JP2015001485A - Method and apparatus for cement solidification of boric acid-containing waste liquid - Google Patents

Method and apparatus for cement solidification of boric acid-containing waste liquid Download PDF

Info

Publication number
JP2015001485A
JP2015001485A JP2013127110A JP2013127110A JP2015001485A JP 2015001485 A JP2015001485 A JP 2015001485A JP 2013127110 A JP2013127110 A JP 2013127110A JP 2013127110 A JP2013127110 A JP 2013127110A JP 2015001485 A JP2015001485 A JP 2015001485A
Authority
JP
Japan
Prior art keywords
waste liquid
boric acid
containing waste
silica sand
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013127110A
Other languages
Japanese (ja)
Other versions
JP6139288B2 (en
Inventor
寛史 岡部
Hiroshi Okabe
寛史 岡部
裕一 東海林
Yuichi Shoji
裕一 東海林
春口 佳子
Yoshiko Haruguchi
佳子 春口
佐藤 龍明
Tatsuaki Sato
龍明 佐藤
遼 山本
Haruka Yamamoto
遼 山本
恵二朗 安村
Keijiro Yasumura
恵二朗 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013127110A priority Critical patent/JP6139288B2/en
Priority to PCT/JP2014/003112 priority patent/WO2014203498A1/en
Priority to EP14814441.3A priority patent/EP3012839B1/en
Publication of JP2015001485A publication Critical patent/JP2015001485A/en
Application granted granted Critical
Publication of JP6139288B2 publication Critical patent/JP6139288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • G21F9/165Cement or cement-like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for cement solidification of boric acid-containing waste liquid, enabling the boric acid-containing waste liquid to be formed into a stable cement solidified body with highly reduced volume.SOLUTION: The method for cement solidification of boric acid-containing waste liquid comprises: a volume reduction step of adding a sodium hydroxide 2 to a radioactive boric acid-containing waste liquid 1 and forming a material to be solidified by volume reduction; the first mixing step of mixing the material to be solidified, mixing water 4 and a hydraulic solidifying material 5 to form a first mixture; and the second mixing step of mixing silica sand 6 and the first mixture to form a second mixture. A weight ratio (weight of silica sand/weight of hydraulic solidifying material) of the silica sand 6 to the hydraulic solidifying material 5 is 1.5-3.0. An apparatus 10 for cement solidification of boric acid-containing waste liquid includes: a mixing machine 11; a boric acid-containing waste liquid supply device 12; a mixing water supply device 13; a hydraulic solidifying material supply device 14; and a silica sand supply device 15.

Description

本発明は、ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置に関する。   The present invention relates to a cement solidification treatment method and a cement solidification treatment apparatus for a boric acid-containing waste liquid.

加圧水型原子力発電所では、原子炉の出力調整等に使用したホウ酸含有廃液が多く発生する。また、沸騰水型原子力発電所では、原子炉に緊急に注入するホウ酸水が貯蔵されており、ホウ酸含有廃液が発生することがある。   In a pressurized water nuclear power plant, a lot of boric acid-containing waste liquid used for adjusting the output of a nuclear reactor is generated. Moreover, in a boiling water nuclear power plant, boric acid water that is urgently injected into a nuclear reactor is stored, and boric acid-containing waste liquid may be generated.

ホウ酸含有廃液は水酸化ナトリウムや水酸化リチウム等により中和処理され、その後、セメントやアスファルトで固化されている。このうち、アスファルト固化ではアスファルトを加熱し、その熱により廃液中の水分を蒸発させアスファルト中にホウ酸ナトリウム成分を固定化している。しかしこのケースでは、アスファルトを溶融するために加熱が必要となる。また、アスファルトで放射線分解が発生した場合における水素ガスの発生、あるいはアスファルトの劣化などが生じ、固化体の安定性が低下する。また、アスファルト固化体では核種閉じ込め性が低いため、処分施設への持ち込みが制限されるなどの問題があり、近年では、セメント固化への転換が進められている。   The boric acid-containing waste liquid is neutralized with sodium hydroxide or lithium hydroxide, and then solidified with cement or asphalt. Among these, in asphalt solidification, the asphalt is heated, the water in the waste liquid is evaporated by the heat, and the sodium borate component is fixed in the asphalt. In this case, however, heating is required to melt the asphalt. In addition, when radiolysis occurs on asphalt, hydrogen gas is generated or the asphalt is deteriorated, and the stability of the solidified body is lowered. In addition, asphalt solidified bodies have low nuclide confinement properties, so there are problems such as restrictions on bringing them into disposal facilities. In recent years, conversion to cement solidification has been promoted.

ここで、セメント固化ではホウ酸がセメントの凝結反応を妨害するために、大幅な硬化遅延や固化体の強度低下が生じる。そのため、減容性を高めながらホウ酸含有廃液をセメント固化する観点から、水酸化カルシウム等を前処理剤として添加して固化する等、種々の提案がなされている。   Here, in cement solidification, boric acid interferes with the cementation reaction of the cement, resulting in a significant delay in setting and a decrease in strength of the solidified body. For this reason, various proposals have been made such as adding calcium hydroxide or the like as a pretreatment agent and solidifying it from the viewpoint of solidifying the boric acid-containing waste liquid while increasing volume reduction.

例えば、ホウ酸ナトリウムを含有する廃液を90℃以上で加熱濃縮し、60℃以下の温度に冷却し、ホウ酸ナトリウムを析出させた後、高炉セメントを添加して混練し、混練物をドラム缶に排出する方法が提案されている(例えば、特許文献1参照。)。   For example, waste liquid containing sodium borate is heated and concentrated at 90 ° C. or higher, cooled to a temperature of 60 ° C. or lower, sodium borate is precipitated, blast furnace cement is added and kneaded, and the kneaded product is put into a drum can. A method of discharging has been proposed (see, for example, Patent Document 1).

また、ホウ酸又はホウ酸塩溶液をpH7〜10に調整し、二価以上の金属酸化物、水酸化物、塩類やセメント、スラグ等の粉体と混合してスラリー化し、このスラリーの水分を30%以下として、硬化させる方法が提案されている(例えば、特許文献2参照。)。   Moreover, the boric acid or borate solution is adjusted to pH 7 to 10, mixed with powders such as divalent or higher metal oxides, hydroxides, salts, cement, slag, etc., and slurried. A method of curing at 30% or less has been proposed (for example, see Patent Document 2).

しかしながら、従来のホウ酸含有廃液の固化処理方法のうち、ホウ酸含有廃液を過飽和にまで濃縮した液にセメントやスラグ等の固化材を添加して混合する方法では、ホウ酸ナトリウムが水を吸収して水和物を生成し、極短時間に流動性を喪失する凝結事象を起こす可能性がある。この事は、ホウ酸ナトリウム廃液を乾燥粉体として、セメント固化する場合も同様である。また、ホウ酸含有廃液を濃縮する方法では、濃縮の過程でホウ酸の重合反応や縮合反応が進行することで濃縮物が高粘度化し、濃縮効率の低下や配管の閉塞等が起こるという課題がある。   However, among the conventional methods for solidifying boric acid-containing waste liquid, sodium borate absorbs water in a method in which a boric acid-containing waste liquid is concentrated to supersaturation and a solidifying material such as cement or slag is added and mixed. This can produce hydrates and cause a condensation event that loses fluidity in a very short time. The same applies to cement solidification using a sodium borate waste liquid as a dry powder. In addition, in the method of concentrating boric acid-containing waste liquid, there is a problem that the concentration of the concentrate increases as the polymerization reaction or condensation reaction of boric acid progresses during the concentration process, resulting in a decrease in concentration efficiency and piping clogging. is there.

また、ホウ酸塩による硬化遅延やホウ酸ナトリウムの水和物化を回避するために、放射性のホウ酸含有廃液に水酸化カルシウムを添加して乾燥粉体化した後、圧縮固化、樹脂による固化、セメント固化等を行う方法が提案されている(例えば、特許文献3参照。)。この方法では、ホウ酸塩を安定化してから処理するため有用であるが、難溶化した廃液成分が配管内や乾燥機等の内部に付着する可能性があり、さらにこれら付着した廃液成分が洗浄し難い等の不都合がある。   In addition, in order to avoid delay in hardening due to borate and hydrate formation of sodium borate, after adding calcium hydroxide to radioactive boric acid-containing waste liquid to dry powder, compression solidification, solidification with resin, A method of performing cement solidification or the like has been proposed (see, for example, Patent Document 3). This method is useful for processing after stabilizing the borate, but it is possible that insoluble waste liquid components may adhere to the inside of pipes and dryers, and these attached waste liquid components are washed. There are inconveniences such as difficulty.

また、放射性のホウ酸含有廃液を乾燥粉体化した後にセメント固化する方法として、難溶化等の前処理をせずにホウ酸含有廃液を乾燥し、セメントの固化促進材としてアルミン酸ナトリウムを固化材に添加するとともに、助材として水酸化リチウムを固化材に添加してセメント固化する方法が提案されている(例えば、特許文献4参照。)。この方法では、アルミン酸ナトリウム及び水酸化リチウムの添加量が固化材中35重量%程度と多くなる。そして、これらの固化促進材等が高価であるため、コストが増大するという課題もある。   Also, as a method of solidifying cement after drying radioactive boric acid containing waste liquid into dry powder, boric acid containing waste liquid is dried without pretreatment such as poor solubilization, and sodium aluminate is solidified as a cement solidification accelerator. A method has been proposed in which lithium hydroxide is added to a solidifying material as an auxiliary material and cemented by adding cement to the material (see, for example, Patent Document 4). In this method, the amount of sodium aluminate and lithium hydroxide added increases to about 35% by weight in the solidified material. And since these solidification promotion materials etc. are expensive, there also exists a subject that cost increases.

また、放射性のホウ酸含有廃液を固化する方法として、ホウ酸含有廃液を乾燥粉体化した後、ケイ酸アルカリ結着剤水溶液を混合し、さらに酸性硬化剤、硬化遅延剤、ケイ砂等からなる助剤を混合して固化する方法が提案されている(例えば、特許文献5参照。)。この方法は、固化材の主成分が水ガラスであり、セメントを主成分として固化するものではない。   In addition, as a method for solidifying the radioactive boric acid-containing waste liquid, after drying the boric acid-containing waste liquid into a dry powder, it is mixed with an alkali silicate binder aqueous solution, and further from an acidic curing agent, curing retarder, silica sand, etc. There has been proposed a method of mixing and solidifying an auxiliary agent (for example, see Patent Document 5). In this method, the main component of the solidifying material is water glass and does not solidify with cement as the main component.

また、ホウ酸含有廃液等の放射性廃棄物を固化する方法として、主固化材として高炉スラグ、フライアッシュやシリカヒューム等の微粉状物質及び分散剤を含有する固化材を用いる方法が提案されている(例えば、特許文献6参照。)。この方法では、高炉スラグと微粉状物質が共存することにより混錬物の高粘度化するという課題や、高分子カルボン酸化合物の放射性分解による水素ガスが発生する可能性があった。   As a method for solidifying radioactive waste such as boric acid-containing waste liquid, a method using a solidified material containing a pulverized blast furnace slag, fly ash, silica fume and the like as a main solidified material and a dispersant has been proposed. (For example, see Patent Document 6). In this method, there is a problem that the viscosity of the kneaded product is increased due to the coexistence of the blast furnace slag and the fine powder material, and there is a possibility that hydrogen gas is generated due to radioactive decomposition of the polymer carboxylic acid compound.

特開平10−90490号公報JP-A-10-90490 特開平11−72593号公報JP-A-11-72593 特開平2−208600号公報JP-A-2-208600 特開2001−97757号公報JP 2001-97757 A 特公平4−18640号公報Japanese Patent Publication No. 4-18640 特開平8−179095号公報Japanese Patent Laid-Open No. 8-179095

このように、従来のホウ酸含有廃液のセメント固化処理方法においては、さらなる高減容の要望等の課題があった。   Thus, the conventional method for solidifying cement with boric acid-containing waste liquid has problems such as a request for further high volume reduction.

本発明は、上述した課題を解決するためになされたものであり、ホウ酸含有廃液を高減容で安定したセメント固化体とすることのできるホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and provides a cement solidification treatment method and a cement solidification treatment of a boric acid-containing waste liquid that can make the boric acid-containing waste liquid a highly-reduced and stable cement solidified body. An object is to provide an apparatus.

本発明によるホウ酸含有廃液のセメント固化処理方法の一態様は、放射性のホウ酸含有廃液をセメント固化する方法であって、前記ホウ酸含有廃液に水酸化ナトリウムを添加し、減容して被固化物とする減容工程と、前記被固化物と混錬水と水硬性固化材とを混錬して第1の混錬物とする第1の混錬工程と、ケイ砂と前記第1の混錬物とを混錬して第2の混錬物とする第2の混錬工程とを具備し、前記水硬性固化材重量に対する前記ケイ砂重量比(ケイ砂重量/水硬性固化材重量)は1.5〜3.0であることを特徴とする。   One aspect of the method for solidifying a boric acid-containing waste liquid according to the present invention is a method for solidifying a radioactive boric acid-containing waste liquid by cement, and adding sodium hydroxide to the boric acid-containing waste liquid to reduce the volume. Volume reduction step to be a solidified material, a first kneading step to knead the material to be solidified, kneaded water and hydraulic solidified material to form a first kneaded material, silica sand and the first And a second kneading step of kneading the kneaded material with the kneaded material to form a second kneaded material, and the weight ratio of the silica sand to the weight of the hydraulic solidified material (silica sand weight / hydraulic solidified material) (Weight) is 1.5 to 3.0.

本発明によるホウ酸含有廃液のセメント固化処理装置の一態様は、放射性のホウ酸含有廃液をセメント固化する装置であって、混錬機と、水酸化ナトリウムを添加し、減容した被固化物を混錬機に供給するホウ酸含有廃液供給装置と、前記混錬機に混錬水を供給する混錬水供給装置と、前記混錬機に水硬性固化材を供給して第1の混錬物とする水硬性固化材供給装置と、前記混錬機にケイ砂を供給して第2の混錬物とするケイ砂供給装置とを具備し、前記ケイ砂供給装置における前記水硬性固化材重量に対する前記ケイ砂重量比(ケイ砂重量/水硬性固化材重量)は1.5〜3.0であることを特徴とする。   One aspect of a cement solidification treatment apparatus for boric acid-containing waste liquid according to the present invention is an apparatus for cement solidifying a radioactive boric acid-containing waste liquid, which is a kneading machine and a solidified material to which volume is reduced by adding sodium hydroxide. A boric acid-containing waste liquid supply device for supplying the kneading machine, a kneaded water supply device for supplying kneaded water to the kneading machine, and a hydraulic solidifying material supplied to the kneading machine to supply the first kneading water. A hydraulic solidification material supply device as a smelted material and a silica sand supply device as a second kneaded material by supplying silica sand to the kneading machine, and the hydraulic solidification in the silica sand supply device The silica sand weight ratio to the material weight (silica sand weight / hydraulic solidified material weight) is 1.5 to 3.0.

本発明によれば、ホウ酸含有廃液を高減容で安定したセメント固化体とすることができる。   According to the present invention, a boric acid-containing waste liquid can be made into a highly solid and stable cement solidified body.

本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理方法の工程を示すフロー図である。It is a flowchart which shows the process of the cement solidification processing method of the boric acid containing waste liquid which concerns on one Embodiment of this invention. 本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理装置の概略構成図である。It is a schematic block diagram of the cement solidification processing apparatus of the boric acid containing waste liquid which concerns on one Embodiment of this invention. 実施例におけるS/Cの値とセメント固化体の強度との関係を示すグラフである。It is a graph which shows the relationship between the value of S / C and the intensity | strength of a cement solid body in an Example.

図1は、本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理方法の工程を示すフロー図であり、図2は本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理装置を示す概略構成図である。以下、図1及び図2を参照して本発明の実施の形態について説明する。   FIG. 1 is a flowchart showing the steps of a cement solidification treatment method for boric acid-containing waste liquid according to an embodiment of the present invention, and FIG. 2 is a cement solidification treatment apparatus for boric acid-containing waste liquid according to an embodiment of the present invention. It is a schematic block diagram which shows. The embodiment of the present invention will be described below with reference to FIGS.

図1に示すセメント固化処理方法は、ホウ酸含有廃液1に水酸化ナトリウム2を添加する工程(S101)と、水酸化ナトリウム2の添加されたホウ酸含有廃液1を乾燥して乾燥粉体3とする減容工程(S102)と、乾燥粉体3と混錬水4と水硬性固化材5とを混錬して第1の混錬物とする第1の混錬工程(S103)と、第1の混錬物とケイ砂6とを混錬して第2の混錬物とする第2の混錬工程(S104)とを有している。   The cement solidification treatment method shown in FIG. 1 includes a step of adding sodium hydroxide 2 to the boric acid-containing waste liquid 1 (S101), and drying the boric acid-containing waste liquid 1 to which sodium hydroxide 2 has been added to dry powder 3 A volume reduction step (S102), a first kneading step (S103) in which the dry powder 3, the kneaded water 4 and the hydraulic solidifying material 5 are kneaded to form a first kneaded product, A second kneading step (S104) in which the first kneaded material and the silica sand 6 are kneaded to form a second kneaded material.

また、図2に示すセメント固化処理装置10は、ホウ酸含有廃液1を混錬する混錬機11と、混錬機11にそれぞれ減容した被固化物を供給するホウ酸含有廃液供給装置12と、混錬水4を供給する混錬水供給装置13と、水硬性固化材5を供給する水硬性固化材供給装置14と、ケイ砂6を供給するケイ砂供給装置15を備えている。また、ホウ酸含有廃液供給装置12はホウ酸含有廃液1を減容して被固化体とするための減容装置(図示せず)を備えており、当該減容装置がホウ酸含有廃液1を例えば加熱乾燥して乾燥粉体3とする。ケイ砂供給装置15には、ケイ砂供給装置15のケイ砂供給量を所定の量に調節するケイ砂供給量調節装置16が付設されている。符号17は、混錬機11で混錬された第2の混錬物を内部に収容して固化する固化容器である。   Moreover, the cement solidification processing apparatus 10 shown in FIG. 2 is a kneading machine 11 for kneading the boric acid-containing waste liquid 1 and a boric acid-containing waste liquid supply apparatus 12 for supplying a solidified material reduced in volume to the kneading machine 11. A kneaded water supply device 13 that supplies the kneaded water 4, a hydraulic solidifying material supply device 14 that supplies the hydraulic solidified material 5, and a silica sand supply device 15 that supplies the silica sand 6. The boric acid-containing waste liquid supply device 12 includes a volume reduction device (not shown) for reducing the volume of the boric acid-containing waste liquid 1 to obtain a solidified body, and the volume reduction device is the boric acid-containing waste liquid 1. Is dried by heating to obtain a dry powder 3. The silica sand supply device 15 is provided with a silica sand supply amount adjusting device 16 for adjusting the silica sand supply amount of the silica sand supply device 15 to a predetermined amount. Reference numeral 17 denotes a solidification container in which the second kneaded material kneaded by the kneading machine 11 is housed and solidified.

(第1工程(図1に示すS101))
本実施形態におけるセメント固化の対象物は、ホウ酸を含有する放射性の廃液(ホウ酸含有廃液1)である。本実施形態の第1工程は、ホウ酸含有廃液1に水酸化ナトリウム2を添加する工程である。これにより、水酸化ナトリウム2がホウ酸含有廃液1中のホウ素と反応して、ホウ酸ナトリウム塩が生成する。
(First step (S101 shown in FIG. 1))
The object of cement solidification in this embodiment is a radioactive waste liquid containing boric acid (boric acid-containing waste liquid 1). The first step of the present embodiment is a step of adding sodium hydroxide 2 to the boric acid-containing waste liquid 1. As a result, sodium hydroxide 2 reacts with boron in the boric acid-containing waste liquid 1 to produce a sodium borate salt.

水酸化ナトリウム2の量は、ナトリウム/ホウ素モル比が好ましくは0.2以上、より好ましくは0.2〜0.5、特に好ましくは0.2〜0.3となる量とする。これにより、ホウ酸ナトリウム塩の水に対する溶解度を高め、配管や乾燥機等の洗浄性を向上させることができる。   The amount of sodium hydroxide 2 is such that the sodium / boron molar ratio is preferably 0.2 or more, more preferably 0.2 to 0.5, and particularly preferably 0.2 to 0.3. Thereby, the solubility with respect to the water of a sodium borate salt can be improved, and detergency, such as piping and a dryer, can be improved.

(第2工程(図1に示すS102))
本実施形態の第2工程は、ホウ酸含有廃液1を高減容で多量に固化するために、ホウ酸含有廃液1を減容する工程である。本実施形態の第2工程では、ホウ酸含有廃液1を乾燥機へ供給し、ここで乾燥処理を施して乾燥粉体3とする。
(Second step (S102 shown in FIG. 1))
The second step of this embodiment is a step of reducing the volume of the boric acid-containing waste liquid 1 in order to solidify the boric acid-containing waste liquid 1 in a large volume with a high volume reduction. In the second step of the present embodiment, the boric acid-containing waste liquid 1 is supplied to a dryer, where a drying process is performed to obtain a dry powder 3.

配管等への付着物低減の観点から、水酸化ナトリウム2の添加後のホウ酸含有廃液1の温度は、ホウ酸ナトリウム塩の析出温度以上、好ましくは60℃以上、より好ましくは80℃〜90℃程度以上として乾燥機に供給する。乾燥機内では、ホウ酸含有廃液1を好ましくは80℃以上程度、より好ましくは120〜180℃程度、特に好ましくは160℃程度に加熱して乾燥処理する。   From the viewpoint of reducing deposits on piping and the like, the temperature of the boric acid-containing waste liquid 1 after the addition of sodium hydroxide 2 is equal to or higher than the precipitation temperature of the sodium borate salt, preferably 60 ° C or higher, more preferably 80 ° C to 90 ° C. Supply to the dryer at about ℃ or higher. In the dryer, the boric acid-containing waste liquid 1 is preferably heated to about 80 ° C. or more, more preferably about 120 to 180 ° C., and particularly preferably about 160 ° C. for drying treatment.

乾燥機としては特に限定されるものではないが、遠心薄膜乾燥機を用いることが好ましい。遠心薄膜乾燥機は、熱効率が高いことから装置をコンパクト化できる、乾燥処理時の気相部への粉体移行量が少ない、得られるホウ酸ナトリウム塩粉末の粒径が安定する等の特徴を有するためである。   Although it does not specifically limit as a dryer, It is preferable to use a centrifugal thin film dryer. Centrifugal thin film dryers have features such as high thermal efficiency, which can reduce the size of the device, reduce the amount of powder transferred to the gas phase during the drying process, and stabilize the particle size of the resulting sodium borate powder. It is for having.

なお、ホウ酸含有廃液1の減容に際しては、上記した乾燥処理を施す代わりに、濃縮処理や沈降処理を行って濃縮廃液としてもよい。濃縮処理では、例えば、ホウ酸含有廃液1を加熱濃縮し、ホウ酸含有廃液中の水分含有量を重量比で30%以下程度とする。沈降処理では、ホウ酸含有廃液1に添加剤を添加することでホウ酸ナトリウム塩を沈降させる。この沈降したホウ酸ナトリウム塩を分離して濃縮廃液とする。本実施形態では、いずれの処理を行っても同様の効果を得ることができる。なお、減容後の乾燥粉体3及び濃縮廃液は、室温程度まで冷却してもよく、また、冷却せずにそのまま次の第3工程を行ってもよい。   In addition, when reducing the volume of the boric acid-containing waste liquid 1, instead of performing the above-described drying process, a concentrated waste liquid may be obtained by performing a concentration process or a sedimentation process. In the concentration treatment, for example, the boric acid-containing waste liquid 1 is heated and concentrated, and the water content in the boric acid-containing waste liquid is set to about 30% or less by weight. In the sedimentation process, sodium borate is precipitated by adding an additive to the boric acid-containing waste liquid 1. The precipitated sodium borate salt is separated into a concentrated waste liquid. In this embodiment, the same effect can be obtained regardless of which processing is performed. The dried powder 3 and the concentrated waste liquid after volume reduction may be cooled to about room temperature, or the next third step may be performed without cooling.

(第3工程(図1に示すS103))
本実施形態の第3工程は、乾燥粉体3と混練水4と水硬性固化材5とを混錬機を用いて混練して第1の混錬物とする工程である。
(Third step (S103 shown in FIG. 1))
The 3rd process of this embodiment is a process of kneading dry powder 3, kneading water 4, and hydraulic solidification material 5 using a kneading machine, and making it the 1st kneaded material.

乾燥粉体3に含まれるホウ酸ナトリウム塩は、水を吸収して含水塩となる性質を持つ。したがって、通常のセメント練り混ぜ手順のように、セメントと混錬水とを混錬したものに乾燥粉体3を混錬すると、含水塩によってセメント混練物の粘性が極端に高まって混練不良や疑凝結を生じるおそれがある。そのため、第3工程では、乾燥粉体3と混錬水4とを先に混合撹拌し、この間にあらかじめ含水塩を生成させておき、これにセメントなどの水硬化性固化材5を混錬することが好ましい。具体的には、含水塩の生成時間を考慮して、乾燥粉体3と混練水4を例えば10分以上混練することが好ましい。   The sodium borate salt contained in the dry powder 3 has the property of absorbing water and becoming a hydrated salt. Therefore, when the dry powder 3 is kneaded with a mixture of cement and kneaded water as in a normal cement kneading procedure, the viscosity of the cement kneaded material is extremely increased by the hydrated salt, resulting in kneading failure and suspicion. May cause condensation. Therefore, in the third step, the dry powder 3 and the kneaded water 4 are first mixed and stirred, and during this time, a hydrated salt is generated in advance, and the water-curable solidifying material 5 such as cement is kneaded therein. It is preferable. Specifically, it is preferable to knead the dry powder 3 and the kneaded water 4 for, for example, 10 minutes or longer in consideration of the generation time of the hydrated salt.

水硬性固化材5としては、特に限定されるものではないが、ポルトランドセメントを用いることが好ましい。ホウ酸含有廃液1をセメント固化する際には、セメント中のカルシウムがホウ酸と結合することでセメント固化に寄与するカルシウムが少なくなる傾向にある。そのため、水硬性固化材5中のカルシウム量が多いポルトランドセメントを好適に用いることができる。また、水硬性固化材5としては、ポルトランドセメントと高炉スラグの混合物、ポルトランドセメントとフライアッシュの混合物等を用いてもよい。   Although it does not specifically limit as the hydraulic solidification material 5, It is preferable to use Portland cement. When the boric acid-containing waste liquid 1 is cemented, the calcium in the cement tends to decrease due to the binding of calcium in the cement with boric acid. Therefore, Portland cement having a large amount of calcium in the hydraulic solidifying material 5 can be suitably used. As the hydraulic solidifying material 5, a mixture of Portland cement and blast furnace slag, a mixture of Portland cement and fly ash, or the like may be used.

(第4工程(図1に示すS104))
本実施形態の第4工程は、第3工程で得られた第1の混錬物とケイ砂6とを混錬して第2の混錬物とする工程である。
(Fourth step (S104 shown in FIG. 1))
The fourth step of the present embodiment is a step of kneading the first kneaded product obtained in the third step and the silica sand 6 to form a second kneaded product.

ホウ酸含有廃液1に含まれるホウ酸は、セメントの硬化を大幅に遅延させる作用やセメント固化体8の強度を低下させる作用を有する。これらを防止するために水酸化カルシウムを添加すると、ホウ酸カルシウム塩が配管や乾燥機内に析出して付着するという問題がある。本実施形態では、第4工程で第1の混錬物にケイ砂6を混錬することで、カルシウムを用いることなく、セメントの硬化遅延を抑制し、さらには最終的に得られるセメント固化体8の強度を向上させることができる。   Boric acid contained in the boric acid-containing waste liquid 1 has a function of significantly delaying the hardening of the cement and a function of reducing the strength of the cement solidified body 8. When calcium hydroxide is added to prevent these, there is a problem that calcium borate salt is deposited in the piping or dryer. In the present embodiment, cement sand 6 is kneaded into the first kneaded material in the fourth step, thereby suppressing the hardening delay of cement without using calcium, and finally the cement solidified body obtained. The strength of 8 can be improved.

第4工程で混錬するケイ砂6の量は、ケイ砂6/水硬性固化材5で示される重量比(以下、S/Cと称する。)が、1.5〜3.0の範囲となる量とする。S/Cは1.7〜2.6であることが好ましく、2.3程度であることが特に好ましい。S/Cを1.5〜3.0となるようにすることで、セメント固化体8の強度を向上させ、固化特性の良好なセメント固化体8を得ることができる。   The amount of silica sand 6 kneaded in the fourth step is such that the weight ratio indicated by silica sand 6 / hydraulic solidified material 5 (hereinafter referred to as S / C) is in the range of 1.5 to 3.0. The amount to be. S / C is preferably 1.7 to 2.6, and particularly preferably about 2.3. By making S / C to be 1.5 to 3.0, the strength of the cement solidified body 8 can be improved, and the cement solidified body 8 having good solidification characteristics can be obtained.

ケイ砂6の粒径は、メジアン径で0.026〜1.18mm程度であることが好ましい。   The silica sand 6 preferably has a median diameter of about 0.026 to 1.18 mm.

また、本実施形態では、第4工程においてケイ砂6を混合するに際し、添加されるケイ砂6の全重量のうちの一部をゼオライト7に代替することが好ましい。ゼオライト7は固体酸であり、また放射性核種の吸着性能が高いため、ゼオライト7を所定の割合で添加することで、セメント固化体8の放射能の閉じ込め性(放射性核種の分配係数)を飛躍的に向上させることができる。さらに、ゼオライト7がセメント固化の進行を阻害するホウ素イオンやホウ素化合物を吸着するため、セメント固化体8の強度を向上させることができる。ホウ素イオンやホウ素化合物は、アルカリ条件下になるほど溶出し易くなるが、所定量のゼオライト7を添加することで、これがアルカリを吸着して第2の混錬物やセメント固化体8のpHの上昇を抑制する。そのため、ホウ素イオンの溶出を抑えることができるので、固化特性の良好なセメント固化体8を得ることができる。   Moreover, in this embodiment, when mixing the silica sand 6 in a 4th process, it is preferable to substitute the zeolite 7 for a part of the total weight of the silica sand 6 added. Zeolite 7 is a solid acid and has high radionuclide adsorption performance. Therefore, the addition of zeolite 7 at a predetermined ratio dramatically improves the radioactivity confinement (radionuclide distribution coefficient) of cement solidified body 8. Can be improved. Furthermore, since the zeolite 7 adsorbs boron ions and boron compounds that inhibit the progress of cement solidification, the strength of the cement solidified body 8 can be improved. Boron ions and boron compounds are more likely to be eluted under alkaline conditions, but by adding a predetermined amount of zeolite 7, this adsorbs alkali and increases the pH of the second kneaded product or cement solidified body 8. Suppress. Therefore, elution of boron ions can be suppressed, and the cement solidified body 8 having good solidification characteristics can be obtained.

ゼオライト7の混合量は、ゼオライト7及びケイ砂6の合計重量に対するゼオライト7の重量比(ゼオライト7重量/ゼオライト7及びケイ砂6の合計重量)が0.05〜0.40となる量であることが好ましく、0.05〜0.25であることがより好ましく、0.10〜0.20であることが特に好ましい。ゼオライト7をこのように混合することで、セメント固化体8の強度及び放射能の閉じ込め性を向上させることができる。なお、この場合、上記S/Cにおいて、Sの値はケイ砂6とゼオライト7の合計重量となる。   The amount of zeolite 7 mixed is such that the weight ratio of zeolite 7 to the total weight of zeolite 7 and silica sand 6 (7 zeolite weight / total weight of zeolite 7 and silica sand 6) is 0.05 to 0.40. Is more preferable, 0.05 to 0.25 is more preferable, and 0.10 to 0.20 is particularly preferable. By mixing the zeolite 7 in this way, the strength and radioactivity confinement of the cement solidified body 8 can be improved. In this case, in the above S / C, the value of S is the total weight of the silica sand 6 and the zeolite 7.

また、ゼオライト7の粒径はメジアン径で770μm程度であることが好ましい。ゼオライト7のイオン交換容量は、10〜200(meq)/100(g)程度であることが好ましい。   The particle diameter of zeolite 7 is preferably about 770 μm in terms of median diameter. The ion exchange capacity of zeolite 7 is preferably about 10 to 200 (meq) / 100 (g).

なお、ケイ砂6とゼオライト7の混合方法は特に限定されず、あらかじめケイ砂6とゼオライト7を混合して、この混合物を第1の混錬物に混合してもよく、ケイ砂6及びゼオライト7を別々に第1の混錬物に混合してもよい。ケイ砂6及びゼオライト7を別々に混合する場合には、ケイ砂6及びゼオライト7の混合順序は、いずれが先であってもよく、また同時であってもよい。   The method for mixing the silica sand 6 and the zeolite 7 is not particularly limited. The silica sand 6 and the zeolite 7 may be mixed in advance, and this mixture may be mixed with the first kneaded material. 7 may be mixed separately in the first kneaded product. When the silica sand 6 and the zeolite 7 are mixed separately, either the silica sand 6 and the zeolite 7 may be mixed first or at the same time.

このようにして得られる第2の混練物は、良好な粘度特性を持つ。そのため、アウトドラムミキシング法によって、第2の混錬物を混錬機からドラム缶等の固化容器17に収容して固化特性の良好なセメント固化体8とすることができる。   The second kneaded product thus obtained has good viscosity characteristics. Therefore, the second kneaded product can be accommodated in the solidification container 17 such as a drum can from the kneader by the outdrum mixing method to obtain the cement solidified body 8 having good solidification characteristics.

また、本実施形態のセメント固化処理方法は、インドラムミキシング法で行ってもよい。すなわち乾燥粉体3、混錬水4、水硬性固化材5、ケイ砂6及びゼオライト7の混錬を全て放射性廃棄物固化容器の中で行い、得られる第2の混錬物をこの放射性廃棄物固化容器内でそのまま固化させてもよい。この場合には、さらに設備コスト、運転コストを低減することができる。   Moreover, you may perform the cement solidification processing method of this embodiment by the in-drum mixing method. That is, the dry powder 3, the kneaded water 4, the hydraulic solidifying material 5, the silica sand 6 and the zeolite 7 are all kneaded in the radioactive waste solidification container, and the second kneaded product obtained is the radioactive waste. You may solidify as it is in a solidification container. In this case, equipment cost and operation cost can be further reduced.

以上、本実施形態のセメント固化処理方法は、第2の混錬物が良好な粘度特性を持つため、作業性に優れる。さらに、カルシウムを用いないため廃液成分の配管等への付着の問題がない。また、本実施形態のセメント固化処理方法によれば、ケイ砂6を所定の割合で混合することで強度をより向上させた固化特性の良好なセメント固化体8を得ることができる。   As mentioned above, since the 2nd kneaded material has a favorable viscosity characteristic, the cement solidification processing method of this embodiment is excellent in workability | operativity. Furthermore, since calcium is not used, there is no problem of adhesion of waste liquid components to piping or the like. Moreover, according to the cement solidification processing method of this embodiment, the cement solidified body 8 with improved solidification characteristics with improved strength can be obtained by mixing the silica sand 6 at a predetermined ratio.

(実施例1)
以下、図1に示した工程に基づき、ホウ酸含有廃液のセメント固化試験を実施した結果について説明する。
先ず、60℃程度に加温したホウ酸12重量%の水溶液に水酸化ナトリウムを投入して、Na/Bモル比を0.25に調整し、ホウ酸ナトリウムの水溶液を得た(図1に示すS101)。このホウ酸ナトリウム水溶液を模擬廃液として、加熱温度160℃程度に設定した遠心薄膜乾燥機に定量供給して、ホウ酸ナトリウム乾燥粉体を得た(図1に示すS102)。
Example 1
Hereinafter, based on the process shown in FIG. 1, the result of having carried out the cement solidification test of the boric acid-containing waste liquid will be described.
First, sodium hydroxide was added to a 12% by weight aqueous solution of boric acid heated to about 60 ° C., and the Na / B molar ratio was adjusted to 0.25 to obtain an aqueous solution of sodium borate (see FIG. 1). S101). This sodium borate aqueous solution was used as a simulated waste liquid and quantitatively supplied to a centrifugal thin film dryer set at a heating temperature of about 160 ° C. to obtain a sodium borate dry powder (S102 shown in FIG. 1).

次に、1Lポリカップに、混練水392g、続いて上記で作製したホウ酸ナトリウム乾燥粉体315gを投入して卓上攪拌機で60分程度攪拌して混練し、スラリーを得た。   Next, 392 g of kneaded water and then 315 g of the dried sodium borate powder prepared above were charged into a 1 L polycup and stirred for about 60 minutes with a table stirrer to obtain a slurry.

得られたスラリーに普通ポルトランドセメント375gを混合し、10分程度攪拌して混練し第1の混錬物を得た(図1に示すS103)。次いで、ケイ砂650gを混合し(S/C=1.73)、さらに60分程度撹拌して混錬して第2の混錬物を得た(図1に示すS104)。この第2の混練物について物性を測定し、その後、50mmφ×100mmHの型枠に注ぎ、セメント固化体とした。   The obtained slurry was mixed with 375 g of ordinary Portland cement, stirred for about 10 minutes and kneaded to obtain a first kneaded product (S103 shown in FIG. 1). Next, 650 g of silica sand was mixed (S / C = 1.73), and further stirred for about 60 minutes to knead to obtain a second kneaded product (S104 shown in FIG. 1). The physical properties of this second kneaded product were measured, and then poured into a 50 mmφ × 100 mmH mold to obtain a solidified cement.

第2の混練物の特性は、粘度が9dPa・s、充填密度が1.99であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が8.9MPaであり、良好な固化特性も併せて得られた。   The characteristics of the second kneaded product were good flow characteristics with a viscosity of 9 dPa · s and a packing density of 1.99. The cement solidified body had a breathing rate of 0 vol% after 24 hours and a uniaxial compressive strength of 8.9 MPa at a material age of 7 days, and good solidification characteristics were also obtained.

(実施例2)
実施例1における各成分の混合量を、混練水392g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体315g、ケイ砂750g(S/C=2.00)として実施例1と同様に第2の混錬物を得た。その後、実施例1と同様にセメント固化体とした。また、実施例1と同様に第2の混錬物及びセメント固化体の物性を評価した。
(Example 2)
In the same manner as in Example 1, the mixing amount of each component in Example 1 was 392 g of kneaded water, 375 g of ordinary Portland cement, 315 g of sodium borate dry powder, and 750 g of silica sand (S / C = 2.00). A kneaded product was obtained. Thereafter, a cement solidified body was obtained in the same manner as in Example 1. Further, the physical properties of the second kneaded product and the cement solidified body were evaluated in the same manner as in Example 1.

第2の混練物の特性は、粘度が10dPa・s、充填密度が2.02であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が9.6MPaであり、良好な固化特性も併せて得られた。   The properties of the second kneaded product were good flow properties, with a viscosity of 10 dPa · s and a packing density of 2.02. The cement solidified body had a breathing rate of 0 vol% after 24 hours and a uniaxial compressive strength of 9.6 MPa at a material age of 7 days, and good solidification characteristics were also obtained.

(実施例3)
実施例1における各成分の混合量を、混練水392g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体315g、ケイ砂850g(S/C=2.27)として実施例1と同様に第2の混錬物を得た。その後、実施例1と同様にセメント固化体とした。また、実施例1と同様に第2の混錬物及びセメント固化体の物性を評価した。
Example 3
In the same manner as in Example 1, the mixing amount of each component in Example 1 was 392 g of kneaded water, 375 g of ordinary Portland cement, 315 g of sodium borate dry powder, and 850 g of silica sand (S / C = 2.27). A kneaded product was obtained. Thereafter, a cement solidified body was obtained in the same manner as in Example 1. Further, the physical properties of the second kneaded product and the cement solidified body were evaluated in the same manner as in Example 1.

第2の混練物の特性は、粘度が12dPa・s、充填密度が2.04であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が12.2MPaであり、良好な固化特性も併せて得られた。   The characteristics of the second kneaded product were good flow characteristics with a viscosity of 12 dPa · s and a packing density of 2.04. The cement solidified body had a breathing rate of 0 vol% after 24 hours, a uniaxial compressive strength of 7 days of age of 12.2 MPa, and good solidification characteristics were also obtained.

(実施例4)
実施例1における各成分の混合量を、混練水392g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体315g、ケイ砂950g(S/C=2.53)として実施例1と同様に第2の混錬物を得た。その後、実施例1と同様にセメント固化体とした。また、実施例1と同様に第2の混錬物及びセメント固化体の物性を評価した。
Example 4
In the same manner as in Example 1, the mixing amount of each component in Example 1 was 392 g of kneaded water, 375 g of ordinary Portland cement, 315 g of sodium borate dry powder, and 950 g of silica sand (S / C = 2.53). A kneaded product was obtained. Thereafter, a cement solidified body was obtained in the same manner as in Example 1. Further, the physical properties of the second kneaded product and the cement solidified body were evaluated in the same manner as in Example 1.

第2の混練物の特性は、粘度が100dPa・s、充填密度が2.07であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が11.9MPaであり、良好な固化特性も併せて得られた。   The characteristics of the second kneaded product were good flow characteristics with a viscosity of 100 dPa · s and a packing density of 2.07. The cement solidified body had a breathing rate of 0 vol% after 24 hours, a uniaxial compressive strength of 7 days of age of 11.9 MPa, and good solidification characteristics were also obtained.

(実施例5)
実施例1における各成分の混合量を、混練水392g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体315g、ケイ砂1125g(S/C=3.00)として実施例1と同様に第2の混錬物を得た。その後、実施例1と同様にセメント固化体とした。また、実施例1と同様に第2の混錬物及びセメント固化体の物性を評価した。
(Example 5)
In the same manner as in Example 1, the mixing amount of each component in Example 1 was 392 g of kneaded water, 375 g of ordinary Portland cement, 315 g of sodium borate dry powder, and 1125 g of silica sand (S / C = 3.00). A kneaded product was obtained. Thereafter, a cement solidified body was obtained in the same manner as in Example 1. Further, the physical properties of the second kneaded product and the cement solidified body were evaluated in the same manner as in Example 1.

第2の混練物の特性は、粘度が100dPa・s、充填密度が2.09であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が8.7MPaであり、良好な固化特性も併せて得られた。   The properties of the second kneaded product were good flow properties with a viscosity of 100 dPa · s and a packing density of 2.09. The cement solidified body had a breathing rate of 0 vol% after 24 hours and a uniaxial compressive strength of 8.7 MPa at a material age of 7 days, and good solidification characteristics were also obtained.

以上の実施例1〜5における、S/Cの値と一軸圧縮強度の関係を図3のグラフに、S/Cの値を横軸、一軸圧縮強度を縦軸として示す。   In the above Examples 1 to 5, the relationship between the S / C value and the uniaxial compressive strength is shown in the graph of FIG. 3, the S / C value is shown on the horizontal axis, and the uniaxial compressive strength is shown on the vertical axis.

図3よりS/Cは1.5〜3で良好な強度を得られており、2.27で最も強度が大きいことが判明した。そのため、以下の実施例6、7では、このS/C=2.27でセメント固化体の放射性閉じ込め性をより向上させるためにケイ砂の一部をゼオライトに代替し、このときのセメント固化体の物性を評価した。   From FIG. 3, it was found that a good strength was obtained when S / C was 1.5 to 3, and the strength was highest at 2.27. Therefore, in Examples 6 and 7 below, in order to further improve the radioactive confinement property of the cement solidified body with this S / C = 2.27, a part of silica sand is replaced with zeolite, and the cement solidified body at this time The physical properties of were evaluated.

(実施例6)
実施例4における各成分の混合量を、混練水390g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体312g、ケイ砂680g、ゼオライト170g(S/C=2.27、ゼオライト重量/ケイ砂重量=20/80)として実施例1と同様に第2の混錬物を得た。その後、実施例1と同様にセメント固化体とした。また、実施例1と同様に第2の混錬物及びセメント固化体の物性を評価した。
(Example 6)
The mixing amount of each component in Example 4 was 390 g of kneaded water, 375 g of ordinary Portland cement, 312 g of sodium borate dry powder, 680 g of silica sand, 170 g of zeolite (S / C = 2.27, zeolite weight / silica sand weight = 20/80), a second kneaded product was obtained in the same manner as in Example 1. Thereafter, a cement solidified body was obtained in the same manner as in Example 1. Further, the physical properties of the second kneaded product and the cement solidified body were evaluated in the same manner as in Example 1.

第2の混練物の特性は、粘度が70dPa・s、充填密度が2.0であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%であり、材齢7日の一軸圧縮強度が9.6MPa、材齢28日の一軸圧縮強度が12MPaであり、良好な固化特性も併せて得られた。   The characteristics of the second kneaded product were good flow characteristics with a viscosity of 70 dPa · s and a packing density of 2.0. The cement solidified body has a breathing rate of 0 vol% after 24 hours, has a uniaxial compressive strength of 9.6 MPa at a material age of 7 days and a uniaxial compressive strength of a material at 28 days of age of 12 MPa, and also has good solidification characteristics. It was.

(実施例7)
実施例6におけるケイ砂及びゼオライトの混合量を、ケイ砂765g、ゼオライト85g(S/C=2.27、ゼオライト重量/ケイ砂重量=10/90)として実施例1と同様に第2の混錬物を製作し、実施例1と同様にセメント固化体として、その物性を評価した。
(Example 7)
The mixing amount of silica sand and zeolite in Example 6 was set to 765 g of silica sand and 85 g of zeolite (S / C = 2.27, zeolite weight / silica sand weight = 10/90). A wrought product was produced, and its physical properties were evaluated as a cement solidified body as in Example 1.

セメント固化体は、材齢28日の一軸圧縮強度は8.9MPaであり、良好な固化特性を得ることができた。   The cement solidified body had a uniaxial compressive strength of 8.9 MPa at an age of 28 days, and good solidification characteristics could be obtained.

(比較例1)
実施例1において、ケイ砂を混合せずに混錬物を製作した。すなわち、混練水392g、普通ポルトランドセメント750g、ホウ酸ナトリウム乾燥粉体315gとして実施例1と同様に混錬物を得た。この混錬物について物性を測定した後、実施例1と同様にセメント固化体として、その物性を評価した。
(Comparative Example 1)
In Example 1, a kneaded material was manufactured without mixing silica sand. That is, a kneaded product was obtained in the same manner as in Example 1 as 392 g of kneaded water, 750 g of ordinary Portland cement, and 315 g of sodium borate dry powder. After measuring the physical properties of the kneaded material, the physical properties were evaluated as a cement solidified body as in Example 1.

混練物の特性は、粘度が150dPa・s、充填密度が1.95であった。セメント固化体は、24時間後のブリージング率は0vol%であったが、材齢7日の一軸圧縮強度は2.9MPa程度であり、強度が不十分であることが判明した。   The kneaded product had a viscosity of 150 dPa · s and a packing density of 1.95. The cement solidified body had a breathing rate of 0 vol% after 24 hours, but the uniaxial compressive strength of the material 7 days old was about 2.9 MPa, and it was found that the strength was insufficient.

上記した実施例1〜7、比較例1の条件及び測定結果等を表1に示す。

Figure 2015001485
Table 1 shows the conditions and measurement results of Examples 1 to 7 and Comparative Example 1 described above.
Figure 2015001485

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

101…第1工程、102…第2工程、103…第3工程、104…第4工程、1…ホウ酸含有廃液、2…水酸化ナトリウム、3…乾燥粉体、4…混錬水、5…水硬性固化材、6…ケイ砂、7…ゼオライト、8…セメント固化体、10…セメント固化処理装置、11…混錬機、12…ホウ酸含有廃液供給装置、13…混錬水供給装置、14…水硬性固化材供給装置、15…ケイ砂供給装置、16…ケイ砂供給量調節装置、17…固化容器。   DESCRIPTION OF SYMBOLS 101 ... 1st process, 102 ... 2nd process, 103 ... 3rd process, 104 ... 4th process, 1 ... Boric acid containing waste liquid, 2 ... Sodium hydroxide, 3 ... Dry powder, 4 ... Kneading water, 5 DESCRIPTION OF SYMBOLS ... Hydraulic solidification material, 6 ... Silica sand, 7 ... Zeolite, 8 ... Cement solidification body, 10 ... Cement solidification processing device, 11 ... Kneading machine, 12 ... Boric acid containing waste liquid supply device, 13 ... Kneading water supply device , 14 ... Hydraulic solidifying material supply device, 15 ... Silica sand supply device, 16 ... Silica sand supply amount adjusting device, 17 ... Solidification container.

Claims (10)

放射性のホウ酸含有廃液をセメント固化する方法であって、
前記ホウ酸含有廃液に水酸化ナトリウムを添加し、減容して被固化物とする減容工程と、
前記被固化物と混錬水と水硬性固化材とを混錬して第1の混錬物とする第1の混錬工程と、
ケイ砂と前記第1の混錬物とを混錬して第2の混錬物とする第2の混錬工程と
を具備し、
前記水硬性固化材重量に対する前記ケイ砂重量比(ケイ砂重量/水硬性固化材重量)は1.5〜3.0であることを特徴とするホウ酸含有廃液のセメント固化処理方法。
A method for solidifying a radioactive boric acid-containing waste liquid into cement,
A volume reduction step of adding sodium hydroxide to the boric acid-containing waste liquid to reduce the volume to be solidified;
A first kneading step of kneading the solidified material, kneaded water, and hydraulic solidified material into a first kneaded product;
A second kneading step of kneading silica sand and the first kneaded product to form a second kneaded product,
The cement solidification method of boric acid-containing waste liquid, wherein the weight ratio of the silica sand to the weight of the hydraulic solidification material (silica sand weight / hydraulic solidification material weight) is 1.5 to 3.0.
前記第2の混錬工程においてさらにゼオライトを混合し、
前記水硬性固化材重量に対する前記ゼオライト及び前記ケイ砂の合計重量の比(ゼオライト及びケイ砂の合計重量/水硬性固化材重量)は1.5〜3.0であることを特徴とする請求項1記載のホウ酸含有廃液のセメント固化処理方法。
Further mixing zeolite in the second kneading step,
The ratio of the total weight of the zeolite and the silica sand to the weight of the hydraulic solidification material (total weight of zeolite and silica sand / weight of the hydraulic solidification material) is 1.5 to 3.0. The cement solidification processing method of boric acid containing waste liquid of 1 description.
前記ケイ砂の粒径は、メジアン径で0.026〜1.12mmであることを特徴とする請求項1又は2記載のホウ酸含有廃液のセメント固化処理方法。   3. The method for solidifying a boric acid-containing waste liquid according to claim 1, wherein the silica sand has a median diameter of 0.026 to 1.12 mm. 前記ゼオライトの粒径はメジアン径で770μm、かつ前記ゼオライトのイオン交換容量は10〜200meq/100gであることを特徴とする請求項2又は3記載のホウ酸含有廃液のセメント固化処理方法。   4. The method of solidifying a boric acid-containing waste liquid according to claim 2, wherein the zeolite has a median diameter of 770 [mu] m and the zeolite has an ion exchange capacity of 10 to 200 meq / 100 g. 前記ケイ砂及び前記ゼオライトの合計重量に対する前記ゼオライト重量比(ゼオライト重量/ケイ砂及びゼオライトの合計重量)は0.05〜0.40であることを特徴とする請求項2乃至4のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   The zeolite weight ratio (zeolite weight / total weight of silica sand and zeolite) with respect to the total weight of the silica sand and the zeolite is 0.05 to 0.40. A method for solidifying cement in a boric acid-containing waste liquid as described in the item. 前記第2の混錬工程における前記ケイ砂及び前記ゼオライトと前記第1の混錬物との混合方法は、第1の混錬物にあらかじめ混合した前記ケイ砂及び前記ゼオライトを混合する、又は第1の混錬物に前記ケイ砂及び前記ゼオライトを別々に混合することを特徴とする請求項2乃至5のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   The method of mixing the silica sand and the zeolite and the first kneaded product in the second kneading step is to mix the silica sand and the zeolite previously mixed in the first kneaded product, or 6. The method for solidifying a boric acid-containing waste liquid according to claim 2, wherein the silica sand and the zeolite are separately mixed in one kneaded product. インドラムミキシング方式又はアウトドラムミキシング方式で行うことを特徴とする請求項1乃至6のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   The cement solidification treatment method for boric acid-containing waste liquid according to any one of claims 1 to 6, wherein the method is performed by an in-drum mixing method or an out-drum mixing method. 前記被固化物は、前記ホウ酸含有廃液を乾燥した乾燥粉体又は前記ホウ酸含有廃液を濃縮した若しくは前記ホウ酸ナトリウム塩を沈降させた濃縮廃液であることを特徴とする請求項1乃至7のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   The solidified material is a dry powder obtained by drying the boric acid-containing waste liquid, or a concentrated waste liquid obtained by concentrating the boric acid-containing waste liquid or by precipitating the sodium borate salt. The cement solidification processing method of the boric-acid containing waste liquid of any one of these. 前記減容工程における前記被固化物の温度は常温〜100℃であることを特徴とする請求項1乃至8のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   The method for solidifying cement in a boric acid-containing waste liquid according to any one of claims 1 to 8, wherein the temperature of the solidified material in the volume reduction step is normal temperature to 100 ° C. 放射性のホウ酸含有廃液をセメント固化する装置であって、
混錬機と、
水酸化ナトリウムを添加し、減容した被固化物を混錬機に供給するホウ酸含有廃液供給装置と、
前記混錬機に混錬水を供給する混錬水供給装置と、
前記混錬機に水硬性固化材を供給して第1の混錬物とする水硬性固化材供給装置と、
前記混錬機にケイ砂を供給して第2の混錬物とするケイ砂供給装置と
を具備し、
前記ケイ砂供給装置における前記水硬性固化材重量に対する前記ケイ砂重量比(ケイ砂重量/水硬性固化材重量)は1.5〜3.0であることを特徴とするホウ酸含有廃液のセメント固化処理装置。
An apparatus for cementing radioactive boric acid-containing waste liquid,
Kneading machine,
A boric acid-containing waste liquid supply device for adding sodium hydroxide and supplying the reduced solidified material to the kneader;
A kneading water supply device for supplying kneading water to the kneading machine;
A hydraulic solidification material supply device that supplies hydraulic solidification material to the kneading machine to form a first kneaded product;
A silica sand supply device for supplying silica sand to the kneading machine as a second kneaded product,
The boric acid-containing waste liquid cement, wherein the weight ratio of the silica sand to the weight of the hydraulic solidification material (silica sand weight / hydraulic solidification material weight) in the silica sand supply device is 1.5 to 3.0. Solidification processing equipment.
JP2013127110A 2013-06-18 2013-06-18 Method and apparatus for solidifying cement of waste liquid containing boric acid Expired - Fee Related JP6139288B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013127110A JP6139288B2 (en) 2013-06-18 2013-06-18 Method and apparatus for solidifying cement of waste liquid containing boric acid
PCT/JP2014/003112 WO2014203498A1 (en) 2013-06-18 2014-06-11 Cementation method and cementation device for boric-acid-containing liquid waste
EP14814441.3A EP3012839B1 (en) 2013-06-18 2014-06-11 Cementation method and cementation device for boric-acid-containing liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127110A JP6139288B2 (en) 2013-06-18 2013-06-18 Method and apparatus for solidifying cement of waste liquid containing boric acid

Publications (2)

Publication Number Publication Date
JP2015001485A true JP2015001485A (en) 2015-01-05
JP6139288B2 JP6139288B2 (en) 2017-05-31

Family

ID=52104250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127110A Expired - Fee Related JP6139288B2 (en) 2013-06-18 2013-06-18 Method and apparatus for solidifying cement of waste liquid containing boric acid

Country Status (3)

Country Link
EP (1) EP3012839B1 (en)
JP (1) JP6139288B2 (en)
WO (1) WO2014203498A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960692A (en) * 2017-03-10 2017-07-18 清华大学 Radioactive spent resin cement solidification is formulated and curing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473185B (en) * 2018-11-13 2022-07-29 中国核动力研究设计院 Testing device and testing method for automatic chemical reactor shutdown system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179698A (en) * 1984-02-27 1985-09-13 株式会社日立製作所 Method of solidifying powdered body waste
JP2010151487A (en) * 2008-12-24 2010-07-08 Toshiba Corp Method for solidifying waste liquid of boric acid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115900A (en) 1983-11-29 1985-06-22 水澤化学工業株式会社 Method of solidifying radioactive waste
JPH0778553B2 (en) 1989-01-27 1995-08-23 財團法人韓國エナージ研究所 Method for highly concentrating and drying and solidifying radioactive liquid waste
JPH10197690A (en) * 1997-01-14 1998-07-31 Nippon Kayaku Co Ltd Solidification method of radioactive waste
FR2901270B1 (en) * 2006-05-18 2008-08-22 Commissariat Energie Atomique CEMENT-BASED COMPOSITION FOR COATING AQUEOUS BORON-CONTAINING SOLUTION, COATING PROCESS AND CEMENTITIOUS GROUT COMPOSITION
EP2784039B1 (en) * 2011-11-25 2016-10-12 China General Nuclear Power Corporation Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179698A (en) * 1984-02-27 1985-09-13 株式会社日立製作所 Method of solidifying powdered body waste
JP2010151487A (en) * 2008-12-24 2010-07-08 Toshiba Corp Method for solidifying waste liquid of boric acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960692A (en) * 2017-03-10 2017-07-18 清华大学 Radioactive spent resin cement solidification is formulated and curing

Also Published As

Publication number Publication date
WO2014203498A1 (en) 2014-12-24
EP3012839A1 (en) 2016-04-27
EP3012839B1 (en) 2020-01-15
JP6139288B2 (en) 2017-05-31
EP3012839A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
CN105741899B (en) A kind of curing process additive, curing formula and the technique of radioactivity borate waste solution
JP6672014B2 (en) Treatment of radioactive liquid waste
WO2016045490A1 (en) New geological cement for solidifying radioactive evaporation residue and method for solidification
EP2784039B1 (en) Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
JP2018002587A (en) Hydraulic composition for additive manufacturing apparatus, and manufacturing method of mold
JP6139288B2 (en) Method and apparatus for solidifying cement of waste liquid containing boric acid
CN102262910B (en) Method for solidifying spent radioactive resin by blending sulphoaluminate cement and admixtures
WO2016045491A1 (en) Chemically bonded cementitious material for solidification of radioactive waste resin and solidification method
Kim et al. Effect of Si/Al molar ratio and curing temperatures on the immobilization of radioactive borate waste in metakaolin-based geopolymer waste form
WO2016045492A1 (en) Novel geological cement material for solidification of radioactive incineration ash and solification method therefor
JP5231975B2 (en) Solidification method of boric acid waste liquid
JP5635178B2 (en) Anticorrosive for adjusting magnesium metal, adjusting material obtained thereby, and preparation method
CN111056789B (en) Method for solidifying radioactive waste residues
JP2014035202A (en) Method for manufacturing solidified product of radioactive waste
JP2019081308A (en) Production method for geopolymer molded body and production system for geopolymer molded body
CN102276231A (en) Method for curing radioactive waste resin by NaAlO2 coagulant cement
JP2014106144A (en) Solidification method of boric acid-containing radioactive waste liquid
JP6271341B2 (en) Cement solidification method for boric acid containing waste liquid
JP2015105859A (en) Borate waste cement solidification treatment method and borate waste cement solidification treatment apparatus
TW459250B (en) Co-solidification of low level radioactive wet wastes of BWR nuclear power plants
JP6015585B2 (en) Hydrated cured body
JP5726412B2 (en) Method of solidifying sodium sulfate concentrated waste liquid containing boric acid
JP6811256B2 (en) Radioactive waste solidifying agent composition containing alumina cement and method for solidifying radioactive waste using this
JP2019055904A (en) Production method of geopolymer molding body, and geopolymer molding body manufacturing system
JP4846653B2 (en) Method and apparatus for treating graphite powder waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R151 Written notification of patent or utility model registration

Ref document number: 6139288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees