JP6866496B2 - Storage battery device and start detection circuit - Google Patents

Storage battery device and start detection circuit Download PDF

Info

Publication number
JP6866496B2
JP6866496B2 JP2019547891A JP2019547891A JP6866496B2 JP 6866496 B2 JP6866496 B2 JP 6866496B2 JP 2019547891 A JP2019547891 A JP 2019547891A JP 2019547891 A JP2019547891 A JP 2019547891A JP 6866496 B2 JP6866496 B2 JP 6866496B2
Authority
JP
Japan
Prior art keywords
signal line
detection circuit
voltage side
side signal
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019547891A
Other languages
Japanese (ja)
Other versions
JPWO2019073608A1 (en
Inventor
黒田 和人
和人 黒田
洋介 佐伯
洋介 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPWO2019073608A1 publication Critical patent/JPWO2019073608A1/en
Application granted granted Critical
Publication of JP6866496B2 publication Critical patent/JP6866496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明の実施形態は、蓄電池装置及び起動検出回路に関する。 Embodiments of the present invention relate to a storage battery device and a start detection circuit.

従来鉛蓄電池で構成されていた100Vや125V出力の産業機器用直流電源盤をリチウムイオン電池で置き換えることを考えたとき、鉛蓄電池では電池セル毎の監視回路は不要であったがリチウムイオン電池ではそれらが必要である。 When considering replacing the DC power supply panel for industrial equipment with 100V or 125V output, which was conventionally composed of lead-acid batteries, with lithium-ion batteries, the lead-acid batteries did not require a monitoring circuit for each battery cell, but the lithium-ion batteries did not require a monitoring circuit. I need them.

一方で、監視回路は電池セルに取り付けられる回路なので電池への充放電電流が流れる主回路と同じ電位を持つが、主回路電圧が高い場合に監視回路の制御入出力は安全面から主回路と絶縁することが望ましい。
そのため、従来は、絶縁電源とフォトカプラで構成される回路が一般的であった。
On the other hand, since the monitoring circuit is a circuit attached to the battery cell, it has the same potential as the main circuit through which the charge / discharge current to the battery flows, but when the main circuit voltage is high, the control input / output of the monitoring circuit is the main circuit for safety reasons. Insulation is desirable.
Therefore, conventionally, a circuit composed of an insulated power supply and a photocoupler has been common.

特開2013−024675号公報Japanese Unexamined Patent Publication No. 2013-024675

しかしながら、従来技術においては、装置の起動入力については装置が停止状態でも低負荷で(低効率で)絶縁電源を使用しており、装置停止状態で電池が過放電になるまでの時間が短くなってしまうという不具合があった。 However, in the prior art, the start input of the device uses an insulated power supply with a low load (with low efficiency) even when the device is stopped, and the time until the battery is over-discharged when the device is stopped is shortened. There was a problem that it would end up.

本発明は、上記に鑑みてなされたものであって、装置停止状態、すなわち、待機時の消費電力を出来る限り低減し、装置停止状態で電池が過放電になるまでの時間を出来る限り長くして、メンテナンス作業を低減し、運用を容易とすることが可能な蓄電池装置及び起動検出回路を提供することにある。 The present invention has been made in view of the above, and the time until the battery is over-discharged in the device stopped state, that is, the standby power consumption is reduced as much as possible, and the time until the battery is over-discharged in the device stopped state is made as long as possible. It is an object of the present invention to provide a storage battery device and a start detection circuit capable of reducing maintenance work and facilitating operation.

実施形態の蓄電池装置は、蓄電池モジュールと、蓄電池モジュールを監視する蓄電池監視ユニットと、起動信号により蓄電池監視ユニットの起動制御を行う起動ユニットと、を備え、起動ユニットは、一端がアースに接地された高電圧側信号線及び一端がグランドに接地された低電圧側信号線とを有し、受動素子で構成された絶縁回路と、高電圧側信号線の他端に接続された発振器と、高電圧側信号線の他端に接続され、発振器の出力信号を検波する検波回路と、検波回路の出力信号を所定の基準電圧と比較し、低電圧側信号線の他端に設けられた起動端子がグランドに短絡されて検波回路の出力信号レベルが基準電圧よりも低下したことを検出して起動信号を出力する比較部と、を備える。 The storage battery device of the embodiment includes a storage battery module, a storage battery monitoring unit that monitors the storage battery module, and a start-up unit that controls the start-up of the storage battery monitoring unit by a start-up signal, and one end of the start-up unit is grounded to the ground. An insulation circuit having a high-voltage side signal line and a low-voltage side signal line whose one end is grounded to the ground and composed of a passive element, an oscillator connected to the other end of the high-voltage side signal line, and a high voltage. A detection circuit that is connected to the other end of the side signal line and detects the output signal of the oscillator, and a start terminal provided at the other end of the low voltage side signal line that compares the output signal of the detection circuit with a predetermined reference voltage. It is provided with a comparison unit that detects that the output signal level of the detection circuit has dropped below the reference voltage due to being short-circuited to the ground and outputs a start signal.

図1は、実施形態の蓄電池装置の概要構成ブロック図である。FIG. 1 is a schematic block diagram of the storage battery device of the embodiment. 図2は、起動ユニットの概要構成ブロック図である。FIG. 2 is a schematic block diagram of the activation unit. 図3は、第1実施形態の起動検出回路の回路構成図である。FIG. 3 is a circuit configuration diagram of the start detection circuit of the first embodiment. 図4は、起動検出回路の動作タイミングチャートである。FIG. 4 is an operation timing chart of the start detection circuit. 図5は、第1実施形態の第1変形例の起動検出回路の回路構成図である。FIG. 5 is a circuit configuration diagram of a start detection circuit of a first modification of the first embodiment. 図6は、第1実施形態の第2変形例の起動検出回路の回路構成図である。FIG. 6 is a circuit configuration diagram of a start detection circuit of a second modification of the first embodiment. 図7は、第2実施形態の起動検出回路の回路構成図である。FIG. 7 is a circuit configuration diagram of the start detection circuit of the second embodiment.

次に図面を参照して実施形態の好適な実施形態について説明する。
図1は、実施形態の蓄電池装置の概要構成ブロック図である。
蓄電池装置10は、大別すると、複数(図1では、24個)のバッテリモジュール11−1〜11−24と、バッテリモジュール11−12とバッテリモジュール11−13との間に設けられたサービスディスコネクト12と、電流センサ13と、ヒューズ14と、BMU(Battery Management Unit)15と、DC/DCコンバータ16と、起動ユニット17と、コンタクタ18P、18Nと、を備えている。
Next, a preferred embodiment of the embodiment will be described with reference to the drawings.
FIG. 1 is a schematic block diagram of the storage battery device of the embodiment.
The storage battery device 10 is roughly classified into a plurality of (24 in FIG. 1) battery modules 11-1 to 11-24, and a service disk provided between the battery module 11-12 and the battery module 11-13. It includes a connect 12, a current sensor 13, a fuse 14, a BMU (Battery Management Unit) 15, a DC / DC converter 16, a start-up unit 17, and contactors 18P and 18N.

上記構成において、バッテリモジュール11−1〜11−24は、それぞれ当該バッテリモジュールを構成する複数のセルモジュールの状態(温度、SOC等)の監視を行うCMU(Cell Monitoring Unit)を備えている。 In the above configuration, each of the battery modules 11-1 to 11-24 includes a CMU (Cell Monitoring Unit) that monitors the status (temperature, SOC, etc.) of a plurality of cell modules constituting the battery module.

ここで、各バッテリモジュール11−1〜11−24を構成しているセルモジュールは、電池セルが複数、直並列に接続されて組電池を構成している。そして、複数の直列接続されたセルモジュールで組電池群を構成している。 Here, in the cell modules constituting each battery module 11-1 to 11-24, a plurality of battery cells are connected in series and parallel to form an assembled battery. Then, a group of assembled batteries is composed of a plurality of cell modules connected in series.

また、バッテリモジュール11−1〜11−24の各CMUは、BMU15との間でCAN通信を行って監視結果をBMU15に通知している。
また、BMU15は,図示しない上位制御装置から運転開始指示が入力される端子T15Aと、バッテリモジュール11−1〜11−24における充電末状態を検出した場合に充電末状態を上位制御装置に通知する端子T15B、バッテリモジュール11−1〜11−24における放電末近傍状態(未だ放電末には至っていないが、そのまま放電を継続すると放電末に容易に至る可能性のある状態)を検出した場合に放電末近傍状態を上位制御装置に通知する端子T15Cと、バッテリモジュール11−1〜11−24における放電末状態を検出した場合に放電末状態を上位制御装置に通知する端子T15Dと、バッテリモジュール11−1〜11−24が高温度状態となり、高温度保護状態に至ったことを上位制御装置に通知する端子T15Eと、を備えている。
Further, each CMU of the battery modules 11-1 to 11-24 performs CAN communication with the BMU 15 and notifies the BMU 15 of the monitoring result.
Further, the BMU 15 notifies the upper control device of the end-of-charge state when it detects the terminal T15A to which the operation start instruction is input from the upper control device (not shown) and the end-of-charge state of the battery modules 11-1 to 11-24. Discharge when a state near the end of discharge at terminals T15B and battery modules 11-1 to 11-24 (a state that has not yet reached the end of discharge but may easily reach the end of discharge if discharge is continued as it is) is detected. The terminal T15C that notifies the upper control device of the near-end state, the terminal T15D that notifies the upper control device of the discharge end state when the discharge end state in the battery modules 11-1 to 11-24 is detected, and the battery module 11- It is provided with a terminal T15E that notifies the host control device that 1 to 11-24 are in a high temperature state and has reached a high temperature protection state.

本実施形態の蓄電池装置においては、待機状態における消費電力を低減するために、待機状態において、BMU15を停止状態として、外部からの起動ユニットに17に対する起動指示により起動するように構成している。 In the storage battery device of the present embodiment, in order to reduce the power consumption in the standby state, the BMU 15 is set to the stopped state in the standby state, and the starting unit from the outside is configured to start by the start instruction to 17.

図2は、起動ユニットの概要構成ブロック図である。
起動ユニット17は、起動端子17T1、17T2の状態に対応する起動検出信号WU1をBMU15に出力する起動検出回路21と、“H”レベルの起動検出信号WU1がセット端子に入力されるとセット状態となり、自立遮断信号SD0が第1フォトカプラ22を介して“L”レベルの自立遮断信号SD1(=リセット信号)となることによりによりリセット状態となり、電源制御信号PC0を“H”レベルとすることにより第2フォトカプラ23を介して絶縁状態で外部(DC/DCコンバータ16)に対する電源制御信号PC1を“L”レベルに遷移させるRSフリップフロップ回路24と、主回路から電力信号SPの供給がなされ、起動検出回路21及びRSフリップフロップ回路24に電源を供給する常時電源生成回路25と、起動端子17T1、17T2が短絡されることによりベース端子がグランドに接地されると“H”レベルの起動指令WUCを出力するトランジスタ26と、を備えている。
FIG. 2 is a schematic block diagram of the activation unit.
The activation unit 17 is in the set state when the activation detection circuit 21 that outputs the activation detection signal WU1 corresponding to the states of the activation terminals 17T1 and 17T2 to the BMU 15 and the activation detection signal WU1 of "H" level are input to the set terminal. , The self-sustaining cutoff signal SD0 becomes the "L" level self-sustaining cutoff signal SD1 (= reset signal) via the first photocoupler 22 to be in the reset state, and the power supply control signal PC0 is set to the "H" level. The RS flip-flop circuit 24 that transitions the power supply control signal PC1 to the outside (DC / DC converter 16) to the “L” level in an insulated state via the second photocoupler 23, and the power signal SP are supplied from the main circuit. When the constant power generation circuit 25 that supplies power to the start detection circuit 21 and the RS flip flop circuit 24 and the start terminals 17T1 and 17T2 are short-circuited and the base terminal is grounded to the ground, the "H" level start command WUC It is provided with a transistor 26 for outputting the above.

[1]第1実施形態
図3は、第1実施形態の起動検出回路の回路構成図である。
起動検出回路21は、高電圧側信号線(一次側巻線)LH1と低電圧側信号線(二次側巻線)LL1とを有する絶縁トランス31と、絶縁トランス31の高電圧側信号線LH1の一端に接続された発振器32と、絶縁トランス31の高電圧側信号線LH1の一端に接続された第1検波回路33と、第1検波回路33の出力信号を基準電圧Vrefと比較して起動検出信号WU1を出力する比較器34と、絶縁トランス31の低電圧側信号線LL1の一端及び起動端子17T1との間に接続された第2検波回路35と、を備えている。
[1] First Embodiment FIG. 3 is a circuit configuration diagram of a start detection circuit of the first embodiment.
The start detection circuit 21 includes an insulating transformer 31 having a high voltage side signal line (primary winding) LH1 and a low voltage side signal line (secondary winding) LL1 and a high voltage side signal line LH1 of the insulating transformer 31. The oscillator 32 connected to one end of the isolation transformer 31, the first detection circuit 33 connected to one end of the high voltage side signal line LH1 of the insulation transformer 31, and the output signal of the first detection circuit 33 are compared with the reference voltage Vref and started. It includes a comparator 34 that outputs a detection signal WU1 and a second detection circuit 35 that is connected between one end of the low voltage side signal line LL1 of the insulation transformer 31 and the start terminal 17T1.

上記構成において、絶縁トランス31の低電圧側信号線LL1の一端に起動端子17T1が接続され、起動端子17T2がグランド(フレームグランド)に接続されている。
この場合において、起動端子17T1と、起動端子17T2との間には、半導体スイッチング素子TRが接続される。
In the above configuration, the start terminal 17T1 is connected to one end of the low voltage side signal line LL1 of the isolation transformer 31, and the start terminal 17T2 is connected to the ground (frame ground).
In this case, the semiconductor switching element TR is connected between the start terminal 17T1 and the start terminal 17T2.

また、絶縁トランス31の高電圧側信号線LH1の他端及び第1検波回路33は、アース(大地接地)に接続され、絶縁トランス31の低電圧側信号線LL1の他端は、グランドに接続されている。 Further, the other end of the high voltage side signal line LH1 of the isolation transformer 31 and the first detection circuit 33 are connected to the ground (ground ground), and the other end of the low voltage side signal line LL1 of the isolation transformer 31 is connected to the ground. Has been done.

第1検波回路33は、アノード端子が発振器32に接続され片波整流を行うダイオード41と、ダイオード41のカソード端子に一端が接続され、他端がアースに接続されて発振器32の出力の平滑化を行うコンデンサ42と、コンデンサ42と並列に接続されたプルアップ抵抗43と、を備えている。 In the first detection circuit 33, the anode terminal is connected to the oscillator 32 to perform single-wave rectification, and one end is connected to the cathode terminal of the diode 41 and the other end is connected to the ground to smooth the output of the oscillator 32. The capacitor 42 and the pull-up resistor 43 connected in parallel with the capacitor 42 are provided.

第2検波回路35は、アノード端子が絶縁トランス31の低電圧側信号線LL1の一端に接続され片波整流を行うダイオード45と、ダイオード45のカソード端子に一端が接続され、他端がグランドに接続されて絶縁トランス31を介して入力される発振器32の出力の平滑化を行うコンデンサ46と、を備えている。 In the second detection circuit 35, the anode terminal is connected to one end of the low voltage side signal line LL1 of the insulating transformer 31 to perform single-wave rectification, and one end is connected to the cathode terminal of the diode 45, and the other end is grounded. It includes a capacitor 46 that is connected and smoothes the output of the anode 32 that is input via the isolated transformer 31.

次に起動検出回路21の動作について説明する。
図4は、起動検出回路の動作タイミングチャートである。
図4において、時刻t1は、起動端子17T1を、起動端子17T1と起動端子17T2との間に接続した半導体スイッチング素子TR及び起動端子17T2を介してグランドとを短絡したタイミングである。
Next, the operation of the start detection circuit 21 will be described.
FIG. 4 is an operation timing chart of the start detection circuit.
In FIG. 4, the time t1 is the timing at which the start terminal 17T1 is short-circuited with the ground via the semiconductor switching element TR connected between the start terminal 17T1 and the start terminal 17T2 and the start terminal 17T2.

時刻t1より前の期間においては、図4(A)の示すように発振器32の出力として、所定周波数のパルス信号を出力した場合、起動端子17T1においては、図4(B)に示すように、発振器32の出力波形が絶縁トランス31により変圧された電圧波形が出力されているのを検出することができる。 In the period before the time t1, when a pulse signal of a predetermined frequency is output as the output of the oscillator 32 as shown in FIG. 4 (A), the start terminal 17T1 is as shown in FIG. 4 (B). It is possible to detect that the output waveform of the oscillator 32 is the voltage waveform transformed by the insulating transformer 31.

一方、第1検波回路33の出力には図4(C)に示すように、発振器32の出力波形を片波整流し、平滑化した信号が出力される。
そして、時刻t1に至り、起動端子17T1を、起動端子17T1と起動端子17T2との間に接続した半導体スイッチング素子TR及び起動端子17T2を介してグランドに短絡させると、図4(B)に示すように、起動端子17T1−起動端子17T2間の出力電圧は低下し、最終的には時刻t2において、グランドの電圧レベルとなる。
On the other hand, as shown in FIG. 4C, the output waveform of the oscillator 32 is single-wave rectified and a smoothed signal is output to the output of the first detection circuit 33.
Then, when the time t1 is reached and the start terminal 17T1 is short-circuited to the ground via the semiconductor switching element TR and the start terminal 17T2 connected between the start terminal 17T1 and the start terminal 17T2, as shown in FIG. 4 (B). In addition, the output voltage between the start terminal 17T1 and the start terminal 17T2 drops, and finally reaches the ground voltage level at time t2.

これと並行して、第1検波回路33の出力は、徐々に低下し、時刻t3において比較器の基準電圧Vrefを下回ることとなる。
そして、時刻t3において、比較器から出力される起動検出信号WU1は、“H”レベルから“L”レベルに遷移し、DC/DCコンバータ16に出力される。
これらの結果、DC/DCコンバータ16は、BMU15に電源を供給し、BMU15は、各バッテリモジュール11−1〜11−24の制御を開始することとなる。
In parallel with this, the output of the first detection circuit 33 gradually decreases and falls below the reference voltage Vref of the comparator at time t3.
Then, at time t3, the start detection signal WU1 output from the comparator transitions from the “H” level to the “L” level and is output to the DC / DC converter 16.
As a result, the DC / DC converter 16 supplies power to the BMU 15, and the BMU 15 starts controlling each battery module 11-11 to 11-24.

以上の説明のように、本第1実施形態によれば、絶縁を確保するのに受動素子である絶縁トランスを用い、さらに起動端子17T1と起動端子17T2との間に半導体スイッチング素子TRを接続し、当該半導体スイッチング素子TRを制御することで、起動端子17T1を起動端子17T2を介してグランドに短絡させることができ、第1実施形態と同様に、待機時の消費電力を出来る限り低減し、装置停止状態で電池が過放電になるまでの時間を出来る限り長くして、メンテナンス作業を低減し、運用を容易とすることができる。 As described above, according to the first embodiment, an isolation transformer which is a passive element is used to secure insulation, and a semiconductor switching element TR is further connected between the start terminal 17T1 and the start terminal 17T2. By controlling the semiconductor switching element TR, the start terminal 17T1 can be short-circuited to the ground via the start terminal 17T2, and as in the first embodiment, the power consumption during standby is reduced as much as possible, and the apparatus The time until the battery becomes over-discharged in the stopped state can be made as long as possible to reduce the maintenance work and facilitate the operation.

[1.1]第1実施形態の第1変形例
上記第1実施形態においては、起動端子17T1と起動端子17T2との間を半導体スイッチング素子TRにより短絡することにより起動制御を行う場合について説明したが、本第1変形例は、起動端子17T1と起動端子17T2とを機械的スイッチあるいは導体により短絡するためのものである。
[1.1] First Modified Example of First Embodiment In the first embodiment, a case where start control is performed by short-circuiting between the start terminal 17T1 and the start terminal 17T2 by a semiconductor switching element TR has been described. However, this first modification is for short-circuiting the start terminal 17T1 and the start terminal 17T2 by a mechanical switch or a conductor.

図5は、第1実施形態の第1変形例の起動検出回路の回路構成図である。
図3の第1実施形態と異なる点は、第2検波回路35を省略した点である。
具体的には、第1変形例の起動検出回路21は、高電圧側信号線(一次側巻線)LH1と低電圧側信号線(二次側巻線)LL1とを有する絶縁トランス31と、絶縁トランス31の高電圧側信号線LH1の一端に接続された発振器32と、絶縁トランス31の高電圧側信号線LH1の一端に接続された第1検波回路33と、第1検波回路33の出力信号を基準電圧Vrefと比較して起動検出信号WU1を出力する比較器34と、を備えている。
FIG. 5 is a circuit configuration diagram of a start detection circuit of a first modification of the first embodiment.
The difference from the first embodiment of FIG. 3 is that the second detection circuit 35 is omitted.
Specifically, the start detection circuit 21 of the first modification includes an isolation transformer 31 having a high voltage side signal line (primary side winding) LH1 and a low voltage side signal line (secondary side winding) LL1. The output of the oscillator 32 connected to one end of the high voltage side signal line LH1 of the isolation transformer 31, the first detection circuit 33 connected to one end of the high voltage side signal line LH1 of the isolation transformer 31, and the first detection circuit 33. It includes a comparator 34 that compares a signal with a reference voltage Vref and outputs a start detection signal WU1.

この場合において、起動端子17T1と起動端子17T2とを短絡する方法としては、起動端子17T1と起動端子17T2との間に機械的スイッチ(リレー等)を設けるか、あるいは、現地作業員が導体により両端子17T1、17T2間を短絡させる。 In this case, as a method of short-circuiting the start terminal 17T1 and the start terminal 17T2, a mechanical switch (relay or the like) is provided between the start terminal 17T1 and the start terminal 17T2, or a local worker uses conductors at both ends. Short-circuit between the children 17T1 and 17T2.

本第1実施形態の第1変形例の構成によれば、機械的スイッチあるいは導体により起動端子17T1を起動端子17T2を介してグランドに短絡させることができ、第1実施形態と同様に、待機時の消費電力を出来る限り低減し、装置停止状態で電池が過放電になるまでの時間を出来る限り長くして、メンテナンス作業を低減し、運用を容易とすることができるとともに、構成を簡略化できる。 According to the configuration of the first modification of the first embodiment, the start terminal 17T1 can be short-circuited to the ground via the start terminal 17T2 by a mechanical switch or a conductor, and as in the first embodiment, during standby. Power consumption can be reduced as much as possible, the time until the battery becomes over-discharged when the device is stopped can be made as long as possible, maintenance work can be reduced, operation can be facilitated, and the configuration can be simplified. ..

[1.2]第1実施形態の第2変形例
上記第1実施形態においては、第2検波回路35として、片波整流を行う検波回路を用いていたが、本第2変形例は、第2検波回路として、両波整流を行う検波回路を用いた場合のものである。
[1.2] Second Modified Example of First Embodiment In the first embodiment, a detection circuit that performs single-wave rectification is used as the second detection circuit 35, but this second modified example is the second modification. 2 This is a case where a detection circuit that performs full-wave rectification is used as the detection circuit.

図6は、第1実施形態の第2変形例の起動検出回路の回路構成図である。
図6において、図5の第1実施形態の第1変形例と同様の部分には、同一の符号を付すものとする。
FIG. 6 is a circuit configuration diagram of a start detection circuit of a second modification of the first embodiment.
In FIG. 6, the same parts as those in the first modification of the first embodiment of FIG. 5 are designated by the same reference numerals.

第2の検波回路50は、図6に示すように、アノード端子が絶縁トランス31の低電圧側信号線LL1の一端に接続され高電位側の片波整流を行うダイオード45と、ダイオード45のカソード端子に一端が接続され、他端が低電圧側信号線LL1の中点を介してグランドに接続され、絶縁トランス31を介して入力される発振器32の出力の平滑化を行うコンデンサ51と、アノード端子がグランドに接続され、カソード端子がダイオード45のカソード端子に接続されたダイオード52と、絶縁トランス31の低電圧側信号線LL1の一端に接続され低電位側の片波整流を行うダイオード52と、を備えている。 In the second detection circuit 50, as shown in FIG. 6, a diode 45 in which the anode terminal is connected to one end of the low voltage side signal line LL1 of the insulating transformer 31 to perform one-wave rectification on the high potential side, and a diode 45 cathode. A diode 51 and an anode, one end of which is connected to the terminal and the other end of which is connected to the ground via the midpoint of the low voltage side signal line LL1 to smooth the output of the oscillator 32 input via the insulating transformer 31. A diode 52 whose terminals are connected to the ground and whose cathode terminal is connected to the cathode terminal of the diode 45, and a diode 52 which is connected to one end of the low voltage side signal line LL1 of the insulation transformer 31 to perform one-wave rectification on the low potential side. , Is equipped.

すなわち、本第1実施形態の第2変形例の構成によれば、ダイオード45及びダイオード52は、共働して低電圧側の信号線LL1に伝送される発振器32の出力波形を両波整流を行うので、ノイズの影響を低減してより安定して動作することが可能となる。 That is, according to the configuration of the second modification of the first embodiment, the diode 45 and the diode 52 cooperate to perform full-wave rectification of the output waveform of the oscillator 32 transmitted to the signal line LL1 on the low voltage side. Therefore, it is possible to reduce the influence of noise and operate more stably.

[2]第2実施形態
図7は、第2実施形態の起動検出回路の回路構成図である。
起動検出回路60は、高電位側信号線LH2に抵抗61を介して接続された発振器62と、抵抗61に直列接続され、コモンモード高周波電流を抑制してノイズを低減するためのコモンモード高周波電流抑制抵抗63と、コモンモード高周波電流抑制抵抗63に直列接続された高電位側絶縁用コンデンサ64−1、64−2と、抵抗61とコモンモード高周波電流抑制抵抗63との接続点に接続された第1検波回路65と、第1検波回路65の出力信号を基準電圧Vrefと比較して起動検出信号WU1を出力する比較器66と、一端がアースに接続され、コモンモード高周波電流を抑制してノイズを低減するためのコモンモード高周波電流抑制抵抗67と、コモンモード高周波電流抑制抵抗63に直列接続された低電位側絶縁用コンデンサ68−1と、一端が低電位側絶縁用コンデンサ68−1に接続され、他端が低電位側信号線LL2を介してグランドに接続された低電位側絶縁用コンデンサ68−2と、一端が高電位側絶縁用コンデンサ64−2に接続され、他端が起動端子17T1に接続された第2検波回路69と、を備えている。
[2] Second Embodiment FIG. 7 is a circuit configuration diagram of a start detection circuit of the second embodiment.
The start detection circuit 60 is connected in series to the resistor 61 and the oscillator 62 connected to the high potential side signal line LH2 via the resistor 61, and is a common mode high frequency current for suppressing the common mode high frequency current to reduce noise. The suppression resistor 63, the high-potential side insulating capacitors 64-1 and 64-2 connected in series with the common mode high-frequency current suppression resistor 63, and the connection point between the resistor 61 and the common-mode high-frequency current suppression resistor 63 were connected. The first detection circuit 65, the comparator 66 that compares the output signal of the first detection circuit 65 with the reference voltage Vref and outputs the start detection signal WU1, and one end connected to the ground to suppress the common mode high-frequency current. A common mode high-frequency current suppression resistor 67 for reducing noise, a low-potential side insulation capacitor 68-1 connected in series with the common-mode high-frequency current suppression resistor 63, and a low-potential side insulation capacitor 68-1 at one end. The other end is connected to the low potential side insulation capacitor 68-2 connected to the ground via the low potential side signal line LL2, and one end is connected to the high potential side insulation capacitor 64-2, and the other end is activated. A second detection circuit 69 connected to the terminal 17T1 is provided.

上記構成において、第1検波回路65は、図5に示した第1検波回路33と同様の構成を有し、第2検波回路69は、図5#に示した第2の検波回路50と同様の構成をしている。 In the above configuration, the first detection circuit 65 has the same configuration as the first detection circuit 33 shown in FIG. 5, and the second detection circuit 69 has the same configuration as the second detection circuit 50 shown in FIG. 5 #. It has the composition of.

また、上記構成において、高電位側絶縁用コンデンサ64−1と高電位側絶縁用コンデンサ64−2とを直列接続し、低電位側絶縁用コンデンサ68−1と低電位側絶縁用コンデンサ68−2とを直列接続しているのは、いずれかのコンデンサが短絡モード故障を起こした場合に漏電を防止するためであり、二個直列接続する構成に限られず、3個以上直列接続する構成を採ることも可能である。なお、原理的には、一つのコンデンサで絶縁を確保することが可能である。 Further, in the above configuration, the high potential side insulating capacitor 64-1 and the high potential side insulating capacitor 64-2 are connected in series, and the low potential side insulating capacitor 68-1 and the low potential side insulating capacitor 68-2 are connected in series. The reason why the capacitors are connected in series is to prevent electric leakage when one of the capacitors causes a short-circuit mode failure. The configuration is not limited to the configuration in which two capacitors are connected in series, but the configuration in which three or more capacitors are connected in series is adopted. It is also possible. In principle, it is possible to secure insulation with one capacitor.

本第2実施形態の動作は第1実施形態の第1変形例と同様であるので、その詳細な説明を援用するものとする。
本第2実施形態によっても、第1実施形態と同様に、絶縁を確保するのに、受動素子であるコンデンサを用い、BMU15を起動させる際には、起動端子17T1を起動端子17T2を介してグランドに短絡させるだけであるため、待機時における消費電力の低減を図ることができ、BMU15の停止状態においては、絶縁電源を使用する必要なしに絶縁を確保でき、待機時の消費電力を出来る限り低減し、装置停止状態で電池が過放電になるまでの時間を出来る限り長くして、メンテナンス作業を低減し、運用を容易とすることができる。
Since the operation of the second embodiment is the same as that of the first modification of the first embodiment, the detailed description thereof will be incorporated.
Also in the second embodiment, as in the first embodiment, a capacitor which is a passive element is used to secure insulation, and when the BMU 15 is started, the start terminal 17T1 is grounded via the start terminal 17T2. Since it is only short-circuited to, it is possible to reduce the power consumption during standby, and when the BMU15 is stopped, insulation can be secured without the need to use an insulated power supply, and the power consumption during standby is reduced as much as possible. However, the time until the battery becomes over-discharged when the device is stopped can be lengthened as much as possible to reduce maintenance work and facilitate operation.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (5)

蓄電池モジュールと、
前記蓄電池モジュールを監視する蓄電池監視ユニットと、
起動信号により前記蓄電池監視ユニットの起動制御を行う起動ユニットと、を備え、
前記起動ユニットは、
一端がアースに接地された高電圧側信号線及び一端がグランドに接地された低電圧側信号線とを有し、受動素子で構成された絶縁回路と、
前記高電圧側信号線の他端に接続された発振器と、
前記高電圧側信号線の他端に接続され、前記発振器の出力信号を検波する検波回路と、
前記検波回路の出力信号を所定の基準電圧と比較し、前記低電圧側信号線の他端に設けられた起動端子が前記グランドに短絡されて前記検波回路の出力信号レベルが前記基準電圧よりも低下したことを検出して前記起動信号を出力する比較部と、
を備えた蓄電池装置。
With the storage battery module
A storage battery monitoring unit that monitors the storage battery module and
A start unit that controls the start of the storage battery monitoring unit by a start signal is provided.
The activation unit is
An insulating circuit composed of a passive element having a high-voltage side signal line whose one end is grounded and a low-voltage side signal line whose one end is grounded.
With the oscillator connected to the other end of the high voltage side signal line,
A detection circuit connected to the other end of the high voltage side signal line to detect the output signal of the oscillator, and
The output signal of the detection circuit is compared with a predetermined reference voltage, the start terminal provided at the other end of the low voltage side signal line is short-circuited to the ground, and the output signal level of the detection circuit is higher than the reference voltage. A comparison unit that detects that the voltage has dropped and outputs the start signal,
Battery device equipped with.
前記低電圧側信号線の他端に接続され、前記絶縁回路を介した前記発振器の出力信号を検波する第2の検波回路を備えた、
請求項1記載の蓄電池装置。
A second detection circuit connected to the other end of the low voltage side signal line and detecting the output signal of the oscillator via the insulation circuit is provided.
The storage battery device according to claim 1.
前記絶縁回路は、一方の巻線が前記高電圧側信号線とされ、他方の巻線が前記低電圧側信号線とされた絶縁トランスとして構成されている、
請求項1又は請求項2記載の蓄電池装置。
The isolation circuit is configured as an isolation transformer in which one winding is the high voltage side signal line and the other winding is the low voltage side signal line.
The storage battery device according to claim 1 or 2.
前記絶縁回路は、複数のコンデンサが直列接続された一対のコンデンサ群のうち一方が前記高電圧側信号線と前記低電圧側信号線との間で接続され、他方が前記アースと前記グランドとの間で接続されている、
請求項1または請求項2記載の蓄電池装置。
In the insulation circuit, one of a pair of capacitors in which a plurality of capacitors are connected in series is connected between the high voltage side signal line and the low voltage side signal line, and the other is connected to the ground and the ground. Connected between
The storage battery device according to claim 1 or 2.
蓄電池からの電力供給を受けて駆動される起動対象装置を起動させるための起動信号を出力する起動検出回路であって、
一端がアースに接地された高電圧側信号線及び一端がグランドに接地された低電圧側信号線とを有し、受動素子で構成された絶縁回路と、
前記蓄電池からの電力を供給を受けて動作するとともに、前記高電圧側信号線の他端に接続された発振器と、
前記高電圧側信号線の他端に接続され、前記発振器の出力信号を検波する検波回路と、
前記検波回路の出力信号を所定の基準電圧と比較し、前記低電圧側信号線の他端に設けられた起動端子が前記グランドに短絡されて前記検波回路の出力信号レベルが前記基準電圧よりも低下したことを検出して前記起動信号を出力する比較部と、
を備えた起動検出回路。
It is a start-up detection circuit that outputs a start-up signal to start the start-up target device that is driven by receiving power from the storage battery.
An insulating circuit composed of a passive element having a high-voltage side signal line whose one end is grounded and a low-voltage side signal line whose one end is grounded.
An oscillator that operates by receiving power from the storage battery and is connected to the other end of the high voltage side signal line.
A detection circuit connected to the other end of the high voltage side signal line to detect the output signal of the oscillator, and
The output signal of the detection circuit is compared with a predetermined reference voltage, the start terminal provided at the other end of the low voltage side signal line is short-circuited to the ground, and the output signal level of the detection circuit is higher than the reference voltage. A comparison unit that detects that the voltage has dropped and outputs the start signal,
Start-up detection circuit with.
JP2019547891A 2017-10-13 2017-10-13 Storage battery device and start detection circuit Active JP6866496B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037248 WO2019073608A1 (en) 2017-10-13 2017-10-13 Storage battery device and start-up detection circuit

Publications (2)

Publication Number Publication Date
JPWO2019073608A1 JPWO2019073608A1 (en) 2020-07-27
JP6866496B2 true JP6866496B2 (en) 2021-04-28

Family

ID=66100548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019547891A Active JP6866496B2 (en) 2017-10-13 2017-10-13 Storage battery device and start detection circuit

Country Status (2)

Country Link
JP (1) JP6866496B2 (en)
WO (1) WO2019073608A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122957B (en) * 2019-12-26 2022-08-09 上海三菱电机·上菱空调机电器有限公司 Overvoltage detection circuit, overvoltage detection method, inverter, and air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263822A (en) * 1987-04-21 1988-10-31 Hoxan Corp Touch switching device
JP5470073B2 (en) * 2010-02-05 2014-04-16 日立ビークルエナジー株式会社 Battery control device and battery system
JP5696610B2 (en) * 2011-07-20 2015-04-08 株式会社デンソー Battery monitoring device
JP6201342B2 (en) * 2013-02-28 2017-09-27 ブラザー工業株式会社 Communication device

Also Published As

Publication number Publication date
WO2019073608A1 (en) 2019-04-18
JPWO2019073608A1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
US10404095B2 (en) Uninterruptible power supply unit
JP6191020B2 (en) Switching power supply
US9764650B2 (en) DC charging station for a battery of an electric vehicle
US20200212817A1 (en) On-board charging/discharging system
US7800346B2 (en) Device and method for equalizing charges of series-connected energy stores
US20150131334A1 (en) Switching power supply apparatus and semiconductor device
US20110057626A1 (en) Power supply and charging circuit for high energy capacitors
CN108701556B (en) DC voltage switch
WO2013088635A1 (en) High output power amplifier
JP2014200169A (en) High voltage inverter system
WO2016006329A1 (en) Uninterruptible power source device
KR20190132855A (en) Power conversion system connected grid for supporting grid
CN102570552A (en) Multifunctional control and protection circuit for storage battery power supply
CN104748288A (en) Soft start charging circuit and control method thereof
JP2016524439A (en) Uninterruptible DC power supply
JP6866496B2 (en) Storage battery device and start detection circuit
JP2009148110A (en) Charger/discharger and power supply device using the same
JP5828774B2 (en) Charge / discharge device for secondary battery and charge / discharge inspection device using the same
JP2015042067A (en) Device for charge/discharge control of electrical storage battery having bidirectional isolated dc-dc converter
JP2016134965A (en) Power reception device
US11909237B2 (en) Reverse polarity protected battery module
US20170141420A1 (en) Cell system and control method for cell system
CN110783969A (en) Battery management system and battery system
CN210640722U (en) Battery switch circuit and power supply management system comprising same
KR20140124485A (en) CONTROL POWER CIRCUIT of ENERGY STORAGE SYSTEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R151 Written notification of patent or utility model registration

Ref document number: 6866496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151