽性の細菌が含まれる。 "Human pathogenic bacteria" are highly pathogenic pathogenic bacteria that do not normally inhabit healthy people, include opportunistic bacteria, and are bacteria other than good bacteria that have a symbiotic relationship with humans. Examples include gram-negative and gram-positive bacteria such as Vibrio cholerae, Shigella dysentis, Streptococcus pneumoniae, and Staphylococcus.

「悪玉菌」は、ヒトに常在する善玉菌以外の細菌で、病原細菌と日和見菌もこれに含まれる。なお、通常は健常者に常在しない病原性の強い病原細菌、例えば、志賀赤痢菌、コレラ菌などは含まれない。 "Bad bacteria" are bacteria other than good bacteria that are resident in humans, and include pathogenic bacteria and opportunistic bacteria. It should be noted that pathogenic bacteria that are not normally resident in healthy subjects, such as Shigella dysentis and Vibrio cholerae, are not included.

本発明は、抗体を有効成分とし、脂肪の蓄積を低減させるために使用される、脂肪低減組成物を提供するものである。 The present invention provides a fat-reducing composition that contains an antibody as an active ingredient and is used to reduce fat accumulation.

本発明によれば、抗体が腸内細菌叢を整え、エンドトキシンの体内への移行を抑制することにより、体脂肪や内臓脂肪の蓄積を抑制することができる。 According to the present invention, the antibody regulates the intestinal bacterial flora and suppresses the transfer of endotoxin into the body, thereby suppressing the accumulation of body fat and visceral fat.

本発明に係る脂肪低減組成物について説明する。本実施形態に係る脂肪低減組成物は、 抗体を有効成分とし、脂肪の蓄積を低減させるために使用されるものである。 The fat reduction composition according to the present invention will be described. The fat reduction composition according to the present embodiment contains an antibody as an active ingredient and is used to reduce fat accumulation.

本実施形態において使用される抗体は、生体にとって異物である病原菌やその構成成分に結合して、異物を体外に排除し、無害化する作用を有する免疫システムの産物で、化学的には免疫グロブリンである。 The antibody used in the present embodiment is a product of an immune system that binds to pathogens and their constituents that are foreign substances to the living body, eliminates the foreign substances from the body, and detoxifies them, and is chemically immunoglobulin. Is.

抗体の選択は、ウシ、水牛、ウマ、ブタ、ヤギ、ウサギ、ウサギなどの家畜の血漿、初乳、生乳、ニワトリなどの卵が抗体組成物作成の出発原料となる。抗体の濃度を高めるために、各種ヒト病原細菌をワクチンとして接種することもできる。出発原料は、さらに、血漿の場合は脱繊維素処理後凍結乾燥、噴霧乾燥が、初乳、生乳の場合は乳脂肪、乳糖、カゼインを除去後、限外濾過による水分除去と濃縮、無菌濾過、さらに凍結乾燥、噴霧乾燥により粉末化する。これらの技術はすでに確立され、実施されている。 For antibody selection, plasma of domestic animals such as cows, buffaloes, horses, pigs, goats, rabbits and rabbits, and eggs such as first milk, raw milk and chickens are the starting materials for preparing antibody compositions. Various human pathogenic bacteria can also be inoculated as vaccines to increase the concentration of antibodies. The starting materials are further freeze-dried and spray-dried after defibrinant treatment in the case of plasma, and after removing milk fat, lactose and casein in the case of first milk and raw milk, water removal and concentration by ultrafiltration and sterile filtration. Further, it is pulverized by freeze-drying and spray-drying. These technologies have already been established and implemented.

抗体は液体状態では加熱により急速に活性が失われるので、加熱による殺菌に当たっては殺菌と抗体熱変性防止の両面を満足する管理が必要である。組成物の実用形態は水溶液または乾燥粉末である。 Since the activity of an antibody is rapidly lost by heating in a liquid state, it is necessary to manage the sterilization by heating to satisfy both the sterilization and the prevention of heat denaturation of the antibody. Practical forms of the composition are aqueous solutions or dry powders.

品質の評価は抗体の定量によりなされる。総抗体量の測定はテキストに従って、例えば二重抗体酵素免疫測定法、免疫拡散法、プロテインAまたはプロテインGカラム法などが推奨される。また、特定の細菌や細菌毒素に対する抗体の測定には酵素免疫測定法により測定する。 Quality assessment is done by quantification of antibodies. For the measurement of the total antibody amount, for example, a dual antibody enzyme immunoassay method, an immunodiffusion method, a protein A or protein G column method, etc. are recommended according to the text. In addition, the enzyme immunoassay is used to measure antibodies against specific bacteria and bacterial toxins.

血液と糞便中のエンドトキシンの低下機能を有する組成物の機能を確保するためには、抗体の抗原特異性のチェックが重要である。即ち、エンドトキシン産生細菌に対する抗体とヒト由来病原細菌、エンドトキシンに対する抗体、エキソトキシンに対する抗体を含むことが必須の要件となる。 It is important to check the antigen specificity of the antibody in order to ensure the function of the composition having the function of lowering endotoxin in blood and feces. That is, it is an essential requirement to include an antibody against endotoxin-producing bacteria, a human-derived pathogenic bacterium, an antibody against endotoxin, and an antibody against exotoxin.

エンドトキシン産生菌に対する抗体は、エンドトキシン産生細菌を腸管から排泄させることにより除去を促進し、エンドトキシンに対する抗体は、エンドトキシンに結合して、体内移行の阻止に働く。 Antibodies to endotoxin-producing bacteria promote removal by excreting endotoxin-producing bacteria from the intestinal tract, and antibodies to endotoxin bind to endotoxin and act to prevent endotoxin translocation into the body.

一方、エンドトキシンを産生しないグラム陽性ヒト病原菌(ウェルシュ菌、ブドウ球菌など)は、エキソトキシンを産生して消化管のバリヤーを破壊し、エンドトキシンの体内移行を高めるため、これをエキソトキシンに対する抗体がエキソトキシンに結合して、エンドトキシンの体内移行を阻止する。 On the other hand, Gram-positive human pathogens that do not produce endotoxin (Clostridium perfringens, Staphylococcus, etc.) produce exotoxin, destroy the barrier of the digestive tract, and enhance the translocation of endotoxin into the body. It binds to toxins and blocks the translocation of endotoxins into the body.

エンドトキシン産生細菌としては以下に示す属に該当する細菌である。例えば、フソバクテリム(Fusobacterium)、ベイヨネラ(Veillonella)、メガスフェラ(Megasphaera)、ナイセリア(Neisseria)、モラクセラ(Moraxella)、ブランハメラ(Branhamella)、アシネトバクター(Acinetobacter)、シトロバクター(Citrobacter)、エンテロバクター(Enterobacter)、大腸菌(Escherichia)、ハフニア(Hafnia)、クレブシエラ(Klebsiella)、モルガネラ(Morganella)、プロテウス(Proteus)、プロビデンシア(Providencia)、サルモネラ(Salmonella)、セラチア(Serratia)、シゲラ(Shigella)、エルシニア(Yersinia)、ビブリオ(Vibrio)、エロモナス(Aeromonas)、プレジオモナス(Plesiomonas)、ヘモフィルス(Haemophillus)、パスツレラ(Pasteurella)、緑膿菌(Pseudomonas)、レジオネラ(Legionella)などを挙げることができる。 The endotoxin-producing bacterium is a bacterium corresponding to the following genera. For example, Fusobacterium, Veillonella, Megasphaera, Neisseria, Moraxella, Branhamella, Branhamella, Acinetobacter (Acinetobacter) (Escherichia), Hafnia, Klebsiella, Morganella, Proteus, Providencia, Salmonella, Salmonella, Serratia, Serratia (Vibrio), Aeromonas, Plesiomonas, Haemofilus, Pasteurella, Pseudomonas, Legionella and the like can be mentioned.

エンドトキシン産生細菌のホルマリン処理ないし加熱死菌を抗体検出定量用の抗原として、必要に応じて選択する。フィンブリエ、鞭毛に対する抗体の検出定量に当たってはホルマリン処理が必要である。エンドトキシンとしては、上記の各細菌菌体をそのまま、またはこれら菌体より、成書に従ってトリクロロ酢酸法やフェノール法によりエンドトキシン(LPS)を抽出して用いることができる。 Formalin-treated or heat-killed bacteria of endotoxin-producing bacteria are selected as an antigen for antibody detection and quantification, if necessary. Formalin treatment is required for the detection and quantification of antibodies against finbrier and flagella. As the endotoxin, each of the above-mentioned bacterial cells can be used as it is, or endotoxin (LPS) can be extracted from these bacterial cells by the trichloroacetic acid method or the phenol method according to the textbook and used.

抗エンドトキシン抗体の活性は、各細菌体より抽出したエンドトキシン、または、加熱ないしホルマリン処理菌体を抗原として、ELISA法による抗体量の測定による評価の他、エンドトキシン活性をリムラス法により、市販のキットを用いて、測定することができる。 The activity of anti-endotoxin antibody can be evaluated by measuring the amount of antibody by the ELISA method using endotoxin extracted from each bacterial cell or heated or formalin-treated bacterial cells as an antigen, and the endotoxin activity can be evaluated by the Limulus method on a commercially available kit. Can be used and measured.

抗エンドトキシン抗体の活性は、抗エンドトキシン抗体がエンドトキシンを中和し、エンドトキシンの活性を失わせるので、一定量の抗エンドトキシン抗体に、抗体量よりも過剰のエンドトキシンを添加し、残存したエンドトキシンをリムラス法により測定することにより、様々な抗原特異性の異なる抗体混合物のエンドトキシン中和(=無毒化)活性の総体を定量的に測定することができる。 The activity of the anti-endotoxin antibody is such that the anti-endotoxin antibody neutralizes the endotoxin and causes the activity of the endotoxin to be lost. By measuring with, the total endotoxin neutralizing (= detoxifying) activity of various antibody mixtures having different antigen specificities can be quantitatively measured.

本実施形態においては、抗体の素材として、生乳由来の自然免疫抗体抗体を含有する乳清蛋白(WPC)を用いることが好ましい。「自然免疫抗体」とは、ある動物の免疫系の外来抗原への暴露が自然に行われた結果、獲得された抗体をいう。WPCは、チーズ製造の副生物である乳清に含まれる蛋白を集めたもので、熱履歴の少ない製造方法を用いることにより自然免疫抗体はこのWPCに濃縮される。自然免疫抗体を含有するWPCとしては既に市販されているものを用いることができる。市販のWPCとしては、例えば、「アサマ乳清たんぱく」(アサマ化成株式会社製)を用いることができる。 In the present embodiment, it is preferable to use whey protein (WPC) containing an innate immune antibody antibody derived from raw milk as a material for the antibody. "Innate immune antibody" refers to an antibody obtained as a result of natural exposure of an animal's immune system to a foreign antigen. WPC is a collection of proteins contained in whey, which is a by-product of cheese production, and innate immune antibodies are concentrated in this WPC by using a production method with a small heat history. As the WPC containing the innate immune antibody, a commercially available WPC can be used. As a commercially available WPC, for example, "Asama Whey Protein" (manufactured by Asama Kasei Co., Ltd.) can be used.

「アサマ乳清たんぱく」は、自然免疫抗体の中でも特に、a)ヒト病原細菌の内から選択した33株の病原細菌由来のエンドトキシン、b)病原性大腸菌O−26株、O−55株、O−111株由来のエンドトキシンと、サルモネラ・ミネソタ菌由来のリピッドAの4種類のエンドトキシン、c)黄色ブドウ球菌由来のエンテロトキシンB、ウェルシュ菌由来のエンテロトキシンの2種類のエキソトキシンを指標として選択された抗体を含む製品である(木島佳子他,日本食品化学工学会誌,2009,56:475−482)。従って「アサマ乳清たんぱく」は、ヒト病原細菌と細菌毒素に対する自然免疫抗体を多く含有する。これは、ELISA法に勝る高感度、高精度測定方法であるELMBA法を新規に開発したことにより、ヒト病原細菌に対する抗体を含む乳清蛋白製品の選別が可能になり、その結果として得られたものである。 "Asama milk clear protein" is, among other natural immune antibodies, a) endotoxin derived from 33 pathogenic bacteria selected from human pathogenic bacteria, b) pathogenic Escherichia coli O-26 strain, O-55 strain, O An antibody selected using endotoxin derived from the −111 strain, four endotoxins derived from Salmonella Minesota, Lipid A, c) enterotoxin B derived from Staphylococcus aureus, and enterotoxin derived from Clostridium perfringens as indicators. (Yoshiko Kijima et al., Journal of Japan Society for Food Chemistry, 2009, 56: 475-482). Therefore, "Asama whey protein" contains a large amount of innate immune antibodies against human pathogenic bacteria and bacterial toxins. This was obtained as a result of the newly developed ELISA method, which is a highly sensitive and accurate measurement method superior to the ELISA method, which made it possible to select whey protein products containing antibodies against human pathogenic bacteria. It is a thing.

「アサマ乳清たんぱく」中のヒト病原細菌に対する33種の自然免疫抗体とは、大腸菌O−111(Escherichia coli O−111)、腸管出血性大腸菌O−157(Escherichia coli O−157)、サルモネラ菌(Salmonella)、志賀赤痢菌(Shigella)、セレウス菌(Bacillus cereus)、リステリア菌(Listeria)、エルシニア菌(Yersinia)、セラチア菌(Serratia marcescens)、ネズミチフス菌(Salmonella typhimurium)、サルモネラ・ミネソタR595菌(Salmonella minnesota R595)、表皮ブドウ球菌(Staphylococcus epidermidis)、黄色ブドウ球菌(Staphylococcus aureus)、ウェルシュ菌(Clostridium perfringens)、カンピロバクター(Campylobacter)、バクテロイデス(Bacteroides)、カンジダ菌(Candida)、プロピオン酸菌(Propionibacterium)、サングイス連鎖球菌(Streptococcus sanguis)、唾液連鎖球菌(Streptococcus salivarius)、ミュータンス菌(Streptococcus mutans)、アエロゲネス菌(Enterobacter aerogenes)、アルカリゲネス(Alcaligenes)、エンテロバクター・クロアカ(Enterobacter cloacae)、緑膿菌(Pseudomonas aeruginosa)、プロテウス菌(Proteus)、ピロリ菌(Helicobacter pylori)、A群化膿レンサ球菌1型(Group A Streptococci type−1)、A群化膿レンサ球菌12型(Group A Streptococci type−12)、A群化膿レンサ球菌22型(Group A Streptococci type−22)、緑色レンサ球菌(Streptococcus viridans)、肺炎レンサ球菌(Streptococcus pneumoniae)、肺炎桿菌(Klebsiella pneumoniae)及びインフルエンザ菌(Haemophilus influenzae)に対する抗体であり、自然免疫抗体はこれ以外の抗ヒト病原細菌抗体を含むことがある。 The 33 types of spontaneous immune antibodies against human pathogenic bacteria in "Asama milk clear protein" are Escherichia coli O-111, intestinal hemorrhagic Escherichia coli O-157, and Streptococcus salmonella. Streptococcus, Shiga, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus, Streptococcus Minnesota R595), Streptococcus epidermidis, Streptococcus aureus, Streptococcus cerevinum, Streptococcus profringens, Campylobacter, Campylobacter Streptococcus sanguis, Streptococcus salivarius, Streptococcus mutans, Aerogenes, Enterobacter aerogenes, Alkagenes aeruginosa), Proteus, Helicobacter streptococcus, Group A Streptococcus type 1 (Group A Streptococci type-1), Group A Streptococcus type 12 (Group Acpic12) Streptococcus pyogenic type 22 (Group A Streptococcus type-22), Streptococcus viridans, Streptococcus pneumoniae, Pneumoniae pneumoniae It is an antibody against Haemophilus influenzae, and the innate immune antibody may include other anti-human pathogenic bacterial antibodies.

「アサマ乳清たんぱく」中の細菌毒素に対する自然免疫抗体とは、病原性大腸菌O−26株、O−55株及びO−111株由来のエンドトキシン、サルモネラ・ミネソタ菌由来のリピッドA、黄色ブドウ球菌由来のエンテロトキシンB、ウェルシュ菌由来のエンテロトキシンに対する抗体であり、自然免疫抗体はこれ以外の抗細菌毒素抗体を含むことがある。 The natural immune antibodies against bacterial toxins in "Asama milk clear protein" are endotoxins derived from pathogenic Escherichia coli O-26, O-55 and O-111 strains, Lipid A derived from Salmonella Minnesota, and Staphylococcus aureus. It is an antibody against enterotoxin B derived from S. aureus and enterotoxin derived from Clostridium perfringens, and the natural immune antibody may include other antibacterial toxin antibodies.

自然免疫抗体の選別は、上記a)については抗体価がホエイタンパク質1g中に8μg以上である点、上記b)及びc)については抗体価がホエイタンパク質1g中に1μg以上である点を指標とした。 The selection of innate immune antibodies is based on the fact that the antibody titer is 8 μg or more in 1 g of whey protein for a) above, and the antibody titer is 1 μg or more in 1 g of whey protein for b) and c) above. did.

本実施形態に係る脂肪低減組成物において、体脂肪を低減させるために必要とする抗体含有量は0.001%以上であることが好ましく、より好ましくは0.01%以上であることが好ましい。抗体の摂取量は、成人一日当たり10mg以上であることが好ましく、より好ましくは100mg以上である。 In the fat reduction composition according to the present embodiment, the antibody content required for reducing body fat is preferably 0.001% or more, more preferably 0.01% or more. The intake of the antibody is preferably 10 mg or more, more preferably 100 mg or more per day for an adult.

本実施形態に係る脂肪低減組成物を用いて腸内病原菌と細菌毒素の有害作用の除去を、更に一層有効にするために、抗体以外の有効成分を配合することができる。抗体以外の有効物質としては、例えば、抗酸化食品素材のグリアジン処理SOD、プレバイオティクス、プロバイオティクスなどがある。プレバイオティクスは、腸管内に生息しているビフィズス菌などの限定した菌を特異的に増殖させることにより、ヒトの健康に有益な作用を示す難消化性の食品成分であり、ラクチュロースやラフィノースなどのオリゴ糖を例示することができる。プロバイオティクスは、腸内微生物のバランスを改善することによって宿主に有益に働く生菌添加物又は死菌添加物であり、ラクトバチルス(Lactobacillus)属、エンテロコッカス(Enterococcus)属、ストレプトコッカス(Streptococcus)属、ビフィドバクテリウム(Bifidobacterium)属などの乳酸菌で、代謝産物として乳酸を産生する細菌を含む)や酪酸菌等を例示することができる。 In order to further make the removal of adverse effects of intestinal pathogens and bacterial toxins more effective using the fat-reducing composition according to the present embodiment, an active ingredient other than an antibody can be blended. Examples of active substances other than antibodies include gliadin-treated SOD, prebiotics, and probiotics of antioxidant food materials. Prebiotics are indigestible food ingredients that show beneficial effects on human health by specifically growing limited bacteria such as bifidobacteria that live in the intestinal tract, such as lactulose and raffinose. Oligosaccharides can be exemplified. Probiotics are live or dead bacteria additives that benefit the host by improving the balance of intestinal microorganisms, such as Lactobacillus, Enterococcus, and Streptococcus. , Bifidobacterium and other lactic acid bacteria, including bacteria that produce lactic acid as a metabolite), butyric acid bacteria and the like can be exemplified.

抗体の摂取形態は特に限定されることはなく、例えば、粉末、錠剤、カプセル、顆粒、クッキー、アイスクリーム、飲料などを挙げることができる。但し、有効成分の抗体が失活しない条件で摂取することが前提となる。 The form of ingestion of the antibody is not particularly limited, and examples thereof include powders, tablets, capsules, granules, cookies, ice cream, and beverages. However, it is premised that the active ingredient antibody is ingested under the condition that it is not inactivated.

以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

1.抗体摂取が糞便エンドトキシン、腸内細菌叢及び脂肪増加抑制に及ぼす影響
抗体の経口投与による糞便エンドトキシンの低減、腸内細菌叢の改善、腹部内内臓脂肪及び皮下脂肪の増加抑制作用を検討するため、以下の要領で試験を実施した。
1. 1. Effect of antibody intake on fecal endotoxin, intestinal flora and suppression of fat increase To investigate the effect of oral administration of antibody on reduction of fecal endotoxin, improvement of intestinal flora, and suppression of increase of abdominal visceral fat and subcutaneous fat. The test was conducted as follows.

(1)飼料
マウスに摂取させる飼料として、脂肪分60%カロリー比の高脂肪餌(オリエンタル酵母株式会社社製のHFD−60)と、この高脂肪餌に自然免疫抗体(アサマ化成株式会社製のアサマ乳清たんぱく)を5重量%混合した混餌飼料(高脂肪餌+自然免疫抗体)を調製した。また、プラセボとして、脂肪分60%カロリー比の高脂肪餌(オリエンタル酵母株式会社社製のHFD−60)に、アサマ乳清たんぱく(アサマ化成株式会社製)に含まれる自然免疫抗体を蛋白分解酵素で100%失活させたものを5%混合した混餌飼料(高脂肪餌+プラセボ)を調製した。
(1) Feed As feed to be fed to mice, a high-fat feed with a fat content of 60% calorie ratio (HFD-60 manufactured by Oriental Yeast Co., Ltd.) and a natural immune antibody (manufactured by Asama Kasei Co., Ltd.) are added to this high-fat feed. A mixed diet (high-fat diet + natural immune antibody) was prepared by mixing 5% by weight of Asama whey protein. In addition, as a placebo, innate immune antibody contained in Asama Whey Protein (manufactured by Asama Kasei Co., Ltd.) is added to a high-fat diet (HFD-60 manufactured by Oriental Yeast Co., Ltd.) with a fat content of 60% calorie. A mixed diet (high-fat diet + placebo) was prepared by mixing 5% of the 100% inactivated product.

(2)実験方法
マウスは、三協ラボ株式会社より購入したC57BL/6Jマウス♀12週齢を用いた。このマウスを1群7〜9匹になるように3群に分けた。そのうち、第一群は肥満を呈するよう高脂肪餌を摂取させたグループ(高脂肪餌群)、第二群は高脂肪餌にアサマ乳清たんぱくを5重量%混合した混餌飼料を摂取させたグループ(高脂肪餌+自然免疫抗体群)、第三群は高脂肪餌に失活した抗体を5重量%混合した混餌飼料を摂取させたグループ(高脂肪餌+プラセボ群)とした。
(2) Experimental method As the mouse, C57BL / 6J mouse ♀ 12 weeks old purchased from Sankyo Lab Co., Ltd. was used. The mice were divided into 3 groups so that there were 7 to 9 mice in each group. Among them, the first group was a group that was fed a high-fat diet so as to exhibit obesity (high-fat diet group), and the second group was a group that was fed a mixed diet in which 5% by weight of Asama whey protein was mixed with the high-fat diet. (High-fat diet + natural immune antibody group), and the third group was a group (high-fat diet + placebo group) in which a mixed diet diet in which 5% by weight of inactivated antibody was mixed with the high-fat diet was ingested.

これらのマウスに肥満を呈するように飼料を1〜4週間摂取させ、糞便エンドトキシン(LPS)量、腸内細菌数、腹部の内臓脂肪および皮下脂肪をそれぞれ測定した。 These mice were fed a diet for 1 to 4 weeks so as to exhibit obesity, and the amount of fecal endotoxin (LPS), the number of intestinal bacteria, the abdominal visceral fat and the subcutaneous fat were measured, respectively.

(3)糞便エンドトキシン(LPS)量
各飼料摂取4週後において朝8時に回収した糞便をサンプルとして糞便中エンドトキシン(LPS)量をリムラス法により定量した。各飼料給餌前と給餌開始後4週に至る期間における糞便中エンドトキシン(LPS)量を表1に示す。給餌開始後2週間は群間LPS量に差は認められなかったが、3週、4週に至り、自然免疫抗体投与群において有意なLPSレベルの低下が認められた。
(3) Amount of fecal endotoxin (LPS) The amount of fecal endotoxin (LPS) was quantified by the Limuras method using the feces collected at 8 am 4 weeks after ingestion of each feed as a sample. Table 1 shows the amount of endotoxin (LPS) in feces before feeding each feed and during the period up to 4 weeks after the start of feeding. There was no difference in the amount of LPS between the groups for 2 weeks after the start of feeding, but a significant decrease in LPS level was observed in the innate immune antibody-administered group until 3 and 4 weeks.

Figure 0006872841
Figure 0006872841

(4)腸内細菌数
抗体投与の腸内細菌叢に及ぼす影響を検討するため、糞便全菌数、乳酸桿菌、大腸菌、ビフィズス菌、ウェルシュ菌を、FISH法により測定した。すなわち、細菌の16sリボゾームRNAに対する蛍光標識DNAプローブにより菌体を染色し、顕鏡により測定した。その結果、ビフィズス菌が高脂肪餌群は5.52±0.28cfu/g、プラセボ群が5.87±0.35cfu/gであるのに対し、自然免疫抗体群では6.44±0.28cfu/gと有意な増加が認められた。結果を表2に示す。その他の測定菌種には有意な差が見られなかったことから、腸内細菌バランスの改善があったと判断された。
(4) Number of intestinal bacteria In order to examine the effect of antibody administration on the intestinal flora, the total number of fecal bacteria, lactic acid bacilli, Escherichia coli, bifidobacteria, and Clostridium perfringens were measured by the FISH method. That is, the cells were stained with a fluorescently labeled DNA probe for 16s ribosomal RNA of the bacterium and measured with a microscope. As a result, the bifidobacteria were 5.52 ± 0.28 cfu / g in the high-fat diet group and 5.87 ± 0.35 cfu / g in the placebo group, whereas they were 6.44 ± 0. A significant increase of 28 cfu / g was observed. The results are shown in Table 2. Since no significant difference was observed in the other measured bacterial species, it was judged that the intestinal bacterial balance was improved.

Figure 0006872841
Figure 0006872841

(5)内臓脂肪及び皮下脂肪
各飼料を摂取させる前と摂取5週後において、CTスキャンで腹部の内臓脂肪および皮下脂肪を測定した。CTスキャンを行う16時間からマウスは絶食させ、生理食塩水で希釈したソムノペンチル(6.48μg/ml〜6.5μg/ml)を腹腔内投与(10μg/gBW)し麻酔を行った。Explore Locus CT system(GE Healthcare社製)により腹部CTスキャンを行った。X線CT画像から、横隔膜最下部から鼠径部最上部までの各断面スライス画像を得た。各断面スライス画像において、腹囲内のCT値ヒストグラムから脂肪領域(lower:10489、upper:13989)を選択し、得られた面積を全体脂肪面積とした。
(5) Visceral fat and subcutaneous fat The abdominal visceral fat and subcutaneous fat were measured by CT scan before and 5 weeks after each feed was ingested. Mice were fasted from 16 hours after CT scan, and anesthetized by intraperitoneal administration (10 μg / g BW) of somnopentyl (6.48 μg / ml to 6.5 μg / ml) diluted with physiological saline. An abdominal CT scan was performed using an Explore Locus CT system (manufactured by GE Healthcare). From the X-ray CT image, each cross-sectional slice image from the lowermost part of the diaphragm to the uppermost part of the inguinal region was obtained. In each cross-sectional slice image, a fat region (lower: 10489, upper: 13989) was selected from the CT value histogram in the abdominal circumference, and the obtained area was taken as the total fat area.

同様に、各断面スライス画像において、腹腔内のCT値ヒストグラムから脂肪領域(lower:10489、upper:13989)を選択し、得られた面積を内臓脂肪面積とした。また、全体脂肪と内臓脂肪の面積の差を皮下脂肪面積とした。各面積は横隔膜最下部から鼠径部最上部までを累積し各体積とした。 Similarly, in each cross-sectional slice image, a fat region (lower: 10489, upper: 13989) was selected from the CT value histogram in the abdominal cavity, and the obtained area was used as the visceral fat area. The difference between the area of total fat and the area of visceral fat was defined as the subcutaneous fat area. Each area was calculated by accumulating from the lowermost part of the diaphragm to the uppermost part of the inguinal region.

各飼料給餌前後における内臓脂肪量および皮下脂肪量の変化を表3に示す。各飼料給餌前と比較して、高脂肪餌のみを摂取させた「高脂肪餌群」では、内臓脂肪が130.2±14.9%の有意な増加に対し、高脂肪餌に抗体失活させたプラセボを添加摂取させた「高脂肪餌+プラセボ群」では、121.3±28.9%、さらに、高脂肪餌に自然免疫抗体を添加摂取させた「高脂肪餌+自然免疫抗体群」では、105.7±14.0%の順に、内臓脂肪の増加抑制がみられた。 Table 3 shows changes in visceral fat mass and subcutaneous fat mass before and after feeding each feed. Compared to before feeding each feed, in the "high-fat diet group" in which only the high-fat diet was ingested, the visceral fat increased significantly by 130.2 ± 14.9%, whereas the high-fat diet inactivated the antibody. In the "high-fat diet + placebo group" to which the added placebo was added, 121.3 ± 28.9%, and further, the "high-fat diet + natural immune antibody group" to which the natural immune antibody was added to the high-fat diet. , The increase of visceral fat was suppressed in the order of 105.7 ± 14.0%.

皮下脂肪においては、各飼料給餌前と比較して、「高脂肪群」では99.9±32.5%と変化がみられなかったが、「高脂肪餌+プラセボ群」では132.8±20.4%に増加した。これに対して、「高脂肪餌+自然免疫抗体群」では、80.6±11.4%へと、有意に減少した。 Subcutaneous fat did not change at 99.9 ± 32.5% in the “high fat group” compared to before feeding each feed, but 132.8 ± in the “high fat diet + placebo group”. It increased to 20.4%. On the other hand, in the "high fat diet + innate immune antibody group", it decreased significantly to 80.6 ± 11.4%.

これより、自然免疫抗体を摂取することにより、糞便中エンドトキシンの減少を介して、内臓脂肪および皮下脂肪の増加を抑制することが期待できる。 From this, it can be expected that ingestion of innate immune antibody suppresses the increase of visceral fat and subcutaneous fat through the decrease of endotoxin in feces.

Figure 0006872841
Figure 0006872841

2.抗体の経口投与による卵巣周囲脂肪量の低減作用
動物は、三協ラボ株式会社より購入し、C57BL/6Jマウス♀12週齢を用いた。これらのマウスにおいて、抗体の有無による卵巣周囲脂肪量を比較し、内臓脂肪の蓄積に及ぼす効果を評価した。
2. Effect of oral administration of antibody to reduce periovarian fat mass Animals were purchased from Sankyo Lab Co., Ltd., and C57BL / 6J mice ♀ 12 weeks old were used. In these mice, the amount of periovarian fat with and without antibody was compared, and the effect on visceral fat accumulation was evaluated.

(1)飼料
一般飼料(コントロール)として、オリエンタル酵母株式会社製のAIN−93Mを用いた。また、自然免疫抗体として、アサマ乳清たんぱくを用いた。
(1) Feed AIN-93M manufactured by Oriental Yeast Co., Ltd. was used as a general feed (control). In addition, asama whey protein was used as an innate immune antibody.

(2)実験方法
マウスを1群6〜7匹になるように2群に分け、1群を一般飼料を摂取させた「コントロール群」、もう1群を一般飼料にアサマ乳清たんぱくを5重量%混合した混餌飼料を摂取させた「自然免疫抗体群」とした。
(2) Experimental method The mice were divided into two groups so that there were 6 to 7 mice in one group, one group was the "control group" fed with general feed, and the other group was fed with general feed and 5 weights of Asama whey protein. The group was defined as the "innate immune antibody group" in which the mixed feed was ingested.

各飼料を摂給餌させる前と給餌6週後において、一日絶食させた後、解剖を行った。ソムノペンチル(ペントバルビタールナトリウム64.8mg/mL)を腹腔内投与して麻酔を行った。開腹後、下大動脈から留置針を用いて滅菌処理した0.9%生理食塩水にて灌流し、卵巣周囲脂肪を摘出した。 Before feeding each feed and 6 weeks after feeding, autopsy was performed after fasting for one day. Somnopentyl (sodium pentobarbital 64.8 mg / mL) was intraperitoneally administered for anesthesia. After laparotomy, the lower aorta was perfused with 0.9% physiological saline sterilized using an indwelling needle, and the periovarian fat was removed.

(3)結果
各飼料給餌6週後における卵巣周囲脂肪量を表4に示す。一般飼料を摂取したコントロール群では、卵巣周囲脂肪量が0.304±0.114gであった。それに対して、一般飼料に自然免疫抗体を添加摂取させた自然免疫抗体群では0.169±0.046gと有意に減少した。
(3) Results Table 4 shows the amount of periovarian fat after 6 weeks of feeding each feed. In the control group that ingested the general diet, the periovarian fat mass was 0.304 ± 0.114 g. On the other hand, in the innate immune antibody group in which the innate immune antibody was added to the general feed, the amount decreased significantly to 0.169 ± 0.046 g.

Figure 0006872841
Figure 0006872841

以上説明したように、自然免疫抗体投与により糞便細菌バランスの改善がビフィズス菌の増加によって示されるとともに、LPSレベルの減少があった。LPSの減少はマウスの脂肪代謝に影響し、体脂肪の減少、特に卵巣脂肪の蓄積低下による内臓脂肪の低減があった。さらに、各群マウスの動態観察において、高脂肪群マウスにおける毛並みの乱れが顕著であったが、自然免疫抗体投与群では正常な毛並みであったことも抗体による体脂肪の低減作用を象徴する結果であった。 As described above, the administration of innate immune antibody showed an improvement in fecal bacterial balance by an increase in bifidobacteria and a decrease in LPS levels. The decrease in LPS affected the fat metabolism of mice, and there was a decrease in body fat, especially a decrease in visceral fat due to a decrease in ovarian fat accumulation. Furthermore, in the dynamic observation of the mice in each group, the disorder of the coat was remarkable in the high-fat group mouse, but the normal coat in the innate immune antibody-administered group also symbolized the effect of the antibody on reducing body fat. Met.

Claims (7)

抗ヒト病原細菌抗体及び抗エンドトキシン抗体を有効成分として含有し、消化管エンドトキシンレベルを下げ、エンドトキシンの体内移行を低減させることによって、脂肪の蓄積を低減させるために使用される、脂肪低減組成物であって、
抗ヒト病原細菌抗体が、下記a)に記載された各ヒト病原細菌に対する抗体を全て含むものであり、
前記抗エンドトキシン抗体が、下記b)に記載された各エンドトキシンに対する抗体を全て含むものである、脂肪低減組成物。
a)大腸菌O−111、腸管出血性大腸菌O−157、サルモネラ菌、志賀赤痢菌、セレウス菌、エルシニア菌、セラチア菌、ネズミチフス菌、サルモネラ・ミネソタR595菌、カンピロバクター、バクテロイデス、アエロゲネス菌、アルカリゲネス、エンテロバクター・クロアカ、緑膿菌、プロテウス菌、ピロリ菌、肺炎桿菌及びインフルエンザ菌
b)病原性大腸菌O−26株、O−55株及びO−111株由来のエンドトキシン、サルモネラ・ミネソタ菌由来のリピッドA。
A fat-reducing composition used to reduce fat accumulation by containing anti-human pathogenic bacterial antibodies and anti-endotoxin antibodies as active ingredients, lowering gastrointestinal endotoxin levels and reducing endotoxin translocation into the body. There,
The anti-human pathogenic bacterial antibody includes all the antibodies against each human pathogenic bacterium described in a) below.
A fat-reducing composition, wherein the anti-endotoxin antibody contains all the antibodies against each endotoxin described in b) below.
a) Escherichia coli O-111, intestinal hemorrhagic Escherichia coli O-157, Salmonella, Shigella dysensis, Seleus, Ersina, Seratia, Salmonella minesota R595, Salmonella, Bacteroides, Aerogenes, Alkalinegenes, Enterobacter B) Pathogenic Escherichia coli O-26 strain, O-55 strain and O-111 strain-derived endotoxin, Salmonella Minesota-derived lipid A.
前記抗体が、自然免疫抗体である、請求項1に記載の脂肪低減組成物。 The fat-reducing composition according to claim 1, wherein the antibody is an innate immune antibody. 前記脂肪が、内臓脂肪である、請求項1又は2に記載の脂肪低減組成物。 The fat-reducing composition according to claim 1 or 2, wherein the fat is visceral fat. 前記抗体が、牛、ヤギ、ヒツジ、馬、鶏からなる群から選択された少なくとも1種により産生された抗体に由来するものであり、かつ、これら動物のミルク、初乳、血液、鶏卵からなる群から選択された少なくとも1種を原料として生産されたものである、請求項1から3のいずれか1項に記載の脂肪低減組成物。 The antibody is derived from an antibody produced by at least one selected from the group consisting of cows, goats, sheep, horses and chickens, and consists of milk, first milk, blood and chicken eggs of these animals. The fat-reducing composition according to any one of claims 1 to 3, which is produced from at least one selected from the group as a raw material. 前記抗体の含有量が0.001%以上である、請求項1から4のいずれか1項に記載の脂肪低減組成物。 The fat-reducing composition according to any one of claims 1 to 4, wherein the content of the antibody is 0.001% or more. 前記抗体が、エンドトキシンに対する抗体価により選別されたものである、請求項1から5のいずれか1項に記載の脂肪低減組成物。 The fat-reducing composition according to any one of claims 1 to 5, wherein the antibody is selected based on the antibody titer against endotoxin. さらに、プレバイオティクス、プロバイオティクス、グリアヂン被覆スーパーオキシドジスムターゼ(SOD)からなる群から選択された少なくとも1種を含む、請求項1から6のいずれか1項に記載の脂肪低減組成物。 The fat-reducing composition according to any one of claims 1 to 6, further comprising at least one selected from the group consisting of prebiotics, probiotics and gliadin-coated superoxide dismutase (SOD).
JP2014093119A 2014-04-28 2014-04-28 Fat reduction composition Active JP6872841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093119A JP6872841B2 (en) 2014-04-28 2014-04-28 Fat reduction composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093119A JP6872841B2 (en) 2014-04-28 2014-04-28 Fat reduction composition

Publications (2)

Publication Number Publication Date
JP2015209413A JP2015209413A (en) 2015-11-24
JP6872841B2 true JP6872841B2 (en) 2021-05-19

Family

ID=54611894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093119A Active JP6872841B2 (en) 2014-04-28 2014-04-28 Fat reduction composition

Country Status (1)

Country Link
JP (1) JP6872841B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344713B1 (en) * 1997-07-07 2008-03-18 Pimentel Julio L Decreased fat absorption with an anti-lipase antibody
JP2002037738A (en) * 2000-07-25 2002-02-06 Kotobuki Chemical:Kk Agent for inhibiting differentiation from fat precursor cell to fat cell, activated whey usable for the agent for inhibiting differentiation to the fat cell, and method for producing the activated whey
JPWO2006013904A1 (en) * 2004-08-03 2008-05-01 持田製薬株式会社 Pharmaceutical composition containing meltrin antagonist
CA2604427A1 (en) * 2005-04-15 2006-10-26 Satiety, Inc. Single fold device for tissue fixation
JP2007330193A (en) * 2006-06-16 2007-12-27 Asama Chemical Co Ltd Food having new function, and method for producing the same
JPWO2008081834A1 (en) * 2006-12-28 2010-04-30 江崎グリコ株式会社 Foods containing glycogen and their uses
FI122252B (en) * 2008-01-04 2011-10-31 Valio Oy Composition for improving liver metabolism and diagnostic procedure
JP6183949B2 (en) * 2012-03-30 2017-08-23 国立大学法人広島大学 Method for producing fermented burdock food and food produced thereby
US10053516B2 (en) * 2013-12-02 2018-08-21 Ostrich Pharma Kk Method for manufacturing digestive enzyme antibody and egg having same, and for manufacturing processed product containing egg as ingredient thereof and composition including antibody

Also Published As

Publication number Publication date
JP2015209413A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
Guida et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial
Gareau et al. Probiotics and the gut microbiota in intestinal health and disease
Vandenplas et al. Probiotics and prebiotics in infants and children
TWI594758B (en) Composition comprising bifidobacteria,processes for the preparation thereof and uses thereof
Cousin et al. Assessment of the probiotic potential of a dairy product fermented by Propionibacterium freudenreichii in piglets
WO2015172191A1 (en) Probiotic compositions and uses thereof for treatment of obesity-related disorders
WO2017156550A1 (en) A transient commensal microorganism for improving gut health
Wang et al. Probiotic bacteria: a viable adjuvant therapy for relieving symptoms of rheumatoid arthritis
Sakai et al. Prebiotic effect of two grams of lactulose in healthy Japanese women: a randomised, double-blind, placebo-controlled crossover trial
KR20120016647A (en) Novel use of probiotics
JP2018184481A (en) Functional gastrointestinal disorders preventive and/or improvement agent
JP7267020B2 (en) Fermented milk with inhibitory effect on blood sugar level elevation
US20240115625A1 (en) Roseburia hominis, eubacterium eligens, and combinations thereof as biotherapeutics
US20230173066A1 (en) Nutritional composition comprising milk fat and immunoglobulin
WO2011107960A1 (en) Compositions comprising lactobacillus mucosae for medical use
JP2018184352A (en) Tnf production inhibitory action composition containing an antibody as an active ingredient
US11344584B2 (en) Gemella sanguinis as a biotherapeutic
JP6872841B2 (en) Fat reduction composition
JP2015209412A (en) Blood endotoxin concentration-decreasing composition and blood endotoxin concentration-reducing method
US11389487B2 (en) Streptococcus australis as a biotherapeutic
Tsuruta et al. A cell preparation of Enterococcus faecalis strain EC‐12 stimulates the luminal immunoglobulin A secretion in juvenile calves
JP6804859B2 (en) Rheumatoid arthritis preventive and therapeutic compositions
Aburjaile et al. Lactic acid bacteria in gut microbiota, probiotics and disease prevention
Molina et al. A multi-strain probiotic promoted recovery of puppies from gastroenteritis in a randomized, double-blind, placebo-controlled study
JP2018062483A (en) Digestive tract blocking lps production-enhancing composition consisting of antibody, and analgesic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191120

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20200121

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200901

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210316

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210322

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210415

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210420

R150 Certificate of patent or registration of utility model

Ref document number: 6872841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150