JP6867567B2 - Method of forming anti-criticality coating layer - Google Patents

Method of forming anti-criticality coating layer Download PDF

Info

Publication number
JP6867567B2
JP6867567B2 JP2017005237A JP2017005237A JP6867567B2 JP 6867567 B2 JP6867567 B2 JP 6867567B2 JP 2017005237 A JP2017005237 A JP 2017005237A JP 2017005237 A JP2017005237 A JP 2017005237A JP 6867567 B2 JP6867567 B2 JP 6867567B2
Authority
JP
Japan
Prior art keywords
criticality
coating layer
prevention coating
criticality prevention
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017005237A
Other languages
Japanese (ja)
Other versions
JP2017062268A (en
Inventor
英哉 西野
英哉 西野
浩 小野寺
浩 小野寺
佳裕 三谷
佳裕 三谷
石渡 裕
裕 石渡
藤田 敏之
敏之 藤田
文代 佐々木
文代 佐々木
林 大和
大和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chemical Co Ltd
Toshiba Energy Systems and Solutions Corp
Original Assignee
Fuji Chemical Co Ltd
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chemical Co Ltd, Toshiba Energy Systems and Solutions Corp filed Critical Fuji Chemical Co Ltd
Priority to JP2017005237A priority Critical patent/JP6867567B2/en
Publication of JP2017062268A publication Critical patent/JP2017062268A/en
Application granted granted Critical
Publication of JP6867567B2 publication Critical patent/JP6867567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Paints Or Removers (AREA)

Description

本発明は、例えば、溶融炉心等を被覆する界防止被覆層、及びその形成方法に関する。 The present invention is, for example, the critical prevention coating layer covering the molten core like, and a method of forming the same.

原子力発電所でのシビアアクシデント等により炉心溶融が生じた場合は、冷温停止後に圧力容器、格納容器から溶融炉心を搬出してキャスク等の長期保管容器内に密閉する必要がある。溶融炉心は圧力容器や格納容器と溶融・反応して一体化していることが想定され、大きさおよび重量の点から、炉内で溶融炉心を切断し、分割して搬出することが必要になる。 When a core meltdown occurs due to a severe accident at a nuclear power plant, it is necessary to carry out the meltdown core from the pressure vessel and containment vessel after cold shutdown and seal it in a long-term storage vessel such as a cask. It is assumed that the melting core is integrated with the pressure vessel and containment vessel by melting and reacting, and it is necessary to cut the melting core in the reactor and carry it out separately from the viewpoint of size and weight. ..

ところで、冷温停止状態においても極小規模の核分裂は起こっていると考えられ、核分裂で発生する高速中性子は水によって減速され、核分裂を起こし易い熱中性子に変換される可能性がある。 By the way, it is considered that very small-scale fission occurs even in the cold shutdown state, and the fast neutrons generated by the fission may be decelerated by water and converted into thermal neutrons that easily cause fission.

上記のように溶融炉心を切断して切断面が生じると、溶融炉心と水とが接触する面積が増大し、両者の空間分布が最適となった場合には、核分裂が活発化して再臨界になることが想定される。このような事態を防止するために、溶融炉心の周囲に熱中性子吸収材を設置することが考えられる(特許文献1参照)。 When the molten core is cut to generate a cut surface as described above, the area of contact between the molten core and water increases, and when the spatial distribution of both is optimized, nuclear fission becomes active and becomes recritical. Is expected to be. In order to prevent such a situation, it is conceivable to install a thermal neutron absorber around the molten core (see Patent Document 1).

実開平5−17595号公報Jikkenhei 5-17595

熱中性子吸収材の設置が局所的であると、広範囲にわたり効果的に核分裂を抑制することは困難である。従って、熱中性子吸収材により、溶融炉心の表面を広範囲にわたって被覆することが重要である。しかしながら、溶融炉心の表面を広範囲にわたって安定的に被覆できる熱中性子吸収材に関する技術は殆ど知られていない。 Local installation of thermal neutron absorbers makes it difficult to effectively suppress fission over a wide area. Therefore, it is important to cover the surface of the molten core with a thermal neutron absorber over a wide area. However, little is known about the technology related to the thermal neutron absorber that can stably cover the surface of the molten core over a wide range.

本発明は以上の点に鑑みなされたものであり、上記の課題を解決できる界防止被覆層、及びその形成方法を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide criticality preventing coating layer capable of solving the above problems, and its formation method.

本発明の臨界防止被覆層は、溶融炉心の表面に形成され、熱中性子吸収材と、セメントと、セメント急硬材と、を含む。本発明の臨界防止被覆層は、溶融炉心に対する付着力において優れている。そのため、この臨界防止被覆層を用いて溶融炉心の表面を広範囲にわたって安定的に被覆することができる。 The criticality prevention coating layer of the present invention is formed on the surface of a molten core and includes a thermal neutron absorber, cement, and a cement hardener. The criticality prevention coating layer of the present invention is excellent in adhesion to the molten core. Therefore, the surface of the molten core can be stably covered over a wide range by using this criticality prevention coating layer.

本発明の臨界防止被覆層は、例えば、溶融炉心の表面に、上述した臨界防止被覆材から成る臨界防止被覆層を形成することで製造できる。 The criticality prevention coating layer of the present invention can be produced, for example, by forming a criticality prevention coating layer made of the above-mentioned criticality prevention coating material on the surface of a molten core.

基材1及び臨界防止被覆層3の構成を表す断面図である。It is sectional drawing which shows the structure of the base material 1 and the criticality prevention coating layer 3.

本発明の実施形態を説明する。熱中性子吸収材としては、熱中性子を吸収する作用を奏する公知の材料を適宜用いることができる。熱中性子吸収材としては、例えば、ガドリニウム化合物粒子、ホウ素化合物粒子等が挙げられる。ガドリニウム化合物粒子としては、例えば、酸化ガドリニウム粒子が挙げられ、ホウ素化合物粒子としては、例えば、炭化ホウ素粒子が挙げられる。 An embodiment of the present invention will be described. As the thermal neutron absorber, a known material having an action of absorbing thermal neutrons can be appropriately used. Examples of the thermal neutron absorber include gadolinium compound particles and boron compound particles. Examples of the gadolinium compound particles include gadolinium oxide particles, and examples of the boron compound particles include boron carbide particles.

熱中性子吸収材は、耐アルカリ性の特性を有することが好ましい。耐アルカリ性の特性を有すれば、臨界防止被覆材がアルカリ成分を含む場合でも、そのアルカリ成分によって熱中性子吸収材が分解されてしまうことを抑制できる。
臨界防止被覆材中における熱中性子吸収材の含有量は特に限定されず、目的や施工状況等に応じて調整することができる。
The thermal neutron absorber preferably has alkali resistance properties. If the criticality prevention coating material has an alkali resistance property, it is possible to prevent the thermal neutron absorber from being decomposed by the alkali component even when the criticality prevention coating material contains an alkali component.
The content of the thermal neutron absorber in the criticality prevention coating material is not particularly limited, and can be adjusted according to the purpose, construction conditions, and the like.

アルカリ金属ケイ酸塩はシリカを主成分とするため、アルカリ金属ケイ酸塩を配合することで臨界防止被覆材の耐熱性、耐照射性、及び耐酸性が向上する。アルカリ金属ケイ酸塩は、下記の一般式(1)で表される化合物である。ここで、Rはアルカリ金属であり、nはモル比であって、0.5〜7.5の実数である。 Since the alkali metal silicate contains silica as a main component, the heat resistance, irradiation resistance, and acid resistance of the criticality prevention coating material are improved by blending the alkali metal silicate. The alkali metal silicate is a compound represented by the following general formula (1). Here, R is an alkali metal, n is a molar ratio, and is a real number of 0.5 to 7.5.

一般式(1):R2O・nSiO2
アルカリ金属ケイ酸塩の種類は特に限定されないが、上記モル比nが3.0以上であるものが好ましい。この場合、硬化開始時間を短く(例えば60分間以内に)することができる。
General formula (1): R 2 O · nSiO 2
The type of alkali metal silicate is not particularly limited, but those having the above molar ratio n of 3.0 or more are preferable. In this case, the curing start time can be shortened (for example, within 60 minutes).

モル比nが0.5〜7.5程度のアルカリ金属ケイ酸塩は市販されており、アルカリ金属ケイ酸塩として、当該市販品をそのまま使用することができる。また、当該市販品にシリカ源を溶解したものを、アルカリ金属ケイ酸塩として使用することができる。シリカ源としては、例えば、微粉末のシリカゲル、沈降性シリカ、ヒュームドシリカ、シリカコロイド溶液等が挙げられる。また、所定のモル比nとなるように、アルカリ金属とシリカ源とを反応させたものを、アルカリ金属ケイ酸塩として使用することもできる。 Alkali metal silicates having a molar ratio n of about 0.5 to 7.5 are commercially available, and the commercially available products can be used as they are as alkali metal silicates. Further, a product in which a silica source is dissolved in the commercially available product can be used as an alkali metal silicate. Examples of the silica source include fine powdered silica gel, precipitated silica, fumed silica, silica colloidal solution and the like. Further, the alkali metal silicate obtained by reacting the alkali metal with the silica source so as to have a predetermined molar ratio n can also be used.

アルカリ金属ケイ酸塩としては、例えば、液状の剤型を有するものを使用することができる。また、目的に応じて、例えば粉末状のものを使用することもできる。アルカリ金属ケイ塩の種類やモル比n等により、臨界防止被覆材の硬化開始時間を調整することができる。 As the alkali metal silicate, for example, one having a liquid dosage form can be used. Further, for example, a powdery substance can be used depending on the purpose. The curing start time of the criticality prevention coating material can be adjusted by the type of alkali metal silica salt, the molar ratio n, and the like.

ケイフッ化ナトリウム、第一リン酸アルミニウム、及びポリリン酸アルミニウムから成る群から選ばれる1種以上の含有量は、熱中性子吸収材の含有量を100重量部としたとき、1〜30重量部の範囲が好ましい。この範囲内であることにより、臨界防止被覆材(臨界防止被覆層)の溶融炉心に対する付着力、及び熱中性子の吸収効果が一層高い。 The content of one or more selected from the group consisting of sodium silica fluoride, primary aluminum phosphate, and aluminum polyphosphate is in the range of 1 to 30 parts by weight when the content of the thermal neutron absorber is 100 parts by weight. Is preferable. Within this range, the adhesive force of the criticality prevention coating material (criticality prevention coating layer) to the molten core and the effect of absorbing thermal neutrons are further higher.

ケイフッ化ナトリウム、第一リン酸アルミニウム、及びポリリン酸アルミニウムは、ア
ルカリ金属ケイ酸塩を短時間で硬化させ、耐熱水性を付与する作用を奏する。
ケイフッ化ナトリウム、第一リン酸アルミニウム、及びポリリン酸アルミニウムのうちのいずれを用いるか、及びそれらの含有量(含有比)により、臨界防止被覆材の硬化開始時間を調整することができる。
Sodium siliceous fluoride, primary aluminum phosphate, and aluminum polyphosphate have the effect of curing alkali metal silicate in a short time and imparting heat resistance and water resistance.
The curing start time of the criticality prevention coating material can be adjusted depending on which of sodium siliceous fluoride, primary aluminum phosphate, and aluminum polyphosphate is used, and their content (content ratio).

セメントは、臨界防止被覆材の耐熱性、及び耐照射性を向上させる。セメントとしては、例えば、普通ポルトランドセメント、高炉セメント、アルミナセメント等の一般に市販されているセメントを用いることができる。また、セメントの粒子径が5μm程度の超微粒子セメントも使用することができる。 Cement improves the heat resistance and irradiation resistance of the criticality prevention dressing. As the cement, for example, generally commercially available cement such as ordinary Portland cement, blast furnace cement, and alumina cement can be used. Further, ultrafine cement having a cement particle size of about 5 μm can also be used.

セメントの含有量は、熱中性子吸収材の含有量を100重量部としたとき、40〜80重量部の範囲が好ましい。この範囲内であることにより、臨界防止被覆材(臨界防止被覆層)の溶融炉心に対する付着力、及び熱中性子の吸収効果が一層高い。 The cement content is preferably in the range of 40 to 80 parts by weight when the content of the thermal neutron absorber is 100 parts by weight. Within this range, the adhesive force of the criticality prevention coating material (criticality prevention coating layer) to the molten core and the effect of absorbing thermal neutrons are further higher.

セメント急硬材は、セメントを短時間で硬化させる作用を奏する。セメント急硬材としては、例えば、カルシウムアルミネート系、アルミン酸ナトリウム系等を用いることができる。セメント急硬材の種類や含有量、セメントの種類等により、臨界防止被覆材の硬化開始時間を調整することができる。 The hardened cement material has the effect of hardening the cement in a short time. As the cement quenching material, for example, calcium aluminate-based, sodium aluminate-based, or the like can be used. The curing start time of the criticality prevention coating material can be adjusted according to the type and content of the cement hardened material, the type of cement, and the like.

セメント急硬材の含有量は、熱中性子吸収材の含有量を100重量部としたとき、3〜50重量部の範囲が好ましい。この範囲内であることにより、臨界防止被覆材(臨界防止被覆層)の溶融炉心に対する付着力、及び熱中性子の吸収効果が一層高い。 The content of the cement hardened material is preferably in the range of 3 to 50 parts by weight when the content of the thermal neutron absorber is 100 parts by weight. Within this range, the adhesive force of the criticality prevention coating material (criticality prevention coating layer) to the molten core and the effect of absorbing thermal neutrons are further higher.

臨界防止被覆材の剤型は特に限定されず、例えば、液状、粉末状、固形とすることができる。液状の場合は、高粘度であってもよいし、低粘度であってもよい。また、臨界防止被覆材は一剤式(全成分が当初から混合されているもの)であってもよいし、二剤式(一部の成分が第1剤に含まれ、残りの成分が第2剤に含まれるもの)であってもよい。ニ剤式の場合は、使用前に第1剤と第2剤とを混合することができる。 The dosage form of the criticality prevention coating material is not particularly limited, and may be, for example, liquid, powder, or solid. When it is liquid, it may have a high viscosity or a low viscosity. In addition, the criticality prevention coating material may be a one-agent type (all components are mixed from the beginning) or a two-agent type (some components are contained in the first agent and the remaining components are the first). It may be one contained in two agents). In the case of the two-agent type, the first agent and the second agent can be mixed before use.

臨界防止被覆層は、臨界防止被覆材から成る層である。臨界防止被覆層は溶融炉心の表面の一部又は全部を覆うことができる。臨界防止被覆層は、溶融炉心の表面に直接形成されていてもよいし、他の層を介して形成されていてもよい。 The anti-criticality coating layer is a layer made of an anti-criticality coating material. The anti-criticality coating layer can cover part or all of the surface of the molten core. The criticality prevention coating layer may be formed directly on the surface of the molten core, or may be formed via another layer.

臨界防止被覆層を形成する方法(臨界防止被覆材を用いて被覆を行う方法)は特に限定されず、例えば、通常の吹付けモルタル等の施工で使用する設備を用いて、液状の臨界防止被覆材を噴霧または堆積し、臨界防止被覆層を形成することができる。 The method of forming the anti-criticality coating layer (the method of coating with the anti-criticality coating material) is not particularly limited, and for example, a liquid anti-criticality coating is used by using equipment used in the construction of ordinary spray mortar or the like. The material can be sprayed or deposited to form an anti-critical coating layer.

臨界防止被覆層は、例えば、臨界防止被覆材の全ての成分を混合した後、その臨界防止被覆材を吹付けノズルによって吹付けて形成することができる。また、臨界防止被覆材の一部の成分と、他の成分とを別々に圧送し、ラインミキシングにて混合してから吹付けてもよい。 The anti-criticality coating layer can be formed, for example, by mixing all the components of the anti-criticality coating material and then spraying the anti-criticality coating material with a spray nozzle. Alternatively, some components of the criticality prevention coating material and other components may be separately pumped, mixed by line mixing, and then sprayed.

アルカリ金属ケイ酸塩を含む臨界防止被覆材を用いる場合は、臨界防止被覆層の形成後、湿度80%以上の環境下で養生することが好ましい。この場合、臨界防止被覆材の硬化を促進させることができる。これは、ケイフッ化ナトリウム、第一リン酸アルミニウム、及びポリリン酸アルミニウムを湿潤状態にすることにより、それらの溶解度を高め、アルカリ金属ケイ酸塩との反応を促進させるためである。 When an anti-criticality coating material containing an alkali metal silicate is used, it is preferable to cure it in an environment with a humidity of 80% or more after forming the anti-criticality coating layer. In this case, the curing of the criticality prevention coating material can be promoted. This is to increase the solubility of sodium silicate, primary aluminum phosphate, and aluminum polyphosphate by moistening them and to promote the reaction with the alkali metal silicate.

臨界防止被覆材は、必要に応じてその他の成分(例えばケイ砂やセラミックス等の骨材等)を含有してもよい。また、セメントを含む臨界防止被覆材については、セルロース系
水溶性高分子を成分とする水中不分離混和剤を含有することができる。この場合、水中での臨界防止被覆材の施工も可能となる。
<実施例1>
1.臨界防止被覆材の製造
表1に示すとおり、各成分をモルタルミキサーで混合することにより、S1〜S12の臨界防止被覆材を製造した。臨界防止被覆材は高粘性液状の剤型を有する。
The criticality prevention coating material may contain other components (for example, aggregates such as silica sand and ceramics), if necessary. Further, the criticality prevention coating material containing cement can contain an inseparable admixture in water containing a cellulosic water-soluble polymer as a component. In this case, it is possible to construct the criticality prevention coating material in water.
<Example 1>
1. 1. Production of Anti-Critical Coating Material As shown in Table 1, the anti-criticality coating materials of S1 to S12 were produced by mixing each component with a mortar mixer. The criticality prevention coating material has a highly viscous liquid dosage form.

Figure 0006867567
Figure 0006867567

表1におけるA1〜A5は表2に示すものであり、B1〜B3は表3に示すものである。表2に示す比重は20℃における値である。A1〜A5はいずれも液状の剤型を有する。なお、S5は、アルカリ金属ケイ酸塩として、A2を0.1Kg、A5を0.9Kg配合したものである。 A1 to A5 in Table 1 are shown in Table 2, and B1 to B3 are shown in Table 3. The specific gravity shown in Table 2 is a value at 20 ° C. All A1 to A5 have a liquid dosage form. In addition, S5 is a mixture of 0.1 kg of A2 and 0.9 kg of A5 as an alkali metal silicate.

Figure 0006867567
Figure 0006867567

Figure 0006867567
Figure 0006867567

ただし、S11については、表1記載の成分のうち、硫酸(5質量%の硫酸)以外のも
のと、イオン交換水0.2Kgとをモルタルミキサーで混合した後、5質量%硫酸0.2Kgを投入する方法で臨界防止被覆材を製造した。
However, for S11, among the components shown in Table 1, those other than sulfuric acid (5% by mass sulfuric acid) and 0.2 kg of ion-exchanged water were mixed with a mortar mixer, and then 0.2 kg of 5% by mass sulfuric acid was added. A criticality prevention coating material was manufactured by the method of charging.

2.臨界防止被覆層の形成
(1)鉄基材の場合
鉄から成る基材(以下、鉄基材とする)の表面を♯320の工業用パッドで目荒した。次に、S1〜S12の臨界防止被覆材を鉄基材の表面にコテを用いて塗布し、臨界防止被覆層を形成した。塗布量は2000g/m2とした。その後、20℃にて養生した。
2. Formation of anti-criticality coating layer (1) In the case of iron base material The surface of the base material made of iron (hereinafter referred to as iron base material) was roughened with an industrial pad of # 320. Next, the criticality prevention coating materials S1 to S12 were applied to the surface of the iron base material using a trowel to form a criticality prevention coating layer. The coating amount was 2000 g / m 2 . Then, it was cured at 20 ° C.

ただし、S12の臨界防止被覆材の場合は、塗布後、炭酸ガスを臨界防止被覆層に接触させ、その表面を硬化させた。
上記の施工により、図1に示すように、鉄基材1の表面に臨界防止被覆材から成る臨界防止被覆層3が形成された。なお、鉄基材1は溶融炉心を模した部材である。
(2)ステンレス基材の場合
ステンレス(SUS304)から成る基材(以下、ステンレス基材とする)の表面を♯24ブラストにて粗面化した。次に、S2の臨界防止被覆材をステンレス基材の表面にリシンガンを用いて吹き付け、臨界防止被覆層を形成した。吹付け量は2000g/m2
した。その後、20℃にて養生した。なお、ステンレス基材は溶融炉心を模した部材である。
(3)アルミナ基材の場合
アルミナ系耐火物から成る基材(以下、アルミナ基材とする)の表面に、S2の臨界防止被覆材を、リシンガンを用いて吹き付け、臨界防止被覆層を形成した。吹付け量は2000g/m2とした。その後、20℃にて養生した。なお、アルミナ基材は溶融炉心を模
した部材である。
However, in the case of the criticality prevention coating material of S12, after coating, carbon dioxide gas was brought into contact with the criticality prevention coating layer to cure the surface thereof.
As shown in FIG. 1, the criticality prevention coating layer 3 made of the criticality prevention coating material was formed on the surface of the iron base material 1 by the above construction. The iron base material 1 is a member that imitates a molten core.
(2) In the case of a stainless steel base material The surface of a base material made of stainless steel (SUS304) (hereinafter referred to as a stainless steel base material) was roughened by # 24 blasting. Next, the criticality prevention coating material of S2 was sprayed onto the surface of the stainless steel base material using a lysing gun to form a criticality prevention coating layer. The spray amount was 2000 g / m 2 . Then, it was cured at 20 ° C. The stainless steel base material is a member that imitates a molten core.
(3) In the case of an alumina base material The criticality prevention coating material of S2 was sprayed on the surface of a base material made of an alumina refractory (hereinafter referred to as an alumina base material) using a lysing gun to form a criticality prevention coating layer. .. The spray amount was 2000 g / m 2 . Then, it was cured at 20 ° C. The alumina base material is a member that imitates a molten core.

3.臨界防止被覆材及び臨界防止被覆層の評価
(1)硬化開始時間の評価
各成分を混合してS1〜S12の臨界防止被覆材を製造してから、流動性がなくなるまでの時間(硬化開始時間)を測定した。その結果を上記表1に示す。
(2)付着力の評価
臨界防止被覆層の形成後、20℃にて24時間養生した時点で臨界防止被覆層を目視観察した。そして、以下の基準で基材に対する臨界防止被覆層の付着力を評価した。
3. 3. Evaluation of anti-criticality coating material and anti-criticality coating layer (1) Evaluation of curing start time The time from when each component is mixed to produce the criticality prevention coating material of S1 to S12 until the fluidity disappears (curing start time). ) Was measured. The results are shown in Table 1 above.
(2) Evaluation of Adhesive Strength After the formation of the criticality prevention coating layer, the criticality prevention coating layer was visually observed when it was cured at 20 ° C. for 24 hours. Then, the adhesive force of the criticality prevention coating layer to the substrate was evaluated according to the following criteria.

○:剥離、ひび割れなし
△:小さな剥離、ひび割れあり
×:大きな剥離、ひび割れあり
なお、S2については、鉄基材、ステンレス基材、及びアルミナ基材のそれぞれについて臨界防止被覆層を形成し、付着力を評価した。その他の臨界防止被覆材については、鉄基材について臨界防止被覆層を形成し、付着力を評価した。評価結果を上記表1に示す。
◯: No peeling or cracking Δ: Small peeling or cracking ×: Large peeling or cracking For S2, a criticality prevention coating layer was formed for each of the iron base material, stainless steel base material, and alumina base material. The strength was evaluated. For other anti-criticality coating materials, an anti-criticality coating layer was formed on the iron substrate and the adhesive strength was evaluated. The evaluation results are shown in Table 1 above.

S1〜S10の臨界防止被覆材を用いた場合は付着力が高かった。特に、S2の臨界防止被覆材を用いた場合は、鉄基材、ステンレス基材、及びアルミナ基材のそれぞれにおいて付着力が高かった。一方、S11〜S12の臨界防止被覆材を用いた場合は付着力が低かった。
(3)耐熱水性の評価
直径50mm、高さ100mmの型枠にS2、S4、S7、S8の臨界防止被覆材を打設し、その後20℃にて7日間養生したものを試験体とした。この試験体の重量測定を行った後、沸騰した蒸留水に試験体を5時間浸漬した。その後、再び試験体の重量測定を行い、浸漬前の重量と浸漬後の重量とを用い、以下の式(2)より耐熱水比を算出した。
When the criticality prevention coating materials of S1 to S10 were used, the adhesive force was high. In particular, when the criticality prevention coating material of S2 was used, the adhesive force was high in each of the iron base material, the stainless steel base material, and the alumina base material. On the other hand, when the criticality prevention coating materials of S11 to S12 were used, the adhesive force was low.
(3) Evaluation of heat resistance Water-resistant coating materials of S2, S4, S7, and S8 were cast in a mold having a diameter of 50 mm and a height of 100 mm, and then cured at 20 ° C. for 7 days to prepare a test piece. After weighing the test piece, the test piece was immersed in boiling distilled water for 5 hours. Then, the weight of the test piece was measured again, and the heat-resistant water ratio was calculated from the following formula (2) using the weight before immersion and the weight after immersion.

式(2):耐熱水比(%) = ((浸漬後重量)/ (浸漬前重量))×100
そして、耐熱水比の値を以下の基準に当てはめて、臨界防止被覆材の耐熱水性を評価した。その評価結果を表4に示す。
Equation (2): Heat-resistant water ratio (%) = ((weight after immersion) / (weight before immersion)) × 100
Then, the value of the heat-resistant water ratio was applied to the following criteria to evaluate the heat-resistant water content of the criticality prevention coating material. The evaluation results are shown in Table 4.

○:96〜105%
△:90〜95%
×:89%以下
◯: 96-105%
Δ: 90 to 95%
×: 89% or less

Figure 0006867567
Figure 0006867567

S2、S4、S7、S8の臨界防止被覆材から成る試験体はいずれも優れた耐熱水性を有していた。
<実施例2>
1.臨界防止被覆材の製造
表5に示すとおり、各成分をモルタルミキサーで混合することにより、S13〜S16の臨界防止被覆材を製造した。これらの臨界防止被覆材は高粘性液状の剤型を有する。
All of the test specimens made of the criticality prevention coating materials of S2, S4, S7 and S8 had excellent heat resistance and water resistance.
<Example 2>
1. 1. Production of Anti-Critical Coating Material As shown in Table 5, the anti-criticality coating materials of S13 to S16 were produced by mixing each component with a mortar mixer. These anti-criticality coatings have a highly viscous liquid dosage form.

Figure 0006867567
Figure 0006867567

なお、表5におけるC1は、カルシウムアルミネート系のセメント急硬材(商品名:デンカES)であって、C12A7組成の非晶質ブレーン値5,900cm2/g品である。また、C2は、アルミン酸ナトリウム系のセメント急硬材であって、アルミン酸ナトリウムと炭酸ナトリウムとの混合品である。 In addition, C1 in Table 5 is a calcium-aluminate-based cement hardened material (trade name: Denka ES), and is an amorphous brain value of 5,900 cm 2 / g having a C12A7 composition. Further, C2 is a sodium aluminate-based cement hardened material, which is a mixture of sodium aluminate and sodium carbonate.

2.臨界防止被覆層の形成
(1)鉄基材の場合
鉄基材の表面を♯320の工業用パッドで目荒した。次に、S13〜S16の臨界防止被覆材を鉄基材の表面にコテを用いて塗布し、臨界防止被覆層を形成した。塗布量は2000g/m2とした。その後、20℃にて養生した。
(2)ステンレス基材の場合
ステンレス基材の表面を♯24ブラストにて粗面化した。次に、S13の臨界防止被覆材をステンレス基材の表面にリシンガンを用いて吹き付け、臨界防止被覆層を形成した。吹付け量は2000g/m2とした。その後、20℃にて養生した。
(3)アルミナ基材の場合
S13の臨界防止被覆材をアルミナ基材の表面、リシンガンを用いて吹き付け、臨界防止被覆層を形成した。吹付け量は2000g/m2とした。その後、20℃にて養生した
2. Formation of anti-criticality coating layer (1) In the case of iron base material The surface of the iron base material was roughened with an industrial pad of # 320. Next, the criticality prevention coating materials S13 to S16 were applied to the surface of the iron base material using a trowel to form a criticality prevention coating layer. The coating amount was 2000 g / m 2 . Then, it was cured at 20 ° C.
(2) In the case of a stainless steel base material The surface of the stainless steel base material was roughened by # 24 blasting. Next, the criticality prevention coating material of S13 was sprayed onto the surface of the stainless steel base material using a ricing gun to form a criticality prevention coating layer. The spray amount was 2000 g / m 2 . Then, it was cured at 20 ° C.
(3) In the case of an alumina base material The criticality prevention coating material of S13 was sprayed on the surface of the alumina base material using a lysing gun to form a criticality prevention coating layer. The spray amount was 2000 g / m 2 . Then, it was cured at 20 ° C.

3.臨界防止被覆材及び臨界防止被覆層の評価
前記実施例1と同様にして、硬化開始時間、付着力、及び耐熱水性を評価した。硬化開始時間、及び付着力の評価結果を上記表5に示す。
3. 3. Evaluation of Anti-Critical Coating Material and Anti-Critical Coating Layer The curing start time, adhesive strength, and heat resistance were evaluated in the same manner as in Example 1. The evaluation results of the curing start time and the adhesive force are shown in Table 5 above.

なお、付着力の評価において、S13については、鉄基材、ステンレス基材、及びアルミナ基材のそれぞれについて臨界防止被覆層を形成し、付着力を評価した。その他の臨界防止被覆材については、鉄基材について臨界防止被覆層を形成し、付着力を評価した。また、耐熱水性の評価はS13の臨界防止被覆材について行った。 In the evaluation of the adhesive force, for S13, a criticality prevention coating layer was formed for each of the iron base material, the stainless steel base material, and the alumina base material, and the adhesive force was evaluated. For other anti-criticality coating materials, an anti-criticality coating layer was formed on the iron substrate and the adhesive strength was evaluated. Moreover, the evaluation of heat resistance and water resistance was performed on the criticality prevention coating material of S13.

表5に示すように、S13〜S15の臨界防止被覆材の硬化開始時間は適度な長さであった。一方、S16の臨界防止被覆材の硬化開始時間は非常に長かった。S13〜S16の臨界防止被覆材を用いた場合、付着力は高かった。また、S13の臨界防止被覆材から成る試験体は優れた耐熱水性を有していた。 As shown in Table 5, the curing start time of the criticality prevention coating materials of S13 to S15 was an appropriate length. On the other hand, the curing start time of the criticality prevention coating material of S16 was very long. When the criticality prevention coating materials of S13 to S16 were used, the adhesive force was high. Further, the test piece made of the criticality prevention coating material of S13 had excellent heat resistance and water resistance.

尚、本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、熱中性子吸収材として、ホウ素化合物粒子を用いてもよい。この場合でも、略同様の効果を奏することができる。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be carried out in various embodiments without departing from the present invention.
For example, boron compound particles may be used as the thermal neutron absorber. Even in this case, substantially the same effect can be obtained.

1・・・鉄基材、3・・・臨界防止被覆層 1 ... Iron substrate, 3 ... Critical prevention coating layer

Claims (1)

熱中性子吸収材と、
セメントと、
セメント急硬材と、
を含む臨界防止被覆層を、炉心溶融が生じた後、冷温停止した炉心の表面に形成し、
前記臨界防止被覆層を前記表面に付着させることを特徴とする臨界防止被覆層の形成方法。
Thermal neutron absorber and
With cement
Cement hardwood and
A criticality prevention coating layer containing the above is formed on the surface of the core that has been cold-shut down after the core meltdown has occurred.
A method for forming an anti-criticality coating layer, which comprises adhering the anti-criticality coating layer to the surface.
JP2017005237A 2017-01-16 2017-01-16 Method of forming anti-criticality coating layer Active JP6867567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005237A JP6867567B2 (en) 2017-01-16 2017-01-16 Method of forming anti-criticality coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005237A JP6867567B2 (en) 2017-01-16 2017-01-16 Method of forming anti-criticality coating layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013060118A Division JP6212684B2 (en) 2013-03-22 2013-03-22 Criticality prevention coating material, criticality prevention coating layer, and method for forming the same

Publications (2)

Publication Number Publication Date
JP2017062268A JP2017062268A (en) 2017-03-30
JP6867567B2 true JP6867567B2 (en) 2021-04-28

Family

ID=58429637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005237A Active JP6867567B2 (en) 2017-01-16 2017-01-16 Method of forming anti-criticality coating layer

Country Status (1)

Country Link
JP (1) JP6867567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108364705A (en) * 2018-02-24 2018-08-03 航天慧能(江苏)环境工程有限公司 A kind of processing method containing radioactive element waste material
JPWO2022025036A1 (en) * 2020-07-27 2022-02-03

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147399A (en) * 1987-12-02 1989-06-09 Kuraray Co Ltd Fiber-reinforced neutron shielding mortar concrete
JP2929077B2 (en) * 1995-11-13 1999-08-03 核燃料サイクル開発機構 Hydraulic material for neutron shielding and method of manufacturing neutron shielding body using the same
JP2007139605A (en) * 2005-11-18 2007-06-07 Taisei Corp Irradiation facility
JP5665672B2 (en) * 2011-07-01 2015-02-04 株式会社東芝 Nuclear fuel reactivity suppression method and reactivity suppression device
JP5783495B2 (en) * 2011-07-26 2015-09-24 日立化成株式会社 Control member for light water reactor

Also Published As

Publication number Publication date
JP2017062268A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6867567B2 (en) Method of forming anti-criticality coating layer
JP2012504773A (en) Composition for radiation shielding structure
KR101472485B1 (en) Geo-polymer mortar cement composition using the same construction methods
CN101245215B (en) Radioresistant paint for nuclear power plant and manufacture method thereof
JP4344399B1 (en) Curable inorganic composition
Guzii et al. Rehabilitation of concrete surfaces of hydropower engineering structures deteriorated by soft corrosion and cavitation
US20130014670A1 (en) Use of anticorrosion agents for conditioning magnesium metal, conditioning material thus obtained and preparation process
JP6212684B2 (en) Criticality prevention coating material, criticality prevention coating layer, and method for forming the same
GB1570604A (en) Fire proofing compositions
CN106947368B (en) A kind of resin ceramic material and preparation method thereof
CN104292892A (en) Water-based inorganic zinc-rich dry powder paint and preparation method thereof
JP2015001485A (en) Method and apparatus for cement solidification of boric acid-containing waste liquid
CN107841163A (en) A kind of water resistance inorganic zinc coating and its preparation technology
Chen et al. Research on the modification of water-borne inorganic zinc-rich coatings and its performances
CN107841165A (en) A kind of aqueous inorganic zinc-enriched coating of modification
JP2005162551A (en) Grout material composition
RU2191221C2 (en) Silicate composition for manufacture of heat-resistant coating
JP2741900B2 (en) Water disintegrable epoxy resin composition
JP2005154211A (en) Grout composition
CN104194531B (en) A kind of solvent resistance environment protecting water-based paint and preparation method
JPS6219389B2 (en)
JPS57162760A (en) Coating composition for forming self-cleaning coating film
JP6792092B1 (en) Calcium aluminate-based filler
Vandevenne et al. The effect of Cs and Sr on the mechanical properties of blast furnace slag inorganic polymer for radioactive waste immobilisation
JP2005239788A (en) Epoxy resin adhesive

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191217

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200311

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200901

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201006

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210112

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210209

R150 Certificate of patent or registration of utility model

Ref document number: 6867567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150