JP6870527B2 - 部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法 - Google Patents

部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法 Download PDF

Info

Publication number
JP6870527B2
JP6870527B2 JP2017152033A JP2017152033A JP6870527B2 JP 6870527 B2 JP6870527 B2 JP 6870527B2 JP 2017152033 A JP2017152033 A JP 2017152033A JP 2017152033 A JP2017152033 A JP 2017152033A JP 6870527 B2 JP6870527 B2 JP 6870527B2
Authority
JP
Japan
Prior art keywords
parts
learning model
estimation
estimated
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017152033A
Other languages
English (en)
Other versions
JP2019032623A (ja
Inventor
慎 坂入
慎 坂入
セルバン ジョルジェスク
セルバン ジョルジェスク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017152033A priority Critical patent/JP6870527B2/ja
Priority to US16/048,675 priority patent/US20190042940A1/en
Publication of JP2019032623A publication Critical patent/JP2019032623A/ja
Application granted granted Critical
Publication of JP6870527B2 publication Critical patent/JP6870527B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Analysis (AREA)

Description

本発明は、部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法に関する。
従来、部品の価格や納期の見積もりを行う場合に、かかる部品の形状の特徴や部品のスペックをベースに、ルール化して価格や納期を見積もることができる部品見積もりシステムが知られている。ここで、「形状の特徴」とは、たとえば穴の数や面取り数、折り曲げ数等であり、「スペック」とは、たとえば公差や材料、製造数等である。
特開2005−25387号公報
しかしながら、従来の技術では、たとえば形状が大きく異なる部品の見積もりを行う場合等に、かかる部品の形状に合わせた形状の特徴や部品のスペックを、その都度ユーザが設定する必要がある。したがって、ユーザにかかる負担が大きくなってしまう場合があり、結果的に十分な設定がされず、見積りの精度も十分でない場合がある。
一つの側面では、精度よく部品の見積もりを行うことができる部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法を提供することを目的とする。
一つの様態において、部品見積もりプログラムは、部品の画像データと前記部品の取引データとを一組の教師データとして作成された第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて前記見積対象部品の特徴ベクトルを抽出する処理をコンピュータに実行させる。部品見積もりプログラムは、前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと前記部品のスペックと前記部品の取引データとを一組の教師データとして作成された第2学習モデルと、前記見積対象部品の特徴ベクトルと、前記見積対象部品のスペックとに基づいて前記見積対象部品の取引データを見積もる処理をコンピュータに実行させる。
一つの様態によれば、精度よく部品の見積もりを行うことができる。
図1は、実施例に係る部品見積もりシステムの構成の一例を示す機能ブロック図である。 図2Aは、実施例に係るDL学習モデルを作成する処理の一例を示す図である。 図2Bは、実施例に係るDL学習モデルを作成する処理の別の一例を示す図である。 図3Aは、実施例に係る見積学習モデルを作成する処理の一例を示す図である。 図3Bは、実施例に係る見積学習モデルを作成する処理の別の一例を示す図である。 図4は、実施例の教師データのデータ構造の一例を示す図である。 図5は、実施例の見積学習モデルと部品の形状カテゴリとDL学習モデルと見積対象との関係について示す図である。 図6は、実施例に係る見積対象部品を見積もる処理の一例を示す図である。 図7は、実施例の見積学習モデルの自動選択処理の一例を示す図である。 図8は、実施例の自動選択処理における類似度の順位の一例を示す図である。 図9は、実施例の見積学習モデルを作成する処理の流れの例を示す図である。 図10は、実施例の見積対象部品を見積もる処理の流れの例を示す図である。 図11は、実施例の加工形状特徴ベクトルを抽出する処理の流れの例を示す図である。 図12は、実施例の画像データを加工形状特徴ベクトルに変換する処理の流れの例を示す図である。 図13は、実施例の見積学習モデルを選択する処理の流れの例を示す図である。 図14は、実施例の教師データの類似度を計算する処理の流れの例を示す図である。 図15は、部品見積もりプログラムを実行するコンピュータを示す図である。
以下に、本願の開示する部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、以下に示す実施例は、矛盾を起こさない範囲で適宜組み合わせても良い。
本実施例における部品見積もりシステム1について、図1を用いて説明する。図1は、実施例に係る部品見積もりシステムの構成の一例を示す機能ブロック図である。図1に示す部品見積もりシステム1は、情報処理装置100と、複数の利用者端末10とを有する。本実施例において、情報処理装置100及び利用者端末10は、無線又は有線のネットワークNを通じて通信可能に接続される。なお、図1における利用者端末10の台数は一例であり、部品見積もりシステム1は任意の数の利用者端末10を含むような構成であっても良い。
図1に示す利用者端末10は、装置の設計者等により利用される。装置の設計者は、利用者端末10を通じて、装置に用いる部品の見積もりに関する情報を情報処理装置100に送信する。
図1に示す情報処理装置100は、利用者端末10から見積もりの対象となる部品(以下、見積対象部品とも呼称する。)に関する情報を受け付け、見積対象部品の見積もり結果を出力する。本実施例における情報処理装置100は、様々な部品の形状の特徴や部品のスペック、取引データ等を学習したモデルを用いて、見積対象部品の形状の特徴や部品のスペックに基づいて価格や納期等を見積もるので、有益な見積もり結果を提供することができる。
[機能ブロック]
次に、本実施例における情報処理装置100の機能構成について、図1を用いて説明する。情報処理装置100は、通信部110と、制御部120と、記憶部130とを有する。
通信部110は、有線又は無線を問わず、利用者端末10等、その他のコンピュータ等との通信を制御する。通信部110は、例えばNIC(Network Interface Card)等の通信インタフェース等である。
制御部120は、情報処理装置100の全体的な処理を司る処理部である。制御部120は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等によって、内部の記憶装置に記憶されているプログラムがRAMを作業領域として実行されることにより実現される。また、制御部120は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されるようにしても良い。
制御部120は、受付部121、画像変換部122、DL(Deep Learning)学習モデル作成部123、特徴ベクトル抽出部124、見積学習モデル作成部125及び見積部126を有する。なお、受付部121、画像変換部122、DL学習モデル作成部123、特徴ベクトル抽出部124、見積学習モデル作成部125及び見積部126は、プロセッサが有する電子回路の一例やプロセッサが実行するプロセスの一例である。
受付部121は、様々な部品や見積対象部品に関する情報を、通信部110を通じて、利用者端末10から受け付ける。受付部121が受け付ける情報は、たとえば、部品の3Dモデルやスペック、取引データ等である。ここで、3Dモデルとは、たとえば部品のCADデータ等であり、スペックとは、たとえば公差や材料、製造数等であり、取引データとは、たとえば価格や納期等である。
画像変換部122は、受付部121が受け付けた様々な部品や見積対象部品の3Dモデルを、画像データに変換する。たとえば、画像変換部122は、部品の3Dモデルを様々な向きから見た複数の画像データに変換する。
DL学習モデル作成部123は、画像変換部122で変換された様々な部品の画像データと、かかる部品の取引データとに基づいてDL学習モデル131を作成する。
特徴ベクトル抽出部124は、DL学習モデル作成部123で作成されたDL学習モデル131から、様々な部品の加工形状特徴ベクトル210(図3A参照)を抽出する。なお、加工形状特徴ベクトル210は、特徴ベクトルの一例である。
見積学習モデル作成部125は、特徴ベクトル抽出部124で抽出された加工形状特徴ベクトル210と、様々な部品のスペック及び取引データとに基づいて見積学習モデル132を作成する。
見積部126は、見積学習モデル作成部125で作成された見積学習モデル132と、見積対象部品の加工形状特徴ベクトル222(図6参照)と、見積対象部品のスペックとに基づいて、見積対象部品の取引データを見積もる。また、見積部126は、見積対象部品の見積もり結果に関する情報を、利用者端末10に出力する。
記憶部130は、例えば制御部120が実行するプログラム等の各種データ等を記憶する。記憶部130は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等の半導体メモリ素子や、HDD(Hard Disk Drive)等の記憶装置に対応する。
記憶部130は、DL学習モデル131及び見積学習モデル132を有する。なお、DL学習モデル131は、第1学習モデルの一例であり、見積学習モデル132は、第2学習モデルの一例である。
DL学習モデル131は、様々な部品の3Dモデルを画像変換処理した画像データから、加工形状特徴ベクトル210を算出する際に用いられる学習モデルである。見積学習モデル132は、見積対象部品の3Dモデルを画像変換処理した画像データから、見積対象部品を見積もる際に用いられる学習モデルである。
図2Aは、実施例に係るDL学習モデルを作成する処理の一例を示す図である。図2Aに示すように、受付部121で受け付けられた板金の3Dモデル200は、画像変換部122で所定の画像変換処理がおこなわれて、板金の3Dモデル200を様々な向きから見た複数の画像データ201に変換される。例えば、図2Aに示すように、板金モデルAの3Dモデル200から複数の画像データ201に変換され、板金モデルBの3Dモデル200から別の複数の画像データ201に変換される。
次に、DL学習モデル作成部123は、画像変換部122で変換された板金の画像データ201と、利用者端末10から別途入力される入力情報202に含まれる板金の取引データとを対応付けた教師データ203を記憶部130に記憶する。そして、DL学習モデル作成部123は、かかる教師データ203を用いて、多層構造の深層ニューラルネットワークをモデルとして用いる深層学習、いわゆるディープラーニングを実行する。これにより、DL学習モデル作成部123は、複数のDL学習モデル131を作成する。例えば、図2Aに示すように、DL学習モデル作成部123は、板金向けで価格見積用のDL学習モデル(1)や、板金向けで納期見積用のDL学習モデル(2)等を作成する。
図2Bは、実施例に係るDL学習モデルを作成する処理の別の一例を示す図である。図2Bに示すように、受付部121で受け付けられたネジの3Dモデル200は、画像変換部122で所定の画像変換処理がおこなわれて、ネジの3Dモデル200を様々な向きから見た複数の画像データ201に変換される。例えば、図2Bに示すように、ネジモデルEの3Dモデル200から複数の画像データ201に変換され、ネジモデルFの3Dモデル200から別の複数の画像データ201に変換される。
次に、DL学習モデル作成部123は、画像変換部122で変換されたネジの画像データ201と、利用者端末10から別途入力される入力情報202に含まれるネジの取引データとを対応付けた教師データ203を記憶部130に記憶する。そして、DL学習モデル作成部123は、かかる教師データ203を用いてディープラーニングを実行する。これにより、DL学習モデル作成部123は、複数のDL学習モデル131を作成する。例えば、図2Bに示すように、DL学習モデル作成部123は、ネジ向けで価格見積用のDL学習モデル(3)や、ネジ向けで納期見積用のDL学習モデル(4)等を作成する。
このように、様々な部品の画像データ201と、かかる部品の取引データとを対応付けた教師データ203からDL学習モデル131を作成することにより、部品の形状によって価格や納期等が変化することを学習することができる。
また、実施例では、ディープラーニングを実行してDL学習モデル131を作成することにより、部品の形状の特徴を精度よく抽出することができる。さらに、実施例では、ユーザが様々な部品の形状の特徴を設定することなく、部品の形状の特徴を抽出することができる。したがって、実施例によれば、ユーザの負担を軽減することができる。
つづいて、作成されたDL学習モデル131を用いて、見積学習モデル132を作成する処理について、図3Aを用いて説明する。図3Aは、実施例に係る見積学習モデルを作成する処理の一例を示す図である。
図3Aに示すように、受付部121で受け付けられた板金の3Dモデル200は、画像変換部122で所定の画像変換処理がおこなわれて、板金の3Dモデル200を様々な向きから見た複数の画像データ201に変換される。例えば、図3Aに示すように、板金モデルAの3Dモデル200から複数の画像データ201に変換され、板金モデルBの3Dモデル200から別の複数の画像データ201に変換される。
つづいて、特徴ベクトル抽出部124は、画像変換部122で変換された板金の画像データ201と、上述したDL学習モデル131とに基づいて、板金の加工形状特徴ベクトル210を抽出する。かかる加工形状特徴ベクトル210は、部品の形状の特徴が抽出されたベクトルであり、たとえば、特徴の数(ニューロン数)をT要素とし、画像データ201がR方向だけ変換された場合、T要素×R方向のベクトルとなる。
次に、見積学習モデル作成部125は、加工形状特徴ベクトル210と、利用者端末10から別途入力される入力情報202に含まれる板金のスペックと、入力情報202に含まれる板金の取引データとを対応付けた教師データ212を記憶部130に記憶する。そして、見積学習モデル作成部125は、かかる教師データ212を用いて機械学習を実行する。かかる機械学習としては、例えばSVM(Support Vector Machine)等を用いることができる。これにより、見積学習モデル作成部125は、複数の見積学習モデル132を作成する。例えば、図3Aに示すように、見積学習モデル作成部125は、板金向けで価格見積用の見積学習モデル(1)や、板金向けで納期見積用の見積学習モデル(2)等を作成する。
図3Bは、実施例に係る見積学習モデルを作成する処理の別の一例を示す図である。図3Bに示すように、受付部121で受け付けられたネジの3Dモデル200は、画像変換部122で所定の画像変換処理がおこなわれて、ネジの3Dモデル200を様々な向きから見た複数の画像データ201に変換される。例えば、図3Bに示すように、ネジモデルEの3Dモデル200から複数の画像データ201に変換され、ネジモデルFの3Dモデル200から別の複数の画像データ201に変換される。
つづいて、特徴ベクトル抽出部124は、画像変換部122で変換されたネジの画像データ201と、上述したDL学習モデル131とに基づいて、ネジの加工形状特徴ベクトル210を抽出する。次に、見積学習モデル作成部125は、加工形状特徴ベクトル210と、利用者端末10から別途入力される入力情報202に含まれるネジのスペックと、入力情報202に含まれるネジの取引データとを対応付けた教師データ212を記憶部130に記憶する。そして、見積学習モデル作成部125は、かかる教師データ212を用いて、SVM等の機械学習を実行する。これにより、見積学習モデル作成部125は、複数の見積学習モデル132を作成する。例えば、図3Bに示すように、見積学習モデル作成部125は、ネジ向けで価格見積用の見積学習モデル(3)や、ネジ向けで納期見積用の見積学習モデル(4)等を作成する。
図4は、実施例の教師データのデータ構造の一例を示す図である。図4に示すように、教師データ212は、取引データ212aと、スペック212bと、加工形状特徴ベクトル212cとを対応付けて記憶する。取引データ212aは、例えば、価格であるが、これに限定されず、部品の取引データ(たとえば、納期等)であれば良い。なお、取引データ212aは、教師データ212のラベルとしても用いられる。スペック212bは、例えば、部品の公差や材料、製造数等であるが、これに限定されず、部品のスペックであれば良い。加工形状特徴ベクトル212cは、例えば、特徴1、特徴2・・となっており、かかる特徴X(Xは正数)が部品の様々な特徴を表している。なお、かかる加工形状特徴ベクトル212cは、上述の加工形状特徴ベクトル210に対応する。
図5は、実施例の見積学習モデルと部品の形状カテゴリとDL学習モデルと見積対象との関係について示す図である。図5に示すように、例えば、見積学習モデル132が「見積学習モデル(1)」である場合に、部品の形状カテゴリとして「板金」、DL学習モデル131として「DL学習モデル(1)」、見積対象として「価格」が対応している。また、見積学習モデル132が「見積学習モデル(2)」である場合に、部品の形状カテゴリとして「板金」、DL学習モデル131として「DL学習モデル(2)」、見積対象として「納期」が対応している。このように、見積学習モデル132、部品の形状カテゴリ、DL学習モデル131及び見積対象は、すべて1対1で対応している。
つづいて、かかる見積学習モデル132を用いた見積対象部品を見積もる処理について、図6を用いて説明する。図6は、実施例に係る見積対象部品を見積もる処理の一例を示す図である。図6に示すように、受付部121で受け付けられた見積対象部品である板金の3Dモデル220は、画像変換部122で所定の画像変換処理がおこなわれて、見積対象部品の3Dモデル220を様々な向きから見た複数の画像データ221に変換される。
次に、特徴ベクトル抽出部124は、画像変換部122で変換された見積対象部品の画像データ221と、見積対象部品に適合するDL学習モデル131(例えば、DL学習モデル(1))とに基づいて、見積対象部品の加工形状特徴ベクトル222を抽出する。
次に、見積部126は、抽出された加工形状特徴ベクトル222と、見積対象部品のスペックと、見積対象部品に適合する見積学習モデル132(例えば、見積学習モデル(1))とに基づいて、見積対象部品の見積結果224を算出する。なお、見積対象部品のスペックは、利用者端末10から別途入力される入力情報223に含まれる。
ここまで説明したように、実施例では、最初の段階で、部品の形状の特徴と部品の取引データとを対応付けた教師データ203を用いて、DL学習モデル131を作成する。そして、次の段階で、作成されたDL学習モデル131に基づいて特徴が抽出された加工形状特徴ベクトル210と、部品のスペックと、部品の取引データとを対応付けた教師データ212を用いて、見積学習モデル132を作成する。最後に、作成された見積学習モデル132に基づいて見積対象部品を見積もる。
ここで仮に、様々な部品の画像データと、かかる部品のスペックと、部品の取引データとを対応付けた教師データを用いてディープラーニングを実行し、直接(すなわち、1段階で)見積もり用の学習モデルを作成したとする。この場合、画像データが同じであり、部品のスペックも同じであり、数量のみが異なる場合には、教師データのラベルである価格が異なってくるが、どちらのラベル(価格)を正解にするかによってディープニューラルネットワークが異なる。したがって、この場合精度よく見積もりを行うことが困難である。
一方で、実施例では、2段階の機械学習で見積もり用の学習モデル(見積学習モデル132)を作成することにより、精度の高い学習モデルを作成することができる。したがって、実施例によれば、見積対象部品の見積もりを精度よく行うことができる。
また、図5に示したように、実施例では、部品の形状カテゴリや見積対象に応じて、それぞれに適合するDL学習モデル131と見積学習モデル132とを作成することにより、見積もりの精度を向上させることができる。ここで、図6で示した見積対象部品を見積もる処理において、見積対象部品に適合するDL学習モデル131や見積学習モデル132を選択する手法としては、以下の3つが挙げられる。
(1)ユーザが選択
(2)ユーザが選択した見積対象部品の形状カテゴリ及び見積対象に基づいて、情報処理装置100が選択
(3)情報処理装置100が自動選択
つづいては、かかる3つの手法のうち、情報処理装置100がDL学習モデル131や見積学習モデル132を自動選択する処理について、図7を用いて説明する。図7は、実施例の見積学習モデルの自動選択処理の一例を示す図である。
なお、かかる自動選択処理を情報処理装置100で行う場合、情報処理装置100の制御部120には類似度算出部127が別途設けられ、記憶部130には教師データDB133が別途記憶される。かかる教師データDB133は、図2A等に示したDL学習モデル131を作成する際に用いられる教師データ203がすべて記憶されたデータベースである。さらに、教師データDB133には、それぞれの教師データ203に紐付いたDL学習モデル131及び加工形状特徴ベクトル210が記憶されている。
図7に示すように、受付部121で受け付けられた見積対象部品である板金の3Dモデル220に基づいて、画像変換部122及び特徴ベクトル抽出部124にて上述の各種処理がおこなわれ、見積対象部品の加工形状特徴ベクトル222が抽出される。つづいて、類似度算出部127は、見積対象部品の加工形状特徴ベクトル222と、教師データDB133に記憶される教師データ203との類似度を算出する。そして、類似度算出部127は、抽出された類似度の高い教師データ203に紐付いたDL学習モデル131を、類似度の高いDL学習モデル131として選択する(ステップS01)。
図8は、実施例の自動選択処理における類似度の順位の一例を示す図である。例えば、類似度が1位の教師データ203である「教師データ23」には、DL学習モデル131として「DL学習モデル(3)」が紐付いている。また、類似度が2位の教師データ203である「教師データ4」には、DL学習モデル131として「DL学習モデル(3)」が紐付いている。また、類似度が3位の教師データ203である「教師データ89」には、DL学習モデル131として「DL学習モデル(5)」が紐付いている。このように順位付けられた教師データ203に基づいて、上位(たとえば、トップ20やトップ50)の教師データ203に紐付けられたDL学習モデル131から類似度の高いDL学習モデル131が選択される。
図7の説明に戻る。次に、類似度算出部127は、見積もりの際にユーザから設定される見積対象(価格や納期等)に基づいて、類似度が高い形状カテゴリを確認する(ステップS02)。そして、類似度算出部127は、類似度が高い形状カテゴリと、類似度が高いDL学習モデル131とに基づいて、類似度の高い見積学習モデル132を選択する(ステップS03)。
ここまで説明した見積学習モデル132の自動選択処理により、ユーザが特に意識することなく、見積対象部品に適合した見積学習モデル132を選択することができる。
[処理の流れ]
次に、本実施例における各種処理の流れについて、図9〜図14を用いて説明する。図9は、実施例の見積学習モデルを作成する処理の流れの例を示す図である。図9に示すように、受付部121は、様々な部品の3Dモデル200を受け付ける(ステップS10)。つづいて、画像変換部122は、受け付けられた部品の3Dモデル200を画像データ201に変換する(ステップS11)。また、ステップS10及びS11の処理と並行して、受付部121は、様々な部品の取引データを受け付ける(ステップS12)。
次に、DL学習モデル作成部123は、画像変換部122で変換された画像データ201と、部品の取引データとを対応付けた教師データ203を作成する(ステップS13)。そして、DL学習モデル作成部123は、かかる教師データ203を用いて深層学習を行う(ステップS14)。かかる深層学習は、例えば、多層構造の深層ニューラルネットワークをモデルとして用いるディープラーニングである。かかる深層学習により、DL学習モデル作成部123は、DL学習モデル131を作成する(ステップS15)。
次に、受付部121は、様々な部品の3Dモデル200を受け付ける(ステップS16)。つづいて、画像変換部122は、受け付けられた部品の3Dモデル200を画像データ201に変換する(ステップS17)。次に、特徴ベクトル抽出部124は、変換された画像データ201をステップS15で作成したDL学習モデル131に入力し(ステップS18)、加工形状特徴ベクトル210を抽出する(ステップS19)。また、ステップS16〜S19の処理と並行して、受付部121は、様々な部品のスペック及び取引データを受け付ける(ステップS20)。
次に、見積学習モデル作成部125は、抽出された加工形状特徴ベクトル210と、部品のスペックと、部品の取引データとを対応付けた教師データ212を作成する(ステップS21)。そして、見積学習モデル作成部125は、かかる教師データ212を用いて機械学習を行う(ステップS22)。かかる機械学習は、例えば、SVMである。かかる機械学習により、見積学習モデル作成部125は、見積学習モデル132を作成し(ステップS23)、処理を終了する。
図10は、実施例の見積対象部品を見積もる処理の流れの例を示す図である。図10に示すように、受付部121は、見積対象部品の3Dモデル220を受け付ける(ステップS30)。つづいて、画像変換部122は、受け付けられた見積対象部品の3Dモデル220を画像データ221に変換する(ステップS31)。次に、特徴ベクトル抽出部124は、変換された画像データ221を見積対象部品に適合するDL学習モデル131に入力し(ステップS32)、加工形状特徴ベクトル222を抽出する(ステップS33)。また、ステップS30〜S33の処理と並行して、受付部121は、見積対象部品のスペックを受け付ける(ステップS34)。
次に、見積部126は、抽出された加工形状特徴ベクトル222と、見積対象部品のスペックとに関するデータを合成する(ステップS35)。そして、見積部126は、かかる合成されたデータを見積学習モデル132に入力し(ステップS36)、見積結果を出力して(ステップS37)、処理を終了する。
図11は、実施例の加工形状特徴ベクトルを抽出する処理の流れの例を示す図である。図11に示すように、情報処理装置100の受付部121は、部品の3Dモデル200を受け付ける(ステップS40)。次に、画像変換部122は、受け付けられた3Dモデル200から複数の画像データ201をレンダリングする(ステップS41)。つづいて、特徴ベクトル抽出部124は、深層ニューラルネットワークを用いて、各レンダリングされた画像データ201から特徴量を抽出する(ステップS42)。かかる特徴量は、加工形状特徴ベクトル210に対応する。この特徴量を抽出する処理の詳細については後述する。
次に、特徴ベクトル抽出部124は、オブジェクトの寸法に関連する複数の寸法情報を付加する(ステップS43)。そして、特徴ベクトル抽出部124は、3Dモデル200のすべての加工形状特徴ベクトル210と付加された寸法情報とが組み合わせられた、3Dモデル200についての1つの3D記述子を出力し(ステップS44)、処理を終了する。
図12は、実施例の画像データを加工形状特徴ベクトルに変換する処理の流れの例を示す図である。図12に示すように、情報処理装置100の特徴ベクトル抽出部124は、画像変換部122で変換された画像データ201を読み込む(ステップS50)。つづいて、特徴ベクトル抽出部124は、読み込んだ画像データ201が深層ニューラルネットワークと適合するように前処理を行う(ステップS51)。かかる前処理は、例えば、リスケーリングや平均抽出、色チャネルスワッピング等である。
次に、特徴ベクトル抽出部124は、前処理した画像データ201を深層ニューラルネットワークの入力層に配置して、出力層Lに達するまで深層ニューラルネットワークを介してかかる画像データ201を順伝播させる(ステップS52)。そして、特徴ベクトル抽出部124は、出力層Lにおけるデータを、加工形状特徴ベクトル210として出力し(ステップS53)、処理を終了する。
図13は、実施例の見積学習モデルを選択する処理の流れの例を示す図である。図13に示すように、情報処理装置100は、見積対象部品を見積もる処理を実行したユーザの利用者端末10に対して、記憶部130に記憶されているすべての見積学習モデル132を一覧として表示する(ステップS60)。そして、情報処理装置100は、表示されたすべての見積学習モデル132から、見積対象部品に適合する見積学習モデル132をユーザに選択させる(ステップS61)。
ここで、見積対象部品に適合する見積学習モデル132をユーザが選択した場合(ステップS61,Yes)、選択された見積学習モデル132を見積対象部品に適合する見積学習モデル132として決定し(ステップS62)、処理を終了する。例えば、ユーザが見積対象部品に適合する見積学習モデル132として、「見積学習モデル(3)」を選択した場合、情報処理装置100は、かかる「見積学習モデル(3)」を見積対象部品に適合する見積学習モデル132として決定する。
一方、見積対象部品に適合する見積学習モデル132をユーザが選択しなかった場合(ステップS61,No)、情報処理装置100は、見積対象部品の形状カテゴリ(例えば、板金やネジ)と、見積対象(例えば、価格や納期)とをユーザに選択させる(ステップS63)。かかる選択させる処理は、例えば、情報処理装置100が、ユーザの利用者端末10に選択させる項目を表示することによりおこなわれる。
ここで、見積対象部品の形状カテゴリと見積対象とをユーザが選択した場合(ステップS63,Yes)、情報処理装置100は、選択された見積対象部品の形状カテゴリと見積対象とに基づいた見積学習モデル132を決定し(ステップS64)、処理を終了する。例えば、ユーザが見積対象部品の形状カテゴリとして「ネジ」を、見積対象として「価格」を選択した場合、情報処理装置100は、かかる「ネジ」と「価格」とに基づいた「見積学習モデル(3)」を見積対象部品に適合する見積学習モデル132として決定する。
一方、見積対象部品の形状カテゴリと見積対象とをユーザが選択しなかった場合(ステップS63,No)、情報処理装置100の受付部121は、見積対象部品の3Dモデル220を読み込む(ステップS65)。次に、画像変換部122は、読み込まれた見積対象部品の3Dモデル220を画像データ221に変換する(ステップS66)。次に、特徴ベクトル抽出部124は、見積対象部品の画像データ221から加工形状特徴ベクトル222を抽出する(ステップS67)。次に、類似度算出部127は、抽出された見積対象部品の加工形状特徴ベクトル222と、教師データDB133に記憶される教師データ203との類似度を計算する(ステップS68)。これにより、類似度算出部127は、抽出された類似度の高い教師データ203に紐付いたDL学習モデル131を、類似度の高いDL学習モデル131として選択する。
次に、類似度算出部127は、見積もりの際にユーザから設定される見積対象(価格や納期等)に基づいて、類似上位の形状カテゴリを確認する(ステップS69)。そして、類似度算出部127は、類似上位の形状カテゴリと、類似度が高いDL学習モデル131とに基づいて、類似度の高い見積学習モデル132を決定し(ステップS70)、処理を終了する。
図14は、実施例の教師データの類似度を計算する処理の流れの例を示す図である。図14に示すように、情報処理装置100の類似度算出部127は、見積対象部品についての組み立てられた記述子を使用して特徴量行列fMを作成し、寸法に関連する特徴量を取得する(ステップS80)。特徴量行列fMは、レンダリングされた画像データ221と同じ数の行と、加工形状特徴ベクトル222における特徴量と同じ数の列とを有する。この情報は、例えば、データを行列形式で提示するための、記述子を形成している連続ベクトルに対する標準行列形状変更演算により、見積対象部品の3Dモデル220の組み立てられた記述子から抽出される。ここで、組み立てられた記述子が行列形式で記憶されている場合、特徴量行列fMを形成するためのデータを抽出するときに、形状変更演算は必要とされない。また、寸法情報は、単に組み立てられた記述子から抽出される。
次に、類似度算出部127は、データベース行列dMを作成する(ステップS81)。かかるデータベース行列dMを作成するために、教師データDB133内の各教師データ203についての特徴量行列fMが作成され、これらの特徴量行列fMのすべての行が付加されてデータベース行列dMが作成される。
次に、類似度算出部127は、類似度行列sMを算出する(ステップS82)。ここで、類似度行列sMは、以下の式(1)で算出される。
sM=1−fM*dM ・・・(1)
すなわち、類似度行列sMは、見積対象部品の各画像データ221の加工形状特徴ベクトル222と、教師データDB133内の各教師データ203の加工形状特徴ベクトル210との間のコサイン距離を含む。なお、類似度行列sMを算出する上記の式(1)において、「*」は行列乗算を表し、上付きの「T」は行列転置を表す。また、かかる式(1)では、加工形状特徴ベクトルが正規化されていると仮定していることに留意されたい。
次に、類似度算出部127は、類似度行列sMに対して簡約演算を行うことにより、類似度ベクトルsVを算出する(ステップS83)。かかる類似度ベクトルsVは、教師データDB133に記憶される教師データ203の総数と同じ長さを有し、類似度ベクトルsVのj番目の要素は、見積対象部品と教師データDB133内のj番目の教師データ203との間の距離を格納するものとする。ここで、画像データ221iと教師データ203jとの間の距離は、画像データ221iに対応する加工形状特徴ベクトル222と、教師データ203jの全ての画像データ201に対応する加工形状特徴ベクトル210との間の最小コサイン距離として定義される。なお、画像データ221iとは、見積対象部品のi番目の画像データ221であり、教師データ203jとは、教師データDB133内のj番目の教師データ203のことである。また、見積対象部品と教師データ203jとの間の距離は、見積対象部品の画像データ221と教師データ203jの画像データ201との間のすべての距離にわたる総和として定義される。
次に、類似度算出部127は、寸法情報に基づいて寸法基準を満たさない教師データ203を除去し、選択肢を絞る(ステップS84)。そして、類似度算出部127は、類似するとして選択された教師データ203のうち、N個の最も類似する教師データ203のIDを出力し(ステップS85)、処理を終了する。ここで、最初に選択された教師データ203は、見積対象部品に対して最小距離(すなわち、最も近い類似度)を有する教師データ203である。
[効果]
以上説明したように、本実施例における部品見積もりプログラムは、第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて見積対象部品の特徴ベクトルを抽出する処理をコンピュータに実行させる。ここで、第1学習モデルは、部品の画像データと部品の取引データとを一組の教師データとして作成された学習モデルである。また、部品見積もりプログラムは、第2学習モデルと、見積対象部品の特徴ベクトルと、見積対象部品のスペックとに基づいて見積対象部品の取引データを見積もる処理をコンピュータに実行させる。ここで、第2学習モデルは、第1学習モデルに基づいて抽出された部品の特徴ベクトルと部品のスペックと部品の取引データとを一組の教師データとして作成された学習モデルである。これにより、ユーザが部品の形状の特徴を設定する場合に比べて、部品の形状の特徴を十分に設定することができることから、精度よく部品の見積もりを行うことができる。また、様々な部品の画像データと部品のスペック及び取引データとを対応付けた教師データを用いて1段階のディープラーニングを実行した場合に比べて、精度の高い学習モデルを作成することができることから、精度よく部品の見積もりを行うことができる。
また、本実施例における部品見積もりプログラムにおいて、抽出する処理は、複数の第1学習モデルから、見積対象部品に適合する第1学習モデルに基づいて見積対象部品の特徴ベクトルを抽出する。また、部品見積もりプログラムにおいて、見積もる処理は、複数の第2学習モデルから、見積対象部品に適合する第2学習モデルに基づいて見積対象部品の取引データを見積もる。これにより、様々な部品に適合した学習モデルに基づいて部品の見積もりをおこなうことができることから、精度よく部品の見積もりを行うことができる。
また、本実施例における部品見積もりプログラムにおいて、見積もる処理は、見積対象部品に適合する第2学習モデルとして、特徴ベクトルの類似度が高い第2学習モデルをコンピュータが選択する。これにより、ユーザが特に意識することなく、見積対象部品に適合した学習モデルを選択することができる。
また、本実施例における部品見積もりプログラムにおいて、見積もる処理は、見積対象部品に適合する第2学習モデルを、ユーザに選択された見積対象部品の形状カテゴリと、見積もりの対象となる取引データとに基づいてコンピュータが選択する。これにより、ユーザが大きな負担を強いられることなく、見積対象部品に適合した学習モデルを選択することができる。
また、本実施例における部品見積もりプログラムにおいて、見積もる処理は、見積対象部品に適合する第2学習モデルを、ユーザが選択する。これにより、ユーザが見積対象部品に適合する学習モデルを知っている場合に、かかる学習モデルに基づいて部品の見積もりを行うことができる。
[システム]
また、実施例において説明した各処理のうち、自動的におこなわれるものとして説明した処理の全部または一部を手動的におこなうこともできる。あるいは、手動的におこなわれるものとして説明した処理の全部または一部を公知の方法で自動的におこなうこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散や統合の具体的形態は図示のものに限られない。つまり、その全部または一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、見積学習モデル132を作成する処理を行う処理部(DL学習モデル作成部123や見積学習モデル作成部125等)と、見積対象部品を見積もる処理を行う処理部(見積部126等)を機能的または物理的に分散して構成しても良い。さらに、各装置にておこなわれる各処理機能は、その全部または任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
[部品見積もりプログラム]
また、上記の実施例で説明した情報処理装置100の各種の処理は、あらかじめ用意されたプログラムをパーソナルコンピュータやワークステーション等のコンピュータシステムで実行することによって実現することもできる。そこで、以下では、図15を用いて、上記の各実施例で説明した情報処理装置100と同様の機能を有する部品見積もりプログラムを実行するコンピュータの一例を説明する。図15は、部品見積もりプログラムを実行するコンピュータを示す図である。
図15に示すように、コンピュータ300は、CPU310、ROM320、HDD330、RAM340を有する。これら各機器310〜340は、バス350を介して接続されている。
ROM320には、OS(Operating System)等の基本プログラムが記憶されている。また、HDD330には、上記の実施例で示す受付部121、画像変換部122、DL学習モデル作成部123、特徴ベクトル抽出部124、見積学習モデル作成部125及び見積部126と同様の機能を発揮する部品見積もりプログラム330aが予め記憶される。また、部品見積もりプログラム330aについては、適宜分離しても良い。また、HDD330には、記憶部130に記憶された各種のデータ、各種のテーブルが設けられる。
そして、CPU310が、部品見積もりプログラム330aをHDD330から読み出して実行する。
そして、CPU310は、各種のデータ、各種のテーブルを読み出してRAM340に格納する。さらに、CPU310は、RAM340に格納された各種のデータ、各種のテーブルを用いて、部品見積もりプログラム330aを実行する。なお、RAM340に格納されるデータは、常に全てのデータがRAM340に格納されなくとも良い。処理に用いられるデータがRAM340に格納されれば良い。
以上の各実施例を含む実施形態に関し、さらに以下の付記を開示する。
(付記1)部品の画像データと前記部品の取引データとを一組の教師データとして作成された第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて前記見積対象部品の特徴ベクトルを抽出し、
前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと前記部品のスペックと前記部品の取引データとを一組の教師データとして作成された第2学習モデルと、前記見積対象部品の特徴ベクトルと、前記見積対象部品のスペックとに基づいて前記見積対象部品の取引データを見積もる
処理をコンピュータに実行させる部品見積もりプログラム。
(付記2)前記抽出する処理は、
複数の前記第1学習モデルから、前記見積対象部品に適合する前記第1学習モデルに基づいて前記見積対象部品の特徴ベクトルを抽出し、
前記見積もる処理は、
複数の前記第2学習モデルから、前記見積対象部品に適合する前記第2学習モデルに基づいて前記見積対象部品の取引データを見積もることを特徴とする付記1に記載の部品見積もりプログラム。
(付記3)前記見積もる処理は、
前記見積対象部品に適合する前記第2学習モデルとして、前記特徴ベクトルの類似度が高い前記第2学習モデルを前記コンピュータが選択することを特徴とする付記2に記載の部品見積もりプログラム。
(付記4)前記見積もる処理は、
前記見積対象部品に適合する前記第2学習モデルを、ユーザに選択された前記見積対象部品の形状カテゴリと、見積もりの対象となる前記取引データとに基づいて前記コンピュータが選択することを特徴とする付記2に記載の部品見積もりプログラム。
(付記5)前記見積もる処理は、
前記見積対象部品に適合する前記第2学習モデルを、ユーザが選択することを特徴とする付記2に記載の部品見積もりプログラム。
(付記6)部品の画像データと、前記部品の取引データとを一組の教師データとして第1学習モデルを作成し、前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと、前記部品のスペックと、前記部品の取引データとを一組の教師データとして第2学習モデルを作成する第1の情報処理装置と、
前記第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて前記見積対象部品の特徴ベクトルを抽出し、前記第2学習モデルと、前記見積対象部品の特徴ベクトルと、前記見積対象部品のスペックとに基づいて前記見積対象部品の取引データを見積もる第2の情報処理装置と
を有することを特徴とする部品見積もりシステム。
(付記7)前記第2の情報処理装置は、
複数の前記第1学習モデルから、前記見積対象部品に適合する前記第1学習モデルに基づいて前記見積対象部品の特徴ベクトルを抽出し、
前記見積もる処理は、
複数の前記第2学習モデルから、前記見積対象部品に適合する前記第2学習モデルに基づいて前記見積対象部品の取引データを見積もることを特徴とする付記6に記載の部品見積もりシステム。
(付記8)前記第2の情報処理装置は、
前記見積対象部品に適合する前記第2学習モデルとして、前記特徴ベクトルの類似度が高い前記第2学習モデルを前記情報処理装置が選択することを特徴とする付記7に記載の部品見積もりシステム。
(付記9)前記第2の情報処理装置は、
前記見積対象部品に適合する前記第2学習モデルを、ユーザに選択された前記見積対象部品の形状カテゴリと、見積もりの対象となる前記取引データとに基づいて前記情報処理装置が選択することを特徴とする付記7に記載の部品見積もりシステム。
(付記10)前記第2の情報処理装置は、
前記見積対象部品に適合する前記第2学習モデルを、ユーザが選択することを特徴とする付記7に記載の部品見積もりシステム。
(付記11)部品の画像データと前記部品の取引データとを一組の教師データとして作成された第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて前記見積対象部品の特徴ベクトルを抽出し、
前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと前記部品のスペックと前記部品の取引データとを一組の教師データとして作成された第2学習モデルと、前記見積対象部品の特徴ベクトルと、前記見積対象部品のスペックとに基づいて前記見積対象部品の取引データを見積もる
情報処理装置を有することを特徴とする部品見積もりシステム。
(付記12)部品の画像データと、前記部品の取引データとを一組の教師データとして第1学習モデルを作成し、
前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと、前記部品のスペックと、前記部品の取引データとを一組の教師データとして第2学習モデルを作成する
情報処理装置を有することを特徴とする部品見積もりシステム。
(付記13)コンピュータが、
部品の画像データと前記部品の取引データとを一組の教師データとして作成された第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて前記見積対象部品の特徴ベクトルを抽出し、
前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと前記部品のスペックと前記部品の取引データとを一組の教師データとして作成された第2学習モデルと、前記見積対象部品の特徴ベクトルと、前記見積対象部品のスペックとに基づいて前記見積対象部品の取引データを見積もる
処理を行う部品見積もり方法。
(付記14)前記抽出する処理は、
複数の前記第1学習モデルから、前記見積対象部品に適合する前記第1学習モデルに基づいて前記見積対象部品の特徴ベクトルを抽出し、
前記見積もる処理は、
複数の前記第2学習モデルから、前記見積対象部品に適合する前記第2学習モデルに基づいて前記見積対象部品の取引データを見積もることを特徴とする付記13に記載の部品見積もり方法。
(付記15)前記見積もる処理は、
前記見積対象部品に適合する前記第2学習モデルとして、前記特徴ベクトルの類似度が高い前記第2学習モデルを前記コンピュータが選択することを特徴とする付記14に記載の部品見積もり方法。
(付記16)前記見積もる処理は、
前記見積対象部品に適合する前記第2学習モデルを、ユーザに選択された前記見積対象部品の形状カテゴリと、見積もりの対象となる前記取引データとに基づいて前記コンピュータが選択することを特徴とする付記14に記載の部品見積もり方法。
(付記17)前記見積もる処理は、
前記見積対象部品に適合する前記第2学習モデルを、ユーザが選択することを特徴とする付記14に記載の部品見積もり方法。
100 情報処理装置
110 通信部
120 制御部
121 受付部
122 画像変換部
123 DL学習モデル作成部
124 特徴ベクトル抽出部
125 見積学習モデル作成部
126 見積部
130 記憶部
131 DL学習モデル
132 見積学習モデル

Claims (7)

  1. 部品の画像データと前記部品の取引データとを一組の教師データとして作成された第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて前記見積対象部品の特徴ベクトルを抽出し、
    前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと前記部品のスペックと前記部品の取引データとを一組の教師データとして作成された第2学習モデルと、前記見積対象部品の特徴ベクトルと、前記見積対象部品のスペックとに基づいて前記見積対象部品の取引データを見積もる
    処理をコンピュータに実行させる部品見積もりプログラム。
  2. 前記抽出する処理は、
    複数の前記第1学習モデルから、前記見積対象部品に適合する前記第1学習モデルに基づいて前記見積対象部品の特徴ベクトルを抽出し、
    前記見積もる処理は、
    複数の前記第2学習モデルから、前記見積対象部品に適合する前記第2学習モデルに基づいて前記見積対象部品の取引データを見積もることを特徴とする請求項1に記載の部品見積もりプログラム。
  3. 前記見積もる処理は、
    前記見積対象部品に適合する前記第2学習モデルとして、前記特徴ベクトルの類似度が高い前記第2学習モデルを前記コンピュータが選択することを特徴とする請求項2に記載の部品見積もりプログラム。
  4. 前記見積もる処理は、
    前記見積対象部品に適合する前記第2学習モデルを、ユーザに選択された前記見積対象部品の形状カテゴリと、見積もりの対象となる前記取引データとに基づいて前記コンピュータが選択することを特徴とする請求項2に記載の部品見積もりプログラム。
  5. 前記見積もる処理は、
    前記見積対象部品に適合する前記第2学習モデルを、ユーザが選択することを特徴とする請求項2に記載の部品見積もりプログラム。
  6. 部品の画像データと、前記部品の取引データとを一組の教師データとして第1学習モデルを作成し、前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと、前記部品のスペックと、前記部品の取引データとを一組の教師データとして第2学習モデルを作成する第1の情報処理装置と、
    前記第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて前記見積対象部品の特徴ベクトルを抽出し、前記第2学習モデルと、前記見積対象部品の特徴ベクトルと、前記見積対象部品のスペックとに基づいて前記見積対象部品の取引データを見積もる第2の情報処理装置と
    を有することを特徴とする部品見積もりシステム。
  7. コンピュータが、
    部品の画像データと前記部品の取引データとを一組の教師データとして作成された第1学習モデルと、見積もりの対象である見積対象部品の画像データとに基づいて前記見積対象部品の特徴ベクトルを抽出し、
    前記第1学習モデルに基づいて抽出された部品の特徴ベクトルと前記部品のスペックと前記部品の取引データとを一組の教師データとして作成された第2学習モデルと、前記見積対象部品の特徴ベクトルと、前記見積対象部品のスペックとに基づいて前記見積対象部品の取引データを見積もる
    処理を行う部品見積もり方法。
JP2017152033A 2017-08-04 2017-08-04 部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法 Active JP6870527B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017152033A JP6870527B2 (ja) 2017-08-04 2017-08-04 部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法
US16/048,675 US20190042940A1 (en) 2017-08-04 2018-07-30 Information processing apparatus and component estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152033A JP6870527B2 (ja) 2017-08-04 2017-08-04 部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法

Publications (2)

Publication Number Publication Date
JP2019032623A JP2019032623A (ja) 2019-02-28
JP6870527B2 true JP6870527B2 (ja) 2021-05-12

Family

ID=65231080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152033A Active JP6870527B2 (ja) 2017-08-04 2017-08-04 部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法

Country Status (2)

Country Link
US (1) US20190042940A1 (ja)
JP (1) JP6870527B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111782577B (zh) 2019-04-04 2023-03-24 安徽寒武纪信息科技有限公司 数据处理装置及方法以及相关产品
CN111831337B (zh) 2019-04-19 2022-11-29 安徽寒武纪信息科技有限公司 数据同步方法及装置以及相关产品
KR102550451B1 (ko) * 2019-04-04 2023-06-30 캠브리콘 테크놀로지스 코퍼레이션 리미티드 데이터 처리방법과 장치 및 관련 제품
CN111782133A (zh) * 2019-04-04 2020-10-16 安徽寒武纪信息科技有限公司 数据处理方法及装置以及相关产品
US11216731B2 (en) * 2019-04-10 2022-01-04 Alexander Fairhart Apparatus and process for visual recognition
US20200410330A1 (en) 2019-06-27 2020-12-31 Advanced Micro Devices, Inc. Composable neural network kernels
JP7440220B2 (ja) 2019-07-30 2024-02-28 トルンプ株式会社 板金加工見積作成支援装置及び板金加工見積作成支援方法
US20210056484A1 (en) * 2019-08-21 2021-02-25 Hitachi, Ltd. System and methods for reply date response and due date management in manufacturing
JP7409080B2 (ja) * 2019-12-27 2024-01-09 富士通株式会社 学習データ生成方法、学習データ生成プログラムおよび情報処理装置
US11580390B2 (en) * 2020-01-22 2023-02-14 Canon Medical Systems Corporation Data processing apparatus and method
EP3916636A1 (de) * 2020-05-27 2021-12-01 Siemens Aktiengesellschaft Verfahren und systeme zum bereitstellen von synthetischen gelabelten trainingsdatensätzen und ihre anwendungen
JP2022191039A (ja) * 2021-06-15 2022-12-27 株式会社東芝 見積推定装置、見積推定方法および見積推定プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05165842A (ja) * 1991-12-13 1993-07-02 Toyota Central Res & Dev Lab Inc 工程時間の見積り装置
JP6012860B2 (ja) * 2013-05-22 2016-10-25 株式会社日立製作所 作業時間推定装置

Also Published As

Publication number Publication date
US20190042940A1 (en) 2019-02-07
JP2019032623A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6870527B2 (ja) 部品見積もりプログラム、部品見積もりシステム及び部品見積もり方法
EP3893154A1 (en) Recommendation model training method and related apparatus
EP3779774A1 (en) Training method for image semantic segmentation model and server
CN111428457B (zh) 数据表的自动格式化
CN109447958B (zh) 图像处理方法、装置、存储介质及计算机设备
US20190057527A1 (en) Digital Media Environment for Style-Aware Patching in a Digital Image
JP5717921B2 (ja) フォントを推奨するためのシステムおよび方法
US11443231B2 (en) Automated software selection using a vector-trained deep learning model
CN110647696A (zh) 一种业务对象的排序方法及装置
US11651255B2 (en) Method and apparatus for object preference prediction, and computer readable medium
CN109690581A (zh) 用户指导系统及方法
US11669566B2 (en) Multi-resolution color-based image search
CN108984555A (zh) 用户状态挖掘和信息推荐方法、装置以及设备
CN104951770A (zh) 人脸图像数据库的构建方法、应用方法及相应装置
CN116206012A (zh) 元素布局方法以及相关设备
CN112529665A (zh) 基于组合模型的产品推荐方法、装置及计算机设备
Gu et al. Data driven webpage color design
CN110209860B (zh) 一种模板引导的基于服装属性的可解释服装搭配方法及装置
CN110515929B (zh) 书籍展示方法、计算设备及存储介质
US20180143988A1 (en) Recommending Software Actions to Create an Image and Recommending Images to Demonstrate the Effects of Software Actions
CN116933362A (zh) 室内设计方案自动生成方法、装置、计算机设备及介质
EP4379574A1 (en) Recommendation method and apparatus, training method and apparatus, device, and recommendation system
JP4278022B2 (ja) データ管理システムおよび検索システム
CN112950167A (zh) 设计服务匹配方法、装置、设备及存储介质
CN112241598A (zh) 基于家具的供应商选择方法及相关装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150