JP6870399B2 - Steel sheet manufacturing method and heat treatment equipment - Google Patents

Steel sheet manufacturing method and heat treatment equipment Download PDF

Info

Publication number
JP6870399B2
JP6870399B2 JP2017050089A JP2017050089A JP6870399B2 JP 6870399 B2 JP6870399 B2 JP 6870399B2 JP 2017050089 A JP2017050089 A JP 2017050089A JP 2017050089 A JP2017050089 A JP 2017050089A JP 6870399 B2 JP6870399 B2 JP 6870399B2
Authority
JP
Japan
Prior art keywords
plate
heating
cooling
heat treatment
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017050089A
Other languages
Japanese (ja)
Other versions
JP2017193777A (en
Inventor
貴之 大塚
貴之 大塚
愛美 古森
愛美 古森
昭一 ▲高▼山
昭一 ▲高▼山
洋二 安井
洋二 安井
田中 将樹
将樹 田中
透 明石
透 明石
岡村 一男
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2017193777A publication Critical patent/JP2017193777A/en
Application granted granted Critical
Publication of JP6870399B2 publication Critical patent/JP6870399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼板の製造方法および熱処理設備に関する。特に、造船、建築、自動車、産業用機械などに使用する鋼板に関するものである。 The present invention relates to a method for manufacturing a steel sheet and a heat treatment facility. In particular, it relates to steel sheets used for shipbuilding, construction, automobiles, industrial machinery, and the like.

厚鋼板又は薄鋼板は、圧延成形後にしばしば所定の加熱、冷却条件を満たす熱処理と呼ばれる工程を経るが、これは残留応力除去や組織制御などの材質を調整する目的としている。熱処理とは、焼なまし(焼鈍)、焼戻し、焼入れ等の総称であるが、本発明が扱う熱処理は、これらの中で少なくとも、加熱、冷却により、体積変化(寸法変化)を伴う相変態を経る熱処理工程とする。本発明にいう「熱処理」とは、特に断らない限り、具体的には、加熱時、オーステナイトが生成し始める温度であるAc1以上に加熱する熱処理のことである。Ac1は、加熱速度に依存して変化するため、言い換えると、少なくとも組織の一部にオーステナイトを生成させる加熱工程を含む熱処理といえる。 Thick steel sheets or thin steel sheets often undergo a process called heat treatment that satisfies predetermined heating and cooling conditions after rolling and forming, and this is for the purpose of adjusting materials such as residual stress removal and structure control. Heat treatment is a general term for annealing (annealing), tempering, quenching, etc., but the heat treatment handled by the present invention at least undergoes phase transformation accompanied by volume change (dimensional change) due to heating and cooling. The heat treatment process is performed. Unless otherwise specified, the "heat treatment" referred to in the present invention is, specifically, a heat treatment in which austenite is heated to Acc1 or higher, which is the temperature at which austenite begins to be generated during heating. Since Ac1 changes depending on the heating rate, in other words, it can be said to be a heat treatment including a heating step of producing austenite in at least a part of the structure.

熱処理過程においては、加熱温度や冷却速度を制御することで所望の材質を得るが、熱処理方法によっては、望まない残留応力が発生することなどにより、形状や寸法が変化し、格落ちとなる場合がある。 In the heat treatment process, the desired material is obtained by controlling the heating temperature and cooling rate, but depending on the heat treatment method, the shape and dimensions may change due to the generation of undesired residual stress, resulting in disqualification. There is.

このような課題に対し、例えば特許文献1には、押し付けロールによる形状矯正をしながら熱処理を行う方法が示されており、熱処理を施すことによって発生する板の反り等の形状変化に対応している。 To solve such a problem, for example, Patent Document 1 describes a method of performing heat treatment while correcting the shape by a pressing roll, and responds to a shape change such as warpage of a plate generated by the heat treatment. There is.

また、特許文献2には、熱処理前にプレス矯正を行う方法が示されている。 Further, Patent Document 2 discloses a method of performing press straightening before heat treatment.

しかしながら、これらの方法では、熱処理による板の反り、たわみ、捻じれ等の変形による形状変化には対応できるものの、あくまでも矯正であるので、加熱および冷却時の相変態による、板幅、板厚、板長自体が大きく変化する寸法変化には対応できず、しばしば切削研磨等の鋼板の機械的手入れ工程の追加や格落ち(不良品)となっていた。 However, although these methods can cope with shape changes due to deformation such as warping, bending, and twisting of the plate due to heat treatment, they are only corrections, so the plate width and thickness due to phase transformation during heating and cooling, It was not possible to cope with dimensional changes in which the plate length itself changed significantly, and it was often the case that mechanical maintenance processes for steel sheets such as cutting and polishing were added or downgraded (defective products).

特許文献3には、所定の板寸法に切断する機能を熱処理工程に追加することで、板寸法が変化した際にも対応が可能なようになっている。 In Patent Document 3, by adding a function of cutting to a predetermined plate size to the heat treatment step, it is possible to cope with a change in the plate size.

しかし、特許文献3の技術によっても、熱処理により設計予定の大きさより板が収縮した場合は、足りない長さを補うことができず、やはり歩留りの悪化につながっていた。 However, even with the technique of Patent Document 3, when the plate shrinks from the size planned to be designed by the heat treatment, the insufficient length cannot be compensated, which also leads to the deterioration of the yield.

特開2005−230914号公報Japanese Unexamined Patent Publication No. 2005-230914 特開2005−226106号公報Japanese Unexamined Patent Publication No. 2005-226106 特開2001−25810号公報Japanese Unexamined Patent Publication No. 2001-25810

T. A. Kop, J. Sietsma , S. van der Zwaag, “Anisotropic dilatation behaviour during transformation of hot rolled steels showing banded structure,” Mater. Sci. Technology, 17, pp. 1569-1574, 2001.T. A. Kop, J. Sietsma, S. van der Zwaag, “Anisotropic dilatation behavior during transformation of hot rolled steels showing banded structure,” Mater. Sci. Technology, 17, pp. 1569-1574, 2001. T. Siwecki, T. Koziel, B. Hutchinson , P. Han, “Effect of micro-segregation on phase transformation and residual stress,” Mater. Sci. Forum Vols., 539-543, , 2007.T. Siwecki, T. Koziel, B. Hutchinson, P. Han, “Effect of micro-segregation on phase transformation and residual stress,” Mater. Sci. Forum Vols., 539-543,, 2007. A. Jablonka、 K. Harster and K. Schwerdtfeger、Thermomechanical properties of iron and iron-carbon alloys : density and thermal contraction、 Steel Research、 62、 1、pp.24-33(1991)A. Jablonka, K. Harster and K. Schwerdtfeger, Thermomechanical properties of iron and iron-carbon alloys: density and thermal contraction, Steel Research, 62, 1, pp.24-33 (1991) J. Miettinen、 Calculation of solidification-related thermo physical properties for steels、 Metallurgical and Materials Transactions B、 28B、 pp.281-297(1997)J. Miettinen, Calculation of solidification-related thermo physical properties for steels, Metallurgical and Materials Transactions B, 28B, pp.281-297 (1997)

相変態を伴う熱処理中によって板寸法が変化する現象は、古くから知られていた。例えば、焼入れによって生じるマルテンサイト相は、フェライト相やパーライト相に比べて密度が低いため、全体的に体積が膨張する。このようなことから変態による寸法変化を予測しようとすると、板幅、板厚、板長の長さに応じて、全体的に各方向均等の割合で膨張すると考えられていた。 The phenomenon that the plate size changes during heat treatment with phase transformation has been known for a long time. For example, the martensite phase produced by quenching has a lower density than the ferrite phase and the pearlite phase, so that the volume expands as a whole. From these facts, when trying to predict the dimensional change due to transformation, it was thought that the dimensional change due to the transformation would expand at an equal rate in each direction as a whole according to the plate width, plate thickness, and plate length.

しかしながら、実際に鋼板を製造すると、熱処理による相変態を経た際に、その冷却過程において板幅、板厚、板長の各方向の長さ変化量は、必ずしも各長さに応じた均等の割合で膨張、あるいは、収縮しないことが明らかとなっている(非特許文献1および非特許文献2)。すなわち、変態による密度変化に伴う寸法変化以外に、冷却時には熱処理によって板幅、板厚、板長の3方向に異方性を持った寸法変化を起こす。そのため、単純に相変態の体積変化に応じた熱処理後の寸法予測では、一方向の寸法を所定の寸法誤差範囲に収めたとしても、他方向の寸法誤差範囲を所定の寸法に収めることができなかった。このことからして、冷却過程の板幅、板厚、板長の各方向の長さ変化量のみを実測等で把握しておけば、3方向の寸法変化がすべて予測し得ることになる。
しかしながら、実際には、冷却過程の長さ変化量のみを把握しても、3方向の各々の寸法変化は予測することが困難な場合があった。
However, when a steel sheet is actually manufactured, the amount of change in length in each direction of the plate width, plate thickness, and plate length in the cooling process when undergoing phase transformation due to heat treatment is not necessarily an equal ratio according to each length. It has been clarified that it does not expand or contract in (Non-Patent Document 1 and Non-Patent Document 2). That is, in addition to the dimensional change due to the density change due to the transformation, the dimensional change having anisotropy in the three directions of the plate width, the plate thickness, and the plate length is caused by the heat treatment during cooling. Therefore, in the dimensional prediction after the heat treatment simply according to the volume change of the phase transformation, even if the dimension in one direction is within the predetermined dimensional error range, the dimensional error range in the other direction can be within the predetermined dimension. There wasn't. From this, if only the amount of change in length in each direction of the plate width, plate thickness, and plate length in the cooling process is grasped by actual measurement or the like, all the dimensional changes in the three directions can be predicted.
However, in reality, it may be difficult to predict the dimensional change in each of the three directions even if only the amount of change in the length of the cooling process is grasped.

本発明は、上記実情に鑑み、相変態を伴う熱処理による鋼板の複数方向の寸法変化を制御する鋼板の製造方法および制御可能な熱処理設備を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a method for manufacturing a steel sheet that controls dimensional changes in a plurality of directions of the steel sheet due to heat treatment accompanied by phase transformation, and a controllable heat treatment facility.

3方向の各々の寸法変化は予測することが困難である原因を鋭意検討したところ、発明者らは、上記異方性を伴う寸法変化が、鋼材の冷却時に限らず、加熱時の相変態によっても、もたらされ、その量は冷却時よりもむしろ大きいことがあることを見出した。また、これらの寸法変化は、加熱速度や冷却速度および鋼材の化学成分等によって大きくその傾向が変化するため、熱処理前にこれらの影響を考慮した加熱速度・冷却速度の設定が肝要である。
本発明は、鋼材の熱処理前の寸法から、所望の寸法を得るための最適な熱処理条件を算出する鋼板の製造方法、および算出した条件に基づいて熱処理を行う設備を提供するものであって、その要旨とするところは以下の通りである。
After diligently examining the reason why it is difficult to predict the dimensional change in each of the three directions, the inventors have investigated that the dimensional change accompanied by the above anisotropy is caused not only by the cooling of the steel material but also by the phase transformation during heating. It was also found that the amount was brought in and could be larger than when cooled. Further, since the tendency of these dimensional changes greatly changes depending on the heating rate, the cooling rate, the chemical composition of the steel material, etc., it is important to set the heating rate and the cooling rate in consideration of these effects before the heat treatment.
The present invention provides a method for manufacturing a steel sheet that calculates optimum heat treatment conditions for obtaining desired dimensions from the dimensions of a steel material before heat treatment, and equipment for performing heat treatment based on the calculated conditions. The summary is as follows.

(1)少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱速度と加熱昇温前後の板厚の寸法変化量の相関関係を求め、
予め、加熱温度を変化させた際の、加熱温度と冷却降温前後の板厚の寸法変化量の相関関係を求め、
予め、冷却速度を変化させた際の、冷却速度と冷却降温前後の板厚の寸法変化量の相関関係を求め、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚の寸法変化量の相関関係と、
所望の板厚範囲・板幅範囲・板長範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
(2)少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱昇温前後の板厚・板幅を測定し、加熱速度と加熱昇温前後の板厚・板幅の寸法変化量の相関関係を算出し、
予め、加熱温度を変化させた際の、冷却降温前後の板厚・板幅を測定し、加熱温度と冷却降温過程前後の板厚・板幅の寸法変化量の相関関係を算出し、
予め、冷却速度を変化させた際の、冷却降温前後の板厚・板幅を測定し、冷却速度と冷却降温前後の板厚・板幅の寸法変化量の相関関係を算出し、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚・板幅の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚・板幅の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚・板幅の寸法変化量の相関関係と、
所望の板厚範囲・板幅範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
(3)少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱昇温前後の板厚・板長を測定し、加熱速度と加熱昇温前後の板厚・板長の寸法変化量の相関関係を算出し、
予め、加熱温度を変化させた際の、冷却降温前後の板厚・板長を測定し、加熱温度と冷却降温過程前後の板厚・板長の寸法変化量の相関関係を算出し、
予め、冷却速度を変化させた際の、冷却降温前後の板厚・板長を測定し、冷却速度と冷却降温前後の板厚・板長の寸法変化量の相関関係を算出し、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚・板長の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚・板長の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚・板長の寸法変化量の相関関係と、
所望の板厚範囲・板長範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
(4)少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱昇温前後の板厚・板幅・板長を測定し、加熱速度と加熱昇温前後の板厚・板幅・板長の寸法変化量の相関関係を算出し、
予め、加熱温度を変化させた際の、冷却降温前後の板厚・板幅・板長を測定し、加熱温度と冷却降温過程前後の板厚・板幅・板長の寸法変化量の相関関係を算出し、
予め、冷却速度を変化させた際の、冷却降温前後の板厚・板幅・板長を測定し、冷却速度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係を算出し、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚・板幅・板長の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係と、
所望の板厚範囲・板幅範囲・板長範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
(5)少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱速度と加熱昇温前後の板厚・板幅・板長の寸法変化量の相関関係を数値シミュレーションによって算出し、
予め、加熱温度を変化させた際の、加熱温度と冷却降温過程前後の板厚・板幅・板長の寸法変化量の相関関係を数値シミュレーションによって算出し、
予め、冷却速度を変化させた際の、冷却速度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係を数値シミュレーション算出し、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚・板幅・板長の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係と、
所望の板厚範囲・板幅範囲・板長範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
(6)(2)〜(4)のいずれか1つに記載の方法を実施するための鋼板の製造設備であって、
少なくともAc1点以上の温度に加熱する工程を提供する鋼板の熱処理設備において、
測定された熱処理前の板厚と、板幅および/又は板長を入力する入力手段と、
予め算出した熱処理前後の板厚と加熱速度、加熱温度、冷却速度の相関関係と、予め算出した熱処理前後の板幅および/又は板長と加熱速度、加熱温度、冷却速度の相関関係を記憶した記憶媒体と、
前記記憶媒体に記憶した相関関係に、前記入力手段により入力された熱処理前の板厚と、熱処理前の板幅および/又は板長と、所望の板厚範囲と、所望の板幅範囲および/又は板長範囲とを適用して、所望の板厚範囲、板幅範囲又は板長範囲となる加熱速度、冷却速度、加熱温度を算出する手段と、
前記算出する手段によって、算出された加熱速度、冷却速度、加熱温度に制御する加熱速度制御手段、冷却速度制御、加熱温度制御手段とを
有することを特徴とする鋼板の熱処理設備。
(7)(5)に記載の方法を実施するための鋼板の製造設備であって、
少なくともAc1点以上の温度に加熱する工程を提供する鋼板の熱処理設備において、
測定された熱処理前の板厚と、板幅および板長を入力する入力手段と、
熱処理前後の板厚と加熱速度、加熱温度、冷却速度の相関関係と、熱処理前後の板幅および板長と加熱速度、加熱温度、冷却速度の相関関係を記憶された記憶媒体と、
前記記憶媒体に記憶された相関関係に、前記入力手段により入力された熱処理前の板厚と、熱処理前の板幅および板長と、所望の板厚範囲と、所望の板幅範囲および板長範囲とを適用して、所望の板厚範囲、板幅範囲および板長範囲となる加熱速度、冷却速度、加熱温度を算出する手段と、
前記算出する手段によって、算出された加熱速度、冷却速度、加熱温度に制御する加熱速度制御手段、冷却速度制御、加熱温度制御手段とを
有することを特徴とする鋼板の熱処理設備。
(1) In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the correlation between the heating rate and the amount of dimensional change in plate thickness before and after heating and heating was obtained when the heating rate was changed in the heating and heating process.
Obtain the correlation between the heating temperature and the amount of dimensional change in plate thickness before and after cooling and lowering when the heating temperature is changed in advance.
In advance, the correlation between the cooling rate and the amount of dimensional change in plate thickness before and after cooling and cooling was obtained when the cooling rate was changed.
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness before and after cooling and lowering temperature,
From the amount of dimensional change that is the desired plate thickness range, plate width range, and plate length range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
(2) In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the plate thickness and plate width before and after the heating temperature rise are measured when the heating rate is changed in the heating temperature rise process, and the correlation between the heating rate and the dimensional change amount of the plate thickness and plate width before and after the heating temperature rise. Is calculated and
In advance, the plate thickness and plate width before and after the cooling and lowering temperature are measured when the heating temperature is changed, and the correlation between the heating temperature and the dimensional change amount of the plate thickness and plate width before and after the cooling and lowering process is calculated.
In advance, the plate thickness and plate width before and after the cooling and lowering temperature are measured when the cooling rate is changed, and the correlation between the cooling rate and the dimensional change amount of the plate thickness and plate width before and after the cooling and lowering temperature is calculated.
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness and width before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness and width before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness and width before and after cooling and lowering temperature,
From the amount of dimensional change that is within the desired plate thickness range and plate width range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
(3) In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the plate thickness and plate length before and after the heating temperature rise are measured when the heating rate is changed in the heating temperature rise process, and the correlation between the heating rate and the dimensional change amount of the plate thickness and plate length before and after the heating temperature rise. Is calculated and
In advance, the plate thickness and plate length before and after the cooling and lowering temperature are measured when the heating temperature is changed, and the correlation between the heating temperature and the dimensional change amount of the plate thickness and plate length before and after the cooling and lowering process is calculated.
In advance, the plate thickness and plate length before and after the cooling and lowering temperature are measured when the cooling rate is changed, and the correlation between the cooling rate and the dimensional change amount of the plate thickness and plate length before and after the cooling and lowering temperature is calculated.
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness and plate length before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness and plate length before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness and plate length before and after cooling and lowering temperature,
From the amount of dimensional change that is within the desired plate thickness range and plate length range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
(4) In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the plate thickness, plate width, and plate length before and after heating and heating are measured when the heating rate is changed in the heating and heating process, and the heating rate and plate thickness, plate width, and plate length before and after heating and heating are measured. Calculate the correlation of the amount of dimensional change,
Measure the plate thickness, plate width, and plate length before and after cooling and lowering when the heating temperature is changed, and correlate the heating temperature with the amount of dimensional change in plate thickness, plate width, and plate length before and after the cooling and lowering process. Is calculated and
In advance, measure the plate thickness, plate width, and plate length before and after cooling and cooling when the cooling rate is changed, and determine the correlation between the cooling rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and cooling. Calculate and
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and lowering temperature,
From the amount of dimensional change that is the desired plate thickness range, plate width range, and plate length range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
(5) In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the correlation between the heating rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after heating temperature rise when the heating rate is changed in the heating temperature rise process is calculated by numerical simulation.
In advance, the correlation between the heating temperature and the amount of dimensional change in plate thickness, plate width, and plate length before and after the cooling / lowering process when the heating temperature is changed is calculated by numerical simulation.
In advance, the correlation between the cooling rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and lowering temperature when the cooling rate is changed is calculated by numerical simulation.
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and lowering temperature,
From the amount of dimensional change that is the desired plate thickness range, plate width range, and plate length range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
(6) A steel sheet manufacturing facility for carrying out the method according to any one of (2) to (4).
In a steel sheet heat treatment facility that provides a step of heating to a temperature of at least one point of Acc.
An input means for inputting the measured plate thickness before heat treatment, plate width and / or plate length, and
The correlation between the pre-calculated plate thickness before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate and the pre-calculated correlation between the plate width and / or the plate length before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate are stored. Storage medium and
The plate thickness before heat treatment, the plate width and / or the plate length before heat treatment, the desired plate thickness range, the desired plate width range, and / / in the correlation stored in the storage medium. Alternatively, a means for calculating the heating rate, cooling rate, and heating temperature within the desired plate thickness range, plate width range, or plate length range by applying the plate length range, and
A heat treatment facility for a steel sheet, comprising: a heating rate control means for controlling the heating rate, the cooling rate, and the heating temperature, a cooling rate control, and a heating temperature control means calculated by the calculation means.
(7) A steel sheet manufacturing facility for carrying out the method according to (5).
In a steel sheet heat treatment facility that provides a step of heating to a temperature of at least one point of Acc.
And measured before the heat treatment thickness input means for inputting the plate width and the plate length,
A storage medium that stores the correlation between the plate thickness before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate, and the correlation between the plate width and the plate length before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate.
The stored correlation in the storage medium, and the plate thickness before heat treatment which is input by the input unit, a plate width and the plate length before the heat treatment, the desired thickness range, a desired plate width range and Itacho A means for calculating a heating rate, a cooling rate, and a heating temperature within a desired plate thickness range, plate width range, and plate length range by applying a range, and
A heat treatment facility for a steel sheet, comprising: a heating rate control means for controlling the heating rate, the cooling rate, and the heating temperature, a cooling rate control, and a heating temperature control means calculated by the calculation means.

本発明によれば、相変態を伴う鋼板の熱処理時に、鋼板の複数方向に所望の寸法が得られる、最適な熱処理条件を提供することができる。 According to the present invention, it is possible to provide optimum heat treatment conditions in which desired dimensions can be obtained in a plurality of directions of a steel sheet during heat treatment of a steel sheet accompanied by a phase transformation.

加熱速度が1℃/sの場合の板厚(N)、板長(R)、板幅(T)方向の寸法変化を示した図である。It is a figure which showed the dimensional change in the plate thickness (N), plate length (R), plate width (T) direction when the heating rate is 1 degreeC / s. 熱処理履歴において、板厚変化に及ぼす加熱速度の影響を示した図である。It is a figure which showed the influence of the heating rate on the plate thickness change in the heat treatment history. 熱処理前後の板厚減少率と加熱速度との関係を示した図である。It is a figure which showed the relationship between the plate thickness reduction rate and a heating rate before and after a heat treatment. 熱処理履歴において、板厚変化に及ぼす冷却速度の影響を示した図である。It is a figure which showed the influence of the cooling rate on the plate thickness change in the heat treatment history. 熱処理前後の板厚減少率と冷却速度との関係を示した図である。It is a figure which showed the relationship between the plate thickness reduction rate and a cooling rate before and after a heat treatment. 板厚方向に合金元素の濃度分布を有し、加熱過程において各層の変形過程を説明する図である。It is a figure which has the concentration distribution of the alloy element in the plate thickness direction, and explains the deformation process of each layer in a heating process. 板厚方向に合金元素の濃度分布を有し、冷却過程において各層の変形過程を説明する図である。It is a figure which has the concentration distribution of the alloy element in the plate thickness direction, and explains the deformation process of each layer in a cooling process. 濃化層モデルによる、1℃/sで加熱した際のオーステナイト変態時のひずみ変化の計算結果を示す図である。It is a figure which shows the calculation result of the strain change at the time of austenite transformation at the time of heating at 1 degreeC / s by the concentrated layer model. 濃化層モデルによる、1℃/sで加熱した際のオーステナイト相変態の進行を、高速フーリエ変換による結晶塑性シミュレーションした結果を示す図である。It is a figure which shows the result of the crystal plasticity simulation by the fast Fourier transform of the progress of the austenite phase transformation at the time of heating at 1 degreeC / s by the concentrated layer model. 濃化層モデルによる、10℃/sで加熱した際のオーステナイト変態時のひずみ変化の計算結果を示す図である。It is a figure which shows the calculation result of the strain change at the time of austenite transformation at the time of heating at 10 degreeC / s by the concentrated layer model. 濃化層モデルによる、10℃/sで加熱した際のオーステナイト相変態の進行を、高速フーリエ変換による結晶塑性シミュレーションした結果を示す図である。It is a figure which shows the result of the crystal plasticity simulation by the fast Fourier transform of the progress of the austenite phase transformation at the time of heating at 10 degreeC / s by the concentrated layer model. 濃化層モデルによる、40℃/sで冷却した際のマルテンサイト変態時のひずみ変化の計算結果を示す図である。It is a figure which shows the calculation result of the strain change at the time of martensitic transformation at the time of cooling at 40 degreeC / s by the concentrated layer model. 濃化層モデルによる、10℃/sで冷却した際のマルテンサイト変態時のひずみ変化の計算結果を示す図である。It is a figure which shows the calculation result of the strain change at the time of martensitic transformation at the time of cooling at 10 degreeC / s by the concentrated layer model.

本発明者らは、体積変化(寸法変化)を伴う相変態する熱処理により、鋼板の寸法変化度合いに、異方性が認められる点について、鋭意検討を行った。その結果、この異方性を持った寸法変化は、鋼材の成分、製造条件、また熱処理における加熱速度、加熱温度、冷却速度に依存することが明らかとなった。また、これらの寸法変化に対する影響は、当該熱処理に処する鋼板の処理前に算出可能であるということを見出した。熱処理後の寸法変化算出のための基礎的な知見は、熱処理前後において、予め加熱速度、加熱温度、冷却速度と鋼板の寸法変化との相関関係を実験的に割り出しておくか、板厚方向の成分元素の濃度分布から寸法変化の度合いを予測することにより得られる。そして、この相関関係に基づいて、鋼板の成分や製造条件に応じて、熱処理工程において加熱速度、加熱温度、冷却速度を制御することで、板厚(N)、板長(R)、板幅(T)の各方向について、所望の寸法が得られることを見出した。なお、本発明にいう板厚(N)は通常の板の厚さそのものであり、板長(R)は長手方向の長さ、板幅(T)は、板長(R)方向に直角方向の長さをいう。
本発明は、以上のような検討結果、鋼板の熱処理前後の寸法から、所望の寸法を得るための最適な製造条件(熱処理条件)、すなわち加熱速度と加熱温度と冷却速度を数値計算により算出する方法、および算出した条件に基づいて熱処理を行う設備を提供する。
The present inventors have diligently studied the point that anisotropy is observed in the degree of dimensional change of the steel sheet by the phase transformation heat treatment accompanied by the volume change (dimensional change). As a result, it was clarified that this anisotropic dimensional change depends on the composition of the steel material, the manufacturing conditions, and the heating rate, heating temperature, and cooling rate in the heat treatment. It was also found that the influence on these dimensional changes can be calculated before the treatment of the steel sheet to be subjected to the heat treatment. The basic knowledge for calculating the dimensional change after the heat treatment is to experimentally determine the correlation between the heating rate, heating temperature, cooling rate and the dimensional change of the steel sheet before and after the heat treatment, or in the plate thickness direction. It is obtained by predicting the degree of dimensional change from the concentration distribution of the component elements. Then, based on this correlation, the plate thickness (N), plate length (R), and plate width are controlled by controlling the heating rate, heating temperature, and cooling rate in the heat treatment step according to the composition of the steel sheet and the manufacturing conditions. It has been found that desired dimensions can be obtained in each direction of (T). The plate thickness (N) referred to in the present invention is the normal plate thickness itself, the plate length (R) is the length in the longitudinal direction, and the plate width (T) is the direction perpendicular to the plate length (R) direction. The length of.
As a result of the above examination, the present invention calculates the optimum manufacturing conditions (heat treatment conditions) for obtaining the desired dimensions from the dimensions before and after the heat treatment of the steel sheet, that is, the heating rate, the heating temperature, and the cooling rate by numerical calculation. Provided are a method and equipment for performing heat treatment based on the calculated conditions.

最初に、本発明の熱処理方法の知見が得られた開発の経緯について述べる。 First, the background of the development in which the knowledge of the heat treatment method of the present invention was obtained will be described.

通常、Ac1以上に加熱して相変態させた後、冷却すると、冷却速度に応じてフェライト、パーライト、ベイナイト、マルテンサイトなどの各相が生成される。これらの相分率によって体積が変化することで板寸法が変わるが、この相分率の違いによる体積変化以外にも板寸法を大きく変化させる要因があり、本発明はこの体積変化以外の要因による寸法変化に関するものである。 Usually, when the phase is transformed by heating to Acc1 or higher and then cooled, each phase such as ferrite, pearlite, bainite, and martensite is generated according to the cooling rate. The plate size changes due to the change in volume due to these phase fractions, but there are factors that greatly change the plate size in addition to the volume change due to this difference in phase fraction, and the present invention is due to factors other than this volume change. It is related to dimensional change.

本発明者らは、この要因として、熱処理中の加熱速度や加熱温度および冷却速度によって、熱処理後の板の各方向の寸法が各々大きく変化することを見出した。 The present inventors have found that, as a factor for this, the dimensions of the plate in each direction after the heat treatment greatly change depending on the heating rate, the heating temperature, and the cooling rate during the heat treatment.

従来から相変態を伴う熱処理によって板寸法が大きく変化する現象は知られていたものの、それが加熱速度や加熱温度や冷却速度によってどのような影響を受けるかの研究はなされてこなかった。 Although it has been known that the plate size changes significantly due to heat treatment accompanied by phase transformation, no research has been conducted on how it is affected by the heating rate, heating temperature, and cooling rate.

そこで、発明者らは種々の加熱条件や加熱温度および冷却条件で実験を行い、これらの影響を調査し、その結果を考察した。 Therefore, the inventors conducted experiments under various heating conditions, heating temperatures, and cooling conditions, investigated these effects, and considered the results.

まず、相変態を伴う熱処理によって、加熱、冷却後に板の各方向の板寸法はどのように変化するかについて述べる。
C:0.1%、Mn:1.0%、Si:1.0%、Al:0.03%、N:0.004%、P:0.001%、S:0.001%、Ti:0.0%、Nb:0.0%、Cr:0.0%、Cu:0.1%、Ni:8.9%、B:0.0%、Mo:0.0%、W:0.0%、および、V:0.0%を含有し、残部がFeと不可避不純物である鋼を熱間圧延して得られた板厚2mm、板長10mm、板幅5mmの材料試験片を800℃まで加熱し、5分間保持後に常温まで冷却を行う熱処理工程を行った。なお、上記の「0.0%」は、0.1%未満であることを意味する。
First, how the plate dimensions in each direction of the plate change after heating and cooling by the heat treatment accompanied by the phase transformation will be described.
C: 0.1%, Mn: 1.0%, Si: 1.0%, Al: 0.03%, N: 0.004%, P: 0.001%, S: 0.001%, Ti : 0.0%, Nb: 0.0%, Cr: 0.0%, Cu: 0.1%, Ni: 8.9%, B: 0.0%, Mo: 0.0%, W: A material test piece having a plate thickness of 2 mm, a plate length of 10 mm, and a plate width of 5 mm obtained by hot rolling steel containing 0.0% and V: 0.0% and the balance being Fe and an unavoidable impurity. Was heated to 800 ° C., held for 5 minutes, and then cooled to room temperature in a heat treatment step. The above "0.0%" means less than 0.1%.

図1は、加熱速度が1℃/s、冷却速度40℃/sの場合の板厚方向(N)、板長方向(R)、板幅方向(T)それぞれの温度−ひずみ履歴曲線を示している。図1から、板長方向(R)と、板幅方向(T)の寸法変化履歴同士は、若干のずれがあるものの、熱処理後に熱処理前よりも膨張している、ほぼ同様の寸法変化履歴をたどることが分かる。一方、この二方向の変化履歴は、板厚方向(N)の履歴とは大きく異なっており、この結果から、熱処理による寸法変化の異方性が認められることが明らかとなった。 FIG. 1 shows temperature-strain history curves in each of the plate thickness direction (N), plate length direction (R), and plate width direction (T) when the heating rate is 1 ° C./s and the cooling rate is 40 ° C./s. ing. From FIG. 1, although there is a slight deviation between the dimensional change histories in the plate length direction (R) and the plate width direction (T), the dimensional change histories after the heat treatment are expanded as compared with those before the heat treatment. You can see that it follows. On the other hand, the change history in these two directions is significantly different from the history in the plate thickness direction (N), and from this result, it was clarified that the anisotropy of the dimensional change due to the heat treatment is recognized.

加熱速度が熱処理後の板寸法にどのような影響を与えるかを調査した。
図2は、上記と同じ成分および大きさの試験片を、上記と同様に、800℃まで加熱し、5分間保持後に常温まで冷却を行う熱処理工程を行った結果であり、冷却速度を40℃/sに固定した場合に、加熱速度を1℃/s、4℃/s、7℃/s、10℃/sに変化させたときの板厚方向の温度−ひずみ履歴曲線を示している。Strain、εが正の数の場合は、熱処理前の寸法から厚さが厚くなることを示しており(膨張していることを示している。)、εが負の数の場合は、熱処理前の寸法から厚さが薄くなることを示している(収縮していることを示している。)。図2から、加熱速度が最も遅い1℃/sの場合には、加熱と冷却を行う熱処理を経ることによって、熱処理後の板厚が、熱処理前よりも顕著に減少していることが分かる。一方で、加熱速度が上昇するに従い、εのマイナス量が0に近づき、熱処理前後の板厚減少量が緩和されている。すなわち、加熱速度を制御すると、処理前後の板厚減少量を制御することができる。
We investigated how the heating rate affects the plate size after heat treatment.
FIG. 2 shows the result of performing a heat treatment step of heating a test piece having the same composition and size as above to 800 ° C., holding it for 5 minutes, and then cooling it to room temperature, and the cooling rate was 40 ° C. The temperature-strain history curve in the plate thickness direction when the heating rate is changed to 1 ° C./s, 4 ° C./s, 7 ° C./s, and 10 ° C./s when fixed at / s is shown. When Strain and ε are positive numbers, it indicates that the thickness is thicker than the dimensions before heat treatment (indicating that it is expanding), and when ε is a negative number, it indicates that it is before heat treatment. It is shown that the thickness is reduced from the size of (indicating that it is shrinking). From FIG. 2, it can be seen that when the heating rate is the slowest at 1 ° C./s, the plate thickness after the heat treatment is remarkably reduced as compared with that before the heat treatment by undergoing the heat treatment for heating and cooling. On the other hand, as the heating rate increases, the negative amount of ε approaches 0, and the amount of decrease in plate thickness before and after the heat treatment is alleviated. That is, by controlling the heating rate, it is possible to control the amount of plate thickness reduction before and after the treatment.

図3は、上記と同様の試験片製造までの工程と、加熱温度、加熱時間、冷却速度の製造条件を一定とし、加熱速度のみを1〜10℃/sまで変化させたときの、処理前後の板厚減少量と加熱速度との関係を示した図である。図3からは、この条件下では、加熱速度の上昇によって板厚減少量が線形的に減少する様子が明らかとなっている。すなわち、加熱速度と板厚の寸法変化量には、一定の相関関係がみられる。 FIG. 3 shows the same process up to the production of the test piece as described above, and before and after the treatment when the heating temperature, the heating time, and the cooling rate were kept constant and only the heating rate was changed from 1 to 10 ° C./s. It is a figure which showed the relationship between the plate thickness reduction amount and a heating rate. From FIG. 3, it is clear that under this condition, the amount of decrease in plate thickness linearly decreases as the heating rate increases. That is, there is a certain correlation between the heating rate and the amount of dimensional change in plate thickness.

次に、冷却速度の影響について述べる。図4に、上記と同じ成分および大きさの試験片を、上記と同様に、800℃まで加熱し、5分間保持後に常温まで冷却を行う熱処理工程を行った結果であり、加熱速度を10℃/sに固定し、冷却速度を10℃/s、20℃/s、30℃/s、40℃/sの間で変化させた場合の板厚方向の温度−ひずみ履歴曲線を示す。図4に示すように、冷却速度が上昇すると、板厚が減少することが分かる。これは加熱速度とは逆の傾向が確認された。 Next, the influence of the cooling rate will be described. FIG. 4 shows the result of performing a heat treatment step of heating a test piece having the same composition and size as above to 800 ° C., holding for 5 minutes, and then cooling to room temperature, and the heating rate was 10 ° C. The temperature-strain history curve in the plate thickness direction is shown when the temperature is fixed at / s and the cooling rate is changed between 10 ° C./s, 20 ° C./s, 30 ° C./s, and 40 ° C./s. As shown in FIG. 4, it can be seen that as the cooling rate increases, the plate thickness decreases. This was confirmed to have the opposite tendency to the heating rate.

図5は、図4と同様の試験片製造までの工程と、加熱温度、加熱時間、加熱速度の製造条件を10℃/s一定とし、冷却速度のみを10℃/s、20℃/s、30℃/s、40℃/sまで変化させたときの、熱処理前後の板厚減少量と冷却速度との関係を示した図である。図5からは、この条件下では、冷却速度の上昇によって板厚が線形的に減少する様子が明らかとなっている。すなわち、冷却速度と板厚の寸法変化量の間にも、一定の相関関係がみられる。 FIG. 5 shows the same process up to the production of the test piece as in FIG. 4, and the production conditions of the heating temperature, the heating time, and the heating rate are constant at 10 ° C./s, and only the cooling rate is 10 ° C./s, 20 ° C./s. It is a figure which showed the relationship between the plate thickness decrease amount before and after a heat treatment, and a cooling rate at the time of changing to 30 degreeC / s, 40 degreeC / s. From FIG. 5, it is clear that under this condition, the plate thickness linearly decreases as the cooling rate increases. That is, a certain correlation can be seen between the cooling rate and the amount of dimensional change in plate thickness.

このように、熱処理により板材の各方向の寸法変化に差ができる理由、加熱速度や冷却速度により寸法変化量が変化する理由を解明すべく、鋼板材の各部において詳細な元素分析を行った。 In this way, detailed elemental analysis was performed on each part of the steel sheet material in order to clarify the reason why the dimensional change in each direction of the plate material is different due to the heat treatment and the reason why the dimensional change amount changes depending on the heating rate and the cooling rate.

その結果、鋼板は、厳密には均一組成とはなっておらず、鋼板厚方向にある程度、層状にC、Mn、Ni等の合金元素が偏析する、合金元素の濃度が全体平均よりも濃化した濃化層の存在が認められた。すなわち、鋼板は、板厚方向に成分組成が完全には均一ではなく、図6に層L、L、…Lとして模式的に示したように、ある程度板長方向、板幅方向には偏析組成が揃った層状の濃化層のシートが、板厚方向に複数枚重なるような構造をしていることが明らかとなった。この濃化層を分析すると、(濃化層の合金元素量)/(板全体の平均合金元素の量)を偏析比M(Xは当該元素)として、各合金元素を数値化すると、Cの場合でMは、1.05〜3、Mnの場合でMMnは、1.05〜3、Niの場合でMNiは、1.05〜5となっていた。ここで、偏析比はEPMAを用いてライン分析を行い、分析位置における濃度と測定視野における当該成分の濃度の平均値との比である。また、濃化層同士の間は上記合金元素が低い層(非濃化層)で分割されている。 As a result, the steel sheet does not have a uniform composition strictly, and alloy elements such as C, Mn, and Ni are segregated in layers to some extent in the thickness direction of the steel sheet, and the concentration of the alloy elements is higher than the overall average. The presence of a concentrated layer was observed. That is, the composition of the steel sheet is not completely uniform in the plate thickness direction, and as shown schematically as layers L 1 , L 2 , ... L N in FIG. 6, in the plate length direction and the plate width direction to some extent. It was clarified that the sheets of the layered concentrated layer having the same segregation composition have a structure in which a plurality of sheets are overlapped in the plate thickness direction. Analysis of this concentrated layer, as (an alloy element content of concentrated layer) / segregation ratio M X (X is the element) (the average amount of alloying elements of the entire plate) and to quantify the respective alloy elements, C the M C in the case of, 1.05~3, M Mn in the case of Mn is, 1.05~3, M Ni in the case of Ni has been a 1.05 to 5. Here, the segregation ratio is the ratio of the concentration at the analysis position to the average value of the concentration of the component in the measurement field of view by performing line analysis using EPMA. Further, the concentrated layers are separated by a layer in which the alloying element is low (non-concentrated layer).

このような濃化層が板厚方向に複数存在する鋼板を相変態温度以上に加熱した際の変形挙動について、図1のように加熱過程の相変態により板厚方向に収縮し、冷却時の相変態により板厚方向に膨張する場合を例に説明する。 Regarding the deformation behavior when a steel sheet having a plurality of such concentrated layers in the plate thickness direction is heated to a temperature equal to or higher than the phase transformation temperature, it shrinks in the plate thickness direction due to the phase transformation in the heating process as shown in FIG. A case of expanding in the plate thickness direction due to phase transformation will be described as an example.

図6に示すLを最も低い温度で相変態する層とする。加熱昇温していくと、積層した各濃化層および各非濃化層の組成が各々異なることから、各層が実際に相変態する温度には差が生じる。すなわち、昇温の際に、低い温度で先に相変態して収縮する層Lと、高い温度で後から相変態して収縮する層L〜Lが生じ、各層の相変態と、相変態による寸法変化にタイムラグが生じる。そのため、図6(A)の矢印の長さ、L収縮量1、L収縮量2で表現したように、寸法の収縮度合いにLとLで差が生じる。相変態による体積変化は大きいため、最も相変態温度が低く、加熱昇温過程で先に相変態する層Lにおいて相変態が起こると、L収縮力3により、板長方向、板幅方向、板厚方向に長さが収縮しようとする(図6(B)参照)。しかしながら、Lの隣の層Lはまだ相変態を起こしていないので、層Lも、それほど板長方向、板幅方向には長さが収縮できない。なぜなら、層Lが収縮しようとしても、長さが変化していない隣の層LからLへの拘束力4に拘束されて、板長方向、板幅方向の長さを変化させることが困難になるからである。そのため、先に相変態した層Lの実際のL収縮力5は、拘束されている板長方向、板幅方向以外の残る方向である、板厚方向に働くので、この方向に主に収縮し(図6(C)参照)、本来収縮すべき量より板長方向、板幅方向は長い長さのままでLの相変態は完了する。その後温度が上昇し、Lが相変態し、板長方向、板幅方向に収縮しようとしても、今度は、本来収縮すべき量より板長方向、板幅方向は長い長さのままであるLに拘束されて、この方向に十分に収縮することができず、LはLと同様に板厚方向に過剰に収縮すると考えられる。このような加熱過程の寸法変化により、各層の収縮は板厚方向に起こりやすく、全体としても、板厚方向に大きく収縮すると考えられる。この傾向は、図1、2に示されるように、加熱速度が1℃/sのように遅い場合に特に顕著に表れる。そして、この加熱時の板厚収縮の影響は、図1、2のように冷却速度が40℃/sのように速い場合に残留し、冷却後も、全体として、板厚方向に顕著に収縮したままになると考えられる。 Let L 1 shown in FIG. 6 be a layer that undergoes phase transformation at the lowest temperature. As the temperature is raised by heating, the compositions of the laminated concentrated layers and the non-concentrated layers are different from each other, so that the temperature at which each layer actually undergoes phase transformation is different. That is, when the temperature increase, a layer L 1 to phase transformation to shrink earlier at low temperatures, result in a layer L 2 ~L N to contract in phase transformation later at high temperatures, and phase transformation of each layer, There is a time lag in the dimensional change due to phase transformation. Therefore, as represented by the length of the arrow in FIG. 6 (A), L 1 shrinkage amount 1, and L 2 shrinkage amount 2, there is a difference in the degree of dimensional shrinkage between L 1 and L 2. Since the volume change due to phase transformation is large, most phase transformation temperature is low, the phase when the transformation occurs in the layer L 1 to phase transformation before the heating Atsushi Nobori process, the L 1 contraction force 3, Itacho direction, plate width direction , The length tends to shrink in the plate thickness direction (see FIG. 6B). However, since the layer L 2 adjacent to the L 1 has not yet undergone a phase transformation, the length of the layer L 1 cannot be shortened so much in the plate length direction and the plate width direction. This is because, even if an attempt layer L 1 is contracted, it is constrained from the layer L 2 of the next whose length does not change the restraining force 4 to L 1, Itacho direction, changing the length of the plate width direction Is difficult. Therefore, actual L 1 contraction force fifth layer L 1 that phase transformation earlier, Itacho direction is restrained, the direction remains other than the plate width direction, so acts in the thickness direction, mainly in this direction deflated (see FIG. 6 (C)), the amount from Itacho direction to be originally shrinkage phase transformation of L 1 remains in the plate width direction is longer length is completed. After that, the temperature rises, L 2 undergoes a phase transformation, and even if it tries to shrink in the plate length direction and the plate width direction, this time, the plate length direction and the plate width direction remain longer than the amount that should be contracted. It is considered that L 2 cannot be sufficiently contracted in this direction due to being constrained by L 1 , and L 2 contracts excessively in the plate thickness direction like L 1. Due to such a dimensional change in the heating process, shrinkage of each layer is likely to occur in the plate thickness direction, and it is considered that the shrinkage of each layer is large in the plate thickness direction as a whole. This tendency is particularly remarkable when the heating rate is as slow as 1 ° C./s, as shown in FIGS. 1 and 2. The effect of the plate thickness shrinkage during heating remains when the cooling rate is as high as 40 ° C./s as shown in FIGS. 1 and 2, and even after cooling, the plate thickness shrinks significantly in the plate thickness direction as a whole. It is thought that it will remain as it is.

一方、加熱速度が10℃/sのように速ければ、組成の異なる層同士の相変態のタイミングのずれが、短い時間にとどまり、相変態のタイミングの違いによる寸法変化のずれも短い時間となり、拘束力が働く時間が減少し、板幅、板長方向に十分に相変態により収縮できることから、寸法異方性が改善されると考えられる。 On the other hand, if the heating rate is as fast as 10 ° C./s, the timing shift of the phase transformation between layers having different compositions stays for a short time, and the shift of the dimensional change due to the difference in the phase transformation timing also becomes a short time. It is considered that the dimensional anisotropy is improved because the time for the binding force to work is reduced and the plate can be sufficiently contracted by the phase transformation in the plate width and plate length directions.

なお、図6においては説明の便宜上、最も表層のLを最も低い温度で相変態する層としたが、必ずしも、最も表層が、最も低い温度で相変態する層ではない。また、各層の変態の順番は、製造条件や成分によって異なるために、特段規則性を有するものでもない。次に説明する図7についても同様である。 In FIG. 6, for convenience of explanation, L 1 of the surface layer is used as the layer that undergoes phase transformation at the lowest temperature, but the surface layer is not necessarily the layer that undergoes phase transformation at the lowest temperature. Further, since the order of transformation of each layer differs depending on the production conditions and components, it does not have any particular regularity. The same applies to FIG. 7, which will be described next.

次に、加熱後に冷却する冷却過程においても同様に、各層の相変態のタイムラグにより、寸法の変化の異方性が発生することが起こると考えられる。図7に模式図を示す。冷却時に最も高い温度で相変態する層をLとする。冷却時には、相変態温度が各層で最も高い、最初に相変態する層Lが、相変態により膨張しようとするが、図7(A)の矢印の長さで表現したように、L膨張量6、LN−1膨張量7で表現したように、寸法の膨張度合いにLとLN−1で差が生じる。相変態による体積変化は大きいため、最も相変態温度が高く、冷却過程で先に相変態する層Lにおいて相変態が起こると、L膨張力8により、板長方向、板幅方向、板厚方向に長さが膨張しようとする(図7(B)参照)。しかしながら、Lの隣の層LN−1はまだ相変態を起こしていないので、層Lも、それほど板長方向、板幅方向には長さが膨張できない。なぜなら、層Lが膨張しようとしても、長さが変化していない隣の層LN−1からLへの拘束力9に拘束されて、板長方向、板幅方向の長さを変化させることが困難になるからである。そのため、先に相変態した層Lの実際のL膨張力10は、拘束されている板長方向、板幅方向以外の残る方向である、板厚方向に働くので、この方向に主に膨張し(図7(C)参照)、本来膨張すべき量より板長方向、板幅方向は短い長さのままでLの相変態は完了する。その後温度が降下し、LN−1が相変態し、板長方向、板幅方向に膨張しようとしても、今度は、本来膨張すべき量より板長方向、板幅方向は短い長さのままであるLに拘束されて、この方向に十分に膨張することができず、LN−1はLと同様に板厚方向に過剰に膨張すると考えられる。このような冷却過程の寸法変化により、各層の膨張は板厚方向に起こりやすく、全体としても、板厚方向に大きく膨張すると考えられる。この傾向は、図4に示されるように、冷却速度が10℃/sのように遅い場合に特に顕著に板厚方向の膨張が表れる。一方、冷却速度が40℃/sのように速ければ、冷却過程において、先に相変態した層が板幅方向、板長方向に拘束される時間が減少する。そのために、冷却速度の速い冷却過程では、各方向に均一に膨張するため、板厚方向の膨張が小さくなると考えられる。 Next, in the cooling process of cooling after heating, it is considered that the anisotropy of the dimensional change occurs due to the time lag of the phase transformation of each layer. FIG. 7 shows a schematic diagram. Let L N be the layer that undergoes phase transformation at the highest temperature during cooling. At the time of cooling, the first phase-transforming layer L N , which has the highest phase transformation temperature in each layer, tries to expand due to the phase transformation, but as represented by the length of the arrow in FIG. 7 (A), the L N expansion the amount 6, as represented by L N-1 expansion of 7, a difference occurs L N and L N-1 in the expansion degree of the dimension. Since the volume change due to the phase transformation is large, the phase transformation temperature is the highest, and when the phase transformation occurs in the layer LN that undergoes the phase transformation first in the cooling process, the L N expansion force 8 causes the plate length direction, the plate width direction, and the plate. The length tends to expand in the thickness direction (see FIG. 7B). However, since no cause layer L N-1 Hamada phase transformation of the adjacent L N, even layer L N, so the plate length direction, can not be expanded in length to the sheet width direction. This is because, even if the layer L N tries to expand, the length is constrained by the binding force 9 from the adjacent layer L N-1 to the L N whose length has not changed, and the length in the plate length direction and the plate width direction is changed. This is because it becomes difficult to make them. Therefore, the actual L N expansion force 10 of the previously phase-transformed layer L N acts in the plate thickness direction, which is the remaining direction other than the constrained plate length direction and the plate width direction, and thus mainly acts in this direction. It expands (see FIG. 7C), and the phase transformation of L N is completed with the length in the plate length direction and the plate width direction shorter than the amount that should be expanded. After that, the temperature drops, L N-1 undergoes a phase transformation, and even if it tries to expand in the plate length direction and the plate width direction, this time, the plate length direction and the plate width direction remain shorter than the amount that should be expanded. in it is bound to L N, in this direction can not be sufficiently inflated, L N-1 is considered to be excessively expanded in the thickness direction as with L N. Due to such a dimensional change in the cooling process, expansion of each layer is likely to occur in the plate thickness direction, and it is considered that the expansion of each layer is large in the plate thickness direction as a whole. As shown in FIG. 4, this tendency is particularly remarkable when the cooling rate is as slow as 10 ° C./s. On the other hand, if the cooling rate is as fast as 40 ° C./s, the time during which the previously phase-transformed layer is constrained in the plate width direction and the plate length direction in the cooling process is reduced. Therefore, in the cooling process with a high cooling rate, the expansion is uniform in each direction, and it is considered that the expansion in the plate thickness direction is small.

なお、このような、板厚方向に合金元素濃度の不均一な濃化層が複数形成される理由として、いくつか考えられる。たとえば、鋳造時の表面と内部の固化速度の違いや、鋳造時に形成されるデンドライト樹間に濃化された元素が、その後の圧延過程において倒れこむ等、板材製造時に必然的に濃度の勾配が形成されることなどで説明しうる。 It should be noted that there are several possible reasons why a plurality of concentrated layers having a non-uniform alloy element concentration are formed in the plate thickness direction. For example, the difference in solidification rate between the surface and the inside during casting, and the elements concentrated between the dendrite trees formed during casting collapse during the subsequent rolling process. It can be explained by being formed.

上記のような知見からして、少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理方法においては、板厚方向の熱処理前後の寸法変化量と、加熱速度、冷却速度との相関関係を予め求めておく必要がある。この相関関係を求めることにより、所望の板厚範囲とする加熱速度、冷却速度を決定できる。相関関係を求めるために予め測定する加熱速度、冷却速度の条件数は、数が多ければ多いほど好ましく、速度の範囲が広ければ広いほど好ましいが、鋼材に要求される特性と製造設備性能から許容される加熱速度、冷却速度の範囲内で必要な数を決定すればよい。 Based on the above findings, in the heat treatment method for steel plates having a heat treatment step of heating to a temperature of at least one Acc point or more, the correlation between the amount of dimensional change before and after the heat treatment in the plate thickness direction, the heating rate, and the cooling rate. It is necessary to find the relationship in advance. By obtaining this correlation, the heating rate and cooling rate within the desired plate thickness range can be determined. The larger the number of conditions for the heating rate and the cooling rate to be measured in advance to obtain the correlation, the more preferable, and the wider the speed range, the more preferable. However, it is acceptable from the characteristics required for the steel material and the performance of the manufacturing equipment. The required number may be determined within the range of the heating rate and the cooling rate to be performed.

また、さらに、板幅方向、又は、板長方向の熱処理前後の寸法変化量と、加熱速度、冷却速度との相関関係を予め求めておく必要がある。この相関関係を求めることにより、所望の板幅、および、又は板長範囲とする加熱速度、冷却速度を決定できる。板幅方向、又は、板長方向の熱処理前後の寸法変化量と、加熱速度、冷却速度との相関関係を求める方法としては、板厚変化と加熱速度、冷却速度との相関関係から、板幅方向、又は、板長方向の熱処理前後の寸法変化量と、加熱速度、冷却速度との相関関係が計算できるならば、計算によって求めてもよい。 Further, it is necessary to obtain in advance the correlation between the amount of dimensional change before and after the heat treatment in the plate width direction or the plate length direction, and the heating rate and cooling rate. By obtaining this correlation, it is possible to determine the desired plate width, or the heating rate and cooling rate within the plate length range. As a method of obtaining the correlation between the amount of dimensional change before and after the heat treatment in the plate width direction or the plate length direction and the heating rate and the cooling rate, the plate width is obtained from the correlation between the plate thickness change and the heating rate and the cooling rate. If the correlation between the amount of dimensional change before and after the heat treatment in the direction or the plate length direction and the heating rate and the cooling rate can be calculated, it may be obtained by calculation.

板厚方向の熱処理前後の寸法変化量を測定する必要があるのは、図6に示したように、板厚方向に組成の不均一な濃化層が存在するためであり、その結果、図1に示したように、板幅方向、板長方向とは、熱処理前後の寸法変化挙動が異なるためである。また、上記のように、加熱速度、冷却速度に依存して寸法が変化するので、所定の寸法とするためには、加熱速度、冷却速度について予め相関関係を求めておく必要がある。 It is necessary to measure the amount of dimensional change before and after the heat treatment in the plate thickness direction because, as shown in FIG. 6, there is a concentrated layer having a non-uniform composition in the plate thickness direction, and as a result, FIG. This is because, as shown in 1, the dimensional change behavior before and after the heat treatment is different from that in the plate width direction and the plate length direction. Further, as described above, since the dimensions change depending on the heating rate and the cooling rate, it is necessary to obtain a correlation in advance with respect to the heating rate and the cooling rate in order to obtain the predetermined dimensions.

一方、板長方向、板幅方向は、その熱処理前後の寸法変化挙動は、おおむね同様なので、どちらかひとつを測定し、加熱速度、冷却速度との相関関係を求めればよい。寸法変化挙動が同様となるのは、板厚方向には、組成の濃度分布に差が生じているが、板幅方向、板長方向には、組成の濃度分布が小さいためである。 On the other hand, in the plate length direction and the plate width direction, the dimensional change behavior before and after the heat treatment is almost the same, so it is sufficient to measure either one and obtain the correlation with the heating rate and the cooling rate. The dimensional change behavior is the same because the concentration distribution of the composition is different in the plate thickness direction, but the concentration distribution of the composition is small in the plate width direction and the plate length direction.

なお、板厚が減少した分は、板幅と板長が増えて、結局体積変化が、等方的に起こった場合と差がない場合は、板厚の減少分から計算により、板幅と板長の変化を予測することができるので、熱処理前後の板厚のみ測定し、計算により熱処理条件(加熱速度、冷却速度)と他の方向の変化量の相関関係を算出すればよい。 If the plate width and plate length increase as the plate thickness decreases and there is no difference in volume change from the case where the volume change occurs isotropically, the plate width and plate length are calculated from the plate thickness decrease. Since the change in length can be predicted, only the plate thickness before and after the heat treatment may be measured, and the correlation between the heat treatment conditions (heating rate, cooling rate) and the amount of change in other directions may be calculated by calculation.

また、本発明における鋼板は、通常の熱処理設備の能力からして、厚さ250mm以下であることが好ましい。下限については必ずしも限定されるものではないが、1mm以上が好ましくは、3mm以上がより好ましい。 Further, the steel sheet in the present invention preferably has a thickness of 250 mm or less in view of the capacity of ordinary heat treatment equipment. The lower limit is not necessarily limited, but 1 mm or more is preferable, and 3 mm or more is more preferable.

本発明は、濃化層が、厚さ10mm試験片で少なくとも50本存在する鋼板に適用することが好ましい。これは、濃化層の数が多いほど、統計的にバラツキの少ない安定的なデータが得られるためである。濃化層の分析結果は前述のとおりである。 The present invention is preferably applied to a steel sheet in which at least 50 concentrated layers are present in a test piece having a thickness of 10 mm. This is because the larger the number of concentrated layers, the more stable data can be obtained with statistically less variation. The analysis results of the concentrated layer are as described above.

次に、加熱温度の違いによる熱処理前後の寸法変化への影響について述べる。表1に加熱温度を800℃から、より高温側である1300℃まで変化させたときの、熱処理前後における板厚変化について調査した結果を示す。ただし、板厚変化は熱処理前のひずみを0としたときのひずみ変化として表示してある。図1〜5の試験の際と同様の試験片製造までの工程により試験片を製造し、加熱温度での保持時間はいずれも5分である。 Next, the influence of the difference in heating temperature on the dimensional change before and after the heat treatment will be described. Table 1 shows the results of investigating the change in plate thickness before and after the heat treatment when the heating temperature was changed from 800 ° C. to 1300 ° C. on the higher temperature side. However, the change in plate thickness is displayed as a strain change when the strain before heat treatment is set to 0. The test pieces are manufactured by the same steps up to the manufacture of the test pieces as in the tests of FIGS. 1 to 5, and the holding time at the heating temperature is 5 minutes in each case.

表1は、加熱速度は1℃/s、冷却速度は40℃/sと固定した際の結果である。すなわち、加熱速度が1℃/sと遅い条件での結果であり、加熱過程においては、板厚変化が大きくなる条件である。また、冷却速度が40℃/sと速いため冷却過程における板厚変化は小さくなる条件である。この試験片の成分組成から予測すると、たとえば、800℃の加熱および1300℃の加熱は、ともにγ単相領域での加熱に相当する。したがって、両者で結晶配列に相違はないが、一般に加熱温度の上昇によって結晶粒が粗大化し、冷却時の変態温度を低下させる効果がある。しかしながら、当該成分において冷却速度が40℃/sである場合、いずれの加熱温度においてもマルテンサイト相が生じる。このとき、マルテンサイト相は変態が一気に進行するため、偏析組織の影響が小さく、図1のように、この加熱速度、冷却速度の条件下では、加熱温度を上昇させることによる影響は少ないと考えることができる。
表1の結果は、上記のように加熱速度が1℃/sと遅い条件での結果であり、加熱過程においては、板厚変化が大きくなる条件である。にもかかわらず、加熱温度の違いの板厚への影響は小さい。このことから、加熱過程における加熱温度の板厚変化への影響は小さいと考えられる。
Table 1 shows the results when the heating rate was fixed at 1 ° C./s and the cooling rate was fixed at 40 ° C./s. That is, it is a result under the condition that the heating rate is as slow as 1 ° C./s, and it is a condition that the plate thickness change becomes large in the heating process. Further, since the cooling rate is as high as 40 ° C./s, the change in plate thickness during the cooling process is small. Predicting from the component composition of this test piece, for example, heating at 800 ° C. and heating at 1300 ° C. correspond to heating in the γ single-phase region. Therefore, although there is no difference in the crystal arrangement between the two, in general, the crystal grains become coarser as the heating temperature rises, which has the effect of lowering the transformation temperature during cooling. However, when the cooling rate of the component is 40 ° C./s, a martensite phase is generated at any heating temperature. At this time, since the transformation of the martensite phase proceeds at once, the influence of the segregated structure is small, and it is considered that the influence of raising the heating temperature is small under the conditions of the heating rate and the cooling rate as shown in FIG. be able to.
The results in Table 1 are the results under the condition that the heating rate is as slow as 1 ° C./s as described above, and are the conditions under which the change in plate thickness becomes large in the heating process. Nevertheless, the effect of the difference in heating temperature on the plate thickness is small. From this, it is considered that the influence of the heating temperature on the plate thickness change in the heating process is small.

次に、表2は、加熱速度を10℃/s、冷却速度を10℃/sで固定した際の結果である。
この加熱速度、冷却速度の条件下では、加熱温度の上昇によって板厚の増加が小さくなる方向に推移している。また、この条件では、加熱速度が速く、加熱過程において板厚変化は小さい。よって、加熱温度が冷却過程の板厚変化に影響することがわかる。これは、冷却速度が10℃/sと遅い場合には、マルテンサイト変態に加えて、フェライト/パーライト変態を生じるため、偏析組織の影響を大きく受け、冷却過程の板厚の変化に帰結したものと考えられる。すなわち、単純に変態開始温度の予測に基づいては板厚変化を予測することができず、加熱温度と冷却降温前後の板厚変化の相関関係を算出し、これを基に板厚変化の予測を行う必要がある。
Next, Table 2 shows the results when the heating rate was fixed at 10 ° C./s and the cooling rate was fixed at 10 ° C./s.
Under the conditions of the heating rate and the cooling rate, the increase in the plate thickness tends to decrease as the heating temperature rises. Further, under this condition, the heating rate is high and the change in plate thickness is small in the heating process. Therefore, it can be seen that the heating temperature affects the change in plate thickness during the cooling process. This is because when the cooling rate is as slow as 10 ° C./s, ferrite / pearlite transformation occurs in addition to martensitic transformation, which is greatly affected by the segregated structure and results in a change in plate thickness during the cooling process. it is conceivable that. That is, it is not possible to predict the plate thickness change simply based on the prediction of the transformation start temperature, but the correlation between the heating temperature and the plate thickness change before and after the cooling and lowering temperature is calculated, and the plate thickness change is predicted based on this. Need to be done.

Figure 0006870399
Figure 0006870399

Figure 0006870399
Figure 0006870399

以上のように、熱処理前後の寸法変化を、加熱速度、冷却速度、加熱温度の関数として実験等によって予め得ておけば、実際の熱処理時に寸法変化を予測しながら、熱処理後に所望の寸法となる最適な熱処理方法を設定することが可能である。すなわち、熱処理前に測定した鋼板の寸法と、熱処理前後の所望の寸法変化を、予め得た、加熱速度、冷却速度、加熱温度と寸法変化の関数に当てはめ、熱処理条件を決定する。
熱処理前後の寸法変化を、加熱速度や冷却速度の関数として実験によって予め得るには、以下の1.〜7.の事項が必要である。
As described above, if the dimensional change before and after the heat treatment is obtained in advance by experiments or the like as a function of the heating rate, the cooling rate, and the heating temperature, the desired size can be obtained after the heat treatment while predicting the dimensional change during the actual heat treatment. It is possible to set the optimum heat treatment method. That is, the heat treatment conditions are determined by applying the dimensions of the steel sheet measured before the heat treatment and the desired dimensional changes before and after the heat treatment to the functions of the heating rate, the cooling rate, the heating temperature and the dimensional changes obtained in advance.
In order to obtain the dimensional change before and after the heat treatment as a function of the heating rate and the cooling rate by an experiment in advance, the following 1. ~ 7. Matters are necessary.

1.熱処理前の鋼板の板厚寸法を測定すること
熱処理前の鋼板の寸法を測定しておかないと、熱処理後の寸法を予測することもできないし、所望の寸法を設定することもできない。そのため、熱処理前に鋼板の寸法を測定する。少なくとも、熱処理により等方変化しない板厚方向の寸法を測定することは必須である。それに加え、板厚方向とは熱処理による変化挙動が異なる、板幅、および/又は板長も測定しておくことが好ましい。さらに好ましいのは、板厚、板幅、板長のすべてを測定しておくことである。ここでいう、「熱処理前」とは、予め加熱速度、加熱温度、冷却速度と寸法変化との相関関係を求めるための熱処理前ではなく、製品を製造するための熱処理前を意味する。
1. 1. Measuring the thickness of the steel sheet before heat treatment Unless the dimensions of the steel sheet before heat treatment are measured, the dimensions after heat treatment cannot be predicted and the desired dimensions cannot be set. Therefore, the dimensions of the steel sheet are measured before the heat treatment. At the very least, it is essential to measure the dimensions in the plate thickness direction that do not change isotropically due to heat treatment. In addition, it is preferable to measure the plate width and / or the plate length, which have different behaviors due to heat treatment from the plate thickness direction. More preferably, the plate thickness, plate width, and plate length are all measured. The term "before heat treatment" as used herein means not before the heat treatment for obtaining the correlation between the heating rate, the heating temperature, the cooling rate and the dimensional change in advance, but before the heat treatment for manufacturing the product.

2.予め、加熱昇温過程における加熱速度を変化させた際の、加熱昇温前後の板厚を測定し、加熱速度と加熱昇温前後の板厚の寸法変化量の相関関係を算出すること。
加熱昇温過程において、相変態すると、上記のように、板厚方向に不均一に形成された層の変態タイミングの違いにより、各層に寸法変化を妨げる拘束力が生じる。この拘束力により、板厚方向に相変態の体積変化から予測される寸法変化値とのずれが生じるので、事前に試験材などを用意して、昇温過程における板厚方向の寸法変化を各加熱速度に応じた相関関係として求めておく。相関関係を求めておけば、各加熱速度で、どの程度板厚方向の寸法変化が生じるかを求めることができる。そして、この加熱昇温過程での板厚方向の寸法変化は、冷却降温過程の寸法変化と合わせて計算することで、熱処理前後の寸法変化を予測することができる。ここで、「加熱昇温前後」との加熱前とは、板材が常温等であり、熱を加える前のことであり、加熱後とは、加熱を始めて最高温度に達し、冷却が始まるまでをいう。加熱と冷却を複数繰り返す熱処理工程では、すべての加熱昇温前後の寸法を測定する。板幅、板長の測定においても同様である。
2. In advance, measure the plate thickness before and after heating and heating when the heating rate is changed in the heating and heating process, and calculate the correlation between the heating rate and the amount of dimensional change in the plate thickness before and after heating and heating.
When the phase transformation occurs in the heating and heating process, as described above, due to the difference in the transformation timing of the layers formed non-uniformly in the plate thickness direction, a binding force that hinders the dimensional change is generated in each layer. Due to this binding force, there is a deviation from the dimensional change value predicted from the volume change of the phase transformation in the plate thickness direction. Obtain it as a correlation according to the heating rate. By obtaining the correlation, it is possible to determine how much the dimensional change occurs in the plate thickness direction at each heating rate. Then, the dimensional change in the plate thickness direction in the heating and heating process can be calculated together with the dimensional change in the cooling and lowering process, so that the dimensional change before and after the heat treatment can be predicted. Here, "before and after heating" means that the plate material is at room temperature and before heat is applied, and after heating is until the maximum temperature is reached after heating and cooling starts. Say. In the heat treatment process in which heating and cooling are repeated a plurality of times, the dimensions before and after all the heating and heating are measured. The same applies to the measurement of plate width and plate length.

3.予め、加熱温度を変化させた際の、冷却降温前後の板厚を測定し、加熱温度と冷却降温前後の板厚の寸法変化量の相関関係を算出すること。
加熱温度は、相変態する特に冷却降温過程において、上記のように、従来の等方モデルによる手法によっては予測しえない板厚方向の寸法変化を生じるので、相関関係を求めておく。相関関係を求めておけば、各加熱温度で、どの程度板厚方向の寸法変化が生じるかを求めることができる。そして、この冷却降温過程での板厚方向の寸法変化は、加熱昇温過程前後の寸法変化と合わせて計算することで、熱処理前後の寸法変化を予測することができる。ここで、「冷却降温前後」との冷却前とは、板材が加熱後、冷却される前、温度が下がる前のことであり、冷却後とは、冷却を始めて常温に達するまでをいう。加熱と冷却を複数繰り返す熱処理工程では、すべての冷却降温前後の寸法を測定する。冷却速度と冷却降温前後の板厚の寸法変化量の相関関係を算出する際の冷却降温前後の寸法測定、板幅、板長の測定においても同様である。
3. 3. In advance, measure the plate thickness before and after cooling and lowering when the heating temperature is changed, and calculate the correlation between the heating temperature and the amount of dimensional change in the plate thickness before and after cooling and lowering.
As described above, the heating temperature causes a dimensional change in the plate thickness direction that cannot be predicted by the method using the conventional isotropic model, as described above, in the phase transformation, especially in the cooling / lowering process, so a correlation is obtained. By obtaining the correlation, it is possible to determine how much the dimensional change occurs in the plate thickness direction at each heating temperature. Then, the dimensional change in the plate thickness direction in the cooling / lowering process can be predicted together with the dimensional change before and after the heating / raising process, so that the dimensional change before and after the heat treatment can be predicted. Here, "before and after cooling and lowering temperature" means before the plate material is heated, before it is cooled, and before the temperature drops, and after cooling, it means until the plate material starts cooling and reaches room temperature. In the heat treatment process in which heating and cooling are repeated, all the dimensions before and after cooling and cooling are measured. The same applies to the measurement of dimensions before and after cooling and cooling, and the measurement of plate width and plate length when calculating the correlation between the cooling rate and the amount of dimensional change in plate thickness before and after cooling and cooling.

4.予め、冷却速度を変化させた際の、冷却降温前後の板厚を測定し、冷却速度と冷却降温前後の板厚の寸法変化量の相関関係を算出すること。
冷却降温過程において、相変態すると、上記のように、板厚方向に不均一に形成された層の冷却速度の違いによる変態タイミングの違いにより、各層に寸法変化を妨げる拘束力が生じる。この拘束力により、板厚方向に相変態の体積変化から予測される寸法変化値とのずれが生じるので、相関関係を求めておく。相関関係を求めておけば、各冷却速度で、どの程度板厚方向の寸法変化が生じるかを求めることができる。そして、この冷却降温過程での板厚方向の寸法変化は、加熱昇温過程前後の寸法変化と合わせて計算することで、熱処理前後の寸法変化を予測することができる。
4. In advance, measure the plate thickness before and after cooling and lowering when the cooling rate is changed, and calculate the correlation between the cooling rate and the amount of dimensional change in the plate thickness before and after cooling and lowering.
When phase transformation occurs in the cooling / cooling process, as described above, due to the difference in transformation timing due to the difference in the cooling rate of the layers formed non-uniformly in the plate thickness direction, a binding force that hinders the dimensional change is generated in each layer. Due to this binding force, a deviation from the dimensional change value predicted from the volume change of the phase transformation occurs in the plate thickness direction, so the correlation is obtained. By obtaining the correlation, it is possible to determine how much the dimensional change occurs in the plate thickness direction at each cooling rate. Then, the dimensional change in the plate thickness direction in the cooling / lowering process can be predicted together with the dimensional change before and after the heating / raising process, so that the dimensional change before and after the heat treatment can be predicted.

5.予め、加熱昇温過程における加熱速度を変化させた際の、加熱昇温前後の板幅および/又は板長寸法を測定し、加熱速度と加熱昇温前後の当該寸法変化量の相関関係を算出すること。
板幅、板長方向の寸法は、板厚方向とは、成分構成分布の異方性の違いにより、加熱昇温前後における寸法変化の度合いが異なる。よって、板幅、板長方向のいずれか1以上の当該寸法変化と加熱速度との相関関係(板幅なら板幅の寸法変化と加熱速度の相関関係、板長なら板長の寸法変化と加熱速度の相関関係、板幅と板長なら板幅と板長の両者の寸法変化と加熱速度の相関関係)を算出しておく。
5. In advance, the plate width and / or the plate length dimension before and after the heating temperature rise when the heating rate is changed in the heating temperature rise process is measured, and the correlation between the heating rate and the dimension change amount before and after the heating temperature rise is calculated. To do.
The dimensions in the plate width and plate length directions differ from those in the plate thickness direction in the degree of dimensional change before and after heating and heating due to the difference in anisotropy of the component composition distribution. Therefore, the correlation between the dimensional change of one or more of the plate width and the plate length direction and the heating rate (correlation between the dimensional change of the plate width and the heating rate for the plate width, and the dimensional change and heating of the plate length for the plate length). Calculate the correlation of speed, and if the plate width and plate length, the correlation between the dimensional change of both plate width and plate length and the heating rate).

6.予め、加熱温度を変化させた際の、冷却降温前後の板幅および/又は板長寸法を測定し、加熱温度と冷却降温前後の当該寸法変化量の相関関係を算出すること。
板幅、板長方向の寸法は、板厚方向とは、成分構成分布の異方性の違いにより、冷却降温前後における寸法変化の度合いが異なる。よって、板幅、板長方向のいずれか1以上の当該寸法変化と加熱温度との相関関係(板幅なら板幅の寸法変化と加熱温度の相関関係、板長なら板長の寸法変化と加熱温度の相関関係、板幅と板長なら板幅と板長の両者の寸法変化と加熱温度の相関関係)を算出しておく。
6. In advance, measure the plate width and / or plate length before and after cooling and lowering when the heating temperature is changed, and calculate the correlation between the heating temperature and the amount of the dimensional change before and after cooling and lowering.
The dimensions in the plate width and plate length directions differ from those in the plate thickness direction in the degree of dimensional change before and after cooling and lowering due to the difference in anisotropy of the component composition distribution. Therefore, the correlation between the dimensional change of one or more of the plate width and the plate length direction and the heating temperature (correlation between the dimensional change of the plate width and the heating temperature for the plate width, and the dimensional change and heating of the plate length for the plate length). Calculate the temperature correlation, and if the plate width and plate length, the dimensional change of both the plate width and plate length and the correlation of heating temperature).

7.予め、冷却速度を変化させた際の、冷却降温前後の板幅および/又は板長寸法を測定し、冷却速度と冷却降温前後の当該寸法変化量の相関関係を算出すること。
板幅、板長方向の寸法は、板厚方向とは、成分構成分布の異方性の違いにより、冷却降温前後における寸法変化の度合いが異なる。よって、板幅、板長方向のいずれか1以上の当該寸法変化と冷却速度との相関関係(板幅なら板幅の寸法変化と冷却速度の相関関係、板長なら板長の寸法変化と冷却速度の相関関係、板幅と板長なら板幅と板長の両者の寸法変化と冷却速度の相関関係)を算出しておく。
なお、上記2.〜7.の相関関係を得るための寸法測定は、実際に熱処理に供する製品用の鋼板で予め行ってもよいし、実際に熱処理する予定の製品用の鋼板と類似組成、類似組織、あるいは、同一組成、同一組織等で、製品用の鋼板より小さい試験片等で行ってもよい。
7. In advance, measure the plate width and / or plate length dimension before and after the cooling and lowering temperature when the cooling rate is changed, and calculate the correlation between the cooling rate and the amount of the dimensional change before and after the cooling and lowering temperature.
The dimensions in the plate width and plate length directions differ from those in the plate thickness direction in the degree of dimensional change before and after cooling and lowering due to the difference in anisotropy of the component composition distribution. Therefore, the correlation between the dimensional change of one or more of the plate width and the plate length direction and the cooling rate (correlation between the dimensional change of the plate width and the cooling rate for the plate width, and the dimensional change and cooling of the plate length for the plate length). Calculate the correlation of speed, and if the plate width and plate length, the correlation between the dimensional change of both plate width and plate length and the cooling rate).
In addition, the above 2. ~ 7. The dimensional measurement for obtaining the correlation between the above may be performed in advance on the steel sheet for the product to be actually heat-treated, or the same composition, the same structure, or the same composition as the steel sheet for the product to be actually heat-treated. It may be carried out with a test piece or the like having the same structure and smaller than the steel plate for the product.

次に、本発明の好ましい要件について順次説明する。
まず、熱処理前の鋼板の寸法測定について述べる。
熱間圧延後の鋼板は、冷却帯で水冷もしくは空冷によって常温まで冷却される。この冷却後の鋼板に対して熱処理を行うが、熱処理前に板厚、板長、板幅を予め測定する。
板厚測定には、特に測定機器に対する制限は設けないが、レーザー板厚計などを用いることができる。また、ゲージ変動や板クラウンの影響を考慮し、長手方向および幅方向に複数点測定することが望ましい。
Next, the preferred requirements of the present invention will be described in sequence.
First, the dimensional measurement of the steel sheet before the heat treatment will be described.
The steel sheet after hot rolling is cooled to room temperature by water cooling or air cooling in the cooling zone. Heat treatment is performed on the cooled steel sheet, and the plate thickness, plate length, and plate width are measured in advance before the heat treatment.
The plate thickness measurement is not particularly limited to the measuring device, but a laser plate thickness gauge or the like can be used. In addition, it is desirable to measure multiple points in the longitudinal direction and the width direction in consideration of the influence of gauge fluctuation and plate crown.

板幅に関しては、平面形状計などを用いて測定することができる。板幅変動を考慮し、好ましくは、長手方向に複数点測定する。板長が正確に測定されれば、板幅測定は必須ではない。 The plate width can be measured using a plane shape meter or the like. Considering the fluctuation of the plate width, preferably, a plurality of points are measured in the longitudinal direction. If the plate length is measured accurately, the plate width measurement is not essential.

板長に関しては、厚鋼板のように板長が短い場合には平面形状計などを用いて板長を測定する。一方で、薄鋼板のように板長が長い場合には、板長の精度が厳格で無い場合が多いため、板幅さえ測定されれば、板長測定は必須では無い。 Regarding the plate length, when the plate length is short like a thick steel plate, the plate length is measured using a plane shape meter or the like. On the other hand, when the plate length is long like a thin steel plate, the accuracy of the plate length is not strict in many cases. Therefore, the plate length measurement is not indispensable as long as the plate width is measured.

次に、加熱および冷却過程における、変態ひずみについて述べる。変態ひずみは、冷却速度などに依存して、冷却前と結晶構造が異なる相が生成し、密度が変化するため、相変態に対応して変態ひずみが生じることをいう。これらの密度は合金成分や温度域によって異なるが、これらの影響を考慮した密度式が提案されており(非特許文献3および非特許文献4)鉄鋼材料については上記値を用いることができるが、好ましくは事前に各温度域で鋼種毎に密度を測定しておく。 Next, the transformation strain in the heating and cooling processes will be described. The transformation strain means that a phase having a crystal structure different from that before cooling is generated and the density changes depending on the cooling rate or the like, so that the transformation strain occurs in response to the phase transformation. Although these densities differ depending on the alloy composition and the temperature range, a density formula considering these effects has been proposed (Non-Patent Documents 3 and 4), but the above values can be used for steel materials. Preferably, the density is measured in advance for each steel type in each temperature range.

本発明では、この密度変化から生じる寸法変化に加えて、加熱速度・加熱温度・冷却速度に応じて変態ひずみに異方性が生じ、板厚・板長・板幅がそれぞれ異なった変化をする現象を基礎としている。 In the present invention, in addition to the dimensional change caused by this density change, anisotropy occurs in the transformation strain according to the heating rate, the heating temperature, and the cooling rate, and the plate thickness, the plate length, and the plate width change differently. It is based on the phenomenon.

実際の熱処理工程について述べる。通常、製品の材質を確保するという要請から、加熱速度、加熱温度、冷却速度の範囲が予め定められている。この定められたプロセス条件範囲内で、所望の寸法に制御するため、測定された熱処理前後の寸法と加熱速度、加熱温度および冷却速度の相関関係を算出し、その相関関係に基づいて、製品寸法の基準値から加熱速度、加熱温度および冷却速度を決定する。 The actual heat treatment process will be described. Usually, the range of heating rate, heating temperature, and cooling rate is predetermined in order to secure the material of the product. In order to control to the desired dimensions within this defined process condition range, the correlation between the measured dimensions before and after heat treatment and the heating rate, heating temperature and cooling rate is calculated, and the product dimensions are calculated based on the correlation. The heating rate, heating temperature and cooling rate are determined from the reference values of.

ここで、製品の寸法基準を得るための加熱速度、加熱温度および冷却速度の条件は無数に存在し、このどの条件を用いてもよいが、好ましくは材質が許す範囲で加熱速度が小さく、加熱温度が低く、冷却速度が遅い方が、より均質な材料が得られると共に、設備負荷も小さくなる。 Here, there are innumerable conditions of heating rate, heating temperature, and cooling rate for obtaining the dimensional standard of the product, and any of these conditions may be used, but preferably, the heating rate is low within the range permitted by the material, and heating is performed. The lower the temperature and the slower the cooling rate, the more uniform the material can be obtained and the smaller the equipment load.

(熱処理条件と寸法変化の相関関係を予め実測によって求める場合)
熱処理条件と寸法変化の相関関係を予め実測によって求める場合について、所定の寸法変化とするための熱処理中のひずみの計算方法について説明する。まず、板厚方向のひずみについて述べる。加熱速度は加熱時の変態ひずみに影響を与え、その効果は検討の結果、たとえば、次式のように整理される。

Δε 2→1=β2→1(1+Aexp(−bT)) (1)

ただし、Δε 2→1は加熱時の板厚方向変態ひずみ、Tは加熱速度、A、b、nは材料とプロセス条件から決定される値である。β2→1は上記密度モデルなどから算出される加熱時の等方的な変態ひずみであって、通常の鉄鋼材料では加熱時にはαからγへと変態するため、負の値となり、Δε2→1も負の値である。この式と実測値よりA、b、nを決定する。その方法は、まず式(1)を増分型に直す。

dε 2→1=−β2→1AbnTn−1exp(−bT)dT (1)’

この式と実験のdilatationカーブから、各温度域における値をフィッティングすることができるようになる。
(When the correlation between heat treatment conditions and dimensional changes is determined in advance by actual measurement)
A method of calculating strain during heat treatment to obtain a predetermined dimensional change will be described in a case where the correlation between the heat treatment conditions and the dimensional change is obtained in advance by actual measurement. First, the strain in the plate thickness direction will be described. The heating rate affects the transformation strain during heating, and as a result of examination, the effect is arranged by, for example, the following equation.

Δε N 2 → 1 = β 2 → 1 (1 + Aexp (−bT n )) (1)

However, Δε N 2 → 1 is a transformation strain in the plate thickness direction during heating, T is a heating rate, and A, b, and n are values determined from the material and process conditions. β 2 → 1 is an isotropic transformation strain during heating calculated from the above density model, etc., and since it transforms from α to γ during heating with ordinary steel materials, it becomes a negative value, and Δε 2 → 1 1 is also a negative value. A, b, and n are determined from this formula and the measured values. In the method, first, the equation (1) is converted into an incremental type.

N 2 → 1 = -β 2 → 1 AbnT n-1 exp (-bT n ) dT (1)'

From this equation and the experimental dilation curve, it becomes possible to fit the values in each temperature range.

加熱温度と冷却速度は、共に冷却時の変態ひずみに影響を与える。冷却時の板厚方向変態ひずみΔε 1→2は加熱時と異なりγからαへと変態するため、正の値を取る。加熱温度をTとし、冷却速度をTとすると、冷却時の変態ひずみは以下のようになる。

Δε 1→2=β1→2(1+Bexp(−cT)exp(−d(T−T))) (2)

ただし、β1→2は上記密度モデルなどから算出される冷却時の方的な変態ひずみであって、通常の鉄鋼材料ではγからαへと変態するため正の値となる。Tは基準温度、B、c、m、dは材料とプロセス条件から決定される値である。
Both the heating temperature and the cooling rate affect the transformation strain during cooling. The plate thickness direction transformation strain Δε N 1 → 2 during cooling is different from that during heating and transforms from γ to α, so it takes a positive value. Assuming that the heating temperature is T 1 and the cooling rate is T, the transformation strain during cooling is as follows.

Δε N 1 → 2 = β 1 → 2 (1 + Beexp (−cT m ) exp (−d (T 1 −T 0 ))) (2)

However, β 1 → 2 is an isotropic transformation strain during cooling calculated from the above density model or the like , and is a positive value because it transforms from γ to α in a normal steel material. T 0 is a reference temperature, and B, c, m, and d are values determined from the material and process conditions.

板長方向と板幅方向の変態ひずみは同様の値となるため、以下では板長方向の変態ひずみについてのみ述べる。加熱時および冷却時の板長方向変態ひずみはそれぞれ、
Δε 2→1=β2→1(1−A/2exp(−bT)) (3)

Δε 1→2=β1→2(1−B/2exp(−cT)exp(−d(T−T))) (4)

となる。この場合も、式(2)〜(4)を増分型に直し、これと実験のdilatationカーブから、各温度域における値をフィッティングすることができるようになる。
Since the transformation strains in the plate length direction and the plate width direction have the same values, only the transformation strain in the plate length direction will be described below. The transformation strain in the plate length direction during heating and cooling is different, respectively.
Δε R 2 → 1 = β 2 → 1 (1-A / 2exp (−bT n )) (3)

Δε R 1 → 2 = β 1 → 2 (1-B / 2exp (−cT m ) exp (−d (T 1 −T 0 ))) (4)

Will be. In this case as well, equations (2) to (4) can be converted to the incremental type, and the values in each temperature range can be fitted from this and the experimental dilation curve.

上記のように、熱処理前後の寸法変化を、加熱速度や冷却速度の関数として実験によって予め得る場合、予測される熱処理後の各方向の寸法の精度は、非常に良好なものとなり得る。しかも、実測しておけば、板厚方向の濃化層がないものに関しても、良好な寸法予測性が得られることは明らかである。しかしながら、全ての製造鋼種について、同様に、予め熱処理前後の板厚、板幅/又は板長寸法を測定し、さらに、加熱速度、加熱温度、冷却速度との相関関係を明らかにする試験を実施するにはしばしば開発コストと時間を要することがある。そこで、上記メカニズムに則り、予め熱処理前後の板厚、板幅/又は板長寸法を測定することなしに、数値計算などによりで熱処理寸法変化を予測できれば、メリットが大きい。 As described above, when the dimensional change before and after the heat treatment is obtained in advance by an experiment as a function of the heating rate and the cooling rate, the predicted dimensional accuracy in each direction after the heat treatment can be very good. Moreover, if it is actually measured, it is clear that good dimensional predictability can be obtained even in the case where there is no concentrated layer in the plate thickness direction. However, for all manufactured steel grades, similarly, the plate thickness, plate width / or plate length dimension before and after the heat treatment is measured in advance, and a test is conducted to clarify the correlation with the heating rate, heating temperature, and cooling rate. This can often be costly and time consuming to develop. Therefore, if the change in the heat treatment dimension can be predicted by numerical calculation or the like without measuring the plate thickness, the plate width / or the plate length dimension before and after the heat treatment in advance according to the above mechanism, there is a great merit.

そこで、以下では加熱時の熱処理寸法変化について、特に予め行う熱処理前後の板厚、板幅/又は板長寸法の測定を不要とし、数値計算による予測方法の一例を述べる。ここで不要としている、予め熱処理前後の板厚、板幅/又は板長寸法の測定とは、予め、寸法変化と熱処理条件との相関関係を得るための寸法測定である。 Therefore, in the following, an example of a method for predicting the change in heat treatment dimension during heating by numerical calculation will be described without the need to measure the plate thickness, plate width / or plate length dimension before and after the heat treatment. The measurement of the plate thickness, plate width / or plate length before and after the heat treatment, which is unnecessary here, is a dimensional measurement for obtaining a correlation between the dimensional change and the heat treatment conditions in advance.

まず図6に示すようなバンド状に濃度分布のある層が積層された組織の一部を考える。ここでは、中央部に合金元素が濃化した層を挟むように非濃化層が板厚方向上下に積層しているような3層構造を基本単位として考え、濃化層と非濃化層が交互に3層以上繰り返されるものとして、各境界を周期的境界条件として設定した。この濃化層と非濃化層の厚みの関係は、鋼材の成分系や製造プロセスによって決定する。具体的には、C、Mn、Ni等の合金元素および連続鋳造での二次冷却における冷却速度と熱間圧延における累積圧下率である。あるいは、熱処理に供する鋼板(熱処理前の鋼板)の各濃淡層の合金元素の濃化度合い、各濃化層の厚みは、EPMA等の分析機器によって把握してもよい。 First, consider a part of the structure in which layers having a concentration distribution in a band shape as shown in FIG. 6 are laminated. Here, a three-layer structure in which non-concentrated layers are laminated vertically in the plate thickness direction so as to sandwich a layer in which alloy elements are concentrated is considered as a basic unit, and a concentrated layer and a non-concentrated layer are considered. Each boundary was set as a periodic boundary condition, assuming that 3 or more layers were alternately repeated. The relationship between the thickness of the concentrated layer and the thickness of the non-concentrated layer is determined by the component system of the steel material and the manufacturing process. Specifically, it is an alloy element such as C, Mn, Ni, a cooling rate in secondary cooling in continuous casting, and a cumulative reduction rate in hot rolling. Alternatively, the degree of concentration of the alloying elements in each of the light and shade layers of the steel sheet to be subjected to the heat treatment (the steel sheet before the heat treatment) and the thickness of each concentrated layer may be grasped by an analytical instrument such as EPMA.

これら2相における合金元素の偏析を考慮した硬さ分布は各すべり系の臨界せん断応力のインプットとして与えられる。また、相変態は、加熱時のオーステナイト変態において、合金成分および加熱速度に依存して核生成のタイミングが変化する。この変化は平衡状態図などから求めることができる。さらに、一般的には、合金元素が濃化している層が優先的にオーステナイト変態を始める。核生成の後、新たに発生した粒は粒成長し、新相同士がぶつかった時点で変態が終了し、この境界が新たな粒界を形成する。本成長過程においては、微視的には変態による密度差によって新相は等方的な収縮を起こす。しかし、変態が起こっていない部分は収縮していないため、このひずみのミスフィットが塑性変形を誘起する。このひずみ差によって生じる塑性変形は、有限要素法(FEM)や高速フーリエ変換(FFT)を用いた結晶塑性解析によって求めることができる。 The hardness distribution considering the segregation of alloying elements in these two phases is given as an input of the critical shear stress of each slip system. Further, in the phase transformation, in the austenite transformation during heating, the timing of nucleation changes depending on the alloy component and the heating rate. This change can be obtained from an equilibrium phase diagram or the like. Further, in general, the layer in which the alloying element is concentrated preferentially initiates the austenite transformation. After nucleation, the newly generated grains grow, and when the new phases collide with each other, the transformation ends, and this boundary forms a new grain boundary. In this growth process, microscopically, the new phase undergoes isotropic contraction due to the density difference due to metamorphosis. However, since the part where the transformation has not occurred is not contracted, this strain mismatch induces plastic deformation. The plastic deformation caused by this strain difference can be obtained by crystal plastic analysis using the finite element method (FEM) or the fast Fourier transform (FFT).

まず、図1〜5の試験に供したものと同じ成分の鋼について、累積圧下率が190%である板厚25mmの板を、Niの偏析比(平均濃度との比)が1.2以上の濃化層の厚みを測定したところ全体の1/6の厚みが濃化層であった。そこでこの厚み部分の合金濃度から算出される変態温度と非濃化層の合金濃度から算出される変態温度をインプットとして1℃/sの加熱速度で加熱相変態中の結晶塑性解析を、FFTを用いて行ったところ、650〜700℃の加熱過程において(加熱によりオーステナイト変態する過程)、図8に示すようなひずみが算出された。この図8のひずみは、実験によって得られている変態ひずみ図1の650〜700℃の加熱過程と定量的に一致し、計算の確からしさ、および想定メカニズムの妥当性が検証された。図9に、650〜700℃の温度範囲で、1℃/sで加熱した際の相変態の進行を、高速フーリエ変換による結晶塑性シミュレーションした結果を示す。オーステナイト変態前の結晶(A)を加熱すると、中央の濃化層が先に変態し、濃化層中にオーステナイト相γ1が現れ、結晶全体の5体積%オーステナイト変態した(B)の時点では、濃化層以外の部分は変態しない。温度がさらに上昇し、結晶全体の20体積%オーステナイト変態した(C)となった時点、すなわち、濃化層の変態がほぼ終了した時点から非濃化層の変態が開始され、非濃化相中にオーステナイト相γ2が現れる(図9(A)(B)(C))。 First, with respect to the steel having the same composition as that used in the tests of FIGS. 1 to 5, a plate having a cumulative reduction rate of 190% and a plate thickness of 25 mm has a Ni segregation ratio (ratio to the average concentration) of 1.2 or more. When the thickness of the concentrated layer was measured, 1/6 of the total thickness was the concentrated layer. Therefore, the transformation temperature calculated from the alloy concentration of this thick portion and the transformation temperature calculated from the alloy concentration of the non-concentrated layer are used as inputs, and the crystal plasticity analysis during the heating phase transformation is performed at a heating rate of 1 ° C./s. As a result, the strain as shown in FIG. 8 was calculated in the heating process at 650 to 700 ° C. (the process of austenite transformation by heating). The strain in FIG. 8 quantitatively coincided with the heating process of 650 to 700 ° C. in FIG. 1 for the transformation strain obtained by the experiment, and the accuracy of the calculation and the validity of the assumed mechanism were verified. FIG. 9 shows the results of crystal plasticity simulation by fast Fourier transform of the progress of phase transformation when heated at 1 ° C./s in the temperature range of 650 to 700 ° C. When the crystal (A) before the austenite transformation is heated, the central concentrated layer is transformed first, the austenite phase γ1 appears in the concentrated layer, and at the time of 5% by volume austenite transformation of the entire crystal (B), The part other than the concentrated layer does not metamorphose. The transformation of the non-concentrated layer is started when the temperature further rises to 20% by volume austenite transformation (C) of the entire crystal, that is, when the transformation of the concentrated layer is almost completed, and the non-concentrated phase The austenite phase γ2 appears in the austenite phase (FIGS. 9 (A) (B) (C)).

一方で、加熱速度が10℃/sの場合についても650〜700℃の加熱過程(加熱によりオーステナイト変態する過程)で加熱相変態中の結晶塑性解析を、FFTを用いて行ったところ、図10に示すようなひずみが算出された。この現象を1℃/sの場合と同様に、高速フーリエ変換による結晶塑性シミュレーションにより分析すると、図11に示すように、加熱速度が10℃/sの場合には濃化層の変態が開始され、濃化層中にオーステナイト相γ1が現れ続ける時期と重複し(図11(B))非濃化層の変態が開始され、非濃化相中にオーステナイト相γ2が現れており、変態のタイミング差は非常に小さくなっている。したがって、図10のように相変態時の変態収縮に異方性が殆ど見られない。これは図1、2の実験結果から得られる知見とも一致する内容である。 On the other hand, even when the heating rate is 10 ° C./s, the crystal plasticity analysis during the heating phase transformation in the heating process of 650 to 700 ° C. (the process of austenite transformation by heating) was performed using FFT. The strain shown in is calculated. When this phenomenon is analyzed by crystal plasticity simulation by fast Fourier transform as in the case of 1 ° C./s, as shown in FIG. 11, transformation of the concentrated layer is started when the heating rate is 10 ° C./s. , Overlapping with the time when the austenite phase γ1 continues to appear in the concentrated layer (Fig. 11 (B)), the transformation of the non-concentrated layer is started, and the austenite phase γ2 appears in the non-concentrated phase, and the timing of transformation The difference is very small. Therefore, as shown in FIG. 10, almost no anisotropy is observed in the transformation contraction during the phase transformation. This is in agreement with the findings obtained from the experimental results of FIGS. 1 and 2.

次に、同様に冷却時のマルテンサイト変態における変態膨張計算について述べる。冷却開始前の濃化層の分布は、加熱温度に依存する。ここで、800℃で5分間保持する加熱を考えた場合、濃化層の分布は殆ど変化しないため、以下では濃化層の厚みは加熱時同様に全体の1/6程度の厚みとする。冷却速度40℃/sで、350℃から250℃へ冷却時のマルテンサイト変態による変態膨張についても、加熱時と同様に冷却時の変態膨張(ひずみ量)を、FFTを用いて計算した。その結果、図12のようになった。一方、冷却速度が10℃/sと遅くなると、図12と同じ350℃から250℃への冷却であるが、図13のようになった。すなわち、冷却速度が速ければ、冷却過程において、板厚方向の膨張量は低下し、冷却速度が遅ければ板厚方向の膨張量は増大する傾向が計算によっても得られた。この結果は、図4の実験結果から得られる知見とも一致する内容である。このように、冷却時には加熱時と逆に合金濃化層の変態は遅れるが、この効果を計算に導入することによって、変態膨張の異方性を再現することができる。 Next, the transformation expansion calculation in the martensitic transformation during cooling will be described in the same manner. The distribution of the concentrated layer before the start of cooling depends on the heating temperature. Here, when considering heating held at 800 ° C. for 5 minutes, the distribution of the concentrated layer hardly changes. Therefore, in the following, the thickness of the concentrated layer is set to about 1/6 of the total thickness as in the case of heating. Regarding the transformational expansion due to martensitic transformation during cooling from 350 ° C. to 250 ° C. at a cooling rate of 40 ° C./s, the transformational expansion (strain amount) during cooling was calculated using FFT as in the case of heating. As a result, the result is as shown in FIG. On the other hand, when the cooling rate was as slow as 10 ° C./s, the cooling from 350 ° C. to 250 ° C., which was the same as in FIG. 12, was as shown in FIG. That is, it was also calculated that if the cooling rate is high, the amount of expansion in the plate thickness direction decreases in the cooling process, and if the cooling rate is slow, the amount of expansion in the plate thickness direction increases. This result is in agreement with the findings obtained from the experimental results shown in FIG. As described above, the transformation of the alloy-concentrated layer is delayed during cooling as opposed to during heating, but by incorporating this effect into the calculation, the anisotropy of transformation expansion can be reproduced.

以上のように、Ac1点以上の温度に加熱する熱処理工程を有する鋼板の製造方法において、最適な加熱速度、加熱温度、冷却速度を決定し板の各方向に所定の寸法範囲とするには、必ずしも熱処理条件との相関関係を求めるために、必ずしも予めの熱処理前後の板厚、板幅/又は板長寸法の測定を行う必要はない。そのため、最適な加熱速度、加熱温度、冷却速度を決定し板の各方向に所定の寸法範囲とするために必要な事項は、以下1)〜5)の事項となる。 As described above, in the manufacturing method of the steel sheet with a heat treatment step of heating to a temperature above A c1 point, the optimal heating rate, heating temperature, to a predetermined dimensional range in each direction of the determined plate and the cooling rate is In order to obtain the correlation with the heat treatment conditions, it is not always necessary to measure the plate thickness, plate width / or plate length dimension before and after the heat treatment in advance. Therefore, the items 1) to 5) below are necessary for determining the optimum heating rate, heating temperature, and cooling rate and setting the predetermined dimensional range in each direction of the plate.

1)熱処理前の鋼板の板厚寸法を測定すること
この点に関する理由は、測定によって熱処理条件と寸法変化量の相関関係を求める場合である前記1.と同様である。
1) Measuring the thickness of the steel sheet before heat treatment The reason for this point is when the correlation between the heat treatment conditions and the amount of dimensional change is obtained by measurement. Is similar to.

次に、以下の2)〜4)のように、熱処理条件と寸法変化量の相関関係を求める。
2)予め、加熱昇温過程における加熱速度を変化させた際の、加熱速度と加熱昇温前後の寸法変化量の相関関係を求めること
3)予め、加熱温度を変化させた際の、加熱温度と冷却降温過程前後の寸法変化量の相関関係を求めること
4)予め、冷却速度を変化させた際の、冷却速度と冷却降温前後の寸法変化量の相関関係を求めること
上記2)〜4)の相関関係を求める意義は、前記1.〜3.に記載した意義と同様である。相関関係を求める具体的な手段を限定しないだけである。
上記2)〜4)の相関関係を求めるに際し、各熱処理条件を変化させた場合の板寸法を測定することにより相関関係を求めてもよいし、そのような測定を行わず数値シミュレーション等の計算によって、相関関係を求めてもよい。このとき、板厚の寸法変化と熱処理条件との相関関係は少なくとも求めておく必要がある。それは、板厚方向の寸法変化については、前述のように、熱処理中の濃化層と非濃化層との力学的相互作用等により、等方モデルにより単純に予測することができないからである。一方、板幅、板長は、板厚変化が既知であるならば、密度変化をベースとする等方モデルより単純に求めることも可能であり、寸法変化を予測することもできるので、必ずしも必要ではない。しかしながら、熱処理後の寸法精度を向上させるためには、板幅、板長と各熱処理条件との相関関係のいずれか1つ以上求めておくことが好ましい。具体的な方法としては、等方モデル等でも求めることができる。
上記2)〜4)の相関関係を計算によって求める場合、基礎データに基づいて計算する。この基礎データは、成分組成の異なる濃化層と非濃化層間(各不均一層間)での、変態による膨張又は収縮の差、相互作用力等を把握するためのものである。基礎データとしては、濃化層、非濃化層の当該各層の線膨張係数、密度変化に起因する変態ひずみ量(加熱時・冷却時ともに)、各温度における当該各層のヤング率、ポアソン比、各相の構成式(結晶塑性モデルであれば臨界せん断応力等)を利用することが好ましい。基礎データの取得は、予め、当該材料の濃化層、非濃化層の成分組成により、材料データベースから抽出することが好ましい。このように、各濃化層、非濃化層の構成成分(濃化の程度)と厚さを把握し、加熱速度、加熱温度、冷却速度に応じた、変態による膨張又は収縮の差、相互作用力を割り出すことができる。
Next, the correlation between the heat treatment conditions and the amount of dimensional change is obtained as shown in 2) to 4) below.
2) Obtain the correlation between the heating rate and the amount of dimensional change before and after the heating temperature rise when the heating rate is changed in the heating temperature rise process in advance. 3) The heating temperature when the heating temperature is changed in advance. 4) Obtaining the correlation between the cooling rate and the amount of dimensional change before and after the cooling / cooling process when the cooling rate is changed in advance. 4) Obtaining the correlation between the cooling rate and the amount of dimensional change before and after the cooling / cooling process. The significance of finding the correlation between the above is 1. ~ 3. It has the same meaning as described in. It does not just limit the specific means of finding the correlation.
When obtaining the correlation of 2) to 4) above, the correlation may be obtained by measuring the plate dimensions when each heat treatment condition is changed, or a calculation such as a numerical simulation may be performed without such measurement. The correlation may be obtained. At this time, it is necessary to obtain at least the correlation between the dimensional change in the plate thickness and the heat treatment conditions. This is because, as described above, the dimensional change in the plate thickness direction cannot be simply predicted by the isotropic model due to the mechanical interaction between the concentrated layer and the non-concentrated layer during the heat treatment. .. On the other hand, the plate width and plate length can be obtained simply from the isotropic model based on the density change if the plate thickness change is known, and the dimensional change can be predicted, so it is not always necessary. is not it. However, in order to improve the dimensional accuracy after the heat treatment, it is preferable to obtain at least one of the correlation between the plate width and the plate length and each heat treatment condition. As a specific method, an isotropic model or the like can also be obtained.
When the correlation of 2) to 4) above is calculated, it is calculated based on the basic data. This basic data is for grasping the difference in expansion or contraction due to transformation, the interaction force, etc. between the concentrated layer and the non-concentrated layer (each non-uniform layer) having different component compositions. The basic data include the coefficient of linear expansion of each of the concentrated and non-concentrated layers, the amount of transformation strain due to density changes (both during heating and cooling), Young's modulus of each layer at each temperature, and Poisson's ratio. It is preferable to use the constitutive equation of each phase (critical shear stress, etc. in the case of a crystal plastic model). It is preferable to acquire the basic data in advance from the material database according to the component composition of the concentrated layer and the non-concentrated layer of the material. In this way, the constituents (degree of concentration) and thickness of each concentrated layer and non-concentrated layer are grasped, and the difference in expansion or contraction due to transformation according to the heating rate, heating temperature, and cooling rate, and mutual The force of action can be determined.

5)前記2)〜4)で得られた相関関係と、所望の板厚範囲・板幅範囲・板長範囲となる寸法変化量から、加熱速度、加熱温度、冷却速度を設定して熱処理を行う
前記2)〜4)で得られた相関関係を利用すれば、所望の寸法変化となる加熱速度、加熱温度、冷却速度が決定できるので、決定された条件にしたがって熱処理を行えばよい。板幅・板長と各熱処理条件との相関関係は把握しなくとも、板厚寸法を所定の範囲とする熱処理条件を採用すれば、自ずと板幅・板長は決定できる。しかしながら、板幅・板長と各熱処理条件との相関関係も求めておく方が好ましいことは前述のとおりである。
5) Heat treatment is performed by setting the heating rate, heating temperature, and cooling rate from the correlation obtained in 2) to 4) above and the amount of dimensional change within the desired plate thickness range, plate width range, and plate length range. By utilizing the correlations obtained in the above 2) to 4), the heating rate, heating temperature, and cooling rate that cause desired dimensional changes can be determined, so that the heat treatment may be performed according to the determined conditions. Even if the correlation between the plate width / plate length and each heat treatment condition is not grasped, the plate width / plate length can be naturally determined by adopting the heat treatment conditions in which the plate thickness dimension is within a predetermined range. However, as described above, it is preferable to obtain the correlation between the plate width / plate length and each heat treatment condition.

また、上記のような本発明を実施するための鋼板の熱処理設備として、以下のような構成が挙げられる。
すなわち、一つの熱処理設備として、熱処理前の板厚と、板幅および/又は板長を入力する入力手段と、入力された熱処理前の板厚と、板幅および/又は板長と、予め算出した熱処理前後の板厚と加熱速度、加熱温度、冷却速度の相関関係と、予め算出した熱処理前後の板幅および/又は板長と加熱速度、加熱温度、冷却速度の相関関係を記憶した記憶媒体と、前記記憶媒体に記憶した相関関係に、前記入力手段により入力した熱処理前の板厚と、熱処理前の板幅および/又は板長と、所望の板厚範囲と、所望の板幅範囲および/又は板長範囲とを適用して、所望の板厚範囲、板幅範囲又は板長範囲となる加熱速度、加熱温度、冷却速度を算出手段によって、算出された加熱速度、加熱温度、冷却速度に制御する加熱速度制御手段、加熱温度制御手段、および冷却速度制御手段を備えることである。熱処理設備には、熱処理前の板厚と、板幅および/又は板長を測定する測定手段を設けてもよいし、別施設で測定した熱処理前の板厚と、板幅および/又は板長の値を入力してもよい。
Further, as the heat treatment equipment for the steel sheet for carrying out the present invention as described above, the following configurations can be mentioned.
That is, as one heat treatment facility, the plate thickness before heat treatment, the plate width and / or the input means for inputting the plate length, the input plate thickness before heat treatment, and the plate width and / or plate length are calculated in advance. A storage medium that stores the correlation between the plate thickness before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate, and the correlation between the plate width and / or the plate length before and after the heat treatment calculated in advance and the heating rate, the heating temperature, and the cooling rate. And, in the correlation stored in the storage medium, the plate thickness before heat treatment, the plate width and / or plate length before heat treatment, the desired plate thickness range, the desired plate width range, and the desired plate width range and the plate thickness before heat treatment input by the input means. / Or by applying the plate length range, the heating rate, heating temperature, and cooling rate within the desired plate thickness range, plate width range, or plate length range are calculated by the calculation means, and the heating rate, heating temperature, and cooling rate are calculated. The heating rate control means, the heating temperature control means, and the cooling rate control means are provided. The heat treatment equipment may be provided with a measuring means for measuring the plate thickness, the plate width and / or the plate length before the heat treatment, or the plate thickness, the plate width and / or the plate length before the heat treatment measured at another facility. You may enter the value of.

さらに、上記の熱処理設備において、シミュレーションにより寸法変化を計算する場合は、記憶媒体に、熱処理前後の板厚、板幅、板長と、加熱速度、加熱温度、冷却速度の相関関係を演算するプログラムを記憶させておけば、記憶媒体に予め相関関係を記憶させておく必要がないので好ましい。 Furthermore, in the above heat treatment equipment, when calculating the dimensional change by simulation, a program that calculates the correlation between the plate thickness, plate width, and plate length before and after the heat treatment and the heating rate, heating temperature, and cooling rate in the storage medium. Is preferable because it is not necessary to store the correlation in the storage medium in advance.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is described in this one condition example. It is not limited. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

(実施例1)
予め、加熱速度、加熱温度、冷却速度と、各方向の寸法変化の相関関係を測定によって求め、その結果に基づいて熱処理を行った。
質量%で、C:0.1%、Mn:1.0%、Si:1.0%、Al:0.03%、N:0.004%、P:0.001%、S:0.001%、Ti:0.0%、Nb:0.0%、Cr:0.0%、Cu:0.1%、Ni:8.9%、B:0.0%、Mo:0.0%、W:0.0%、および、V:0.0%を含有し、残部がFeと不可避不純物である鋼を連続鋳造機で鋳造した厚み250mmの鋼片を複数枚用意した。
(Example 1)
The correlation between the heating rate, the heating temperature, and the cooling rate and the dimensional change in each direction was obtained in advance by measurement, and heat treatment was performed based on the results.
By mass%, C: 0.1%, Mn: 1.0%, Si: 1.0%, Al: 0.03%, N: 0.004%, P: 0.001%, S: 0. 001%, Ti: 0.0%, Nb: 0.0%, Cr: 0.0%, Cu: 0.1%, Ni: 8.9%, B: 0.0%, Mo: 0.0 A plurality of steel pieces having a thickness of 250 mm were prepared by casting steel containing%, W: 0.0%, and V: 0.0%, and the balance being Fe and unavoidable impurities with a continuous casting machine.

この鋼片を板厚が9mmとなるまで熱間圧延し、常温まで冷却し、切断によって複数枚の鋼板を得た。その後、これらの鋼板を熱処理ラインに搬送し、加熱前に設置された寸法測定器にて寸法を測定した。 This steel piece was hot-rolled until the plate thickness became 9 mm, cooled to room temperature, and cut to obtain a plurality of steel plates. Then, these steel sheets were transported to a heat treatment line, and the dimensions were measured by a dimension measuring device installed before heating.

また、切断時に同時に試験片を切り出し、各温度域における密度変化を測定すると共に、加熱速度が1、4、7、10℃/s、また加熱温度が800℃、1300℃、冷却速度が10、20、30、40℃/sと変化させた場合の板厚方向、板長方向、板幅方向の変態ひずみを測定した。 In addition, a test piece is cut out at the same time as cutting, and the density change in each temperature range is measured, and the heating rate is 1, 4, 7, 10 ° C./s, the heating temperature is 800 ° C., 1300 ° C., and the cooling rate is 10. The transformation strains in the plate thickness direction, the plate length direction, and the plate width direction were measured when the temperature was changed to 20, 30, and 40 ° C./s.

測定結果から、例えば加熱速度1℃/s、冷却速度40℃/s時の式(1)および(2)のパラメータを決定したところ、次のようになった。A=1.5、b=1.0、n=0.8、B=0.8、c=1.0、m=0.2、d=1.0×10−5、T=700℃。 From the measurement results, for example, when the parameters of the equations (1) and (2) at a heating rate of 1 ° C./s and a cooling rate of 40 ° C./s were determined, the results were as follows. A = 1.5, b = 1.0, n = 0.8, B = 0.8, c = 1.0, m = 0.2, d = 1.0 × 10-5 , T 0 = 700 ℃.

次にこの鋼板を熱処理する前に、製品毎の寸法基準値をプロセスコンピュータから熱処理ラインの制御コンピュータに伝送し、制御コンピュータ内で加熱速度、加熱温度、冷却速度を決定した。 Next, before heat-treating the steel sheet, the dimensional reference values for each product were transmitted from the process computer to the control computer of the heat treatment line, and the heating rate, heating temperature, and cooling rate were determined in the control computer.

用意した鋼板の半数は上記により決定した加熱速度、加熱温度、冷却速度によって制御し、熱処理を行った。一方で残りの半数は従来通り、一律に加熱速度、加熱温度、冷却速度を決定し熱処理を行った。 Half of the prepared steel sheets were heat-treated by controlling them according to the heating rate, heating temperature, and cooling rate determined above. On the other hand, the other half were heat-treated by uniformly determining the heating rate, heating temperature, and cooling rate as before.

このとき、熱処理前後の板サイズ、製品のサイズ範囲、熱処理条件、サイズの合否結果を表3に示す。本結果から、熱処理条件を制御した場合には、サイズ不良による格落ちは発生していないが、制御しない場合には、特に板厚や板幅不合によって格落ちが発生している。なお、比較例である8は従来の等方変態モデルのみで変形量を予測した。計算する変態過程は、フェライト+マルテンサイト→オーステナイト→マルテンサイトという前提で0.05%線膨張するとした。その結果、熱処理後サイズ予測は、板厚8.81mm、板長10.75mm、板幅1524.7mmとなり、目的の範囲に収まることが予測されたが、実際には、収まらない。したがって、本発明の有効性が確認できた。 At this time, Table 3 shows the plate size before and after the heat treatment, the size range of the product, the heat treatment conditions, and the pass / fail result of the size. From this result, when the heat treatment conditions are controlled, the downgrade due to the size defect does not occur, but when it is not controlled, the downgrade occurs especially due to the plate thickness and the plate width mismatch. In Comparative Example 8, the amount of deformation was predicted only by the conventional isotropic transformation model. The transformation process to be calculated is assumed to be 0.05% linear expansion on the premise of ferrite + martensite → austenite → martensite. As a result, the size prediction after the heat treatment was 8.81 mm in thickness, 10.75 mm in length, and 1524.7 mm in width, which were predicted to be within the target range, but actually, they were not. Therefore, the effectiveness of the present invention was confirmed.

Figure 0006870399
Figure 0006870399

(実施例2)
一方、計算機シミュレーションによっても、寸法変化の予測を行い、その結果に基づいて熱処理を行った。
質量%で、C:0.1%、Mn:1.0%、Si:1.0%、Al:0.03%、N:0.004%、P:0.001%、S:0.001%、Ti:0.0%、Nb:0.0%、Cr:0.0%、Cu:0.1%、Ni:8.9%、B:0.0%、Mo:0.0%、W:0.0%、および、V:0.0%を含有し、残部がFeと不可避不純物である鋼を連続鋳造機で鋳造した厚み250mmの鋼片を複数枚用意した。
(Example 2)
On the other hand, computer simulation was also used to predict dimensional changes, and heat treatment was performed based on the results.
By mass%, C: 0.1%, Mn: 1.0%, Si: 1.0%, Al: 0.03%, N: 0.004%, P: 0.001%, S: 0. 001%, Ti: 0.0%, Nb: 0.0%, Cr: 0.0%, Cu: 0.1%, Ni: 8.9%, B: 0.0%, Mo: 0.0 A plurality of steel pieces having a thickness of 250 mm were prepared by casting steel containing%, W: 0.0%, and V: 0.0%, and the balance being Fe and unavoidable impurities with a continuous casting machine.

この鋼片を板厚が25mmとなるまで熱間圧延し、常温まで冷却し、切断によって複数枚の鋼板を得た。その後、これらの鋼板を熱処理ラインに搬送し、加熱前に設置された寸法測定器にて寸法を測定した。 This steel piece was hot-rolled until the plate thickness became 25 mm, cooled to room temperature, and cut to obtain a plurality of steel plates. Then, these steel sheets were transported to a heat treatment line, and the dimensions were measured by a dimension measuring device installed before heating.

また、上記鋼板の累積圧下率から、Niの偏析比が1.2以上である濃化層の厚みは全体の1/6であると推定した。さらに、平衡状態図から加熱時の変態開始温度を、連続冷却線図から冷却時の変態開始温度を、加熱速度および冷却速度の関数としてプログラムにインプットした。 Further, from the cumulative reduction rate of the steel sheet, it was estimated that the thickness of the concentrated layer having a Ni segregation ratio of 1.2 or more was 1/6 of the whole. Further, the transformation start temperature during heating was input to the program from the equilibrium phase diagram, and the transformation start temperature during cooling was input to the program as a function of the heating rate and the cooling rate from the continuous cooling diagram.

このインプット条件を元に、種々の加熱速度および冷却速度における相変態中の寸法変化をFFTによる結晶塑性モデルを用いて計算を行った。このとき、密度変化によって生じる変態収縮・膨張は非特許文献4を用いて計算した値を用いた。計算した加熱・冷却速度は1℃/s〜40℃/sである。本計算に加えて同じく非特許文献4に記載の密度モデルによって計算した熱ひずみを用いて、上記変態中の寸法変化と併せて熱処理工程全体での寸法変化と熱処理条件との関係を得た。 Based on this input condition, dimensional changes during phase transformation at various heating and cooling rates were calculated using a crystal plasticity model by FFT. At this time, the values calculated using Non-Patent Document 4 were used for the transformation contraction / expansion caused by the density change. The calculated heating / cooling rate is 1 ° C./s to 40 ° C./s. In addition to this calculation, the thermal strain also calculated by the density model also described in Non-Patent Document 4 was used to obtain the relationship between the dimensional change in the entire heat treatment process and the heat treatment conditions together with the dimensional change during the transformation.

次にこの鋼板を熱処理する前に、製品毎の寸法基準値をプロセスコンピュータから熱処理ラインの制御コンピュータに伝送し、制御コンピュータ内で加熱速度、加熱温度、冷却速度を決定した。 Next, before heat-treating the steel sheet, the dimensional reference values for each product were transmitted from the process computer to the control computer of the heat treatment line, and the heating rate, heating temperature, and cooling rate were determined in the control computer.

用意した鋼板の半数は上記により決定した加熱速度、加熱温度、冷却速度によって制御し、熱処理を行った。一方で残りの半数は従来通り、一律に加熱速度、加熱温度、冷却速度を決定し熱処理を行った。 Half of the prepared steel sheets were heat-treated by controlling them according to the heating rate, heating temperature, and cooling rate determined above. On the other hand, the other half were heat-treated by uniformly determining the heating rate, heating temperature, and cooling rate as before.

このとき、熱処理前後の板サイズ、製品のサイズ範囲、熱処理条件、サイズの合否結果を表4に示す。本結果から、熱処理条件を制御した場合には、サイズ不良による格落ちは発生していないが、制御しない場合には、特に板厚や板幅不合によって格落ちが発生している。なお、比較例である18を従来の等方変態モデルのみで変形量を予測した。計算する変態過程は、フェライト+マルテンサイト→オーステナイト→マルテンサイトという前提で0.05%線膨張するとした。その結果、熱処理後サイズ予測は、板厚25.3mm、板長10.75mm、板幅1523mmとなり、目的の範囲に収まることが予測されたが、実際には、収まらない。したがって、本発明の有効性が確認できた。 At this time, Table 4 shows the plate size before and after the heat treatment, the size range of the product, the heat treatment conditions, and the pass / fail result of the size. From this result, when the heat treatment conditions are controlled, the downgrade due to the size defect does not occur, but when it is not controlled, the downgrade occurs especially due to the plate thickness and the plate width mismatch. In addition, the deformation amount of 18 which is a comparative example was predicted only by the conventional isotropic transformation model. The transformation process to be calculated is assumed to be 0.05% linear expansion on the premise of ferrite + martensite → austenite → martensite. As a result, the size prediction after the heat treatment was 25.3 mm in thickness, 10.75 mm in length, and 1523 mm in width, which was predicted to be within the target range, but actually, it was not. Therefore, the effectiveness of the present invention was confirmed.

Figure 0006870399
Figure 0006870399

本発明によれば、鋼板の熱処理によって生じる寸法変化を予め予測し、さらに熱処理条件を制御することによって、熱処理後の寸法精度が向上する。よって、本発明は、産業上の利用可能性が高いものである。 According to the present invention, the dimensional accuracy after the heat treatment is improved by predicting the dimensional change caused by the heat treatment of the steel sheet in advance and further controlling the heat treatment conditions. Therefore, the present invention has high industrial applicability.

1…L収縮量、2…L収縮量、3…L収縮力、4…LからLへの拘束力、5…実際のL収縮力、6…L膨張量、7…LN−1膨張量、8…L膨張力、9…LN−1からLへの拘束力、10…実際のL膨張力、γ1…濃化層において変態したオーステナイト相、γ2…非濃化層において変態したオーステナイト相 1 ... L 1 contraction amount, 2 ... L 2 contraction amount, 3 ... L 1 contraction force, 4 ... L 2 to L 1 binding force, 5 ... actual L 1 contraction force, 6 ... L N expansion amount, 7 ... L N-1 expansion amount, 8 ... L N expansion force, 9 ... L N-1 to L N binding force, 10 ... actual L N expansion force, γ 1 ... austenite phase transformed in the concentrated layer, γ 2 … Austenite phase transformed in the non-concentrated layer

Claims (7)

少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱速度と加熱昇温前後の板厚の寸法変化量の相関関係を求め、
予め、加熱温度を変化させた際の、加熱温度と冷却降温前後の板厚の寸法変化量の相関関係を求め、
予め、冷却速度を変化させた際の、冷却速度と冷却降温前後の板厚の寸法変化量の相関関係を求め、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚の寸法変化量の相関関係と、
所望の板厚範囲・板幅範囲・板長範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the correlation between the heating rate and the amount of dimensional change in plate thickness before and after heating and heating was obtained when the heating rate was changed in the heating and heating process.
Obtain the correlation between the heating temperature and the amount of dimensional change in plate thickness before and after cooling and lowering when the heating temperature is changed in advance.
In advance, the correlation between the cooling rate and the amount of dimensional change in plate thickness before and after cooling and cooling was obtained when the cooling rate was changed.
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness before and after cooling and lowering temperature,
From the amount of dimensional change that is the desired plate thickness range, plate width range, and plate length range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱昇温前後の板厚・板幅を測定し、加熱速度と加熱昇温前後の板厚・板幅の寸法変化量の相関関係を算出し、
予め、加熱温度を変化させた際の、冷却降温前後の板厚・板幅を測定し、加熱温度と冷却降温過程前後の板厚・板幅の寸法変化量の相関関係を算出し、
予め、冷却速度を変化させた際の、冷却降温前後の板厚・板幅を測定し、冷却速度と冷却降温前後の板厚・板幅の寸法変化量の相関関係を算出し、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚・板幅の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚・板幅の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚・板幅の寸法変化量の相関関係と、
所望の板厚範囲・板幅範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the plate thickness and plate width before and after the heating temperature rise are measured when the heating rate is changed in the heating temperature rise process, and the correlation between the heating rate and the dimensional change amount of the plate thickness and plate width before and after the heating temperature rise. Is calculated and
In advance, the plate thickness and plate width before and after the cooling and lowering temperature are measured when the heating temperature is changed, and the correlation between the heating temperature and the dimensional change amount of the plate thickness and plate width before and after the cooling and lowering process is calculated.
In advance, the plate thickness and plate width before and after the cooling and lowering temperature are measured when the cooling rate is changed, and the correlation between the cooling rate and the dimensional change amount of the plate thickness and plate width before and after the cooling and lowering temperature is calculated.
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness and width before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness and width before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness and width before and after cooling and lowering temperature,
From the amount of dimensional change that is within the desired plate thickness range and plate width range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱昇温前後の板厚・板長を測定し、加熱速度と加熱昇温前後の板厚・板長の寸法変化量の相関関係を算出し、
予め、加熱温度を変化させた際の、冷却降温前後の板厚・板長を測定し、加熱温度と冷却降温過程前後の板厚・板長の寸法変化量の相関関係を算出し、
予め、冷却速度を変化させた際の、冷却降温前後の板厚・板長を測定し、冷却速度と冷却降温前後の板厚・板長の寸法変化量の相関関係を算出し、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚・板長の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚・板長の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚・板長の寸法変化量の相関関係と、
所望の板厚範囲・板長範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the plate thickness and plate length before and after the heating temperature rise are measured when the heating rate is changed in the heating temperature rise process, and the correlation between the heating rate and the dimensional change amount of the plate thickness and plate length before and after the heating temperature rise. Is calculated and
In advance, the plate thickness and plate length before and after the cooling and lowering temperature are measured when the heating temperature is changed, and the correlation between the heating temperature and the dimensional change amount of the plate thickness and plate length before and after the cooling and lowering process is calculated.
In advance, the plate thickness and plate length before and after the cooling and lowering temperature are measured when the cooling rate is changed, and the correlation between the cooling rate and the dimensional change amount of the plate thickness and plate length before and after the cooling and lowering temperature is calculated.
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness and plate length before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness and plate length before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness and plate length before and after cooling and lowering temperature,
From the amount of dimensional change that is within the desired plate thickness range and plate length range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱昇温前後の板厚・板幅・板長を測定し、加熱速度と加熱昇温前後の板厚・板幅・板長の寸法変化量の相関関係を算出し、
予め、加熱温度を変化させた際の、冷却降温前後の板厚・板幅・板長を測定し、加熱温度と冷却降温過程前後の板厚・板幅・板長の寸法変化量の相関関係を算出し、
予め、冷却速度を変化させた際の、冷却降温前後の板厚・板幅・板長を測定し、冷却速度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係を算出し、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚・板幅・板長の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係と、
所望の板厚範囲・板幅範囲・板長範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the plate thickness, plate width, and plate length before and after heating and heating are measured when the heating rate is changed in the heating and heating process, and the heating rate and plate thickness, plate width, and plate length before and after heating and heating are measured. Calculate the correlation of the amount of dimensional change,
Measure the plate thickness, plate width, and plate length before and after cooling and lowering when the heating temperature is changed, and correlate the heating temperature with the amount of dimensional change in plate thickness, plate width, and plate length before and after the cooling and lowering process. Is calculated and
In advance, measure the plate thickness, plate width, and plate length before and after cooling and cooling when the cooling rate is changed, and determine the correlation between the cooling rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and cooling. Calculate and
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and lowering temperature,
From the amount of dimensional change that is the desired plate thickness range, plate width range, and plate length range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
少なくともAc1点以上の温度に加熱する熱処理工程を有する鋼板の熱処理において、
予め、加熱昇温過程における加熱速度を変化させた際の、加熱速度と加熱昇温前後の板厚・板幅・板長の寸法変化量の相関関係を数値シミュレーションによって算出し、
予め、加熱温度を変化させた際の、加熱温度と冷却降温過程前後の板厚・板幅・板長の寸法変化量の相関関係を数値シミュレーションによって算出し、
予め、冷却速度を変化させた際の、冷却速度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係を数値シミュレーション算出し、
熱処理前の鋼板の板厚・板幅・板長寸法を測定し、
前記加熱速度と加熱昇温前後の板厚・板幅・板長の寸法変化量の相関関係、
前記加熱温度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係、
前記冷却速度と冷却降温前後の板厚・板幅・板長の寸法変化量の相関関係と、
所望の板厚範囲・板幅範囲・板長範囲となる寸法変化量から、
最適な加熱速度、加熱温度、冷却速度を設定して前記熱処理前の鋼板の熱処理を行うことを特徴とする鋼板の製造方法。
In the heat treatment of a steel sheet having a heat treatment step of heating to a temperature of at least one point of Acc.
In advance, the correlation between the heating rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after heating temperature rise when the heating rate is changed in the heating temperature rise process is calculated by numerical simulation.
In advance, the correlation between the heating temperature and the amount of dimensional change in plate thickness, plate width, and plate length before and after the cooling / lowering process when the heating temperature is changed is calculated by numerical simulation.
In advance, the correlation between the cooling rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and lowering temperature when the cooling rate is changed is calculated by numerical simulation.
Measure the thickness, width, and length of the steel sheet before heat treatment,
Correlation between the heating rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after heating
Correlation between the heating temperature and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and cooling,
Correlation between the cooling rate and the amount of dimensional change in plate thickness, plate width, and plate length before and after cooling and lowering temperature,
From the amount of dimensional change that is the desired plate thickness range, plate width range, and plate length range
A method for producing a steel sheet, which comprises setting an optimum heating rate, heating temperature, and cooling rate to heat-treat the steel sheet before the heat treatment.
請求項2〜請求項4のいずれか1項に記載の方法を実施するための鋼板の製造設備であって、
少なくともAc1点以上の温度に加熱する工程を提供する鋼板の熱処理設備において、
測定された熱処理前の板厚と、板幅および/又は板長を入力する入力手段と、
予め算出した熱処理前後の板厚と加熱速度、加熱温度、冷却速度の相関関係と、予め算出した熱処理前後の板幅および/又は板長と加熱速度、加熱温度、冷却速度の相関関係を記憶した記憶媒体と、
前記記憶媒体に記憶した相関関係に、前記入力手段により入力された熱処理前の板厚と、熱処理前の板幅および/又は板長と、所望の板厚範囲と、所望の板幅範囲および/又は板長範囲とを適用して、所望の板厚範囲、板幅範囲又は板長範囲となる加熱速度、冷却速度、加熱温度を算出する手段と、
前記算出する手段によって、算出された加熱速度、冷却速度、加熱温度に制御する加熱速度制御手段、冷却速度制御、加熱温度制御手段とを
有することを特徴とする鋼板の熱処理設備。
A steel sheet manufacturing facility for carrying out the method according to any one of claims 2 to 4.
In a steel sheet heat treatment facility that provides a step of heating to a temperature of at least one point of Acc.
An input means for inputting the measured plate thickness before heat treatment, plate width and / or plate length, and
The correlation between the pre-calculated plate thickness before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate and the pre-calculated correlation between the plate width and / or the plate length before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate are stored. Storage medium and
The plate thickness before heat treatment, the plate width and / or the plate length before heat treatment, the desired plate thickness range, the desired plate width range, and / / in the correlation stored in the storage medium. Alternatively, a means for calculating the heating rate, cooling rate, and heating temperature within the desired plate thickness range, plate width range, or plate length range by applying the plate length range, and
A heat treatment facility for a steel sheet, comprising: a heating rate control means for controlling the heating rate, the cooling rate, and the heating temperature, a cooling rate control, and a heating temperature control means calculated by the calculation means.
請求項5に記載の方法を実施するための鋼板の製造設備であって、
少なくともAc1点以上の温度に加熱する工程を提供する鋼板の熱処理設備において、
測定された熱処理前の板厚と、板幅および板長を入力する入力手段と、
熱処理前後の板厚と加熱速度、加熱温度、冷却速度の相関関係と、熱処理前後の板幅および板長と加熱速度、加熱温度、冷却速度の相関関係を記憶された記憶媒体と、
前記記憶媒体に記憶された相関関係に、前記入力手段により入力された熱処理前の板厚と、熱処理前の板幅および板長と、所望の板厚範囲と、所望の板幅範囲および板長範囲とを適用して、所望の板厚範囲、板幅範囲および板長範囲となる加熱速度、冷却速度、加熱温度を算出する手段と、
前記算出する手段によって、算出された加熱速度、冷却速度、加熱温度に制御する加熱速度制御手段、冷却速度制御、加熱温度制御手段とを
有することを特徴とする鋼板の熱処理設備。
A steel sheet manufacturing facility for carrying out the method according to claim 5.
In a steel sheet heat treatment facility that provides a step of heating to a temperature of at least one point of Acc.
And measured before the heat treatment thickness input means for inputting the plate width and the plate length,
A storage medium that stores the correlation between the plate thickness before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate, and the correlation between the plate width and the plate length before and after the heat treatment and the heating rate, the heating temperature, and the cooling rate.
The stored correlation in the storage medium, and the plate thickness before heat treatment which is input by the input unit, a plate width and the plate length before the heat treatment, the desired thickness range, a desired plate width range and Itacho A means for calculating a heating rate, a cooling rate, and a heating temperature within a desired plate thickness range, plate width range, and plate length range by applying a range, and
A heat treatment facility for a steel sheet, comprising: a heating rate control means for controlling the heating rate, the cooling rate, and the heating temperature, a cooling rate control, and a heating temperature control means calculated by the calculation means.
JP2017050089A 2016-04-15 2017-03-15 Steel sheet manufacturing method and heat treatment equipment Active JP6870399B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016082151 2016-04-15
JP2016082151 2016-04-15

Publications (2)

Publication Number Publication Date
JP2017193777A JP2017193777A (en) 2017-10-26
JP6870399B2 true JP6870399B2 (en) 2021-05-12

Family

ID=60155461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050089A Active JP6870399B2 (en) 2016-04-15 2017-03-15 Steel sheet manufacturing method and heat treatment equipment

Country Status (1)

Country Link
JP (1) JP6870399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7343788B2 (en) 2020-03-26 2023-09-13 日本製鉄株式会社 Heat treatment simulation method, heat treatment simulation device, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761493B2 (en) * 1988-12-28 1995-07-05 新日本製鐵株式会社 Cooling control device for hot rolled steel sheet
JP2772707B2 (en) * 1990-05-30 1998-07-09 株式会社小松製作所 Hardening simulation device for steel
JP2009191286A (en) * 2008-02-12 2009-08-27 Jfe Steel Corp Method of and facility for producing thick plate

Also Published As

Publication number Publication date
JP2017193777A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
Asghari et al. Temperature dependence of plastic deformation mechanisms in a modified transformation-twinning induced plasticity steel
Huang et al. Flow stress modeling and warm rolling simulation behavior of two Ti–Nb interstitial-free steels in the ferrite region
EP2726637A1 (en) Method for manufacturing a high-strength structural steel and a high-strength structural steel product
CA2910862C (en) Surface layer grain refining hot-shearing method and workpiece obtained by surface layer grain refining hot-shearing
Wiessner et al. Effect of reverted austenite on tensile and impact strength in a martensitic stainless steel− An in-situ X-ray diffraction study
Aranas Jr et al. Effect of interpass time on the dynamic transformation of a plain C–Mn and a Nb microalloyed steel
Das et al. Continuously cooled ultrafine bainitic steel with excellent strength–elongation combination
Hayashi et al. Individual mechanical properties of ferrite and martensite in Fe–0.16 mass% C–1.0 mass% Si–1.5 mass% Mn steel
JP5234876B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet
Sun et al. Experimental investigation and modeling of ductile fracture behavior of TRIP780 steel in hot working conditions
Vivas et al. Effect of ausforming temperature on creep strength of G91 investigated by means of Small Punch Creep Tests
Benzing et al. Intercritical annealing to achieve a positive strain-rate sensitivity of mechanical properties and suppression of macroscopic plastic instabilities in multi-phase medium-Mn steels
Vervynckt et al. Evaluation of the austenite recrystallization by multideformation and double deformation tests
JP6870399B2 (en) Steel sheet manufacturing method and heat treatment equipment
Cota et al. Determination of CCT diagrams by thermal analysis of an HSLA bainitic steel submitted to thermomechanical treatment
JP6830493B2 (en) Warm rolled steel containing rollable austenite
Zamani et al. Optimization of cold rolling and subsequent annealing treatment on mechanical properties of TWIP steel
Boroumand et al. Hot Deformation Behavior and Constitutive Modelling of a Medium-Carbon Structural Steel
JP6582892B2 (en) Hot rolling method for steel
Behrens et al. Experimental investigations on the interactions between the process parameters of hot forming and the resulting residual stresses in the component
Kim et al. Quantitative study on yield point phenomenon of low carbon steels processed by compact endless casting and rolling
Schacht et al. Material Models and their Capability for Process and Material Properties Design in Different Forming Processes
Rajiah et al. Inter-columnar macro-segregation in continuously cast steel; characterization, possible reasons, and consequences
JP6729181B2 (en) Shape correction method and shape correction device for steel sheet
Koohbor et al. Influence of deformation path change on static strain aging of cold rolled steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R151 Written notification of patent or utility model registration

Ref document number: 6870399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151