JP6869535B2 - Modeling material - Google Patents

Modeling material Download PDF

Info

Publication number
JP6869535B2
JP6869535B2 JP2017066214A JP2017066214A JP6869535B2 JP 6869535 B2 JP6869535 B2 JP 6869535B2 JP 2017066214 A JP2017066214 A JP 2017066214A JP 2017066214 A JP2017066214 A JP 2017066214A JP 6869535 B2 JP6869535 B2 JP 6869535B2
Authority
JP
Japan
Prior art keywords
modeling
modeling material
polylactic acid
diameter
printer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017066214A
Other languages
Japanese (ja)
Other versions
JP2018167469A (en
Inventor
長谷川 健二
健二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2017066214A priority Critical patent/JP6869535B2/en
Publication of JP2018167469A publication Critical patent/JP2018167469A/en
Application granted granted Critical
Publication of JP6869535B2 publication Critical patent/JP6869535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Filaments (AREA)

Description

本発明は、熱溶解積層法による3Dプリンター用造形材料に関するものである。 The present invention relates to a modeling material for a 3D printer by the Fused Deposition Modeling method.

3DCADや三次元コンピューターグラフィクスのデータを基に立体(3次元のオブジェクト)を造形する3Dプリンターは、近年企業を中心に急速普及している。3Dプリンターは用いる造形材料の種類により、光造形、インクジェット造形、粉末石膏造形、粉末焼結造形、熱溶融積層造形等の工法がある。近年、特に個人向けなどにおいては、低価格の3Dプリンターである熱溶融積層法のものが普及してきている。 In recent years, 3D printers that create three-dimensional objects (three-dimensional objects) based on 3D CAD and three-dimensional computer graphics data have rapidly become widespread, especially in companies. The 3D printer has construction methods such as stereolithography, inkjet modeling, powder gypsum modeling, powder sintering modeling, and hot melt lamination modeling, depending on the type of modeling material used. In recent years, the Fused Deposition Modeling method, which is a low-priced 3D printer, has become widespread, especially for individuals.

熱溶解積層法による3Dプリンターに用いる造形材料としては、一般に、フィラメント状の形態のものを用い、熱溶解積層法による3Dプリンターでは、フィラメント状の造形材料を造形ヘッド内のプーリーで押出、その先のヒーターでフィラメント状の造形材料を溶解しながら押し出された溶融物を造形テーブルに押し付けるように積層し、所望の形状の造形物を得るのである。 Generally, a filament-shaped modeling material is used for a 3D printer by the Fused Deposition Modeling method, and in a 3D printer by the Fused Deposition Modeling method, the filament-shaped modeling material is extruded by a pulley in a modeling head, and the tip thereof. While melting the filamentous modeling material with the heater of the above, the extruded melt is laminated so as to be pressed against the modeling table to obtain a modeled product having a desired shape.

特許文献1には、押出の際に、造形ヘッド内で造形材料が詰まることによるトラブルが生じないように、フィラメント状造形材料において、平均直径と直径の標準偏差を規定することを提案している。 Patent Document 1 proposes to specify an average diameter and a standard deviation of diameters in a filamentous modeling material so as not to cause troubles due to clogging of the modeling material in the modeling head during extrusion. ..

特表2005−523391号Special table 2005-523391

3Dプリンター用において求められる最も重要なことは、精度の良い造形物が得ることにある。そこで、造形物の精度に影響する要因として、本発明者は、以下を考察した。 The most important thing required for a 3D printer is to obtain an accurate model. Therefore, the present inventor considered the following as factors that affect the accuracy of the modeled object.

まず、造形物の精度を上げるための重要な要因として、造形材料の均一性を挙げる。例えば、繊維軸方向に造形材料の繊維径に太細が存在すると、太い部分が造形ヘッドから送り込まれると、造形ヘッドからの吐出量は多くなり、反対に細い部分が送り込まれると、吐出量が少なくなってしまい、均一な吐出量が得られず、造形精度が悪くなりため、造形材料としては好ましくない。したがって、造形材料の繊維径の均一性は、造形材料に求められる第一の要素と考える。 First, the uniformity of the modeling material is cited as an important factor for improving the accuracy of the modeled object. For example, if the fiber diameter of the modeling material is thick and thin in the fiber axis direction, the discharge amount from the modeling head increases when the thick part is fed from the modeling head, and conversely, the discharge amount increases when the thin part is fed. It is not preferable as a modeling material because the amount is reduced, a uniform discharge amount cannot be obtained, and the modeling accuracy is deteriorated. Therefore, the uniformity of the fiber diameter of the modeling material is considered to be the first factor required for the modeling material.

次に、造形材料はボビンに捲き取られた状態から造形ヘッドに供給されるまでの間に応力を受ける。この応力により造形材料が容易に伸び、変形した場合、造形ヘッドへの供給量が一定にならず、造形精度が悪くなる。このため、造形材料に求められる第二の要素として、応力によって伸び、変形しないような剛性の高いものが必要となる。 Next, the modeling material is stressed between the time it is wound up on the bobbin and the time it is supplied to the modeling head. When the modeling material is easily stretched and deformed due to this stress, the supply amount to the modeling head is not constant, and the modeling accuracy deteriorates. Therefore, as the second element required for the modeling material, a material having high rigidity that does not stretch and deform due to stress is required.

さらに、造形ヘッド内の温度はヒーターが加熱されると雰囲気温度が高温になる。このような高温雰囲気中に造形材料が送られると、造形材料は、熱による寸法変化すなわち変形が生じる。熱による寸法変化はヒーターに近づけば近づくほど大きくなる。この結果、熱に対する寸法安定性が少ない造形材料では、3Dプリンターへセットする際には、均一なフィラメント状の形態であっても、造形ヘッド内において加熱された結果、熱変形により、不均一な形状となり、造形の精度が劣ることになる。よって、第三の要素として、熱に対する安定性を挙げる。 Further, the temperature inside the modeling head becomes high when the heater is heated. When the modeling material is sent in such a high temperature atmosphere, the modeling material undergoes dimensional change or deformation due to heat. The dimensional change due to heat becomes larger as it gets closer to the heater. As a result, in a modeling material having low dimensional stability with respect to heat, even if it has a uniform filamentous form when set in a 3D printer, as a result of being heated in the modeling head, it becomes non-uniform due to thermal deformation. It becomes a shape, and the accuracy of modeling is inferior. Therefore, the third factor is stability against heat.

次いで、造形ヘッドは三次元方向に可動可能で、造形中は複雑にかつ小刻みに可動する。その結果、フィラメント状の造形材料には、さまざまな負荷が加わり、過剰に負荷が加わった結果、フィラメント状の造形材料が折れる場合がある。3Dプリンタ一を用いて造形物を造形する際、造形物の大きさや精巧さの度合いにもよるが、一般的に数時間から数日の時間が必要となる。造形作業中に材料が折れると、造形を最初からやり直さなければならない。このような造形材料の折れについては、フィラメント状造形材料の曲げに対する強さと、曲げに対するひずみ量に関係がある。さらに、造形ヘッドは長時間に亘り連続稼働するため、連続した往復曲げに対する耐久性を備えていることが、造形材料に求められる第四の要素と考える。 Next, the modeling head is movable in the three-dimensional direction, and moves in a complicated and small manner during modeling. As a result, various loads are applied to the filament-shaped modeling material, and as a result of the excessive load being applied, the filament-shaped modeling material may break. When modeling a modeled object using a 3D printer, it generally takes several hours to several days, depending on the size and degree of sophistication of the modeled object. If the material breaks during the modeling process, the modeling must be restarted from the beginning. The bending of such a molding material is related to the strength of the filamentous molding material against bending and the amount of strain against bending. Further, since the modeling head operates continuously for a long period of time, it is considered that having durability against continuous reciprocating bending is the fourth factor required for the modeling material.

本発明は、上記した四つの要素を備えた造形材料であって、造形精度が良好で耐久性を有する造形材料を提供することを技術的な課題とする。 It is a technical subject of the present invention to provide a modeling material having the above-mentioned four elements, which has good modeling accuracy and durability.

本発明は、上記課題を解決するものであり、熱溶解積層法による3Dプリンターに用いる造形材料であって、該造形材料はモノフィラメント状の形態であり、直径が1mm〜3mm、降伏点の強度が100MPa以上、降伏点の伸度が3%以下、60℃におけるたわみ量が10mm以下、往復折曲げ回数が10回以上であり、該造形材料はポリ乳酸系樹脂を主成分として構成されることを特徴とする造形材料を要旨とするものである。 The present invention solves the above problems and is a modeling material used for a 3D printer by the Fused Deposition Modeling method. The modeling material has a monofilament-like form, a diameter of 1 mm to 3 mm, and a yield point strength. 100 MPa or more, the elongation of the yield point is 3% or less, the amount of deflection at 60 ° C. is 10 mm or less, the number of reciprocating bends is 10 or more, and the modeling material is composed mainly of a polylactic acid resin. The gist is the characteristic modeling material.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の造形材料は、ポリ乳酸系樹脂を主成分として構成される。ポリ乳酸系樹脂としては、L−乳酸とD−乳酸の光学異性体の共重合体を主成分とし、数平均分子量が7万以上、好ましくは9万以上のものがよい。数平均分子量が7万未満では、溶融体の流動性が悪く、溶融時の粘度が低くなるため、溶融押出工程でドラフト切れを起こす恐れがある。 The modeling material of the present invention is composed mainly of a polylactic acid-based resin. The polylactic acid-based resin preferably contains a copolymer of optical isomers of L-lactic acid and D-lactic acid as a main component and has a number average molecular weight of 70,000 or more, preferably 90,000 or more. If the number average molecular weight is less than 70,000, the fluidity of the melt is poor and the viscosity at the time of melting is low, so that draft breakage may occur in the melt extrusion process.

ポリ乳酸は、光学異性体であるL−乳酸とD−乳酸を主体とする重合体またはこれらの共重合体であるが、L−乳酸を主体としD−乳酸含有量が3モル%以下のものを用いるとよい。中でもポリ乳酸樹脂中のD−乳酸含有量が2モル%以下であることが好ましく、さらには1.5モル%以下であることが好ましい。ポリ乳酸樹脂におけるD−乳酸含有量とは、ポリ乳酸樹脂を構成する総乳酸単位のうち、D−乳酸単位が占める割合(モル%)である。例えば、D−乳酸含有量 が1.0モル%のポリ乳酸樹脂の場合、このポリ乳酸樹脂は、D−乳酸単位が占める割合が1.0モル%であり、L−乳酸単位が占める割合が99.0モル%である。 Polylactic acid is a polymer mainly composed of L-lactic acid and D-lactic acid, which are optical isomers, or a copolymer thereof, but mainly composed of L-lactic acid and having a D-lactic acid content of 3 mol% or less. Should be used. Above all, the D-lactic acid content in the polylactic acid resin is preferably 2 mol% or less, and more preferably 1.5 mol% or less. The D-lactic acid content in the polylactic acid resin is the ratio (mol%) of the D-lactic acid units to the total lactic acid units constituting the polylactic acid resin. For example, in the case of a polylactic acid resin having a D-lactic acid content of 1.0 mol%, the proportion of the D-lactic acid unit in this polylactic acid resin is 1.0 mol%, and the proportion of the L-lactic acid unit is 1.0 mol%. It is 99.0 mol%.

造形材料を構成する樹脂には、本発明の効果を損なわない範囲であれば、上記したポリ乳酸樹脂に加えて、副成分として、ポリグリコール酸、ポリ力プロラクトン、ポリブチレンサクシネ一 ト、ポリエチレンサクシネート、ポリブチレンアジペートテレフタレート、ポリブチレン サクシネートテレフタレート等から選ばれる一種または二種以上の樹脂を含有してもよい。 As long as the effect of the present invention is not impaired, the resin constituting the molding material may contain polyglycolic acid, polyforce prolactone, polybutylene succinate, etc. as subcomponents in addition to the above-mentioned polylactic acid resin. It may contain one or more resins selected from polyethylene succinate, polybutylene adipate terephthalate, polybutylene succinate terephthalate and the like.

本発明の造形材料は、前記したようなポリ乳酸系樹脂を主成分とするものであり、具体的には、造形材料において、ポリ乳酸系樹脂の占める割合が50質量%以上であり、中でも70質量%以上であることが好ましく、さらには90質量%以上であることが好ましい。また、本発明においては、ポリ乳酸系樹脂を主成分とするものであれば、ポリ乳酸系樹脂以外の他の熱可塑性樹脂や、種々の機能性を付与する各種添加剤、機能剤、フィラー等が含まれるポリ乳酸樹脂組成物を用いることも好ましい。 The modeling material of the present invention contains the above-mentioned polylactic acid-based resin as a main component, and specifically, the proportion of the polylactic acid-based resin in the modeling material is 50% by mass or more, and among them, 70. It is preferably 100% by mass or more, and more preferably 90% by mass or more. Further, in the present invention, if the main component is a polylactic acid-based resin, a thermoplastic resin other than the polylactic acid-based resin, various additives, functional agents, fillers, etc. that impart various functionalities, etc. It is also preferable to use a polylactic acid resin composition containing.

本発明の造形材料は、モノフィラメント状の形態をしている。造形材料の直径は1mm以上である。特に、直径1.75mmの造形材料は、市販の熱溶解積層法による3Dプリンターに適用するため好ましい。なお、汎用の熱溶解積層法による3Dプリンターに適した造形材料の直径の上限としては、3mm程度である。 The modeling material of the present invention has a monofilament-like form. The diameter of the modeling material is 1 mm or more. In particular, a modeling material having a diameter of 1.75 mm is preferable because it is applied to a commercially available 3D printer by the Fused Deposition Modeling method. The upper limit of the diameter of the modeling material suitable for a 3D printer by the general-purpose fused deposition modeling method is about 3 mm.

造形材料の長径と短径の比(長径/短径)は、1.05以下であることが好ましく、1.03以下であることがより好ましく、さらには1.02以下が好ましい。長径と短径の比が1に近いほど、真円率が高いことを示す。
本発明において、造形材料の直径は、JIS G 3522(ピアノ線)「線径の測定」に記載の方法に準じて、マイクロメータを用いて、造形材料の任意の箇所の同一断面における最大径と最小径を測定し、その平均値を算出して直径とする。また、その最大径を長径、最小径を短径として、比(長径/短径)を算出する。
The ratio of the major axis to the minor axis (major axis / minor axis) of the modeling material is preferably 1.05 or less, more preferably 1.03 or less, and further preferably 1.02 or less. The closer the ratio of the major axis to the minor axis is, the higher the roundness ratio is.
In the present invention, the diameter of the modeling material is the maximum diameter in the same cross section of any part of the modeling material using a micrometer according to the method described in JIS G 3522 (piano wire) “Measurement of wire diameter”. The minimum diameter is measured, and the average value is calculated to obtain the diameter. Further, the ratio (major axis / minor axis) is calculated with the maximum diameter as the major axis and the minimum diameter as the minor axis.

本発明の造形材料は、(1)降伏点の強度が100MPa以上、降伏点の伸度が3%以下、(2)60℃におけるたわみ量が10mm以下、(3)往復折曲げ回数が10回以上、の3つの性質を有する。 The modeling material of the present invention has (1) a yield point strength of 100 MPa or more, a yield point elongation of 3% or less, (2) a deflection amount at 60 ° C. of 10 mm or less, and (3) a number of reciprocating bends of 10 times. It has the above three properties.

降伏点とは、造形材料に応力を加えながら引っ張った際、弾性限界を超えて造形材料の変形が急激に増加して元に戻らなくなるときの力の大きさであり、JIS L 1013 引張り強さ及び伸び率に記載された方法に準じて、荷重−伸び曲線を描き、前記曲線から見出す降伏点における荷重と伸びを読み取り、降伏点における荷重を造形材料の断面積で除した値を降伏点の強度とする。降伏点強度が100MPa以上であり、かつ降伏点での伸度が3%以下であることにより、造形材料は、ボビン状に巻かれた状態から造形ヘッドに供給され、3Dプリンターが動作した際に受ける応力に対して容易に変形や伸びが生じたりすることなく、造形ヘッドへの供給量を一定に保つことができる。 The yield point is the magnitude of the force when the modeling material is pulled while applying stress, and the deformation of the modeling material suddenly increases beyond the elastic limit and cannot be restored. JIS L 1013 Tensile strength. And, according to the method described in Elongation rate, draw a load-elongation curve, read the load and elongation at the yield point found from the curve, and divide the load at the yield point by the cross-sectional area of the modeling material to obtain the yield point. Let it be strength. When the yield point strength is 100 MPa or more and the elongation at the yield point is 3% or less, the modeling material is supplied to the modeling head from the state of being wound in a bobbin shape, and when the 3D printer operates. The amount of supply to the modeling head can be kept constant without being easily deformed or stretched by the stress received.

造形材料は、60℃におけるたわみ量が10mm以下である。3Dプリンターにセットされた造形材料は、造形ヘッド内で溶融のために加熱されることにより、造形ヘッド付近も高温状態となって高温雰囲気に晒される。したがって、造形材料として、溶融する前の段階から高温雰囲気に晒されることになるが、溶融前に熱による影響を受けて変形が生じると、形状が不均一となり、造形の精度が劣ることとなる。本発明においては、60℃におけるたわみ量が10mm以下であり、溶融前における温度がやや高い雰囲気において熱変形しにくいものとすることにより、造形精度を保つことができる。60℃におけるたわみ量は、以下の方法により測定する。すなわち、図1に示す如く、高さ50mmの台上に、造形材料の一方の端部を載置したうえでテープにて固定し、台から100mm張り出した状態とし、これを温度60℃に設定した乾燥機にて5分間放置し、その後、乾燥機より取り出し、造型材料の張り出した他端が、当初の状態から何mm垂れたか(熱たわみ量)を測定する。 The modeling material has a deflection amount of 10 mm or less at 60 ° C. The modeling material set in the 3D printer is heated for melting in the modeling head, so that the vicinity of the modeling head also becomes a high temperature state and is exposed to a high temperature atmosphere. Therefore, as a modeling material, it is exposed to a high temperature atmosphere from the stage before melting, but if deformation occurs due to the influence of heat before melting, the shape becomes non-uniform and the modeling accuracy becomes inferior. .. In the present invention, the molding accuracy can be maintained by making the amount of deflection at 60 ° C. less than 10 mm and making it difficult to be thermally deformed in an atmosphere where the temperature before melting is slightly high. The amount of deflection at 60 ° C. is measured by the following method. That is, as shown in FIG. 1, one end of the modeling material is placed on a table having a height of 50 mm, fixed with tape, and overhangs 100 mm from the table, and the temperature is set to 60 ° C. After leaving it in the dryer for 5 minutes, it is taken out from the dryer, and how many mm (heat deflection amount) the other end of the overhanging molding material hangs down from the initial state is measured.

本発明の造形材料は、往復折曲げ回数が10回以上である。往復折曲げ回数は、JIS P8115 耐折れ強さ試験方法 MIT試験機を用いて測定する。測定条件は、屈曲角度は左右135°、屈曲速度175往復/毎分、荷重9.8N、試験片長さ110mmにより、試験片が破断するまでの往復折れ曲げ回数を測定する。造形材料においては、造形ヘッドにセットされた後、所望の造形物を得るまでの長時間の間、造形ヘッドが所望の造形物を得るために小刻みに可動するため、モノフィラメント状の造形材料にはその造形ヘッドの可動に応じた負荷が加わり、長時間に亘って、さまざまな方向からの負荷や曲げに対する耐久性を要する。本発明の造形材料は、上記した過酷な条件に設定する往復折れ曲げ回数が10回以上のものは長時間の造形動作に対する耐久性を有する。なお、往復折れ曲げ回数は、大きいほど耐久性は優れており、50回以上が好ましく、より好ましくは100回以上である。 The modeling material of the present invention has a reciprocating bending number of 10 times or more. The number of reciprocating bends is measured using a JIS P8115 fold resistance test method MIT tester. The measurement conditions are a bending angle of 135 ° to the left and right, a bending speed of 175 reciprocations / minute, a load of 9.8 N, and a test piece length of 110 mm, and the number of reciprocating bends until the test piece breaks is measured. In the modeling material, since the modeling head moves in small steps to obtain the desired modeling object for a long time after being set in the modeling head until the desired modeling object is obtained, the monofilament-like modeling material is used. A load is applied according to the movement of the modeling head, and durability against loads and bending from various directions is required for a long period of time. The molding material of the present invention has durability against a long-time molding operation when the number of reciprocating bendings set to the above-mentioned harsh conditions is 10 or more. The larger the number of reciprocating bends, the better the durability, preferably 50 times or more, and more preferably 100 times or more.

本発明の造形材料は、上記した(1)〜(3)の性能を有するものであり、下記の方法により得ることができる。すなわち、造形材料を構成するポリ乳酸系樹脂または樹脂組成物を溶融押出した後に延伸を施すことにより得ることができる。溶融押出後、ポリ乳酸系樹脂の分子鎖がランダム状態であるが、これを延伸することにより、分子配向が進み、さらに熱処理によって結晶化を促進させることで、(1)〜(3)の性質を有する造形材料を得ることができる。 The modeling material of the present invention has the above-mentioned performances (1) to (3) and can be obtained by the following method. That is, it can be obtained by melt-extruding a polylactic acid-based resin or a resin composition constituting a modeling material and then stretching the resin. After melt extrusion, the molecular chains of the polylactic acid-based resin are in a random state, but by stretching this, the molecular orientation progresses, and by further promoting crystallization by heat treatment, the properties (1) to (3) A modeling material having the above can be obtained.

本発明の造形材料の製造方法について、一例を用いて説明する。
まず、造形材料を構成するポリ乳酸系樹脂または樹脂組成物を常法によって5〜30m/分の速度で溶融紡出し、未延伸モノフィラメントを得る。この際の紡糸温度は190〜230℃とするのが適当であり、190℃以上に設定することにより完全に溶融させることができ、一方、230℃以下に設定することにより樹脂組成物の熱分解が生じさせることなく溶融紡出できる。紡出された糸条は、0〜100℃、好ましくは20〜80℃の液浴中で冷却固化する。冷却温度が低すぎると温度管理が困難であるとともに作業性が悪くなり、一方、高すぎると冷却固化が不完全となるので好ましくない。
The method for producing the modeling material of the present invention will be described with reference to an example.
First, the polylactic acid-based resin or resin composition constituting the modeling material is melt-spun at a speed of 5 to 30 m / min by a conventional method to obtain an unstretched monofilament. At this time, it is appropriate that the spinning temperature is 190 to 230 ° C., and the resin composition can be completely melted by setting the temperature to 190 ° C. or higher, while the resin composition can be thermally decomposed by setting the temperature to 230 ° C. or lower. Can be melt-spun without causing The spun yarn is cooled and solidified in a liquid bath at 0 to 100 ° C., preferably 20 to 80 ° C. If the cooling temperature is too low, temperature control becomes difficult and workability deteriorates, while if it is too high, cooling and solidification becomes incomplete, which is not preferable.

次いで、冷却固化した未延伸モノフィラメントは、一且巻き取ることなく延伸する。このとき、ローラ間に非接触の乾熱ヒーターを設置し、100〜200℃で熱処理を行いながら、2〜5倍の延伸倍率で延伸を施す。さらに延伸を施す必要がある場合は、同様の設備を有するローラ間で同様の熱処理を施しながら第二段目や第三段目の延伸を行う。さらに、延伸の後、ローラ間に非接触の乾熱ヒーターを設置し、80〜180℃で熱処理を行いながら、弛緩熱処理(延伸倍率は0.9〜0.99倍)を施してもよい。 The unstretched monofilament that has been cooled and solidified is then stretched without being wound up. At this time, a non-contact dry heat heater is installed between the rollers, and while heat treatment is performed at 100 to 200 ° C., stretching is performed at a stretching ratio of 2 to 5 times. When it is necessary to further stretch, the second and third steps are stretched while performing the same heat treatment between rollers having the same equipment. Further, after stretching, a non-contact dry heat heater may be installed between the rollers, and relaxation heat treatment (stretching ratio: 0.9 to 0.99 times) may be performed while performing heat treatment at 80 to 180 ° C.

本発明の造形材料によれば、耐久性に優れ、熱安定性にも優れることから、造形の際の精度が向上し、所望の造形物を容易に得ることができる。 According to the modeling material of the present invention, since it is excellent in durability and thermal stability, the accuracy at the time of modeling is improved, and a desired modeled object can be easily obtained.

60℃におけるたわみ量の測定方法を示す概略図である。It is the schematic which shows the measuring method of the amount of deflection at 60 degreeC.

以下、本発明を実施例によりさらに具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1
ポリ乳酸樹脂(ネイチャーワークス社製「6201D」D−乳酸含有量1.4モル%のポリ乳酸)をエクストルーダー型溶融紡糸機に供給し、紡糸温度200℃で溶融し、直径5mmの紡糸孔を1孔有する丸断面形状の口金から吐出した。なお、このときの吐出量は、延伸後の糸径が1.75mmになるように調整した。引き続き50℃の液浴中で冷却固化して20m/分の速度で引き取り、未延伸糸を得た。未延伸糸を一旦巻き取ることなく専用スポンジで水分を拭き取った後、ローラ間に設置された非接触型乾熱ヒーターにて150℃で熱処理を施しながら、4.00倍に延伸して、実施例1の造形材料を得た。
Example 1
Polylactic acid resin (“6201D” manufactured by Nature Works, polylactic acid having a D-lactic acid content of 1.4 mol%) is supplied to an extruder type melt spinning machine and melted at a spinning temperature of 200 ° C. to form a spinning hole having a diameter of 5 mm. It was discharged from a base having a round cross section having one hole. The discharge amount at this time was adjusted so that the yarn diameter after drawing was 1.75 mm. Subsequently, the yarn was cooled and solidified in a liquid bath at 50 ° C. and taken up at a speed of 20 m / min to obtain an undrawn yarn. After wiping off the moisture with a special sponge without winding the undrawn yarn once, it is stretched 4.00 times while being heat-treated at 150 ° C. with a non-contact dry heat heater installed between the rollers. The modeling material of Example 1 was obtained.

実施例2
実施例1において、延伸倍率を5.00倍に変更した以外は、実施例1と同様にして、実施例2の造形材料を得た。
Example 2
The modeling material of Example 2 was obtained in the same manner as in Example 1 except that the draw ratio was changed to 5.00 times in Example 1.

比較例1
実施例1において、延伸倍率を1.00として、実質延伸しなかったこと以外は、実施例1と同様にして、比較例1の造形材料を得た。
Comparative Example 1
In Example 1, the modeling material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the drawing ratio was set to 1.00 and the material was not substantially stretched.

比較例2
実施例1において、延伸倍率を1.50に変更した以外は、実施例1と同様にして、比較例2の造形材料を得た。
Comparative Example 2
In Example 1, the modeling material of Comparative Example 2 was obtained in the same manner as in Example 1 except that the draw ratio was changed to 1.50.

得られた実施例1、2、比較例1、2の造形材料について、性能測定および評価を行い、その結果を表1に示した。なお、直径、長径/短径の比、降伏点の強度および伸度、60℃におけるたわみ量、往復折曲げ回数については、前記した測定方法に基づいて測定した。 The obtained modeling materials of Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to performance measurement and evaluation, and the results are shown in Table 1. The diameter, the major axis / minor axis ratio, the strength and elongation of the yield point, the amount of deflection at 60 ° C., and the number of reciprocating bends were measured based on the above-mentioned measuring method.

Figure 0006869535
Figure 0006869535

Claims (1)

熱溶解積層法による3Dプリンターに用いる造形材料であって、該造形材料はモノフィラメント状の形態であり、直径が1mm〜3mm、降伏点の強度が100MPa以上、降伏点の伸度が3%以下、60℃におけるたわみ量が10mm以下、往復折曲げ回数が10回以上であり、該造形材料はポリ乳酸系樹脂を主成分として構成されることを特徴とする造形材料。
A molding material used for a 3D printer by the Fused Deposition Modeling method, which has a monofilament shape, a diameter of 1 mm to 3 mm, a yield point strength of 100 MPa or more, and a yield point elongation of 3% or less. A modeling material characterized in that the amount of deflection at 60 ° C. is 10 mm or less, the number of reciprocating bends is 10 or more, and the modeling material is composed mainly of a polylactic acid-based resin.
JP2017066214A 2017-03-29 2017-03-29 Modeling material Active JP6869535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066214A JP6869535B2 (en) 2017-03-29 2017-03-29 Modeling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066214A JP6869535B2 (en) 2017-03-29 2017-03-29 Modeling material

Publications (2)

Publication Number Publication Date
JP2018167469A JP2018167469A (en) 2018-11-01
JP6869535B2 true JP6869535B2 (en) 2021-05-12

Family

ID=64019052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066214A Active JP6869535B2 (en) 2017-03-29 2017-03-29 Modeling material

Country Status (1)

Country Link
JP (1) JP6869535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220145047A1 (en) * 2019-04-25 2022-05-12 Toray Industries, Inc. Fiber-reinforced thermoplastic resin filament for 3d printer, and molded article thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866807B2 (en) * 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
JP2013204176A (en) * 2012-03-28 2013-10-07 Toray Monofilament Co Ltd Thick monofilament made of thermoplastic resin
CN105555867B (en) * 2013-09-11 2018-08-24 东丽株式会社 Heat fusing laminated type three-dimensional modeling raw material and heat fusing laminated type 3D printing equipment filiform
JP2016037571A (en) * 2014-08-08 2016-03-22 Jsr株式会社 Resin composition for molding and filament for molding
JP6446707B2 (en) * 2015-03-13 2019-01-09 三菱ケミカル株式会社 Filament for three-dimensional printer molding and method for producing resin molded body
JP6693755B2 (en) * 2016-01-26 2020-05-13 一成 増谷 Gloss filament for melt-laminating 3D printer
JP6145525B1 (en) * 2016-02-03 2017-06-14 ホッティーポリマー株式会社 Filament and method for producing filament
EP3479998A4 (en) * 2016-07-01 2020-05-27 UBE Industries, Ltd. Heat-melting lamination-type material for 3d printer and heat-melting lamination-type filament for 3d printer using same
JP6838315B2 (en) * 2016-08-25 2021-03-03 Jsr株式会社 Filament for modeling and winding body

Also Published As

Publication number Publication date
JP2018167469A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US20200406522A1 (en) Highly crystalline poly(lactic acid) filaments for material-extrusion based additive manufacturing
Knoop et al. Mechanical and thermal properties of FDM parts manufactured with polyamide 12
JP5552114B2 (en) Artificial hair fiber, its use and production method
JP6869535B2 (en) Modeling material
JP5518857B2 (en) Artificial hair fiber and method for producing the same
Jagenteufel et al. Rheology of high melt strength polypropylene for additive manufacturing
TW201713808A (en) Elastic polyester multifilament which has excellent elastic recovery and can quickly return to the original length
JP2015086473A (en) Monofilament-like high-strength polyethylene fiber
JPWO2013183636A1 (en) Molding material, molded body thereof, and method for producing the molded body
JP6537250B2 (en) Polylactic acid monofilament
JP4773290B2 (en) Polylactic acid composite fiber
JP2007119971A (en) Method for producing synthetic fiber
JP2005307078A (en) Method for producing biodegradable resin composite material and method for molding the same
JP6758666B2 (en) Three-dimensional molding method and molding materials used for it
JP7435996B2 (en) Resin composition for three-dimensional modeling using hot-melt lamination method, and filament-like molded bodies and shaped bodies made from the same
JP2007107122A (en) Polylactic acid fiber
JP5632859B2 (en) Monofilament yarn, monofilament manufacturing method, and fishing line
CN105732915A (en) Polymer material used for 3D printing and preparation method thereof
JP2008002040A (en) Fiber for doll hair
JP4990550B2 (en) Artificial hair manufacturing method and artificial hair spinning machine
JP6437292B2 (en) Polyester fiber
JP5390041B1 (en) Unstretched fluororesin fiber, stretched fluororesin fiber, method for producing unstretched fluororesin fiber, and method for producing stretched fluororesin fiber
JPH11293517A (en) Polylactic acid fiber and its production
Azila Tuan Rahim et al. Optimization of the 3D Printing Parameters on Dimensional Accuracy and Surface Finishing for New Polyamide 6 and Its Composite Used in Fused Deposition Modeling (FDM) Process.
Hang et al. Effect of modifiers on bending recovery of fully degradable brush wire monofilament

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R150 Certificate of patent or registration of utility model

Ref document number: 6869535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250