JP6871098B2 - Fluorescent material, its manufacturing method, fluorescent material sheet, and lighting equipment - Google Patents

Fluorescent material, its manufacturing method, fluorescent material sheet, and lighting equipment Download PDF

Info

Publication number
JP6871098B2
JP6871098B2 JP2017144497A JP2017144497A JP6871098B2 JP 6871098 B2 JP6871098 B2 JP 6871098B2 JP 2017144497 A JP2017144497 A JP 2017144497A JP 2017144497 A JP2017144497 A JP 2017144497A JP 6871098 B2 JP6871098 B2 JP 6871098B2
Authority
JP
Japan
Prior art keywords
fluorescent substance
phosphor
diffraction
peak
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017144497A
Other languages
Japanese (ja)
Other versions
JP2019026673A (en
Inventor
和弘 八木橋
和弘 八木橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2017144497A priority Critical patent/JP6871098B2/en
Priority to PCT/JP2018/025116 priority patent/WO2019021756A1/en
Priority to TW107123681A priority patent/TW201910490A/en
Publication of JP2019026673A publication Critical patent/JP2019026673A/en
Application granted granted Critical
Publication of JP6871098B2 publication Critical patent/JP6871098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、蛍光体、及びその製造方法、蛍光体シート、並びに照明装置に関する。 The present invention relates to a fluorescent substance, a method for producing the same, a fluorescent substance sheet, and a lighting device.

従来、低価格帯のTVやディスプレイでは、黄色蛍光体YAG:Ceを使用した擬似白色LEDが用いられてきた。この方式では、赤と緑のカラーフィルタの特性に合わず、緑と赤の色純度を低下させている。 Conventionally, pseudo-white LEDs using the yellow phosphor YAG: Ce have been used in low-priced TVs and displays. In this method, the characteristics of the red and green color filters are not matched, and the color purity of green and red is lowered.

他方、近年は液晶TVやディスプレイには広色域であることが求められている。しかし、上記方式では、緑と赤の色純度を低下させているため、色域が狭くなってしまう。色域を広げるため(広色域化)には、黄色蛍光体に代えて、カラーフィルタの透過特性に合った緑色発光蛍光体及び赤色発光蛍光体を使用した三波長型白色LEDが、有利である。 On the other hand, in recent years, liquid crystal TVs and displays are required to have a wide color gamut. However, in the above method, since the color purity of green and red is lowered, the color gamut is narrowed. In order to widen the color gamut (widen the color gamut), a three-wavelength white LED using a green-emitting phosphor and a red-emitting phosphor that match the transmission characteristics of the color filter is advantageous instead of the yellow phosphor. is there.

緑色発光蛍光体として、SrGa:Eu蛍光体が知られている。SrGa:Eu蛍光体は、近紫外〜青色領域の光で励起されるため、青色LED励起用の緑色発光蛍光体として、注目されている。
SrGa:Eu蛍光体に関連し、例えば、内部量子効率の向上を目的としたSrGa:Eu蛍光体、又はMGa:Eu蛍光体(M=Ba、Sr及び/又はCa)が提案されている(例えば、特許文献1及び2参照)。
As a green light emitting phosphor, SrGa 2 S 4 : Eu phosphor is known. Since the SrGa 2 S 4 : Eu phosphor is excited by light in the near-ultraviolet to blue region, it is attracting attention as a green light emitting phosphor for exciting a blue LED.
SrGa 2 S 4 : related to the Eu fluorophore, for example, SrGa 2 S 4 : Eu fluorophore, or MGa 2 S 4 : Eu fluorophore (M = Ba, Sr and / or) for the purpose of improving internal quantum efficiency. Ca) has been proposed (see, for example, Patent Documents 1 and 2).

色域が広い三波長型白色LEDを実現するためには、高い輝度を有しつつ、色純度の高い緑色発光蛍光体が必要であることから、高い輝度を有しつつ、色純度の高い緑色発光蛍光体が求められている。 In order to realize a three-wavelength white LED with a wide color gamut, a green light emitting phosphor having high brightness and high color purity is required. Therefore, green having high brightness and high color purity is required. Light emitting phosphors are required.

特許第4343267号公報Japanese Patent No. 4343267 特許第4708507号公報Japanese Patent No. 4708507

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高い輝度を有しつつ、色純度の高い緑色発光の蛍光体、及びその製造方法、前記蛍光体を有する蛍光体シート、並びに前記蛍光体シートを有する照明装置を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems in the past and to achieve the following object. That is, the present invention provides a fluorescent substance that emits green light having high brightness and high color purity, a method for producing the same, a fluorescent substance sheet having the fluorescent substance, and a lighting device having the fluorescent substance sheet. With the goal.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 下記一般式(1)で表され、かつ下記条件(1)〜(3)を満たす蛍光物質を少なくとも含有することを特徴とする蛍光体である。
(BaSr1−y1−xGa:Eu ・・・一般式(1)
ただし、前記一般式(1)中、0.025≦x≦0.20、かつ0.15≦y≦0.49である。
条件(1):XRDパターンの回折強度最大ピークが、回折角2θ=23.7〜24.1°に現れるSrGaの(422)面に帰属する回折ピークである。
条件(2):回折強度2番目のピークが回折角2θ=38.1〜38.5°に現れるSrGaの(444)面に帰属する回折ピークである。
条件(3):回折角2θ=30.0〜30.4°に、前記回折強度最大ピークに対する相対強度が5〜20%の回折ピークを有する。
<2> 前記蛍光物質のCIE1931表色系に基づくy値が、0.687以上である前記<1>に記載の蛍光体である。
<3> 前記蛍光物質の内部量子効率が、0.64以上である前記<1>から<2>のいずれかに記載の蛍光体である。
<4> 前記<1>から<3>のいずれかに記載の蛍光体と、赤色蛍光体とを含有する蛍光体層を有することを特徴とする蛍光体シートである。
<5> 前記<4>に記載の蛍光体シートを有することを特徴とする照明装置である。
<6> 前記<1>から<3>のいずれかに記載の蛍光体を製造する、蛍光体の製造方法であって、
バリウム化合物、ストロンチウム化合物、及びユーロピウム化合物を溶解し、かつ粉末ガリウム化合物を含有する第1の液と、亜硫酸塩を含有する第2の液とを混合し、亜硫酸バリウム、亜硫酸ストロンチウム、及び亜硫酸ユーロピウムを含有する析出物と、前記粉末ガリウム化合物との混合物である沈殿物を得る析出沈殿工程を含むことを特徴とする蛍光体の製造方法である。
<7> 更に、硫化水素を含有する雰囲気下で前記沈殿物を焼成する焼成工程を含む、前記<6>に記載の蛍光体の製造方法である。
The means for solving the above-mentioned problems are as follows. That is,
<1> A fluorescent substance represented by the following general formula (1) and containing at least a fluorescent substance satisfying the following conditions (1) to (3).
(Ba y Sr 1-y) 1-x Ga 2 S 4: Eu x ··· formula (1)
However, in the general formula (1), 0.025 ≦ x ≦ 0.20 and 0.15 ≦ y ≦ 0.49.
Condition (1): The maximum diffraction intensity peak of the XRD pattern is a diffraction peak attributed to the (422) plane of SrGa 2 S 4 appearing at a diffraction angle 2θ = 23.7 to 24.1 °.
Condition (2): The second peak of the diffraction intensity is a diffraction peak attributed to the (444) plane of SrGa 2 S 4 appearing at a diffraction angle 2θ = 38.1 to 38.5 °.
Condition (3): The diffraction peak has a diffraction intensity of 5 to 20% relative to the maximum diffraction intensity peak at a diffraction angle of 2θ = 30.0 to 30.4 °.
<2> The fluorescent substance according to <1>, wherein the y value of the fluorescent substance based on the CIE 1931 color system is 0.687 or more.
<3> The fluorescent substance according to any one of <1> to <2>, wherein the internal quantum efficiency of the fluorescent substance is 0.64 or more.
<4> The phosphor sheet is characterized by having a phosphor layer containing the phosphor according to any one of <1> to <3> and a red phosphor.
<5> A lighting device comprising the phosphor sheet according to the above <4>.
<6> A method for producing a fluorescent substance, which comprises producing the fluorescent substance according to any one of <1> to <3>.
A first solution containing a barium compound, a strontium compound, and a europium compound and containing a powdered gallium compound and a second solution containing a sulfite are mixed to obtain barium sulfite, strontium sulfite, and europium sulfite. A method for producing a phosphor, which comprises a precipitation-precipitation step of obtaining a precipitate which is a mixture of the contained precipitate and the powdered gallium compound.
<7> The method for producing a phosphor according to <6>, further comprising a firing step of firing the precipitate in an atmosphere containing hydrogen sulfide.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、高い輝度を有しつつ、色純度の高い緑色発光の蛍光体、及びその製造方法、並びに前記蛍光体を有する蛍光体シート、並びに前記蛍光体シートを有する照明装置を提供することができる。 According to the present invention, the above-mentioned problems in the prior art can be solved, the above-mentioned object can be achieved, a fluorescent substance of green light emission having high brightness and high color purity, a method for producing the same, and the said fluorescent substance. A fluorescent material sheet having the above-mentioned fluorescent material sheet, and a lighting device having the fluorescent material sheet can be provided.

図1は、蛍光体シート端部の構成例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration example of the end portion of the phosphor sheet. 図2は、エッジライト型の照明装置を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an edge light type lighting device. 図3は、直下型の照明装置を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a direct type lighting device. 図4は、実施例1〜7、及び比較例1〜4の蛍光体の発光ピーク波長と、発光ピーク強度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the emission peak wavelengths of the phosphors of Examples 1 to 7 and Comparative Examples 1 to 4 and the emission peak intensity. 図5は、実施例1〜7、及び比較例1〜4の蛍光体の、CIEx,yを示すグラフである。FIG. 5 is a graph showing CIEx, y of the phosphors of Examples 1 to 7 and Comparative Examples 1 to 4. 図6は、実施例1、4、5、7、及び比較例1〜4の蛍光体のX線回折パターンである。FIG. 6 is an X-ray diffraction pattern of the phosphors of Examples 1, 4, 5, 7, and Comparative Examples 1 to 4.

(蛍光体)
本発明の蛍光体は、蛍光物質を少なくとも含有し、更に必要に応じて、被覆層などのその他の成分を含有する。
(Fluorescent material)
The phosphor of the present invention contains at least a fluorescent substance and, if necessary, other components such as a coating layer.

<蛍光物質>
前記蛍光物質は、下記一般式(1)で表される。
(BaSr1−y1−xGa:Eu ・・・一般式(1)
ただし、前記一般式(1)中、0.025≦x≦0.20、かつ0.15≦y≦0.49である。
<Fluorescent substance>
The fluorescent substance is represented by the following general formula (1).
(Ba y Sr 1-y) 1-x Ga 2 S 4: Eu x ··· formula (1)
However, in the general formula (1), 0.025 ≦ x ≦ 0.20 and 0.15 ≦ y ≦ 0.49.

前記蛍光物質は、下記条件(1)〜(3)を満たす。
条件(1):XRDパターンの回折強度最大ピークが、回折角2θ=23.7〜24.1°に現れるSrGaの(422)面に帰属する回折ピークである。
条件(2):回折強度2番目のピークが回折角2θ=38.1〜38.5°に現れるSrGaの(444)面に帰属する回折ピークである。
条件(3):回折角2θ=30.0〜30.4°に、前記回折強度最大ピークに対する相対強度が5〜20%の回折ピークを有する。
The fluorescent substance satisfies the following conditions (1) to (3).
Condition (1): The maximum diffraction intensity peak of the XRD pattern is a diffraction peak attributed to the (422) plane of SrGa 2 S 4 appearing at a diffraction angle 2θ = 23.7 to 24.1 °.
Condition (2): The second peak of the diffraction intensity is a diffraction peak attributed to the (444) plane of SrGa 2 S 4 appearing at a diffraction angle 2θ = 38.1 to 38.5 °.
Condition (3): The diffraction peak has a diffraction intensity of 5 to 20% relative to the maximum diffraction intensity peak at a diffraction angle of 2θ = 30.0 to 30.4 °.

前記蛍光物質において、Ga/(Eu+Ba+Sr)比(元素比)としては、1.80〜2.50が好ましく、1.90〜2.30がより好ましい。 In the fluorescent substance, the Ga / (Eu + Ba + Sr) ratio (elemental ratio) is preferably 1.80 to 2.50, more preferably 1.90 to 2.30.

前記蛍光物質の発光ピーク波長としては、例えば、529nm〜535nmが挙げられる。 Examples of the emission peak wavelength of the fluorescent substance include 529 nm to 535 nm.

前記蛍光物質の発光ピーク強度(対YAG比)としては、例えば、2.46〜3.64が挙げられる。 Examples of the emission peak intensity (ratio to YAG) of the fluorescent substance include 2.46 to 3.64.

前記蛍光物質の試料吸収率としては、例えば、64%〜82%が挙げられる。 Examples of the sample absorption rate of the fluorescent substance include 64% to 82%.

前記蛍光物質のCIE1931表色系に基づくxとしては、0.271以下が好ましい。
前記蛍光物質のCIE1931表色系に基づくx値としては、例えば、0.210〜0.271が挙げられ、また、0.235〜0.271が挙げられる。
The x based on the CIE 1931 color system of the fluorescent substance is preferably 0.271 or less.
Examples of the x value based on the CIE 1931 color system of the fluorescent substance include 0.210 to 0.271 and 0.235 to 0.271.

前記蛍光物質のCIE1931表色系に基づくy値としては、0.687以上が好ましい。
前記蛍光物質のCIE1931表色系に基づくy値としては、例えば、0.687〜0.710が挙げられ、また、0.687〜0.695が挙げられる。
The y value of the fluorescent substance based on the CIE 1931 color system is preferably 0.687 or more.
Examples of the y value based on the CIE 1931 color system of the fluorescent substance include 0.687 to 0.710 and 0.687 to 0.695.

前記蛍光物質の内部量子効率としては、0.64(64%)以上が好ましい。
前記蛍光物質の内部量子効率としては、例えば、0.64(64%)〜0.80(80%)が挙げられる。
The internal quantum efficiency of the fluorescent substance is preferably 0.64 (64%) or more.
Examples of the internal quantum efficiency of the fluorescent substance include 0.64 (64%) to 0.80 (80%).

前記蛍光物質の外部量子効率としては、0.40(40%)以上が好ましい。
前記蛍光物質の外部量子効率としては、例えば、0.40(40%)〜0.65(65%)などが挙げられる。
The external quantum efficiency of the fluorescent substance is preferably 0.40 (40%) or more.
Examples of the external quantum efficiency of the fluorescent substance include 0.40 (40%) to 0.65 (65%).

前記蛍光物質の輝度(対YAG比)としては、例えば、124%〜187%などが挙げられる。 Examples of the brightness (ratio to YAG) of the fluorescent substance include 124% to 187%.

前記蛍光物質の発光半値全幅としては、例えば、48nm〜50nmが挙げられる。 Examples of the full width at half maximum of the emission of the fluorescent substance include 48 nm to 50 nm.

上記各特性は、例えば、以下の方法により測定できる。 Each of the above characteristics can be measured by, for example, the following method.

[発光(PL)スペクトルの測定]
分光蛍光光度計FP−6500(日本分光社製)の積分球オプションを用いてPLスペクトルにおける発光ピーク波長、発光ピーク強度、及び発光半値全幅を測定する。発光ピーク強度は、化成オプトロニクス製の一般的なYAG蛍光体P46−Y3材のPLスペクトルデータを基準に相対値で示す。
[Measurement of emission (PL) spectrum]
The emission peak wavelength, emission peak intensity, and full width at half maximum of emission in the PL spectrum are measured using the integrating sphere option of the spectral fluorometer FP-6500 (manufactured by Nippon Kogaku Co., Ltd.). The emission peak intensity is shown as a relative value based on the PL spectrum data of a general YAG phosphor P46-Y3 material manufactured by Kasei Optronics.

[各種変換効率の算出]
蛍光体の変換効率として、励起光を吸収する効率(吸収率)、吸収した励起光を蛍光に変換する効率(内部量子効率)、及びそれらの積である励起光を蛍光に変換する効率(外部量子効率)を算出する。発光特性は、分光蛍光光度計FP−6500(日本分光社製)の積分球オプションを用いて測定する。専用セルに蛍光体粉末を充填し、波長450nmの青色励起光を照射させて、蛍光スペクトルを測定する。その結果を、分光蛍光光度計付属の量子効率計算ソフトを用いて、量子効率を算出する。
[Calculation of various conversion efficiencies]
As the conversion efficiency of the phosphor, the efficiency of absorbing the excitation light (absorption rate), the efficiency of converting the absorbed excitation light into fluorescence (internal quantum efficiency), and the efficiency of converting the excitation light which is the product of them into fluorescence (external). Quantum efficiency) is calculated. The emission characteristics are measured using the integrating sphere option of the spectrofluorometer FP-6500 (manufactured by JASCO Corporation). The dedicated cell is filled with phosphor powder, irradiated with blue excitation light having a wavelength of 450 nm, and the fluorescence spectrum is measured. The quantum efficiency of the result is calculated using the quantum efficiency calculation software attached to the spectrofluorescence meter.

[結晶性の評価]
結晶性の評価はX線回折の測定により行う。粉末X線回折計(PANalytical社製X’Pert PRO)を用いて、CuKα線のX線回折(XRD)パターンにおける回折ピークの位置(2θ)及び半値幅を測定する。付属の解析ソフトのピークサーチ機能でフィッティングを行い、蛍光体のXRDパターンの特徴を解析する。
[Evaluation of crystallinity]
The crystallinity is evaluated by measuring X-ray diffraction. Using a powder X-ray diffractometer (X'Pert PRO manufactured by PANalytical), the position (2θ) and full width at half maximum of the diffraction peak in the X-ray diffraction (XRD) pattern of CuKα rays are measured. Fitting is performed by the peak search function of the attached analysis software, and the characteristics of the XRD pattern of the phosphor are analyzed.

<被覆層>
本発明の蛍光体のさらなる好ましい態様として、前記蛍光物質の表面が、被覆層としてのフッ素系樹脂で被覆された蛍光体が挙げられる。
蛍光物質の耐湿性、耐水性を向上させることで、水などによる加水分解反応を防止し、発光特性の低下を防ぐことができる。
蛍光物質の耐湿性、耐水性の向上には、前記蛍光物質の表面をフッ素系樹脂で被覆させることが好ましい。そうすることで、前記蛍光物質における加水分解などによる劣化を防止することができ、発光ピーク強度等の発光特性の劣化を抑制できる。
<Coating layer>
A further preferred embodiment of the fluorescent substance of the present invention is a fluorescent substance in which the surface of the fluorescent substance is coated with a fluororesin as a coating layer.
By improving the moisture resistance and water resistance of the fluorescent substance, it is possible to prevent the hydrolysis reaction by water or the like and prevent the deterioration of the light emitting characteristics.
In order to improve the moisture resistance and water resistance of the fluorescent substance, it is preferable to coat the surface of the fluorescent substance with a fluororesin. By doing so, deterioration of the fluorescent substance due to hydrolysis or the like can be prevented, and deterioration of light emission characteristics such as emission peak intensity can be suppressed.

蛍光物質の組成、結晶構造などの違いにより、発光ピーク波長、発光半値全幅、発光ピーク強度、内部量子効率、外部量子効率などの各物性値は異なってくる。
しかし、本発明の蛍光体は、後述する本発明の製造方法で製造することにより、新規の結晶構造を有し、高い輝度を有しつつ、色純度の高い緑色発光の蛍光体となる。
Each physical property value such as emission peak wavelength, emission half width, emission peak intensity, internal quantum efficiency, and external quantum efficiency differs depending on the composition of the fluorescent substance, the crystal structure, and the like.
However, the phosphor of the present invention can be produced by the production method of the present invention described later, so that it has a novel crystal structure, has high brightness, and emits green light with high color purity.

(蛍光体の製造方法)
本発明の蛍光体の製造方法は、析出沈殿工程を少なくとも含み、更に必要に応じて、焼成工程、被覆工程などのその他の工程を含む。
前記蛍光体の製造方法は、本発明の前記蛍光体を製造する方法である。
(Manufacturing method of phosphor)
The method for producing a phosphor of the present invention includes at least a precipitation-precipitation step, and further includes other steps such as a firing step and a coating step, if necessary.
The method for producing the fluorescent substance is the method for producing the fluorescent substance of the present invention.

<析出沈殿工程>
前記析出沈殿工程としては、第1の液と、第2の液とを混合し、沈殿物を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Precipitation step>
The precipitation-precipitation step is not particularly limited as long as it is a step of mixing the first liquid and the second liquid to obtain a precipitate, and can be appropriately selected depending on the intended purpose.

<<第1の液>>
前記第1の液は、バリウム化合物、ストロンチウム化合物、及びユーロピウム化合物を溶解し、かつ粉末ガリウム化合物を含有する。
<< First liquid >>
The first liquid dissolves a barium compound, a strontium compound, and a europium compound, and contains a powdered gallium compound.

前記第1の液を得る方法としては、例えば、バリウム化合物、ストロンチウム化合物、及びユーロピウム化合物を水に溶解させ、そこにガリウム化合物の粉末を混合する方法などが挙げられる。 Examples of the method for obtaining the first liquid include a method in which a barium compound, a strontium compound, and a europium compound are dissolved in water, and a gallium compound powder is mixed therein.

前記バリウム化合物としては、例えば、硝酸バリウム[Ba(NO]、酸化バリウム[BaO]、臭化バリウム[BaBr・xHO]、塩化バリウム[BaCl・xHO]、酢酸バリウム[Ba(CHCOO)]、ヨウ化バリウム[BaI・xHO]、水酸化バリウム[Ba(OH)]、硫化バリウム[BaS]等を用いることができる。 Examples of the barium compound include barium nitrate [Ba (NO 3 ) 2 ], barium oxide [BaO], barium bromide [BaBr 2 · xH 2 O], barium chloride [BaCl 2 · xH 2 O], and barium acetate. [Ba (CH 3 COO) 2 ], barium iodide [BaI 2 · xH 2 O], barium hydroxide [Ba (OH) 2 ], barium sulfide [BaS] and the like can be used.

前記ストロンチウム化合物としては、例えば、硝酸ストロンチウム[Sr(NO]、酸化ストロンチウム[SrO]、臭化ストロンチウム[SrBr・xHO]、塩化ストロンチウム[SrCl・xHO]、炭酸ストロンチウム[SrCO]、蓚酸ストロンチウム[SrC・HO]、フッ化ストロンチウム[SrF]、ヨウ化ストロンチウム[SrI・xHO]、硫酸ストロンチウム[SrSO]、水酸化ストロンチウム[Sr(OH)・xHO]、硫化ストロンチウム[SrS]等を用いることができる。 As the strontium compound, e.g., strontium nitrate [Sr (NO 3) 2] , strontium oxide [SrO], strontium bromide [SrBr 2 · xH 2 O] , strontium chloride [SrCl 2 · xH 2 O] , strontium carbonate [SrCO 3 ], strontium nitrate [SrC 2 O 4 · H 2 O], strontium fluoride [SrF 2 ], strontium nitrate [SrI 2 · xH 2 O], strontium nitrate [SrSO 4 ], strontium hydroxide [Sr (OH) 2 · xH 2 O], strontium nitrate [SrS] and the like can be used.

前記ユウロピウム化合物としては、例えば、硝酸ユウロピウム[Eu(NO・xHO]、蓚酸ユウロピウム[Eu(C・xHO]、炭酸ユウロピウム[Eu(CO・xHO]、硫酸ユウロピウム[Eu(SO]、塩化ユウロピウム[EuCl・xHO]、フッ化ユウロピウム[EuF]、水素化ユウロピウム[EuH]、硫化ユウロピウム[EuS]、トリ−i−プロポキシユウロピウム[Eu(O−i−C]、酢酸ユウロピウム[Eu(O−CO−CH]等を用いることができる。 Examples of the europium compound include europium nitrate [Eu (NO 3 ) 3 · xH 2 O], europium oxalate [Eu 2 (C 2 O 4 ) 3 · xH 2 O], and europium carbonate [Eu 2 (CO 3 )). 3 · xH 2 O], europium sulfate [Eu 2 (SO 4) 3 ], europium chloride [EuCl 3 · xH 2 O] , fluoride europium [EuF 3], hydrogenated europium [EuH x], europium sulfide [EuS ], Tri-i-propoxyeuropium [Eu (O-i-C 3 H 7 ) 3 ], Europium acetate [Eu (O-CO-CH 3 ) 3 ] and the like can be used.

前記粉末ガリウム化合物としては、例えば、酸化ガリウム[Ga]、硫酸ガリウム[Ga(SO・xHO]、硝酸ガリウム[Ga(NO・xHO]、臭化ガリウム[GaBr]、塩化ガリウム[GaCl]、ヨウ化ガリウム[GaI]、硫化ガリウム(II)[GaS]、硫化ガリウム(III)[Ga]、オキシ水酸化ガリウム[GaOOH]等を用いることができる。 Examples of the powdered gallium compound include gallium oxide [Ga 2 O 3 ], gallium sulfate [Ga 2 (SO 4 ) 3 · xH 2 O], gallium nitrate [Ga (NO 3 ) 3 · xH 2 O], and odor. Gallium gallium [GaBr 3 ], gallium chloride [GaCl 3 ], gallium iodide [GaI 3 ], gallium sulfide (II) [GaS], gallium sulfide (III) [Ga 2 S 3 ], gallium oxyhydroxide [GaOOH] Etc. can be used.

前記第1の液におけるBa、Sr、Eu、及びGaの含有量としては、特に制限はなく、目的に応じて適宜選択することができる。 The contents of Ba, Sr, Eu, and Ga in the first liquid are not particularly limited and may be appropriately selected depending on the intended purpose.

<<第2の液>>
前記第2の液は、亜硫酸塩を含有する。
前記第2の液を得る方法としては、例えば、亜硫酸塩を水に溶解させる方法が挙げられる。
前記第2の液における亜硫酸塩の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
<< Second liquid >>
The second liquid contains sulfites.
Examples of the method for obtaining the second liquid include a method of dissolving sulfite in water.
The content of sulfite in the second liquid is not particularly limited and may be appropriately selected depending on the intended purpose.

前記亜硫酸塩としては、例えば、亜硫酸アンモニウム、亜硫酸ナトリウム、亜硫酸カリウムなどが挙げられる。 Examples of the sulfite include ammonium sulfite, sodium sulfite, potassium sulfite and the like.

前記第1の液と、前記第2の液との混合比率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の液におけるEu、Ba、及びSrの合計モル量に対して、亜硫酸塩のモル量が1.00倍〜1.50倍となるように混合することが挙げられる。 The mixing ratio of the first liquid and the second liquid is not particularly limited and may be appropriately selected depending on the intended purpose. For example, of Eu, Ba, and Sr in the first liquid. For example, mixing is performed so that the molar amount of sulfite is 1.00 to 1.50 times the total molar amount.

<<沈殿物>>
前記沈殿物は、析出物と、前記粉末ガリウム化合物との混合物である。
前記析出物は、亜硫酸バリウム、亜硫酸ストロンチウム、及び亜硫酸ユーロピウムを含有する。
前記第1の液において、バリウム化合物、ストロンチウム化合物、及びユーロピウム化合物は溶解し、均一になっていることで、前記析出物においても、亜硫酸バリウム、亜硫酸ストロンチウム、及び亜硫酸ユーロピウムが均一に混合されている。
更に、前記沈殿物においては、前記粉末ガリウム化合物、亜硫酸バリウム、亜硫酸ストロンチウム、及び亜硫酸ユーロピウムが均一に混合されている。
<< Precipitate >>
The precipitate is a mixture of the precipitate and the powdered gallium compound.
The precipitate contains barium sulfite, strontium sulfite, and europium sulfite.
In the first liquid, the barium compound, the strontium compound, and the europium compound are dissolved and become uniform, so that the barium sulfite, strontium sulfite, and europium sulfite are uniformly mixed in the precipitate. ..
Further, in the precipitate, the powdered gallium compound, barium sulfite, strontium sulfite, and europium sulfite are uniformly mixed.

なお、前記沈殿物は、後述する焼成工程に供する前に、洗浄されることが好ましい。洗浄の条件としては特に制限はなく、目的に応じて適宜選択することができ、例えば、伝導率が0.1mS/cm以下になるまで水で洗浄することが挙げられる。 The precipitate is preferably washed before being subjected to the firing step described later. The cleaning conditions are not particularly limited and may be appropriately selected depending on the intended purpose. For example, washing with water until the conductivity becomes 0.1 mS / cm or less can be mentioned.

<焼成工程>
前記焼成工程としては、硫化水素を含有する雰囲気下で前記沈殿物を焼成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記焼成工程における焼成温度としては、例えば、900℃〜950℃が挙げられる。
前記焼成工程における焼成時間としては、例えば、1時間〜5時間が挙げられる。
前記焼成工程における雰囲気中の硫化水素の割合としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.1L/分〜0.5L/分の量の硫化水素を焼成雰囲気中に供給することが挙げられる。
<Baking process>
The firing step is not particularly limited as long as it is a step of firing the precipitate in an atmosphere containing hydrogen sulfide, and can be appropriately selected depending on the intended purpose.
Examples of the firing temperature in the firing step include 900 ° C. to 950 ° C.
Examples of the firing time in the firing step include 1 hour to 5 hours.
The ratio of hydrogen sulfide in the atmosphere in the firing step is not particularly limited and can be appropriately selected depending on the intended purpose. For example, 0.1 L / min to 0.5 L / min of hydrogen sulfide is fired. Supplying in the atmosphere can be mentioned.

前記焼成工程により本発明の前記蛍光体における前記蛍光物質を得ることができる。 The fluorescent substance in the fluorescent substance of the present invention can be obtained by the firing step.

<被覆工程>
前記被覆工程としては、前記焼成工程によって得られた蛍光物質の表面を被覆層により被覆する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記被覆工程は、例えば、非水系雰囲気下でフッ素系樹脂を被覆させることで行うことができる。
<Coating process>
The coating step is not particularly limited as long as it is a step of coating the surface of the fluorescent substance obtained by the firing step with a coating layer, and can be appropriately selected depending on the intended purpose.
The coating step can be performed, for example, by coating the fluororesin in a non-aqueous atmosphere.

例えば、エトキシノナフルオロブタン等のハイドロフルオロエーテル類などのフッ素を含有する溶媒にフッ素系樹脂が含有されたフッ素系樹脂溶液を用い、該フッ素系樹脂溶液に上記で得られた蛍光物質を混ぜ、ミックスローターなどで混合する。次に、吸引ろ過により粉末を回収し、80℃〜100℃程度の温度で0.5時間〜1.5時間、該粉末を乾燥させる。これにより、表面にフッ素系樹脂による被覆層を有する蛍光体を得ることができる。 For example, a fluorine-based resin solution containing a fluorine-based resin in a fluorine-containing solvent such as hydrofluoroethers such as ethoxynonafluorobutane is used, and the fluorescent substance obtained above is mixed with the fluorine-based resin solution. Mix with a mix rotor or the like. Next, the powder is collected by suction filtration, and the powder is dried at a temperature of about 80 ° C. to 100 ° C. for 0.5 hours to 1.5 hours. This makes it possible to obtain a phosphor having a coating layer made of a fluororesin on the surface.

(蛍光体シート)
本発明の蛍光体シートは、蛍光体層を少なくとも有し、更に必要に応じて、水蒸気バリアフィルムなどのその他の部材を有する。
(Fluorescent sheet)
The fluorophore sheet of the present invention has at least a fluorophore layer and, if necessary, other members such as a water vapor barrier film.

<蛍光体層>
前記蛍光体層は、本発明の前記蛍光体と、赤色蛍光体とを少なくとも含有し、更に必要に応じて、樹脂などのその他の成分を含有する。
前記蛍光体層は、例えば、層状の前記樹脂中に本発明の前記蛍光体と、前記赤色蛍光体とが分散されてなる。
<Fluorescent layer>
The fluorescent material layer contains at least the fluorescent material of the present invention and a red fluorescent material, and further contains other components such as a resin, if necessary.
The fluorescent substance layer is formed by, for example, the fluorescent substance of the present invention and the red fluorescent substance dispersed in the layered resin.

<<赤色蛍光体>>
前記赤色蛍光体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫化物系蛍光体、酸化物系蛍光体、窒化物系蛍光体、フッ化物系蛍光体等から、蛍光体の種類、吸収帯域、発光帯域等に応じて、1種又は2種以上を組み合わせて用いることができる。
<< Red Fluorescent Material >>
The red phosphor is not particularly limited and may be appropriately selected depending on the intended purpose. For example, from sulfide-based phosphors, oxide-based phosphors, nitride-based phosphors, fluoride-based phosphors and the like. , 1 type or a combination of 2 or more types can be used depending on the type of phosphor, absorption band, light emission band and the like.

前記赤色蛍光体の具体例としては、(ME:Eu)S、(M:Sm)(Si,Al)12(O,N)16、MESi:Eu、(ME:Eu)SiN、(ME:Eu)AlSiN、(ME:Eu)SiO、(Ca:Eu)SiN、(Ca:Eu)AlSiN、Y:Eu、YVO:Eu、Y(P,V)O:Eu、3.5MgO・0.5MgF・Ge:Mn、CaSiO:Pb,Mn、MgAsO11:Mn、(Sr,Mg)(PO:Sn、LaS:Eu、YS:Eu等を挙げることができる。これらの赤色蛍光体の中でも、広い色域を実現可能なCaS:Eu、又は(Ba,Sr)SiO:Euが好ましく用いられる。ここで、「ME」は、Ca、Sr及びBaから成る群から選択された少なくとも1種類の原子を意味し、「M」は、Li、Mg及びCaから成る群から選択された少なくとも1種類の原子を意味する。また、「:」の前は母体を示し、「:」の後は付活剤を示す。 Specific examples of the red phosphor include (ME: Eu) S, (M: Sm) x (Si, Al) 12 (O, N) 16 , ME 2 Si 5 N 8 : Eu, (ME: Eu). SiN 2 , (ME: Eu) AlSiN 3 , (ME: Eu) 3 SiO 5 , (Ca: Eu) SiN 2 , (Ca: Eu) AlSiN 3 , Y 2 O 3 : Eu, YVO 4 : Eu, Y ( P, V) O 4: Eu , 3.5MgO · 0.5MgF 2 · Ge 2: Mn, CaSiO 3: Pb, Mn, Mg 6 AsO 11: Mn, (Sr, Mg) 3 (PO 4) 3: Sn , La 2 O 2 S: Eu, Y 2 O 2 S: Eu and the like. Among these red phosphors, CaS: Eu or (Ba, Sr) 3 SiO 5 : Eu, which can realize a wide color gamut, is preferably used. Here, "ME" means at least one kind of atom selected from the group consisting of Ca, Sr and Ba, and "M" means at least one kind selected from the group consisting of Li, Mg and Ca. Means an atom. In addition, ":" indicates the mother body, and ":" indicates the activator.

<<樹脂>>
前記樹脂としては、例えば、ポリオレフィン共重合体、光硬化性(メタ)アクリル樹脂の硬化物などが挙げられる。
<< Resin >>
Examples of the resin include a polyolefin copolymer and a cured product of a photocurable (meth) acrylic resin.

前記ポリオレフィン共重合体としては、スチレン系共重合体又はその水添物を挙げることができる。このようなスチレン系共重合体又はその水添物としては、スチレン−エチレン−ブチレン−スチレンブロック共重合体又はその水添物、スチレン−エチレン−プロピレンブロック共重合体又はその水添物を好ましく挙げることができる。これらの中でも透明性やガスバリア性の点から、スチレン−エチレン−ブチレン−スチレンブロック共重合体の水添物を特に好ましく使用することができる。このようなポリオレフィン共重合体を含有させることにより、優れた耐光性と低い吸水性を得ることができる。 Examples of the polyolefin copolymer include a styrene-based copolymer or a hydrogenated product thereof. As such a styrene-based copolymer or a hydrogenated product thereof, a styrene-ethylene-butylene-styrene block copolymer or a hydrogenated product thereof, a styrene-ethylene-propylene block copolymer or a hydrogenated product thereof is preferably mentioned. be able to. Among these, a hydrogenated product of a styrene-ethylene-butylene-styrene block copolymer can be particularly preferably used from the viewpoint of transparency and gas barrier property. By containing such a polyolefin copolymer, excellent light resistance and low water absorption can be obtained.

前記光硬化性(メタ)アクリル樹脂としては、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレートなどを挙げることができ、これらの中でも、光硬化後の耐熱性の観点から、ウレタン(メタ)アクリレートを好ましく使用することができる。このような光硬化性(メタ)アクリル樹脂を含有させることにより優れた耐光性と低い吸水性を得ることができる。 Examples of the photocurable (meth) acrylic resin include urethane (meth) acrylate, polyester (meth) acrylate, and epoxy (meth) acrylate. Among these, from the viewpoint of heat resistance after photocuring. Therefore, urethane (meth) acrylate can be preferably used. By containing such a photocurable (meth) acrylic resin, excellent light resistance and low water absorption can be obtained.

<水蒸気バリアフィルム>
前記水蒸気バリアフィルムとしては、PET(Polyethylene terephthalate)等のプラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物薄膜を形成したガスバリア性フィルムなどが挙げられる。また、PET/SiOx/PET等の多層構造のものを用いても良い。
<Water vapor barrier film>
Examples of the water vapor barrier film include a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate such as PET (Polyethylene terephthate) or a film. Further, a multilayer structure such as PET / SiOx / PET may be used.

ここで、蛍光体シートの一例を図を用いて説明する。
図1は、蛍光体シート端部の構成例を示す概略断面図である。この蛍光体シートは、蛍光体層11が、第1の水蒸気バリアフィルム12と第2の水蒸気バリアフィルム13とに挟持されている。
Here, an example of the phosphor sheet will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a configuration example of the end portion of the phosphor sheet. In this phosphor sheet, the phosphor layer 11 is sandwiched between the first water vapor barrier film 12 and the second water vapor barrier film 13.

蛍光体層11は、緑色蛍光を発する本発明の前記蛍光体と、青色励起光の照射により波長620〜660nmの赤色蛍光を発する赤色蛍光体とを含有し、照射された青色光を白色光に変換する。 The phosphor layer 11 contains the phosphor of the present invention that emits green fluorescence and a red phosphor that emits red fluorescence having a wavelength of 620 to 660 nm when irradiated with blue excitation light, and converts the irradiated blue light into white light. Convert.

また、本発明の前記蛍光体以外の他の緑色発光の蛍光体として、ZnSiO:Mn、YAl12:Ce3+、(Y,Gd)Al(BO:Tb3+、CaScSi12:Ce、CaSc:Ce、BaSi12:Eu、β-サイアロン:Eu2+等から1種又は2種以上を組み合わせて用いてもよい。 Further, as a fluorescent substance that emits green light other than the fluorescent substance of the present invention, Zn 2 SiO 4 : Mn, Y 3 Al 5 O 12 : Ce 3+ , (Y, Gd) Al 3 (BO 3 ) 4 : Tb 3+ , Ca 3 Sc 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Ce, Ba 3 Si 6 O 12 N 2 : Eu, β-sialon: Eu 2+, etc. May be good.

蛍光体層11は、粉末状の本発明の前記蛍光体と赤色蛍光体とを含有する樹脂組成物を成膜したものである。 The phosphor layer 11 is formed by forming a powdery resin composition containing the fluorescent substance of the present invention and a red fluorescent substance.

また、図1の蛍光体シートは、第1の水蒸気バリアフィルム12の端部と第2の水蒸気バリアフィルム13の端部とが、1g/m/day以下の水蒸気透過率を有するカバー部材14で封止されていることが好ましい。 Further, in the phosphor sheet of FIG. 1, the cover member 14 in which the end portion of the first water vapor barrier film 12 and the end portion of the second water vapor barrier film 13 have a water vapor transmittance of 1 g / m 2 / day or less. It is preferably sealed with.

カバー部材14としては、1g/m/day以下の水蒸気透過率を有する基材141に粘着剤142が塗布された粘着テープを用いることができる。基材141としては、アルミ箔等の金属箔や、水蒸気バリアフィルム12,13を用いることができる。アルミ箔は、光沢の白アルミ又は非光沢の黒アルミのいずれを用いても良いが、蛍光体シート端部の良好な色合いが必要な場合、白アルミを用いることが好ましい。また、水蒸気バリアフィルム上に貼り付けられるカバー部材14の幅Wは、水蒸気バリア性や強度の観点から1mm〜10mmであることが好ましく、1mm〜5mmであることがより好ましい。このような構成からなるカバー部材14によれば、水蒸気バリアフィルムの端部から蛍光体層への水蒸気の侵入を防止することができ、蛍光体層中の蛍光体の劣化を防止することができる。 As the cover member 14, an adhesive tape in which the pressure-sensitive adhesive 142 is applied to a base material 141 having a water vapor permeability of 1 g / m 2 / day or less can be used. As the base material 141, a metal foil such as an aluminum foil or water vapor barrier films 12 and 13 can be used. As the aluminum foil, either glossy white aluminum or non-glossy black aluminum may be used, but when a good color tone of the edge of the phosphor sheet is required, white aluminum is preferably used. Further, the width W of the cover member 14 to be attached on the water vapor barrier film is preferably 1 mm to 10 mm, more preferably 1 mm to 5 mm, from the viewpoint of water vapor barrier property and strength. According to the cover member 14 having such a configuration, it is possible to prevent the invasion of water vapor from the end portion of the water vapor barrier film into the phosphor layer, and it is possible to prevent the deterioration of the phosphor in the phosphor layer. ..

(照明装置)
本発明の照明装置は、本発明の前記蛍光体シートを有する。
本発明の照明装置の一例を図を用いて説明する。
図2は、エッジライト型の照明装置を示す概略断面図である。図2に示すように、照明装置は、青色LED31と、側面から入射される青色LED31の青色光を拡散させ、表面に均一の光を出す導光板32と、青色光から白色光を得る蛍光体シート33と、光学フィル34とを備える、所謂“エッジライト型バックライト”を構成する。
(Lighting device)
The lighting device of the present invention has the phosphor sheet of the present invention.
An example of the lighting device of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic cross-sectional view showing an edge light type lighting device. As shown in FIG. 2, the lighting device includes a blue LED 31, a light guide plate 32 that diffuses the blue light of the blue LED 31 incident from the side surface and emits uniform light on the surface, and a phosphor that obtains white light from the blue light. It constitutes a so-called "edge light type backlight" including a sheet 33 and an optical fill 34.

青色LED31は、青色発光素子として例えばInGaN系のLEDチップを有する、所謂“LEDパッケージ”を構成する。導光板32は、アクリル板等の透明基板の端面より入れた光を均一に面発光させる。蛍光体シート33は、例えば、図1に示す蛍光体シートである。蛍光体シート33に含有される蛍光体の粉末は、平均粒径が数μm〜数十μmのものを用いる。これにより蛍光体シート33の光散乱効果を向上させることができる。光学フィルム34は、例えば液晶表示装置の視認性を向上させるための反射型偏光フィルム、拡散フィルムなどで構成される。 The blue LED 31 constitutes a so-called "LED package" having, for example, an InGaN-based LED chip as a blue light emitting element. The light guide plate 32 uniformly surface-emits light emitted from the end surface of a transparent substrate such as an acrylic plate. The fluorescent material sheet 33 is, for example, the fluorescent material sheet shown in FIG. The phosphor powder contained in the phosphor sheet 33 has an average particle size of several μm to several tens of μm. This makes it possible to improve the light scattering effect of the phosphor sheet 33. The optical film 34 is composed of, for example, a reflective polarizing film or a diffusion film for improving the visibility of a liquid crystal display device.

また、図3は、直下型の照明装置を示す概略断面図である。図3に示すように、照明装置は、青色LED41が二次元配置された基板42と、青色LED41の青色光を拡散させる拡散板43と、基板42と離間して配置され、青色光から白色光を得る蛍光体シート33と、光学フィルム34とを備える、所謂“直下型バックライト”を構成する。 Further, FIG. 3 is a schematic cross-sectional view showing a direct type lighting device. As shown in FIG. 3, the lighting device is arranged apart from the substrate 42 in which the blue LED 41 is two-dimensionally arranged, the diffuser plate 43 for diffusing the blue light of the blue LED 41, and the substrate 42, and the blue light to the white light. It constitutes a so-called "direct-type backlight" including a phosphor sheet 33 for obtaining the above and an optical film 34.

青色LED41は、青色発光素子として例えばInGaN系のLEDチップを有する、所謂“LEDパッケージ”を構成する。基板42は、フェノール、エポキシ、ポリイミドなどの樹脂を利用したガラス布基材から構成され、基板42上には、所定ピッチで等間隔に青色LED41が、蛍光体シート33の全面に対応して二次元に配置される。また、必要に応じて、基板42上の青色LED41の搭載面に反射処理を施してもよい。基板42と蛍光体シート33とは約10〜50mm程度離間して配置され、照明装置は、所謂“リモート蛍光体構造”を構成する。基板42と蛍光体シート33との間隙は、複数の支持柱や反射板によって保持され、基板42と蛍光体シート33とがなす空間を支持柱や反射板が四方で囲むように設けられている。拡散板43は、青色LED41からの放射光を光源の形状が見えなくなる程度に広範囲に拡散するものであり、例えば20%以上80%以下の全光線透過率を有する。 The blue LED 41 constitutes a so-called "LED package" having, for example, an InGaN-based LED chip as a blue light emitting element. The substrate 42 is made of a glass cloth base material using a resin such as phenol, epoxy, or polyimide, and blue LEDs 41 are formed on the substrate 42 at regular intervals corresponding to the entire surface of the phosphor sheet 33. Arranged in a dimension. Further, if necessary, the mounting surface of the blue LED 41 on the substrate 42 may be subjected to a reflection treatment. The substrate 42 and the phosphor sheet 33 are arranged at a distance of about 10 to 50 mm, and the lighting device constitutes a so-called "remote phosphor structure". The gap between the substrate 42 and the phosphor sheet 33 is held by a plurality of support columns and reflectors, and the space formed by the substrate 42 and the phosphor sheet 33 is provided so that the support columns and the reflector surround the space formed by the support columns and the reflector. .. The diffuser plate 43 diffuses the synchrotron radiation from the blue LED 41 over a wide range so that the shape of the light source becomes invisible, and has, for example, a total light transmittance of 20% or more and 80% or less.

なお、本発明は、前述の実施の形態にのみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々更新を加え得ることは勿論である。例えば、前述の実施の形態では、照明装置を表示装置用のバックライト光源に適用した例を示したが、照明用光源に適用してもよい。照明用光源に適用する場合、光学フィルム34は不要である場合が多い。また、蛍光体含有樹脂は、平面のシート形状であるだけでなく、カップ型形状等の立体的な形状を持っていてもよい。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the example in which the lighting device is applied to the backlight light source for the display device is shown, but it may be applied to the lighting light source. When applied to an illumination light source, the optical film 34 is often unnecessary. Further, the phosphor-containing resin may have a three-dimensional shape such as a cup shape as well as a flat sheet shape.

以下、実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらに限定されるものではない。実施例において、発光スペクトルの測定、各種変換効率の算出、結晶性の評価は、以下のようにして行った。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the examples, the measurement of the emission spectrum, the calculation of various conversion efficiencies, and the evaluation of crystallinity were performed as follows.

[発光(PL)スペクトルの測定]
分光蛍光光度計FP−6500(日本分光社製)の積分球オプションを用いてPLスペクトルにおける発光ピーク波長、発光ピーク強度、及び発光半値全幅を測定した。発光ピーク強度は、化成オプトロニクス製の一般的なYAG蛍光体P46−Y3材のPLスペクトルデータを基準に相対値で示した。
[Measurement of emission (PL) spectrum]
The emission peak wavelength, emission peak intensity, and emission half width in the PL spectrum were measured using the integrating sphere option of the spectral fluorometer FP-6500 (manufactured by Nippon Kogaku Co., Ltd.). The emission peak intensity is shown as a relative value based on the PL spectrum data of a general YAG phosphor P46-Y3 material manufactured by Kasei Optronics.

[各種変換効率の算出]
蛍光体の変換効率として、励起光を吸収する効率(吸収率)、吸収した励起光を蛍光に変換する効率(内部量子効率)、及びそれらの積である励起光を蛍光に変換する効率(外部量子効率)を算出した。発光特性は、分光蛍光光度計FP−6500(日本分光社製)の積分球オプションを用いて測定した。専用セルに蛍光体粉末を充填し、波長450nmの青色励起光を照射させて、蛍光スペクトルを測定した。その結果を、分光蛍光光度計付属の量子効率計算ソフトを用いて、量子効率を算出した。
[Calculation of various conversion efficiencies]
As the conversion efficiency of the phosphor, the efficiency of absorbing the excitation light (absorption rate), the efficiency of converting the absorbed excitation light into fluorescence (internal quantum efficiency), and the efficiency of converting the excitation light which is the product of them into fluorescence (external). Quantum efficiency) was calculated. The emission characteristics were measured using the integrating sphere option of the spectrofluorometer FP-6500 (manufactured by JASCO Corporation). The dedicated cell was filled with phosphor powder, irradiated with blue excitation light having a wavelength of 450 nm, and the fluorescence spectrum was measured. The quantum efficiency was calculated using the quantum efficiency calculation software attached to the spectrofluorescence meter.

[結晶性の評価]
結晶性の評価はX線回折の測定により行った。粉末X線回折計(PANalytical社製X’Pert PRO)を用いて、CuKα線のX線回折(XRD)パターンにおける回折ピークの位置(2θ)及び半値幅を測定した。付属の解析ソフトのピークサーチ機能でフィッティングを行い、蛍光体のXRDパターンの特徴を解析した。
[Evaluation of crystallinity]
The crystallinity was evaluated by measuring X-ray diffraction. Using a powder X-ray diffractometer (X'Pert PRO manufactured by PANalytical), the position (2θ) and full width at half maximum of the diffraction peak in the X-ray diffraction (XRD) pattern of CuKα rays were measured. Fitting was performed using the peak search function of the attached analysis software, and the characteristics of the XRD pattern of the phosphor were analyzed.

(実施例1)
先ず、Ga(純度6N)、Ba(NO(純度3N)、Sr(NO(純度3N)、及びEu(NO・nHO(純度3N、n=6.06)、並びに亜硫酸アンモニウム一水和物を準備した。
次いで、表1に示すように、組成式(BaSr1−y1−xGa:Euで表される蛍光体において、x=0.025、y=0.15とする組成比(Eu濃度:2.5mol%、Ba置換割合:15%)で、0.1モル量となるように各原料の秤量値を算出した。実施例1の場合、ユウロピウム化合物(Eu(NO・nHO)1.115g、バリウム化合物(Ba(NO)3.822g、及びストロンチウム化合物(Sr(NO)17.539gである。
ユウロピウム化合物と、バリウム化合物と、ストロンチウム化合物とを300mlの純水に添加し、溶け残りがなくなるまで十分に撹拌し、Eu、Ba、及びSrを含有する混合溶液を得た。次に、Eu、Ba、及びSrのモル量の和に対してGaのモル量が2.0倍となるように算出した、粉状ガリウム化合物(粉状Ga)18.744gを加え、十分に撹拌して、硝酸塩と酸化ガリウム粉末の混合溶液を作製した。
次に、Eu、Ba、及びSrのモル数の合計の1.15倍のモル数の亜硫酸アンモニウム15.487gを100mlの純水に溶解させ、亜硫酸塩溶液を作製した。
先の硝酸塩と酸化ガリウム粉末の混合溶液に、この亜硫酸塩溶液を滴下することで析出・沈殿物を得た。この析出・沈殿物は、亜硫酸ユウロピウム・バリウム・ストロンチウム粉体と、酸化ガリウム粉体の混合物である。
そして、伝導率が0.1mS/cm以下になるまで、析出・沈殿物を純水で洗浄・濾過し、120℃で15時間、乾燥させた。その後、公称目開き100μmの金網を通すことで、Eu、Ba、Ga、及びSrを含有する粉体混合品を得た。この粉体混合品は、亜硫酸ユウロピウム・バリウム・ストロンチウム粉体[(Ba,Sr,Eu)SOから成る粉体]と酸化ガリウムとを含有する混合物である。
次いで、粉体混合品を電気炉で焼成した。焼成条件を以下の通りとした。1.5時間で925℃まで昇温し、その後、1.5時間、925℃を保持し、次いで、2時間で室温まで降温させた。焼成中、0.3リットル/分の割合で電気炉に硫化水素を流した。その後、公称目開き25μmのメッシュを通し、(BaSr1−y1−xGa:Eu(x=0.025、y=0.15)から成る蛍光体粒子を得た。
以上の試料作製方法を表1中で湿式法と表記する。
(Example 1)
First, Ga 2 O 3 (purity 6N), Ba (NO 3 ) 2 (purity 3N), Sr (NO 3 ) 2 (purity 3N), and Eu (NO 3 ) 3 · nH 2 O (purity 3N, n = 6.06) and ammonium sulfate monohydrate were prepared.
Then, as shown in Table 1, the composition formula (Ba y Sr 1-y) 1-x Ga 2 S 4: in the phosphor represented by Eu x, x = 0.025, and y = 0.15 The weighed value of each raw material was calculated so as to have a composition ratio (Eu concentration: 2.5 mol%, Ba substitution ratio: 15%) and an amount of 0.1 mol. In the case of Example 1, 1.115 g of the europium compound (Eu (NO 3 ) 3. nH 2 O), 3.822 g of the barium compound (Ba (NO 3 ) 2 ), and the strontium compound (Sr (NO 3 ) 2 ) 17 .539 g.
The europium compound, the barium compound, and the strontium compound were added to 300 ml of pure water and stirred sufficiently until there was no undissolved residue to obtain a mixed solution containing Eu, Ba, and Sr. Next, 18.744 g of a powdered gallium compound (powdered Ga 2 O 3 ) calculated so that the molar amount of Ga is 2.0 times the sum of the molar amounts of Eu, Ba, and Sr is added. , Stir well to prepare a mixed solution of nitrate and gallium oxide powder.
Next, 15.487 g of ammonium sulfite having 1.15 times the total number of moles of Eu, Ba, and Sr was dissolved in 100 ml of pure water to prepare a sulfite solution.
A precipitate / precipitate was obtained by dropping this sulfite solution into the above mixed solution of nitrate and gallium oxide powder. This precipitate / precipitate is a mixture of europium sulfite / barium / strontium powder and gallium oxide powder.
Then, the precipitate / precipitate was washed and filtered with pure water until the conductivity became 0.1 mS / cm or less, and dried at 120 ° C. for 15 hours. Then, a powder mixture containing Eu, Ba, Ga, and Sr was obtained by passing through a wire mesh having a nominal opening of 100 μm. This powder mixture is a mixture containing europium sulfite, barium, and strontium powder [ powder composed of (Ba, Sr, Eu) SO 3 ] and gallium oxide.
Then, the powder mixture was fired in an electric furnace. The firing conditions were as follows. The temperature was raised to 925 ° C. in 1.5 hours, then maintained at 925 ° C. for 1.5 hours, and then lowered to room temperature in 2 hours. During firing, hydrogen sulfide was flowed through the electric furnace at a rate of 0.3 liters / minute. Then, through a 25μm mesh opening nominal th, (Ba y Sr 1-y ) 1-x Ga 2 S 4: to obtain phosphor particles consisting of Eu x (x = 0.025, y = 0.15) ..
The above sample preparation method is referred to as a wet method in Table 1.

(実施例2〜7、及び比較例1〜3)
表1に示すように、組成式(BaSr1−y1−xGa:Euで表される蛍光体において、各実施例及び各比較例のx値、y値で示した組成比で、0.1モル量となるように各原料の秤量値を算出した。これ以外は、実施例1と同様に湿式法で、各実施例、及び各比較例の(BaSr1−y1−xGa:Euから成る蛍光体粒子を得た。
(Examples 2 to 7 and Comparative Examples 1 to 3)
As shown in Table 1, the composition formula (Ba y Sr 1-y) 1-x Ga 2 S 4: in the phosphor represented by the Eu x, x values of the examples and comparative examples, shown in y value The weighed value of each raw material was calculated so as to have a composition ratio of 0.1 mol. Other than this, a wet method in the same manner as in Example 1, the Examples, and Comparative Examples (Ba y Sr 1-y) 1-x Ga 2 S 4: to obtain phosphor particles consisting of Eu x.

(比較例4)
まず、Ga(純度6N)、BaCO(純度3N)、SrCO(純度3N)、及びEu(純度3N)を準備した。
次いで、表1に示すように、組成式(BaSr1−y1−xGa:Euで表される蛍光体において、x=0.10、y=0.35とする組成比(Eu濃度:10mol%、Ba置換割合:35%)で、0.05モル量となるように各原料の秤量値を算出した。比較例4の場合、ユウロピウム化合物(Eu)0.8798g、ストロンチウム化合物(SrCO)4.318g、バリウム化合物(BaCO)3.108g、及びガリウム化合物(Ga)9.372gである。
ユウロピウム化合物と、ストロンチウム化合物と、バリウム化合物と、ガリウム化合物とをボールミルを用いてエタノール中で混合した。混合終了後、混合物を吸引濾過し、80℃で12時間、乾燥させた。その後、公称目開き100μmの金網を通すことで、Eu、Sr、Ba、及びGaを含有する粉体混合品を得た。
次に、アルミナ焼成ボートに粉体混合品を入れ電気炉で焼成した。焼成条件を以下のとおりとした。1.5時間で925℃まで昇温し、その後、1.5時間、925℃を保持し、次いで、2時間で室温まで降温させた。焼成中、0.3リットル/分の割合で電気炉に硫化水素を流した。その後、公称目開き25μmのメッシュを通し、(BaSr1−y1−xGa:Eu(x=0.10、y=0.35)から成る蛍光体粒子を得た.以上の試作作製方法を、表1中、乾式法と表記する。
(Comparative Example 4)
First, Ga 2 O 3 (purity 6N), BaCO 3 (purity 3N), SrCO 3 (purity 3N), and Eu 2 O 3 (purity 3N) were prepared.
Then, as shown in Table 1, the composition formula (Ba y Sr 1-y) 1-x Ga 2 S 4: in the phosphor represented by Eu x, x = 0.10, and y = 0.35 The weighed value of each raw material was calculated so as to have a composition ratio (Eu concentration: 10 mol%, Ba substitution ratio: 35%) and an amount of 0.05 mol. In the case of Comparative Example 4, 0.8798 g of the europium compound (Eu 2 O 3 ), 4.318 g of the strontium compound (SrCO 3 ), 3.108 g of the barium compound (BaCO 3 ), and 9.372 g of the gallium compound (Ga 2 O 3 ). Is.
The europium compound, the strontium compound, the barium compound, and the gallium compound were mixed in ethanol using a ball mill. After completion of mixing, the mixture was suction filtered and dried at 80 ° C. for 12 hours. Then, a powder mixture containing Eu, Sr, Ba, and Ga was obtained by passing through a wire mesh having a nominal opening of 100 μm.
Next, the powder mixture was placed in an alumina firing boat and fired in an electric furnace. The firing conditions were as follows. The temperature was raised to 925 ° C. in 1.5 hours, then maintained at 925 ° C. for 1.5 hours, and then lowered to room temperature in 2 hours. During firing, hydrogen sulfide was flowed through the electric furnace at a rate of 0.3 liters / minute. Then, through a 25μm mesh opening nominal th, (Ba y Sr 1-y ) 1-x Ga 2 S 4: to obtain phosphor particles consisting of Eu x (x = 0.10, y = 0.35) .. The above trial production method is referred to as a dry method in Table 1.

以上をまとめると、実施例1〜7で作製した、蛍光体の組成領域は、組成比(BaSr1−y1−xGa:Euで表される蛍光体において、x=0.025〜0.20、y=0.15〜0.49の範囲で表すことができる。 In summary, prepared in Example 1-7, the composition region of the phosphor, the composition ratio (Ba y Sr 1-y) 1-x Ga 2 S 4: in the phosphor represented by Eu x, x It can be expressed in the range of = 0.025 to 0.20 and y = 0.15 to 0.49.

Figure 0006871098
Figure 0006871098

(発光評価結果)
表2に、実施例1〜7、比較例1〜4の蛍光体の発光特性の評価結果として、発光ピーク波長、ピーク強度、試料吸収率、内部量子効率、外部量子効率、ClE色度のx、y値、輝度、発光半値全幅(FWHM)の値を示した。
(Emission evaluation result)
In Table 2, as the evaluation results of the emission characteristics of the phosphors of Examples 1 to 7 and Comparative Examples 1 to 4, the emission peak wavelength, peak intensity, sample absorption rate, internal quantum efficiency, external quantum efficiency, and ClE chromaticity x , Y value, brightness, and half-value emission full width (FWHM) values are shown.

実施例1についてPLスペクトルを測定した結果から、波長534nmに発光ピークが現れ、発光ピーク強度は、2.50(YAG比)、輝度は141.1%(YAG比)、発光半値全幅は49nmであった。また、CIEx,y色度点(0.267、0.688)であった。また、変換効率を算出した結果、吸収率は64.2%、内部量子効率は69.9%、及び外部量子効率は44.9%であった。 From the results of measuring the PL spectrum for Example 1, an emission peak appeared at a wavelength of 534 nm, the emission peak intensity was 2.50 (YAG ratio), the brightness was 141.1% (YAG ratio), and the full width at half maximum of emission was 49 nm. there were. It was also a CIEx, y chromaticity point (0.267, 0.688). As a result of calculating the conversion efficiency, the absorption rate was 64.2%, the internal quantum efficiency was 69.9%, and the external quantum efficiency was 44.9%.

同様に、実施例2〜7の発光特性の評価結果も表2に示した。
発光ピーク波長は529〜535nm、発光ピーク強度は2.46〜3.64(YAG比)、輝度は124.7〜187.0%(YAG比)、発光半値全幅は48〜50nmであった。また、CIEx,y色度点は(0.235、0.695)から(0.271、0.687)の範囲の座標を示した。また、変換効率を算出した結果、吸収率は66.4〜81.8%、内部量子効率は64.6〜79.0%、及び外部量子効率は43.4〜64.6%であった。
Similarly, the evaluation results of the light emission characteristics of Examples 2 to 7 are also shown in Table 2.
The emission peak wavelength was 529 to 535 nm, the emission peak intensity was 2.46 to 3.64 (YAG ratio), the brightness was 124.7 to 187.0% (YAG ratio), and the full width at half maximum of emission was 48 to 50 nm. The CIEx and y chromaticity points showed coordinates in the range of (0.235, 0.695) to (0.271, 0.687). As a result of calculating the conversion efficiency, the absorption rate was 66.4 to 81.8%, the internal quantum efficiency was 64.6 to 79.0%, and the external quantum efficiency was 43.4 to 64.6%. ..

同様に、比較例1〜4の発光特性の評価結果も表2に示した。
発光ピーク波長は528〜538nm、発光ピーク強度は1.25〜3.43(YAG比)、輝度は68.1〜192.7%(YAG比)、発光半値全幅は48〜54nmであった。また、CIEx,y色度点はCIEx値が0.231〜0.288、CIEy値が0.672〜0.686の範囲で離散的な座標位置となった。また、変換効率を算出した結果、吸収率は62.6〜80.1%、内部量子効率は37.6〜75.3%、及び外部量子効率は24.9〜60.3%であった。
Similarly, the evaluation results of the light emission characteristics of Comparative Examples 1 to 4 are also shown in Table 2.
The emission peak wavelength was 528 to 538 nm, the emission peak intensity was 1.25 to 3.43 (YAG ratio), the brightness was 68.1 to 192.7% (YAG ratio), and the full width at half maximum of emission was 48 to 54 nm. The CIEx and y chromaticity points were discrete coordinate positions in the range of the CIEx value of 0.231 to 0.288 and the CIEy value of 0.672 to 0.686. As a result of calculating the conversion efficiency, the absorption rate was 62.6 to 80.1%, the internal quantum efficiency was 37.6 to 75.3%, and the external quantum efficiency was 24.9 to 60.3%. ..

実施例1〜7、比較例1〜4の蛍光体の発光特性の評価結果を表1の投入組成比率と照らして合せて見ると、ピーク波長はBa置換割合を増やすほど短波長化し、Eu濃度を増やすほど長波長化する、大まかな傾向が確認できる。
また、図4に示したように、発光ピーク波長が短波長化すると発光ピーク強度は低下する傾向があり、実施例1〜7は、比較例1〜4に対比して、比較的高い発光強度を維持しつつ、短波長化できているといえる。輝度も発光ピーク強度と同様の傾向が見られる。さらに、実施例1〜7では、同程度の発光波長で比較して、内部量子効率が高く、高効率な発光特性を有していることが分かる。
When the evaluation results of the emission characteristics of the phosphors of Examples 1 to 7 and Comparative Examples 1 to 4 are compared with the input composition ratios in Table 1, the peak wavelength becomes shorter as the Ba substitution ratio increases, and the Eu concentration It can be confirmed that the wavelength becomes longer as the number of wavelengths increases.
Further, as shown in FIG. 4, when the emission peak wavelength is shortened, the emission peak intensity tends to decrease, and Examples 1 to 7 have a relatively high emission intensity as compared with Comparative Examples 1 to 4. It can be said that the wavelength can be shortened while maintaining the above. The brightness also tends to be similar to the emission peak intensity. Further, in Examples 1 to 7, it can be seen that the internal quantum efficiency is high and the emission characteristics are highly efficient as compared with the emission wavelengths of the same degree.

一方、実施例1〜7と比較例1〜4に対して、CIEx,y色度点を図5に示した。実施例1〜7は「◆」、比較例1〜4は「△」で示した。またNTSCのGreen色度点(0.210、0.710)を「■」で示した。実施例1〜7の色度点は短波長化するにつれ、(0.271、0.687)から(0.235、0.695)のほぼ単一曲線上の範囲で移動した。さらに実施例1〜7のCIEy値は比較例1〜4に比べて大きく、かつNTSCのGreen色度点に近いことから、実施例1〜7はより緑の色純度が高いことがわかる。 On the other hand, the CIEx and y chromaticity points are shown in FIG. 5 with respect to Examples 1 to 7 and Comparative Examples 1 to 4. Examples 1 to 7 are indicated by "◆", and Comparative Examples 1 to 4 are indicated by "Δ". The Green chromaticity points (0.210, 0.710) of NTSC are indicated by "■". The chromaticity points of Examples 1 to 7 moved in a range on a substantially single curve from (0.271, 0.687) to (0.235, 0.695) as the wavelength was shortened. Further, since the CIEy values of Examples 1 to 7 are larger than those of Comparative Examples 1 to 4 and close to the Green chromaticity point of NTSC, it can be seen that Examples 1 to 7 have higher green color purity.

Figure 0006871098
Figure 0006871098

次に、実施例1〜7、比較例1〜4の蛍光体について、X線回折によって、結晶性の評価を行った。
表3に、実施例1〜7、比較例1〜4の蛍光体の結晶性評価結果を示す。また、実施例1,4,5,7及び比較例1〜4についてX線回折パターンを図6に示した。
結晶性評価結果について鋭意解析を行った結果、実施例1〜7について特有の結晶構造を有することを見出した。具体的には回折角2θ=30.0〜30.4°に回折ピ−クが現れ、最大ピークに対する相対強度が一定の範囲を示すことである。
図6に示したように実施例1のX線回折パターンを見ると、回折強度最大のピークは回折角2θ=24.02°にSrGaSの(422)面に帰属する回折ピークが現れ、回折強度2番目のピークは、回折角2θ=38.38°に(444)面に帰属する回折ピークが現れた。また、回折角2θ=30.0〜30.40では30.2°位置に回折強度最大ピークに対する相対強度8.8%のピークが出現した。
Next, the crystallinity of the phosphors of Examples 1 to 7 and Comparative Examples 1 to 4 was evaluated by X-ray diffraction.
Table 3 shows the crystallinity evaluation results of the phosphors of Examples 1 to 7 and Comparative Examples 1 to 4. Further, the X-ray diffraction patterns of Examples 1, 4, 5 and 7 and Comparative Examples 1 to 4 are shown in FIG.
As a result of diligent analysis of the crystallinity evaluation results, it was found that Examples 1 to 7 had a peculiar crystal structure. Specifically, a diffraction peak appears at a diffraction angle of 2θ = 30.0 to 30.4 °, and the relative intensity with respect to the maximum peak shows a certain range.
Looking at the X-ray diffraction pattern of Example 1 as shown in FIG. 6, the peak of the maximum diffraction intensity appears at a diffraction angle of 2θ = 24.02 ° and a diffraction peak attributed to the (422) plane of SrGaS 2 S 4. As the second peak of the diffraction intensity, a diffraction peak attributed to the (444) plane appeared at a diffraction angle of 2θ = 38.38 °. Further, at a diffraction angle of 2θ = 30.0 to 30.40, a peak with an intensity of 8.8% relative to the maximum diffraction intensity peak appeared at the position of 30.2 °.

同様に、実施例2〜7、比較例1〜4についても、回折強度最大と2番目の回折角2θ位置、回折角2θ=30.0〜30.4°に出現するピークの位置と最大ピークに対する相対強度を、表3にまとめた。
実施例2〜7においてはいずれも、回折強度最大のピークは回折角2θ=23.82〜23.96°にSrGaの(422)面に帰属する回折ピークが現れ、回折強度2番目のピークは回折角2θ=38.17〜38.3°に(444)面に帰属する回折ピークが現れた。また、回折角2θ=30.0〜30.4°では30.17〜30.21°位置に回折強度最大ピークに対する相対強度7.7〜14.8%のピークが出現した。このうち代表的に実施例4、5、7のX線回折パターンを図6に示したが、上記の特有の結晶構造が確認できる。
Similarly, in Examples 2 to 7 and Comparative Examples 1 to 4, the positions and maximum peaks of the peaks appearing at the maximum diffraction intensity and the second diffraction angle 2θ position and the diffraction angle 2θ = 30.0 to 30.4 ° The relative intensities to are summarized in Table 3.
In each of Examples 2 to 7, the peak of the maximum diffraction intensity appears at the diffraction angle 2θ = 23.82 to 23.96 °, and the diffraction peak attributed to the (422) plane of SrGa 2 S 4 appears, and the second diffraction intensity. A diffraction peak attributed to the (444) plane appeared at a diffraction angle of 2θ = 38.17 to 38.3 °. Further, at a diffraction angle of 2θ = 30.0 to 30.4 °, a peak of 7.7 to 14.8% of the relative intensity with respect to the maximum diffraction intensity peak appeared at the position of 30.17 to 30.21 °. Of these, the X-ray diffraction patterns of Examples 4, 5 and 7 are typically shown in FIG. 6, and the above-mentioned unique crystal structure can be confirmed.

一方、比較例1では、X線回折パターンを図6に示したが、回折強度最大のピークは回折角2θ=24.06°にSrGaの(422)面に帰属する回折ピークが現れ、回折強度2番目のピークは回折角2θ=38.42°に(444)面に帰属する回折ピークが現れたが、回折角2θ=30.0〜30.4°にピークが出現していない。つまり比較例1ではx=0.10、y=0とする組成比(Eu濃度:10mol%、Ba置換割合:0%)の場合であって、Baを含有しない、この組成では、回折角2θ=30.0〜30.4°の特有の回折ピークは出現しない。 On the other hand, in Comparative Example 1, the X-ray diffraction pattern is shown in FIG. 6, and the peak of the maximum diffraction intensity appears at a diffraction angle of 2θ = 24.06 ° and a diffraction peak attributed to the (422) plane of SrGa 2 S 4. As for the second peak of the diffraction intensity, a diffraction peak attributed to the (444) plane appeared at a diffraction angle of 2θ = 38.42 °, but no peak appeared at a diffraction angle of 2θ = 30.0 to 30.4 °. .. That is, in Comparative Example 1, in the case of the composition ratio (Eu concentration: 10 mol%, Ba substitution ratio: 0%) in which x = 0.10 and y = 0, Ba is not contained, and in this composition, the diffraction angle is 2θ. No peculiar diffraction peak of = 30.0 to 30.4 ° appears.

比較例2ではX線回折パターンを図6に示したが、回折強度最大のピークは回折角2θ=34.36°に、回折強度2番目のピークは回折角2θ=17.00°に現れ、SrGa構造とは異なる構造を示し、回折角2θ=30.0〜30.4°にもピークが出現していない。つまり比較例2はx=0.025、y=0.05とする組成比(Eu濃度:2.5mo1%、Ba置換割合:5%)の場合であって、Ba置換割合の小さい、この組成では、回折角2θ=30.0〜30.4°の特有の回折ピークは出現しない。 In Comparative Example 2, the X-ray diffraction pattern is shown in FIG. 6, and the peak of the maximum diffraction intensity appears at the diffraction angle 2θ = 34.36 °, and the peak of the second diffraction intensity appears at the diffraction angle 2θ = 17.00 °. It shows a structure different from the SrGa 2 S 4 structure, and no peak appears even at a diffraction angle of 2θ = 30.0 to 30.4 °. That is, Comparative Example 2 is a composition ratio (Eu concentration: 2.5 mo 1%, Ba substitution ratio: 5%) in which x = 0.025 and y = 0.05, and this composition has a small Ba substitution ratio. Then, a peculiar diffraction peak having a diffraction angle of 2θ = 30.0 to 30.4 ° does not appear.

比較例3ではX線回折パターンを図6に示したが、回折強度最大のピ−クは回折角2θ=23.44°に、回折強度2番目のピ−クは回折角2θ=31.82°に現れ、SrGa構造とは異なる構造を示した。回折角2θ=30.0〜30.4°では30.15°位置に回折強度最大ピークに対する相対強度38.7%のピークが出現した。つまり比較例3はx=0.05、y=0.55とする組成比(Eu濃度:5mol%、Ba置換割合:55%)の場合であって、この組成では、回折強度2番目のピークはSrGa構造とは異なる構造を示し、Ba置換割合が大きすぎる、この組成では主構造が別の構造になると示唆される。 In Comparative Example 3, the X-ray diffraction pattern is shown in FIG. 6, and the peak with the maximum diffraction intensity has a diffraction angle of 2θ = 23.44 °, and the peak with the second diffraction intensity has a diffraction angle of 2θ = 31.82. It appeared at ° and showed a structure different from the SrGa 2 S 4 structure. At a diffraction angle of 2θ = 30.0 to 30.4 °, a peak with an intensity of 38.7% relative to the maximum diffraction intensity peak appeared at the position of 30.15 °. That is, Comparative Example 3 is a case of a composition ratio (Eu concentration: 5 mol%, Ba substitution ratio: 55%) in which x = 0.05 and y = 0.55, and in this composition, the second peak of the diffraction intensity. Shows a structure different from the SrGa 2 S 4 structure, and the Ba substitution ratio is too large, suggesting that the main structure becomes a different structure in this composition.

比較例4では、X線回折パターンを図6に示したが、回折強度最大のピークは回折角2θ=24.06°にSrGaの(422)面に帰属する回折ピークが現れ、回折強度2番目のピークは回折角2θ=38.37°に(444)面に帰属する回折ピークが現れたが、回折角2θ=30.0〜30.4°にピークが出現していない。つまり比較例4はx=0.10、y=0.35とする組成比(Eu濃度:10mol%、Ba置換割合:35%)の場合であって、Ba置換割合の小さい、この組成では、回折角2θ=30.0〜30.4°の特有の回折ピークは出現しない。 In Comparative Example 4, the X-ray diffraction pattern is shown in FIG. 6, and the peak of the maximum diffraction intensity appears at a diffraction angle of 2θ = 24.06 °, and a diffraction peak attributed to the (422) plane of SrGa 2 S 4 appears and is diffracted. As for the second peak of intensity, a diffraction peak attributed to the (444) plane appeared at a diffraction angle of 2θ = 38.37 °, but no peak appeared at a diffraction angle of 2θ = 30.0 to 30.4 °. That is, Comparative Example 4 is the case of the composition ratio (Eu concentration: 10 mol%, Ba substitution ratio: 35%) in which x = 0.10 and y = 0.35, and the Ba substitution ratio is small. No peculiar diffraction peak with a diffraction angle of 2θ = 30.0 to 30.4 ° appears.

Figure 0006871098
Figure 0006871098

以上の結果を整理すると、実施例1〜7で見られる、特有の結晶構造は、以下の条件で定義できる。
回折強度最大のピ−クは回折角2θ=23.7〜24.1°に現れるSrGaの(422)面に帰属する回折ピークであり、回折強度2番目のピークは回折角2θ=38.1〜38.5°に現れるSrGaの(444)面に帰属する回折ピークであり、回折角2θ=30.0〜30.4°に回折強度最大ピークに対する相対強度が5〜20%の回折ピークを有すること、を特徴としている。
Summarizing the above results, the unique crystal structure seen in Examples 1 to 7 can be defined under the following conditions.
The peak with the maximum diffraction intensity is the diffraction peak attributed to the (422) plane of SrGa 2S 4 appearing at the diffraction angle 2θ = 23.7 to 24.1 °, and the second peak of the diffraction intensity is the diffraction angle 2θ =. It is a diffraction peak attributed to the (444) plane of SrGa 2 S 4 appearing at 38.1 to 38.5 °, and the relative intensity with respect to the maximum diffraction intensity peak is 5 to 5 at a diffraction angle of 2θ = 30.0 to 30.4 °. It is characterized by having a diffraction peak of 20%.

また、実施例1〜7で見られる、特有の結晶構造は、組成式(BaSr1−y1−xGa:Euで表される蛍光体において、x=0.025〜0.20、y=0.15〜0.49の範囲において、出現すると示唆される。 Also, seen in Examples 1-7, specific crystal structure, composition formula (Ba y Sr 1-y) 1-x Ga 2 S 4: in the phosphor represented by Eu x, x = 0.025 It is suggested that it appears in the range of ~ 0.20, y = 0.15 to 0.49.

以上の結果を整理すると、実施例1〜7で作製した蛍光体は、
組成式(BaSr1−y1−xGa:Euで表される蛍光体において、
x=0.025〜0.20、y=0.15〜0.49の範囲の値で表すことができる。
Summarizing the above results, the fluorescent materials prepared in Examples 1 to 7 are
The composition formula (Ba y Sr 1-y) 1-x Ga 2 S 4: in the phosphor represented by Eu x,
It can be represented by a value in the range of x = 0.025 to 0.20 and y = 0.15 to 0.49.

さらに、実施例1〜7で見られる、特有の結晶構造は、以下の条件で定義される。
・回折強度最大ピークが回折角2θ=23.7〜24.1°に現れるSrGaの(422)面に帰属する回折ピークである。
・回折強度2番目のピークが回折角2θ=38.1〜38.5°に現れるSrGaの(444)面に帰属する回折ピークである。
・回折角2θ=30.0〜30.4°に回折強度最大ピークに対する相対強度が5〜20%の回折ピークを有する。
Furthermore, the unique crystal structure found in Examples 1-7 is defined under the following conditions.
The maximum diffraction intensity peak appears at a diffraction angle of 2θ = 23.7 to 24.1 °, and is a diffraction peak attributable to the (422) plane of SrGa 2 S 4.
The second peak of the diffraction intensity is a diffraction peak attributed to the (444) plane of SrGa 2 S 4 appearing at a diffraction angle 2θ = 38.1 to 38.5 °.
-It has a diffraction peak with a diffraction intensity of 5 to 20% relative to the maximum diffraction intensity peak at a diffraction angle of 2θ = 30.0 to 30.4 °.

11 蛍光体層
12 第1の水蒸気バリアフィルム
13 第2の水蒸気バリアフィルム
14 カバー部材
141 基材
142 粘着剤
11 Fluorescent layer 12 1st water vapor barrier film 13 2nd water vapor barrier film 14 Cover member 141 Base material 142 Adhesive

Claims (7)

下記一般式(1)で表され、かつ下記条件(1)〜(3)を満たす蛍光物質を少なくとも含有することを特徴とする蛍光体。
(BaSr1−y1−xGa:Eu ・・・一般式(1)
ただし、前記一般式(1)中、0.025≦x≦0.20、かつ0.15≦y≦0.49である。
条件(1):XRDパターンの回折強度最大ピークが、回折角2θ=23.7〜24.1°に現れるSrGaの(422)面に帰属する回折ピークである。
条件(2):回折強度2番目のピークが回折角2θ=38.1〜38.5°に現れるSrGaの(444)面に帰属する回折ピークである。
条件(3):回折角2θ=30.0〜30.4°に、前記回折強度最大ピークに対する相対強度が5〜20%の回折ピークを有する。
A fluorescent substance represented by the following general formula (1) and containing at least a fluorescent substance satisfying the following conditions (1) to (3).
(Ba y Sr 1-y) 1-x Ga 2 S 4: Eu x ··· formula (1)
However, in the general formula (1), 0.025 ≦ x ≦ 0.20 and 0.15 ≦ y ≦ 0.49.
Condition (1): The maximum diffraction intensity peak of the XRD pattern is a diffraction peak attributed to the (422) plane of SrGa 2 S 4 appearing at a diffraction angle 2θ = 23.7 to 24.1 °.
Condition (2): The second peak of the diffraction intensity is a diffraction peak attributed to the (444) plane of SrGa 2 S 4 appearing at a diffraction angle 2θ = 38.1 to 38.5 °.
Condition (3): The diffraction peak has a diffraction intensity of 5 to 20% relative to the maximum diffraction intensity peak at a diffraction angle of 2θ = 30.0 to 30.4 °.
前記蛍光物質のCIE1931表色系に基づくy値が、0.687以上である請求項1に記載の蛍光体。 The fluorescent substance according to claim 1, wherein the y value of the fluorescent substance based on the CIE 1931 color system is 0.687 or more. 前記蛍光物質の内部量子効率が、0.64以上である請求項1から2のいずれかに記載の蛍光体。 The fluorescent substance according to any one of claims 1 to 2, wherein the internal quantum efficiency of the fluorescent substance is 0.64 or more. 請求項1から3のいずれかに記載の蛍光体と、赤色蛍光体とを含有する蛍光体層を有することを特徴とする蛍光体シート。 A phosphor sheet having a phosphor layer containing the phosphor according to any one of claims 1 to 3 and a red phosphor. 請求項4に記載の蛍光体シートを有することを特徴とする照明装置。 A lighting device comprising the phosphor sheet according to claim 4. 請求項1から3のいずれかに記載の蛍光体を製造する、蛍光体の製造方法であって、
バリウム化合物、ストロンチウム化合物、及びユーロピウム化合物を溶解し、かつ粉末ガリウム化合物を含有する第1の液と、亜硫酸塩を含有する第2の液とを混合し、亜硫酸バリウム、亜硫酸ストロンチウム、及び亜硫酸ユーロピウムを含有する析出物と、前記粉末ガリウム化合物との混合物である沈殿物を得る析出沈殿工程を含むことを特徴とする蛍光体の製造方法。
A method for producing a fluorescent substance, which comprises producing the fluorescent substance according to any one of claims 1 to 3.
A first solution containing a barium compound, a strontium compound, and a europium compound and containing a powdered gallium compound and a second solution containing a sulfite are mixed to obtain barium sulfite, strontium sulfite, and europium sulfite. A method for producing a phosphor, which comprises a precipitation-precipitation step of obtaining a precipitate which is a mixture of the contained precipitate and the powdered gallium compound.
更に、硫化水素を含有する雰囲気下で前記沈殿物を焼成する焼成工程を含む、請求項6に記載の蛍光体の製造方法。 The method for producing a phosphor according to claim 6, further comprising a firing step of firing the precipitate in an atmosphere containing hydrogen sulfide.
JP2017144497A 2017-07-26 2017-07-26 Fluorescent material, its manufacturing method, fluorescent material sheet, and lighting equipment Active JP6871098B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017144497A JP6871098B2 (en) 2017-07-26 2017-07-26 Fluorescent material, its manufacturing method, fluorescent material sheet, and lighting equipment
PCT/JP2018/025116 WO2019021756A1 (en) 2017-07-26 2018-07-02 Phosphor and production method therefor, phosphor sheet, and illumination device
TW107123681A TW201910490A (en) 2017-07-26 2018-07-09 Fluorescent substance, production method thereof, fluorescent substance sheet, and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144497A JP6871098B2 (en) 2017-07-26 2017-07-26 Fluorescent material, its manufacturing method, fluorescent material sheet, and lighting equipment

Publications (2)

Publication Number Publication Date
JP2019026673A JP2019026673A (en) 2019-02-21
JP6871098B2 true JP6871098B2 (en) 2021-05-12

Family

ID=65040447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144497A Active JP6871098B2 (en) 2017-07-26 2017-07-26 Fluorescent material, its manufacturing method, fluorescent material sheet, and lighting equipment

Country Status (3)

Country Link
JP (1) JP6871098B2 (en)
TW (1) TW201910490A (en)
WO (1) WO2019021756A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240301288A1 (en) * 2021-03-30 2024-09-12 Mitsui Mining & Smelting Co., Ltd. Phosphor, method for producing same, light emitting element containing phosphor, and light emitting device
WO2024202541A1 (en) * 2023-03-29 2024-10-03 三井金属鉱業株式会社 Fluorescent body powder, fluorescent body resin composition, fluorescent body, light-emitting element, and light-emitting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335399A (en) * 2006-05-19 2007-12-27 Canon Inc Image display device and driving method therefor
CN101294075A (en) * 2007-04-23 2008-10-29 三星Sdi株式会社 Green emitting phosphor, light emitting device including the same, and liquid crystal display device including light emission device as backlight unit
JP2008274028A (en) * 2007-04-25 2008-11-13 Canon Inc Fluorescent material, fluorescent member and image-forming device
WO2011033830A1 (en) * 2009-09-18 2011-03-24 三井金属鉱業株式会社 Phosphor
JP5249283B2 (en) * 2010-05-10 2013-07-31 デクセリアルズ株式会社 Green light emitting phosphor particles, method for producing the same, color conversion sheet, light emitting device, and image display device assembly
EP3124572B1 (en) * 2014-03-27 2021-09-08 Mitsui Mining & Smelting Co., Ltd Phosphor and use thereof
JP6512013B2 (en) * 2015-07-24 2019-05-15 日亜化学工業株式会社 Image display device

Also Published As

Publication number Publication date
JP2019026673A (en) 2019-02-21
TW201910490A (en) 2019-03-16
WO2019021756A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP5923473B2 (en) Green light emitting phosphor
US9777213B2 (en) Phosphor, phosphor-containing composition and light-emitting unit using phosphor, and image display device and lighting device using light-emitting unit
JP6123872B2 (en) Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
JP5399617B2 (en) Luminescent composition, light source device using the same, and display device using the same
CN105051154B (en) Manosil AS magnesium-based fluorophor
US9856417B2 (en) Eu-activated luminophores
US7514020B2 (en) Silicophosphate-based phosphor and light-emitting device including the same
WO2020262200A1 (en) Fluorescent body, fluorescent body manufacturing method, light-emitting element, light-emitting device, and image display device
JPWO2019188319A1 (en) Fluorescent material and light emitting device using it
JP6871098B2 (en) Fluorescent material, its manufacturing method, fluorescent material sheet, and lighting equipment
JP6231787B2 (en) Phosphor and light emitting device
JP2009203466A (en) Fluorescent substance, composition containing fluorescent substance, light emitter, image display device, and illuminating device
JP6908460B2 (en) Phosphor, its manufacturing method, phosphor sheet, and lighting equipment
JP2010196049A (en) Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor
KR20070080486A (en) Borate chloride-based phosphor, and light emitting device, fluorescent lamp and plasma display panel including the same
KR20140002792A (en) Red phosphor and light-emitting element
JP6949806B2 (en) Green fluorescent material, fluorescent material sheet, and light emitting device
JP2014227496A (en) Phosphor, phosphor-containing composition and light-emitting device using the phosphor, and image display device and illuminating device using the light-emitting device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250