JP6866060B2 - Manufacturing method of refined tea extract - Google Patents

Manufacturing method of refined tea extract Download PDF

Info

Publication number
JP6866060B2
JP6866060B2 JP2015170653A JP2015170653A JP6866060B2 JP 6866060 B2 JP6866060 B2 JP 6866060B2 JP 2015170653 A JP2015170653 A JP 2015170653A JP 2015170653 A JP2015170653 A JP 2015170653A JP 6866060 B2 JP6866060 B2 JP 6866060B2
Authority
JP
Japan
Prior art keywords
tea extract
phospholipid
purified
preferable
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015170653A
Other languages
Japanese (ja)
Other versions
JP2016082966A (en
Inventor
拓馬 伊藤
拓馬 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Publication of JP2016082966A publication Critical patent/JP2016082966A/en
Application granted granted Critical
Publication of JP6866060B2 publication Critical patent/JP6866060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、精製茶抽出物の製造方法に関する。 The present invention relates to a method for producing a purified tea extract.

茶葉には非重合体カテキン類が豊富に含まれており、茶葉から抽出することにより非重合体カテキン類を得ることができるが、抽出の際にはカフェイン等の夾雑物も同時に抽出されてしまう。 Tea leaves are rich in non-polymer catechins, and non-polymer catechins can be obtained by extracting from tea leaves, but at the time of extraction, impurities such as caffeine are also extracted at the same time. It ends up.

このような夾雑物を低減する技術として、例えば、茶葉を熱湯又は有機溶媒水溶液で抽出し、抽出成分を含む溶液をクロロホルムで洗浄し、次いで抽出成分を有機溶媒に転溶した後、有機溶媒を留去する方法(特許文献1)、茶抽出物を活性白土又は酸性白土と接触させる方法(特許文献2)、茶抽出物を水又は含水有機溶媒中に溶解又は懸濁し、アルカリ性条件下、合成吸着剤と接触させる方法(特許文献3)等が知られている。 As a technique for reducing such impurities, for example, tea leaves are extracted with boiling water or an aqueous solution of an organic solvent, the solution containing the extracted components is washed with chloroform, then the extracted components are transsolved in an organic solvent, and then the organic solvent is used. Distillation method (Patent Document 1), method of contacting tea extract with active white clay or acidic white clay (Patent Document 2), tea extract dissolved or suspended in water or a hydrous organic solvent, and synthesized under alkaline conditions. A method of contacting with an adsorbent (Patent Document 3) and the like are known.

一方、茶抽出物をリン脂質と共存させることで、茶抽出物の渋味を低減できることが報告されているが(特許文献4)、リン脂質を用いた茶抽出物中の夾雑物の除去については知られていない。 On the other hand, it has been reported that the astringency of tea extract can be reduced by coexisting the tea extract with phospholipid (Patent Document 4). Is not known.

特開昭59−219384号公報Japanese Unexamined Patent Publication No. 59-21938 特開平6−142405号公報Japanese Unexamined Patent Publication No. 6-142405 特開平8−109178号公報Japanese Unexamined Patent Publication No. 8-109178 特表2012−503479号公報Japanese Patent Application Laid-Open No. 2012-503479

本発明の課題は、茶抽出物中のカフェインが低減された精製茶抽出物の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a purified tea extract in which caffeine in the tea extract is reduced.

本発明者は、茶抽出物とリン脂質とを混合し、リン脂質膜内又はその内水相に非重合体カテキン類を取り込ませるか、あるいはリン脂質膜に非重合体カテキン類を吸着させることで、非重合体カテキン類とカフェインが分離され、そしてリン脂質相を回収することで、カフェインが低減された精製茶抽出物が得られることを見出した。 The present inventor mixes a tea extract and a phospholipid and causes the non-polymer catechins to be incorporated into the phospholipid membrane or its inner aqueous phase, or the non-polymer catechins are adsorbed on the phospholipid membrane. It was found that the non-polymeric catechins and caffeine were separated, and the phospholipid phase was recovered to obtain a purified tea extract with reduced caffeine.

すなわち、本発明は、茶抽出物とリン脂質とを混合し、混合液中からリン脂質相を回収する工程を含む、精製茶抽出物の製造方法を提供するものである。 That is, the present invention provides a method for producing a purified tea extract, which comprises a step of mixing a tea extract and a phospholipid and recovering a phospholipid phase from the mixed solution.

本発明によれば、茶抽出物中のカフェインが低減された精製茶抽出物を簡便な操作で製造することができる。 According to the present invention, a purified tea extract in which caffeine in the tea extract is reduced can be produced by a simple operation.

以下、本発明の精製茶抽出物の製造方法について説明する。
本発明の精製茶抽出物の製造方法は、茶抽出物とリン脂質とを混合し、混合液中からリン脂質相を回収する工程を含むものである。
Hereinafter, a method for producing the purified tea extract of the present invention will be described.
The method for producing a purified tea extract of the present invention includes a step of mixing a tea extract and a phospholipid and recovering a phospholipid phase from the mixed solution.

茶抽出物としては、茶抽出液、その濃縮物、又はそれらの精製物が挙げられ、その形態としては、固体、液体、溶液、スラリー等の種々のものがある。これらは1種又は2種以上組み合わせて使用することができる。ここで、本明細書において「茶抽出液」とは、茶葉から熱水又は親水性有機溶媒を用いて抽出されたものであって、濃縮や精製操作が行われていないものをいう。抽出方法及び抽出条件は、公知の方法及び条件を採用することが可能であり、特に限定されない。茶葉としては、例えば、Camellia属、例えば、C. sinensis var.sinensis(やぶきた種を含む)、C. sinensis var.assamica及びそれらの雑種から選択される茶樹(Camellia sinensis)が挙げられる。茶樹は、その加工方法により、不発酵茶、半発酵茶、発酵茶に分類することができる。
不発酵茶としては、例えば、煎茶、番茶、碾茶、釜入り茶、茎茶、棒茶、芽茶等の緑茶が挙げられる。また、半発酵茶としては、例えば、鉄観音、色種、黄金桂、武夷岩茶等の烏龍茶が挙げられる。更に、発酵茶としては、ダージリン、アッサム、スリランカ等の紅茶が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。中でも、非重合体カテキン類の含有量の点から、不発酵茶が好ましく、緑茶が更に好ましい。
Examples of the tea extract include a tea extract, a concentrate thereof, and a purified product thereof, and there are various forms thereof such as a solid, a liquid, a solution, and a slurry. These can be used alone or in combination of two or more. Here, the term "tea extract" as used herein refers to a tea extract extracted from tea leaves using hot water or a hydrophilic organic solvent, which has not been concentrated or purified. As the extraction method and extraction conditions, known methods and conditions can be adopted and are not particularly limited. Examples of tea leaves include the genus Camellia, for example, C. sinensis var. Sinensis (including Camellia species), C. sinensis var. Assamica and tea plants (Camellia sinensis) selected from hybrids thereof. Tea plants can be classified into non-fermented tea, semi-fermented tea, and fermented tea according to the processing method.
Examples of the non-fermented tea include green tea such as sencha, bancha, tencha, potted tea, kukicha, bar tea, and mecha. Examples of semi-fermented tea include oolong tea such as Tieguanyin, color species, golden katsura, and Wuyi tea. Further, examples of fermented tea include black teas such as Darjeeling, Assam and Sri Lanka. These can be used alone or in combination of two or more. Among them, non-fermented tea is preferable, and green tea is more preferable, from the viewpoint of the content of non-polymer catechins.

また、「茶抽出液の濃縮物」とは、茶抽出液から溶媒の一部を除去して非重合体カテキン類濃度を高めたものであり、例えば、濃縮方法として、常圧濃縮、減圧濃縮、膜濃縮等を挙げることができる。茶抽出液の濃縮物としては市販品を使用してもよく、例えば、三井農林(株)の「ポリフェノン」、伊藤園(株)の「テアフラン」、太陽化学(株)の「サンフェノン」等の緑茶抽出液の濃縮物が挙げられる。更に、「茶抽出液の精製物」とは、茶抽出液又はその濃縮物を精製して非重合体カテキン類の純度を高めたものであり、例えば、特開2004−147508号公報、特開2004−149416号公報、特開2006−160656号公報、特開2007−282568号公報、特開2008−079609号公報等に記載の方法を採用することができる。 The "tea extract concentrate" is obtained by removing a part of the solvent from the tea extract to increase the concentration of non-polymer catechins. For example, as a concentration method, normal pressure concentration or vacuum concentration is used. , Membrane concentration and the like. Commercially available products may be used as the concentrate of the tea extract. For example, green tea such as "Polyphenone" by Mitsui Norin Co., Ltd., "Theafran" by ITO EN Co., Ltd., and "Sanphenon" by Taiyo Kagaku Co., Ltd. Examples include concentrates of extracts. Further, the "purified product of the tea extract" is a product obtained by purifying the tea extract or its concentrate to increase the purity of the non-polymer catechins. For example, JP-A-2004-147508, JP. The methods described in JP-A-2004-149416, JP-A-2006-160656, JP-A-2007-282568, JP-A-2008-079609, and the like can be adopted.

混合する際の茶抽出物は、水溶液の形態であることが好ましい。茶抽出物を溶解させた水溶液は、例えば、茶葉から水を用いて抽出された茶抽出液を、必要により水希釈又は濃縮して用いても、茶抽出液の濃縮物又はその精製物を水希釈して用いても、茶抽出液、その濃縮物、又はそれらの精製物の乾燥物を再び水に溶解して用いてもよい。 The tea extract to be mixed is preferably in the form of an aqueous solution. As the aqueous solution in which the tea extract is dissolved, for example, even if the tea extract extracted from the tea leaves with water is diluted or concentrated with water as necessary, the concentrate of the tea extract or the purified product thereof is used as water. It may be diluted and used, or the tea extract, its concentrate, or a dried product of those purified products may be dissolved again in water and used.

茶抽出物を溶解させた水溶液中の非重合体カテキン類の含有量は適宜選択可能であるが、精製効率の観点から、0.02質量%以上が好ましく、0.05質量%以上がより好ましく、0.06質量%以上が更に好ましく、そして10.0質量%以下が好ましく、7.0質量%以下がより好ましく、5.0質量%以下が更に好ましい。かかる非重合体カテキン類の含有量の範囲としては、好ましくは0.02〜10.0質量%、より好ましくは0.05〜7.0質量%、更に好ましくは0.06〜5.0質量%である。ここで、本明細書において「非重合体カテキン類」とは、エピガロカテキンガレート、ガロカテキンガレート、エピカテキンガレート及びカテキンガレートからなるガレート体と、エピガロカテキン、ガロカテキン、エピカテキン及びカテキンからなる非ガレート体を併せての総称である。なお、非重合体カテキン類の含有量は、上記8種の合計量に基づいて定義され、本発明においては、上記8種の非重合体カテキン類のうち少なくとも1種を含有すればよい。 The content of the non-polymer catechins in the aqueous solution in which the tea extract is dissolved can be appropriately selected, but from the viewpoint of purification efficiency, 0.02% by mass or more is preferable, and 0.05% by mass or more is more preferable. , 0.06% by mass or more, more preferably 10.0% by mass or less, more preferably 7.0% by mass or less, still more preferably 5.0% by mass or less. The content of the non-polymer catechins is preferably 0.02 to 10.0% by mass, more preferably 0.05 to 7.0% by mass, and further preferably 0.06 to 5.0% by mass. %. Here, in the present specification, the "non-polymeric catechins" are composed of epigallocatechin gallate, galocatechin gallate, epicatechin gallate and catechin gallate, and epigallocatechin, galocatechin, epicatechin and catechin. It is a general term for non-gallate bodies. The content of the non-polymer catechins is defined based on the total amount of the above eight types, and in the present invention, at least one of the above eight types of non-polymer catechins may be contained.

また、本発明に用いる茶抽出物は、非重合体カテキン類中のガレート体の割合(以下、「ガレート体率」とも称する)が、生理効果の観点から、30質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上が更に好ましく、また風味の観点から、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下が更に好ましい。かかるガレート体率の範囲としては、好ましくは30〜70質量%、より好ましくは35〜65質量%、更に好ましくは40〜60質量%である。ここで、本明細書において「ガレート体率」とは、非重合体カテキン類8種に対する上記ガレート体4種の質量比率である。 Further, in the tea extract used in the present invention, the proportion of gallate in the non-polymer catechins (hereinafter, also referred to as “gallate content”) is preferably 30% by mass or more, preferably 35% by mass, from the viewpoint of physiological effects. % Or more is more preferable, 40% by mass or more is further preferable, and from the viewpoint of flavor, 70% by mass or less is more preferable, 65% by mass or less is more preferable, and 60% by mass or less is further preferable. The range of the gallate body ratio is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and further preferably 40 to 60% by mass. Here, in the present specification, the "gallate form ratio" is the mass ratio of the above four types of gallate form to eight kinds of non-polymer catechins.

更に、本発明に用いる茶抽出物は、(A)非重合体カテキン類と(C)カフェインとの質量比[(C)/(A)]が、0.01以上が好ましく、0.03以上がより好ましく、0.05以上が更に好ましく、そして3.0以下が好ましく、2.0以下がより好ましく、1.5以下が更に好ましい。かかる質量比[(C)/(A)]の範囲としては、好ましくは0.01〜3.0、より好ましくは0.03〜2.0、更に好ましくは0.05〜1.5である。 Further, the tea extract used in the present invention preferably has a mass ratio [(C) / (A)] of (A) non-polymer catechins and (C) caffeine of 0.01 or more, preferably 0.03. The above is more preferable, 0.05 or more is further preferable, 3.0 or less is preferable, 2.0 or less is more preferable, and 1.5 or less is further preferable. The range of the mass ratio [(C) / (A)] is preferably 0.01 to 3.0, more preferably 0.03 to 2.0, and further preferably 0.05 to 1.5. ..

リン脂質は、卵黄、大豆その他の動植物材料に由来するものを特に限定されることなく用いることができ、それらの水素添加物、水酸化物の誘導体といった半合成のリン脂質、合成品等であってもよい。リン脂質の構成脂肪酸も特に限定されず、飽和脂肪酸及び不飽和脂肪酸のいずれでもよい。また、リン脂質は、中性リン脂質の他に、アニオン性リン脂質、カチオン性リン脂質といった荷電リン脂質、更には重合性リン脂質を含んでもよい。
リン脂質は、1種又は2種以上組み合わせて用いることができる。
As the phospholipid, those derived from egg yolk, soybean and other animal and plant materials can be used without particular limitation, and semi-synthetic phospholipids such as hydrogenated compounds and derivatives of hydroxides thereof, synthetic products and the like can be used. You may. The constituent fatty acids of the phospholipid are not particularly limited, and may be either saturated fatty acids or unsaturated fatty acids. Further, the phospholipid may include a charged phospholipid such as an anionic phospholipid and a cationic phospholipid, and a polymerizable phospholipid in addition to the neutral phospholipid.
Phospholipids can be used alone or in combination of two or more.

リン脂質としては、例えば、グリセロリン脂質、リゾグリセロリン脂質、スフィンゴリン脂質が挙げられる。中でも、グリセロリン脂質、スフィンゴリン脂質が好ましい。グリセロリン脂質としては、例えば、ホスファチジルコリン、ホスファチジルグリセロール、ホスファチジン酸、ホスファチジルエタノールアミン、ホスファチジルイノシトール、ホスファチジルセリンが挙げられるが、中でもホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリンが好ましい。スフィンゴリン脂質としては、スフィンゴミエリン、セラミドシリアチンが挙げられる。これらリン脂質を含む原料として、天然レシチン、又はそれを水素添加処理した精製品を利用することもできる。天然レシチンとしては、例えば、卵黄レシチン、大豆レシチン、イカレシチン等が挙げられ、水素添加リン脂質としては、例えば、水素添加大豆ホスファチジルコリン、水素添加卵黄レシチン等が挙げられる。 Examples of phospholipids include glycerophospholipids, lysoglycerophospholipids, and sphingolipids. Of these, glycerophospholipids and sphingolipids are preferable. Examples of the glycerophospholipid include phosphatidylcholine, phosphatidylglycerol, phosphatidylate, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine, and among them, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine are preferable. Examples of sphingolipids include sphingomyelin and ceramide myelin. As a raw material containing these phospholipids, natural lecithin or a refined product obtained by hydrogenating the natural lecithin can also be used. Examples of natural lecithin include egg yolk lecithin, soybean lecithin, squid lecithin and the like, and examples of hydrogenated phospholipids include hydrogenated soybean phosphatidylcholine and hydrogenated egg yolk lecithin.

茶抽出物と混合する際のリン脂質は、リン脂質膜を形成していることが好ましく、更に好ましくはリポソームの形態である。リン脂質をリン脂質膜又はリポソームの形態とすることで、リン脂質膜内又はその内水相への非重合体カテキン類の取り込みや、リン脂質膜への非重合体カテキン類の吸着が容易になる。ここで、本明細書において「リポソーム」とは、リン脂質2分子膜により囲まれた内水相部分を有する閉鎖小胞をいい、そのサイズや脂質二分子の数によって多重相リポソーム(Multilamellar Vesicle:MLV)、大きな一枚膜リポソーム(Large Unilamellar Vesicle:LUV)、小さな一枚膜リポソーム(Small Unilamellar Vesicle:SUV)の3種類に分類される。本発明においてはいずれの種類のリポソームも使用可能である。 The phospholipid when mixed with the tea extract preferably forms a phospholipid film, more preferably in the form of liposomes. By making the phospholipid in the form of a phospholipid membrane or a liposome, it is easy to take up the non-polymer catechins into the phospholipid membrane or its inner aqueous phase and to adsorb the non-polymer catechins to the phospholipid membrane. Become. Here, the term "liposome" as used herein refers to a closed vesicle having an inner aqueous phase portion surrounded by a phospholipid bilayer membrane, and depending on its size and the number of lipid bimolecules, a multiphase liposome (Multimulellar Vesicle: It is classified into three types: MLV), large single-membrane liposome (LUV), and small single-membrane liposome (Small Universal Vesicle: SUV). Any type of liposome can be used in the present invention.

リン脂質膜へ非重合体カテキン類を吸着させる場合、例えば、茶抽出物とリン脂質とを混合し、震盪等により応力を与えてリン脂質膜の形成とリン脂質膜への非重合体カテキン類の吸着を略同時に行ってもよい。また、リン脂質に震盪等により応力を与えて予めリン脂質膜の形成した後、これに茶抽出物を混合することもできる。 When adsorbing non-polymer catechins on a phospholipid membrane, for example, a tea extract and a phospholipid are mixed and stressed by shaking or the like to form a phospholipid membrane and non-polymer catechins on the phospholipid membrane. May be adsorbed substantially at the same time. It is also possible to apply stress to the phospholipid by shaking or the like to form a phospholipid film in advance, and then mix the tea extract with the phospholipid film.

リン脂質をリポソーム化する場合、その膜構成成分として、リン脂質と、糖脂質及びジアルキル型合成界面活性剤から選ばれる1種又は2種とを適宜組み合わせてよい。さらに、膜安定剤としてコレステロール類等を、また荷電物質としてステアリルアミン、ホスファチジン酸等を、更に酸化防止剤としてトコフェロール等を、1種又は2種以上適宜組み合わせて加えても良い。 When phospholipids are made into liposomes, phospholipids and one or two selected from glycolipids and dialkyl-type synthetic surfactants may be appropriately combined as the membrane constituents thereof. Further, cholesterol or the like as a membrane stabilizer, stearylamine, phosphatidic acid or the like as a charged substance, and tocopherol or the like as an antioxidant may be added as appropriate in one or a combination of two or more.

リポソームの形成方法としては特に限定されず、Bangham法、脂質溶解法、メカノケミカル法、凍結乾燥リポソーム法等の方法を採用することができる。例えばBangham法では、リン脂質をクロロホルム、エーテル、エタノール等の有機溶媒に溶解し、減圧下にて溶媒を留去し、更に減圧乾燥した後、当該リン脂質の相転移温度以上の温度で懸濁させることにより形成することができる。また、リポソームの粒子径は、膜透過や機械力による剪断力を利用し、適宜調節することもできる。 The method for forming liposomes is not particularly limited, and methods such as the Bangham method, the lipid dissolution method, the mechanochemical method, and the freeze-dried liposome method can be adopted. For example, in the Bangham method, a phospholipid is dissolved in an organic solvent such as chloroform, ether, or ethanol, the solvent is distilled off under reduced pressure, the phospholipid is further dried under reduced pressure, and then suspended at a temperature equal to or higher than the phase transition temperature of the phospholipid. It can be formed by allowing it to form. Further, the particle size of the liposome can be appropriately adjusted by utilizing the membrane permeation or the shearing force due to the mechanical force.

本発明に用いるリン脂質、リン脂質膜、リポソームは、相転移温度を有するものが好ましい。ここで、本明細書において「相転移温度」とは、リン脂質が取り得るゲルと液晶との両状態間の相転移を生じる温度をいい、リン脂質に対して十分量の水が存在する場合の値である。相転移温度は、示差走査熱量計(DSC)を用いて示差熱分析により測定することができる。示差走査熱量計として、例えばDSC7020(日立ハイテクサイエンス製)を用いることができる。なお、本明細書における相転移温度は、後述の実施例記載の方法に基づく測定値を示すものとする。 The phospholipid, phospholipid membrane, and liposome used in the present invention preferably have a phase transition temperature. Here, the "phase transition temperature" as used herein means a temperature at which a phase transition occurs between the gel and liquid crystal states that phospholipids can take, and when a sufficient amount of water is present for phospholipids. Is the value of. The phase transition temperature can be measured by differential thermal analysis using a differential scanning calorimetry (DSC). As the differential scanning calorimeter, for example, DSC7020 (manufactured by Hitachi High-Tech Science) can be used. The phase transition temperature in the present specification indicates a measured value based on the method described in Examples described later.

リン脂質の相転移温度は、ハンドリングの観点から、−25℃以上が好ましく、−20℃以上がより好ましく、また非重合体カテキン類の取込み率、吸着率の観点から、60℃以下が好ましく、50℃以下がより好ましく、40℃以下が更に好ましく、30℃以下がより更に好ましい。かかる相転移温度の範囲としては、好ましくは−25℃〜60℃、より好ましくは−20℃〜50℃、更に好ましくは−20℃〜40℃、より更に好ましくは−20℃〜30℃である。 The phase transition temperature of the phospholipid is preferably −25 ° C. or higher, more preferably −20 ° C. or higher from the viewpoint of handling, and preferably 60 ° C. or lower from the viewpoint of the uptake rate and adsorption rate of non-polymer catechins. 50 ° C. or lower is more preferable, 40 ° C. or lower is further preferable, and 30 ° C. or lower is even more preferable. The range of the phase transition temperature is preferably −25 ° C. to 60 ° C., more preferably −20 ° C. to 50 ° C., further preferably −20 ° C. to 40 ° C., and even more preferably −20 ° C. to 30 ° C. ..

相転移温度を有するリン脂質としては、例えば、大豆ホスファチジルコリン(後述の実施例記載の方法により測定した相転移温度約−10℃)、水素添加大豆ホスファチジルコリン(メーカー公称相転移温度約53℃)、ジミリストイルホスファチジルコリン(下記の参考文献1記載の相転移温度約23℃)、ジパルミトイルホスファチジルコリン(下記の参考文献1記載の相転移温度約41℃)、ジステアロイルホスファチジルコリン(下記の参考文献1記載の相転移温度約54℃)、ジヘキサデシルホスファチジルコリン(下記の参考文献2記載の相転移温度約45℃)、ステアロイルパルイトミルホスファチジルコリン(下記の参考文献3記載の相転移温度約45℃)、ジパルミトイルホスファチジルエタノールアミン(下記の参考文献2記載の相転移温度約63℃)等が挙げられる。中でも、コリン基を有するホスファチジルコリンが好ましい。本発明で使用するリン脂質は、市販品又は合成品を適宜選択して使用することができるが、リン脂質の含有量が60質量%以上であるものが好ましく、80質量%以上であるものが更に好ましい。 Examples of the phospholipid having a phase transition temperature include soybean phosphatidylcholine (phase transition temperature of about -10 ° C. measured by the method described in Examples described later), hydrogenated soybean phosphatidylcholine (manufacturer's nominal phase transition temperature of about 53 ° C.), and di. Millistylphosphatidylcholine (phase transition temperature of reference 1 below), dipalmitoylphosphatidylcholine (phase transition temperature of reference 1 below), distearoylphosphatidylcholine (phase transition of reference 1 below) Temperature about 54 ° C), dihexadecylphosphatidylcholine (phase transition temperature of about 45 ° C described in Reference 2 below), stearoyl paritemilphosphatidylcholine (phase transition temperature of reference 3 below), dipalmitoylphosphatidyl Ethanolamine (phase transition temperature of about 63 ° C. described in Reference 2 below) and the like can be mentioned. Of these, phosphatidylcholine having a choline group is preferable. As the phospholipid used in the present invention, a commercially available product or a synthetic product can be appropriately selected and used, but the phospholipid content is preferably 60% by mass or more, preferably 80% by mass or more. More preferred.

参考文献1:金品ら, 高圧力下におけるリン脂質二重膜. 高圧力の科学と技術、vol9,No3,p.213-220(1999)
参考文献2:松木ら. 生体膜脂質の膜状態−圧力研究から見えてくる構造機能相関−,高圧力の科学と技術,vol23,No1,p.30-38(2013)
参考文献3:第32回物性物理化学研究会 講演要旨集
Reference 1: Kinshin et al., Phosphorlipid bilayer membrane under high pressure. Science and technology of high pressure, vol9, No3, p.213-220 (1999)
Reference 2: Matsuki et al. Membrane state of biological membrane lipids-Structural-function correlation revealed from pressure studies-, Science and technology of high pressure, vol23, No1, p.30-38 (2013)
Reference 3: Abstracts of the 32nd Physical Chemistry Study Group

リポソームのメジアン径は、リン脂質相と液相との分離操作の観点から、10nm以上が好ましく、30nm以上がより好ましく、50nm以上が更に好ましく、80nm以上がより更に好ましく、100nm以上が殊更に好ましく、また非重合体カテキン類の取込み率の観点から、20,000nm以下が好ましく、15,000nm以下がより好ましく、10,000nm以下が更に好ましく、5,000nm以下がより更に好ましく、3,000nm以下がより好ましく、1,000nm以下が更に好ましく、500nm以下が殊更に好ましい。かかるメジアン径の範囲としては、好ましくは10〜20,000nm、より好ましくは30〜15,000nm、更に好ましくは50〜10,000nm、より更に好ましくは50〜5,000nm、より更に好ましくは50〜3,000nm、より更に好ましくは80〜1,000nm、殊更に好ましくは100〜500nmである。ここでいう「メジアン径」とは、レーザー回折散乱法を用いて測定した体積基準の累積粒度分布において、累積値が50%(d50)に相当する粒子径をいう。 The median diameter of the liposome is preferably 10 nm or more, more preferably 30 nm or more, further preferably 50 nm or more, further preferably 80 nm or more, and particularly preferably 100 nm or more, from the viewpoint of the separation operation between the phospholipid phase and the liquid phase. From the viewpoint of the uptake rate of non-polymer catechins, 20,000 nm or less is preferable, 15,000 nm or less is more preferable, 10,000 nm or less is further preferable, 5,000 nm or less is further preferable, and 3,000 nm or less. Is more preferable, 1,000 nm or less is further preferable, and 500 nm or less is particularly preferable. The range of the median diameter is preferably 10 to 20,000 nm, more preferably 30 to 15,000 nm, still more preferably 50 to 10,000 nm, still more preferably 50 to 5,000 nm, still more preferably 50 to 50 to It is 3,000 nm, more preferably 80 to 1,000 nm, and even more preferably 100 to 500 nm. The "median diameter" here means a particle size corresponding to a cumulative value of 50% (d 50 ) in a volume-based cumulative particle size distribution measured by a laser diffraction / scattering method.

茶抽出物とリン脂質との混合割合は、茶抽出物中の(A)非重合体カテキン類と(B)リン脂質との質量比[(A)/(B)]として、生産効率の観点から、0.001以上が好ましく、0.01以上がより好ましく、0.02以上が更に好ましく、また非重合体カテキン類の回収率の観点から、0.20以下が好ましく、0.18以下がより好ましく、0.11以下が更に好ましく、0.09以下が殊更に好ましい。かかる質量比[(A)/(B)]の範囲としては、好ましくは0.001〜0.20、より好ましくは0.01〜0.18、更に好ましくは0.01〜0.11、殊更に好ましくは0.02〜0.09である。 The mixing ratio of the tea extract and the phospholipid is the mass ratio of (A) non-polymer catechins and (B) phospholipid in the tea extract [(A) / (B)] from the viewpoint of production efficiency. Therefore, 0.001 or more is preferable, 0.01 or more is more preferable, 0.02 or more is further preferable, and from the viewpoint of the recovery rate of non-polymer catechins, 0.20 or less is preferable, and 0.18 or less is preferable. More preferably, 0.11 or less is further preferable, and 0.09 or less is particularly preferable. The range of the mass ratio [(A) / (B)] is preferably 0.001 to 0.20, more preferably 0.01 to 0.18, still more preferably 0.01 to 0.11, particularly. It is preferably 0.02 to 0.09.

茶抽出物とリン脂質との混合温度は、使用するリン脂質の相転移温度よりも高い温度であることが好ましく、使用するリン脂質の相転移温度よりも5℃以上高い温度であることがより好ましく、10℃以上高い温度であることがより好ましく、20℃以上高い温度であることがより更に好ましい。
茶抽出物とリン脂質との混合時間は、製造スケール等により一様ではないが、非重合体カテキン類の回収率の観点から、10分以上が好ましく、15分以上がより好ましく、20分以上が更に好ましく、また精製効率の観点から、360分以下が好ましく、120分以下がより好ましく、60分以下が更に好ましい。かかる混合時間の範囲としては、好ましくは10〜360分、より好ましくは15〜120分、更に好ましくは20〜60分である。なお、混合液の温度が所定時間一定に保持されるように、液温制御手段を設けることができる。
The mixing temperature of the tea extract and the phospholipid is preferably a temperature higher than the phase transition temperature of the phospholipid used, and more preferably 5 ° C. or more higher than the phase transition temperature of the phospholipid used. Preferably, the temperature is 10 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 20 ° C. or higher.
The mixing time of the tea extract and the phospholipid is not uniform depending on the production scale and the like, but from the viewpoint of the recovery rate of non-polymer catechins, 10 minutes or more is preferable, 15 minutes or more is more preferable, and 20 minutes or more. Is more preferable, and from the viewpoint of purification efficiency, 360 minutes or less is preferable, 120 minutes or less is more preferable, and 60 minutes or less is further preferable. The range of such mixing time is preferably 10 to 360 minutes, more preferably 15 to 120 minutes, and even more preferably 20 to 60 minutes. A liquid temperature control means can be provided so that the temperature of the mixed liquid is kept constant for a predetermined time.

茶抽出物とリン脂質との混合する際のpH(25℃)は、設備腐食防止の観点から、2.5以上が好ましく、4.0以上がより好ましく、6.0以上が更に好ましく、また非重合体カテキン類の安定性の観点から、9.0以下が好ましく、8.0以下がより好ましく、7.0以下が更に好ましい。かかるpHの範囲としては、好ましくは2.5〜9.0、より好ましくは4.0〜8.0、更に好ましくは6.0〜7.0である。 The pH (25 ° C.) when the tea extract and the phospholipid are mixed is preferably 2.5 or more, more preferably 4.0 or more, further preferably 6.0 or more, and further preferably 6.0 or more, from the viewpoint of preventing equipment corrosion. From the viewpoint of the stability of the non-polymer catechins, 9.0 or less is preferable, 8.0 or less is more preferable, and 7.0 or less is further preferable. The pH range is preferably 2.5 to 9.0, more preferably 4.0 to 8.0, and even more preferably 6.0 to 7.0.

茶抽出物とリン脂質との混合順序は特に限定されず、茶抽出物とリン脂質とを同時に投入して混合しても、一方を他方に投入して混合してもよい。また、茶抽出物とリン脂質とを混合する際には、撹拌、震盪、超音波照射等の処理を行ってもよい。 The mixing order of the tea extract and the phospholipid is not particularly limited, and the tea extract and the phospholipid may be added at the same time and mixed, or one may be added to the other and mixed. Further, when the tea extract and the phospholipid are mixed, treatments such as stirring, shaking, and ultrasonic irradiation may be performed.

茶抽出物とリン脂質との混合により、リン脂質膜内又はリポソームに非重合体カテキン類が取り込まれるか、あるいはリン脂質膜に非重合体カテキン類が吸着される一方、カフェイン等の夾雑物はリン脂質膜外、あるいはリポソームの外水相にそのまま存在するため、非重合体カテキン類と、カフェイン等の夾雑物とを分離することができる。 By mixing the tea extract and phospholipids, non-polymer catechins are incorporated into the phospholipid membrane or into liposomes, or non-polymer catechins are adsorbed on the phospholipid membrane, while impurities such as caffeine are adsorbed. Is present as it is outside the phospholipid membrane or in the outer aqueous phase of liposomes, so that non-polymer catechins and impurities such as caffeine can be separated.

混合後、混合液中からリン脂質相を回収するが、回収方法としては、限外濾過、遠心分離、ゲルクロマトグラフィー、透析等の固液分離を挙げることができる。固液分離は、1種又は2種以上を組み合わせて行うことができる。中でも、遠心分離が好ましい。混合液を遠心分離することで、リン脂質相を沈殿層として簡便に回収することができる。 After mixing, the phospholipid phase is recovered from the mixed solution, and examples of the recovery method include solid-liquid separation such as ultrafiltration, centrifugation, gel chromatography, and dialysis. Solid-liquid separation can be performed by one type or a combination of two or more types. Of these, centrifugation is preferred. By centrifuging the mixed solution, the phospholipid phase can be easily recovered as a precipitate layer.

遠心分離機としては、分離板型、円筒型、デカンター型等の一般的な機器を使用することができ、必要に応じて超遠心機を用いても良い。
遠心分離する際の温度は、リン脂質相の回収率の観点から、1℃以上が好ましく、2℃以上がより好ましく、3℃以上が更に好ましく、そして60℃以下が好ましく、50℃以下がより好ましく、40℃以下が更に好ましい。かかる温度範囲としては、好ましくは1〜60℃、より好ましくは2〜50℃、更に好ましくは3〜40℃である。
遠心分離の時間は、リン脂質相の回収率の観点から、好ましくは3〜300分、より好ましくは5〜200分、更に好ましくは10〜100分、より更に好ましくは15〜60分である。
また、遠心分離の条件は、カフェイン除去、非重合体カテキン類の回収率の観点から、相対遠心加速度として、300G以上が好ましく、500G以上がより好ましく、800G以上が更好ましい。また、処理時間の短縮の観点から、10,000G以上が好ましく、60,000G以上がより好ましく、120,000G以上が更に好ましい。上限は限定されるものではないが、例えば170,000G以下が好ましい。遠心分離機の回転数と回転半径は、相対遠心加速度が上記範囲内となるように適宜選択することができる。ここで、本明細書において「相対遠心加速度」とは、次の式(1)により算出した値をいう。
As the centrifuge, general equipment such as a separation plate type, a cylindrical type, and a decanter type can be used, and an ultracentrifuge may be used if necessary.
From the viewpoint of the recovery rate of the phospholipid phase, the temperature at the time of centrifugation is preferably 1 ° C. or higher, more preferably 2 ° C. or higher, further preferably 3 ° C. or higher, and preferably 60 ° C. or lower, more preferably 50 ° C. or lower. It is preferable, and more preferably 40 ° C. or lower. The temperature range is preferably 1 to 60 ° C, more preferably 2 to 50 ° C, and even more preferably 3 to 40 ° C.
From the viewpoint of the recovery rate of the phospholipid phase, the centrifugation time is preferably 3 to 300 minutes, more preferably 5 to 200 minutes, still more preferably 10 to 100 minutes, and even more preferably 15 to 60 minutes.
Further, the conditions for centrifugation are such that the relative centrifugal acceleration is preferably 300 G or more, more preferably 500 G or more, still more preferably 800 G or more, from the viewpoint of caffeine removal and recovery rate of non-polymer catechins. Further, from the viewpoint of shortening the processing time, 10,000 G or more is preferable, 60,000 G or more is more preferable, and 120,000 G or more is further preferable. The upper limit is not limited, but is preferably 170,000 G or less, for example. The rotation speed and radius of rotation of the centrifuge can be appropriately selected so that the relative centrifugal acceleration is within the above range. Here, in the present specification, the "relative centrifugal acceleration" means a value calculated by the following equation (1).

相対遠心加速度(G)=1188×r×N×10−8 (1) Relative centrifugal acceleration (G) = 1188 × r × N 2 × 10-8 (1)

〔式(1)中、rは遠心機の最大回転半径(cm)を示し、Nは一分間あたりの回転数(rpm)を示す。〕 [In the formula (1), r indicates the maximum turning radius (cm) of the centrifuge, and N indicates the number of revolutions per minute (rpm). ]

固液分離により得られたリン脂質相は、必要に応じ、例えばエタノール等の溶媒で抽出した後に、膜分離等の分離操作を行うことで、非重合体カテキン類をリン脂質と分離することが可能であり、またそのまま精製茶抽出物として利用することもできる。 The phospholipid phase obtained by solid-liquid separation can be separated from phospholipids by performing separation operations such as membrane separation after extraction with a solvent such as ethanol, if necessary. It is possible, and it can also be used as it is as a purified tea extract.

得られたリン脂質相の脂質量は、例えば、リン脂質Cテストワコー(和光純薬社製)等のリン脂質定量キット、HPLCを用いることにより定量することが可能である。 The amount of lipid in the obtained phospholipid phase can be quantified by using, for example, a phospholipid quantification kit such as phospholipid C Test Wako (manufactured by Wako Junyaku Co., Ltd.) or HPLC.

このようにして、カフェインが低減された精製茶抽出物を製造することができる。また、本発明の製造方法は、非重合体カテキン類を、好ましくは50%以上、より好ましくは55%以上、更に好ましくは60%以上の収率で回収することもできる。 In this way, a refined tea extract with reduced caffeine can be produced. In addition, the production method of the present invention can also recover non-polymer catechins in a yield of preferably 50% or more, more preferably 55% or more, still more preferably 60% or more.

本発明の製造方法により得られた精製茶抽出物は、(A)非重合体カテキン類と(C)カフェインとの質量比[(C)/(A)]が、好ましくは1.0以下、より好ましくは0.5以下、更に好ましくは0.1以下、より更に好ましくは0.01以下、殊更に好ましくは0.009以下とすることができる。なお、かかる質量比[(C)/(A)]は、0であってもよいが、生産効率の観点から、0.00001以上が好ましく、0.0001以上が更に好ましい。 The purified tea extract obtained by the production method of the present invention has a mass ratio [(C) / (A)] of (A) non-polymer catechins and (C) caffeine, preferably 1.0 or less. , More preferably 0.5 or less, still more preferably 0.1 or less, even more preferably 0.01 or less, and particularly even more preferably 0.009 or less. The mass ratio [(C) / (A)] may be 0, but from the viewpoint of production efficiency, it is preferably 0.00001 or more, and more preferably 0.0001 or more.

1.非重合体カテキン類、及びカフェインの測定
精製茶抽出物を、0.1mol/Lの酢酸−ジメチルスルホオキシド溶液で適宜希釈し0.2μmのフィルターでろ過して試料を調製した。非重合体カテキン類、及びカフェインの測定は、高速液体クロマトグラフ(型式SCL−10AVP、島津製作所製)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラム(L−カラムTM ODS、4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法により行った。非重合体カテキン類の標準品としては、三井農林製のものを使用し、検量線法で定量した。移動相A液は酢酸を0.1mol/L含有する蒸留水溶液、B液は酢酸を0.1mol/L含有するアセトニトリル溶液とし、試料注入量は20μL、UV検出器波長は280nmの条件で行った。なお、グラジエントの条件は、以下のとおりである。
1. 1. Measurement of non-polymer catechins and caffeine The purified tea extract was appropriately diluted with a 0.1 mol / L acetate-dimethylsulfooxide solution and filtered through a 0.2 μm filter to prepare a sample. For the measurement of non-polymer catechins and caffeine, a high performance liquid chromatograph (model SCL-10AVP, manufactured by Shimadzu Corporation) was used, and a packed column for an octadecyl group-introduced liquid chromatograph (L-column TM ODS, 4.6 mmφ ×). 250 mm: (manufactured by Chemical Substance Evaluation and Research Organization) was attached, and the column temperature was 35 ° C. by the gradient method. As a standard product of non-polymer catechins, those manufactured by Mitsui Norin Co., Ltd. were used and quantified by the calibration curve method. The mobile phase A solution was a distilled aqueous solution containing 0.1 mol / L of acetic acid, and the B solution was an acetonitrile solution containing 0.1 mol / L of acetic acid. The sample injection amount was 20 μL and the UV detector wavelength was 280 nm. .. The conditions for the gradient are as follows.

時間(分) A液濃度(体積%) B液濃度(体積%)
0.0 97 3
5.0 97 3
37.0 80 20
43.0 80 20
43.5 0 100
48.5 0 100
49.0 97 3
60.0 97 3
Hours (minutes) Liquid A concentration (volume%) Liquid B concentration (volume%)
0.0 97 3
5.0 97 3
37.0 80 20
43.0 80 20
43.5 0 100
48.5 0 100
49.0 97 3
60.0 97 3

2.pHの測定
pHメータ(HORIBA コンパクトpHメータ、堀場製作所製)を用いて25℃にて行った。
2. pH measurement The pH was measured at 25 ° C. using a pH meter (HORIBA compact pH meter, manufactured by HORIBA, Ltd.).

3.メジアン径の測定
レーザ回折・散乱式粒度分布測定装置(HORIBA LA−920、堀場製作所製)を用いて体積基準の累積粒度分布測定を行い、メジアン径を求めた。
3. 3. Measurement of median diameter A volume-based cumulative particle size distribution measurement was performed using a laser diffraction / scattering particle size distribution measuring device (HORIBA LA-920, manufactured by HORIBA, Ltd.) to determine the median diameter.

4.リン脂質の相転移温度の測定
(1)0℃を超える温度に相転移温度を有するリン脂質は、下記の手順により相転移温度を測定する。まず、リン脂質に対して十分量の水が存在するよう、リン脂質濃度が1〜10g/100gとなるように、リン脂質を水に十分分散させた試料を準備する。次いで、試料0.005gをアルミニウム製の試料容器に秤量し、アルミニウム製のカバーをした後、電動サンプルシーラーを用い、密封する。密封した試料容器を、電気炉内のホルダーユニットに乗せる。また、空気を密封したブランク容器を、ホルダーユニットのブランク側に乗せる。電気炉に蓋をし、窒素雰囲気下で1℃、5分間保持する。次いで、1℃から98℃まで、昇温速度0.5℃/分で加熱する(昇温工程)。この、昇温工程において、示差走査熱量計DSC7020(日立ハイテクサイエンス製)を用いて、DSC曲線を計測する。この際、昇温工程で吸熱ピークが見られた際の温度を、リン脂質の相転移温度とする。
(2)また、上記の測定条件により相転移温度が確認できないリン脂質においては、下記の手順により相転移温度を測定する。まず、リン脂質に対して50質量%のエチレングリコール水溶液を、リン脂質濃度が1〜10g/100gとなるように、リン脂質を水に十分分散させた試料を準備する。次いで、上記と同様の操作により、試料容器、ブランク容器を用意し、ホルダーユニットに乗せる。電気炉に蓋をし、窒素雰囲気下で25℃、5分間保持する。次いで、25℃から―40℃まで、降温速度0.5℃/分で冷却する(冷却工程)。この、冷却工程において、示差走査熱量計DSC7020(日立ハイテクサイエンス製)を用いて、DSC曲線を計測する。この際、冷却工程で発熱ピークが見られた際の温度を、リン脂質の相転移温度とする。
4. Measurement of Phase Transition Temperature of Phospholipids (1) For phospholipids having a phase transition temperature at a temperature exceeding 0 ° C., the phase transition temperature is measured by the following procedure. First, a sample in which phospholipids are sufficiently dispersed in water is prepared so that the phospholipid concentration is 1 to 10 g / 100 g so that a sufficient amount of water is present with respect to the phospholipids. Next, 0.005 g of the sample is weighed in an aluminum sample container, covered with an aluminum cover, and then sealed using an electric sample sealer. Place the sealed sample container on the holder unit in the electric furnace. Further, a blank container in which air is sealed is placed on the blank side of the holder unit. Cover the electric furnace and keep it in a nitrogen atmosphere at 1 ° C. for 5 minutes. Next, heating is performed from 1 ° C. to 98 ° C. at a heating rate of 0.5 ° C./min (heating step). In this temperature raising step, the DSC curve is measured using a differential scanning calorimeter DSC7020 (manufactured by Hitachi High-Tech Science). At this time, the temperature at which the endothermic peak is observed in the temperature raising step is defined as the phase transition temperature of the phospholipid.
(2) For phospholipids whose phase transition temperature cannot be confirmed due to the above measurement conditions, the phase transition temperature is measured by the following procedure. First, a sample in which 50% by mass of an ethylene glycol aqueous solution with respect to phospholipid is sufficiently dispersed in water so that the phospholipid concentration is 1 to 10 g / 100 g is prepared. Next, a sample container and a blank container are prepared and placed on the holder unit by the same operation as described above. Cover the electric furnace and keep it in a nitrogen atmosphere at 25 ° C. for 5 minutes. Then, the mixture is cooled from 25 ° C. to −40 ° C. at a temperature lowering rate of 0.5 ° C./min (cooling step). In this cooling step, the DSC curve is measured using a differential scanning calorimeter DSC7020 (manufactured by Hitachi High-Tech Science). At this time, the temperature at which the exothermic peak is observed in the cooling step is defined as the phase transition temperature of the phospholipid.

調製例1
リポソーム懸濁液Aの調製
リン脂質として、大豆ホスファチジルコリン(コートソームNC20、日油株式会社製、相転移温度の測定値:―10℃)を用い、これを100mLナスフラスコに0.312g採取した。次いで、10mLのクロロホルムを滴下し、ウォータバスで25℃に加熱しつつ、完全溶解した。次いで、ロータリーエバポレータを用い、クロロホルムを留去した。さらに、有機溶媒を完全に除去するため、減圧乾燥を30〜60分行った後、リン酸バッファ(17mM―Na2HPO4+49mM−KH2PO4、pH6.4)を6mL滴下した。その後、25℃に加熱しつつ攪拌を行い、大豆ホスファチジルコリンを水和し、リポソームを形成した。次いで、容器を密閉した状態で、−40℃の冷却バスで30分以上冷却し、凍結させた。その後、25℃のウォータバスで、試料が完全に溶解するまで加熱した。この凍結、溶解の操作を、3回繰り返した。次いで、孔径100nmのポリカーボネート膜に、懸濁液を25℃に加熱した状態で11回以上通過させることで、粒子径を調節した。以上の操作により、リポソーム懸濁液A(リン脂質濃度4943mg/100mL、リポソームのメジアン径168nm)を得た。
Preparation Example 1
Preparation of Liposome Suspension A Soybean phosphatidylcholine (Coatsome NC20, manufactured by Nichiyu Co., Ltd., measured phase transition temperature: −10 ° C.) was used as a phospholipid, and 0.312 g of this was collected in a 100 mL eggplant flask. Then, 10 mL of chloroform was added dropwise, and the mixture was completely dissolved while being heated to 25 ° C. in a water bath. Then, chloroform was distilled off using a rotary evaporator. Further, in order to completely remove the organic solvent, after drying under reduced pressure for 30 to 60 minutes , 6 mL of phosphate buffer (17 mM-Na 2 HPO 4 + 49 mM-KH 2 PO 4 , pH 6.4) was added dropwise. Then, the mixture was stirred while heating at 25 ° C. to hydrate soybean phosphatidylcholine to form liposomes. Then, in a sealed state, the container was cooled in a cooling bath at −40 ° C. for 30 minutes or more and frozen. Then, the sample was heated in a water bath at 25 ° C. until the sample was completely dissolved. This freezing and thawing operation was repeated 3 times. Next, the particle size was adjusted by passing the suspension through a polycarbonate film having a pore size of 100 nm 11 times or more in a state of being heated to 25 ° C. By the above operation, liposome suspension A (phospholipid concentration 4943 mg / 100 mL, median diameter of liposomes 168 nm) was obtained.

調製例2
リポソーム懸濁液Bの調製
リン脂質として、メーカー公称相転移温度53℃の水素添加大豆ホスファチジルコリン(コートソームNC21、日油株式会社製、相転移温度の測定値:51℃)を用い、加熱温度を60℃に変更したこと以外は、調製例1と同様の操作を行い、リポソーム懸濁液B(リン脂質濃度4943mg/100mL、リポソームのメジアン径215nm)を得た。
Preparation Example 2
Preparation of Liposome Suspension B As the phospholipid, hydrogenated soybean phosphatidylcholine (Coatsome NC21, manufactured by Nichiyu Co., Ltd., measured value of phase transition temperature: 51 ° C.) having a manufacturer's nominal phase transition temperature of 53 ° C. was used, and the heating temperature was adjusted. The same operation as in Preparation Example 1 was carried out except that the temperature was changed to 60 ° C. to obtain a liposome suspension B (phospholipid concentration 4943 mg / 100 mL, liposome median diameter 215 nm).

調製例3
リポソーム懸濁液Cの調製
孔径100nmのポリカーボネート膜を通過させる代わりに、孔径1000nmのポリカーボネート膜を用いたこと以外は、調製例1と同様の操作を行い、リポソーム懸濁液C(リン脂質濃度4943mg/100mL、リポソームのメジアン径733nm)を得た。
Preparation Example 3
Preparation of Liposome Suspension C The same procedure as in Preparation Example 1 was carried out except that a polycarbonate membrane having a pore size of 1000 nm was used instead of passing through the polycarbonate membrane having a pore size of 100 nm, and liposome suspension C (phospholipid concentration: 4943 mg) was performed. / 100 mL, liposome median diameter 733 nm) was obtained.

調製例4
リポソーム懸濁液Dの調製
孔径100nmのポリカーボネート膜の代わりに、小型密閉式高圧ホモジナイザーによる剪断処理を4000rpm、20分行ったこと以外は、調製例1と同様の操作を行い、リポソーム懸濁液D(リン脂質濃度4943mg/100mL、リポソームのメジアン径2461nm)を得た。
Preparation Example 4
Preparation of Liposome Suspension D The same operation as in Preparation Example 1 was carried out except that the shearing treatment with a small sealed high-pressure homogenizer was performed at 4000 rpm for 20 minutes instead of the polycarbonate membrane having a pore size of 100 nm. (Phospholipid concentration 4943 mg / 100 mL, liposome median diameter 2461 nm) was obtained.

調製例5
リポソーム懸濁液Eの調製
孔径100nmのポリカーボネート膜を通過させなかったこと以外は、調製例1と同様の操作を行い、リポソーム懸濁液E(リン脂質濃度4943mg/100mL、リポソームのメジアン径6378nm)を得た。
Preparation Example 5
Preparation of Liposome Suspension E The same procedure as in Preparation Example 1 was carried out except that the polycarbonate membrane having a pore size of 100 nm was not passed through, and the liposome suspension E (phospholipid concentration 4943 mg / 100 mL, liposome median diameter 6378 nm) was performed. Got

調整例6
リポソーム懸濁液Fの調製
リン脂質として大豆ホスファチジルコリン(コートソームNC20、日油株式会社製)0.124gと、水素添加大豆ホスファチジルコリン(コートソームNC21、日油株式会社製)0.124g用いた。さらに、加熱温度を60℃とし、滴下するリン酸バッファを10mLとした以外は、調製例1と同様の操作を行い、リポソーム懸濁液F(リン脂質2471mg/100mL、リポソームのメジアン径141nm、相転移温度測定値:36℃)を得た。
Adjustment example 6
Preparation of Liposome Suspension F 0.124 g of soybean phosphatidylcholine (Coatsome NC20, manufactured by NOF Corporation) and 0.124 g of hydrogenated soybean phosphatidylcholine (Coatsome NC21, manufactured by NOF Corporation) were used as phospholipids. Further, the same operation as in Preparation Example 1 was carried out except that the heating temperature was 60 ° C. and the dropping phosphoric acid buffer was 10 mL, and the liposome suspension F (phospholipid 2471 mg / 100 mL, liposome median diameter 141 nm, phase) was carried out. Transition temperature measurement value: 36 ° C.) was obtained.

調製例7
脂質懸濁液Aの調製
脱臭油脂を原料とした大豆油脂肪酸:菜種油脂肪酸=7:3(質量比)の混合脂肪酸100質量部とグリセリン15質量部とを混合し、酵素によりエステル化反応を行った。得られたエステル化物から、トップカット蒸留により脂肪酸とモノアシルグリセロールを除去した後、80℃にて酸処理(50%クエン酸水溶液を0.5%添加)を行った。次に、油脂に対して10%の蒸留水を用いた水洗を3回行い、ジアシルグリセロール水洗油(ジアシルグリセロール88%)を得た。次に、235℃で60分間脱臭を行い、脱臭油を得た。この脱臭油(ジアシルグリセロール86質量%)0.312gをリン酸バッファ6mLに分散し、脂質懸濁液Aを調製した。
Preparation Example 7
Preparation of Lipid Suspension A 100 parts by mass of mixed fatty acid of soybean oil fatty acid: rapeseed oil fatty acid = 7: 3 (mass ratio) using deodorized fat as a raw material and 15 parts by mass of glycerin are mixed and esterified by an enzyme. It was. Fatty acids and monoacylglycerol were removed from the obtained esterified product by top-cut distillation, and then acid treatment (0.5% addition of 50% aqueous citric acid solution) was performed at 80 ° C. Next, the oil and fat was washed with 10% distilled water three times to obtain diacylglycerol water-washed oil (diacylglycerol 88%). Next, deodorization was performed at 235 ° C. for 60 minutes to obtain a deodorizing oil. 0.312 g of this deodorizing oil (86% by mass of diacylglycerol) was dispersed in 6 mL of a phosphate buffer to prepare a lipid suspension A.

調製例8
脂質懸濁液Bの調製
市販のナタネ油(トリアシルグリセロール99質量%)0.312gをリン酸バッファ6mLに分散し、脂質懸濁液Bを調製した。
Preparation Example 8
Preparation of Lipid Suspension B Lipid suspension B was prepared by dispersing 0.312 g of commercially available rapeseed oil (99% by mass of triacylglycerol) in 6 mL of phosphate buffer.

調製例9
緑茶抽出物Aの調製
緑茶抽出物(非重合体カテキン類濃度32質量%)、酸性白土(ミズカエース#600水澤化学社製)38gを68質量%エタノール水溶液800g中に分散させ、40℃に加熱した状態で6時間の攪拌を続けた。その後、生成している沈殿及び酸性白土を2号ろ紙でろ過した。得られたろ液を活性炭(クラレコールGLC、クラレケミカル社製)30gと接触させ、続けて0.2μmメンブランフィルターによってろ過を行った。最後にイオン交換水200gを添加し減圧下でエタノールを留去し、その後、水分量を調整して「緑茶抽出物A」を得た。緑茶抽出物A中の非重合体カテキン類濃度は0.2質量%、カフェイン濃度は0.016質量%、ガレート体率は50質量%、カフェイン/非重合体カテキン類の質量比は0.08であった。
Preparation Example 9
Preparation of Green Tea Extract A Green tea extract (non-polymer catechin concentration 32% by mass) and acid clay (Mizuka Ace # 600, manufactured by Mizusawa Industrial Chemicals Co., Ltd.) were dispersed in 800 g of a 68 mass% ethanol aqueous solution and heated to 40 ° C. Stirring was continued for 6 hours in this state. Then, the generated precipitate and acid clay were filtered through No. 2 filter paper. The obtained filtrate was brought into contact with 30 g of activated carbon (Kuraraycol GLC, manufactured by Kuraray Chemical Co., Ltd.), and subsequently filtered through a 0.2 μm membrane filter. Finally, 200 g of ion-exchanged water was added and ethanol was distilled off under reduced pressure, and then the water content was adjusted to obtain "green tea extract A". The concentration of non-polymer catechins in green tea extract A is 0.2% by mass, the concentration of caffeine is 0.016% by mass, the percentage of gallate is 50% by mass, and the mass ratio of caffeine / non-polymer catechins is 0. It was .08.

調製例10
緑茶抽出物Bの調製
酸性白土(ミズカエース#600水澤化学社製)100gを常温の92質量%エタノール水溶液800g中に分散させ、約10分間攪拌を行った後、緑茶抽出物(非重合体カテキン類濃度32質量%)200gを投入し、6時間の攪拌を続けた。その後、生成している沈殿及び酸性白土を2号ろ紙でろ過した。得られたろ液にイオン交換水を417g添加し、15℃で約5分間攪拌を行った。その混合液を小型冷却遠心分離機を用い(日立工機社製)、操作温度15℃で析出した濁り成分を分離した(6000rpm、5分)。分離した溶液を活性炭(クラレコールGLC、クラレケミカル社製)30gと接触させ、続けて0.2μmメンブランフィルターによってろ過を行った。最後にイオン交換水200gを添加し減圧下でエタノールを留去し、その後、水分量を調整して「緑茶抽出物B」を得た。緑茶抽出物B中の非重合体カテキン類濃度は0.13質量%、カフェイン濃度は0.0034質量%、ガレート体率は46.4質量%、カフェイン/非重合体カテキン類との質量比は0.026であった。
Preparation Example 10
Preparation of Green Tea Extract B 100 g of acid clay (Mizuka Ace # 600, manufactured by Mizusawa Industrial Chemicals, Inc.) was dispersed in 800 g of a 92% by mass ethanol aqueous solution at room temperature, and after stirring for about 10 minutes, green tea extract (non-polymer catechins). 200 g (concentration 32% by mass) was added, and stirring was continued for 6 hours. Then, the generated precipitate and acid clay were filtered through No. 2 filter paper. 417 g of ion-exchanged water was added to the obtained filtrate, and the mixture was stirred at 15 ° C. for about 5 minutes. The mixed solution was separated from the turbid component precipitated at an operating temperature of 15 ° C. using a small cooling centrifuge (manufactured by Hitachi Koki Co., Ltd.) (6000 rpm, 5 minutes). The separated solution was brought into contact with 30 g of activated carbon (Kuraraycol GLC, manufactured by Kuraray Chemical Co., Ltd.), followed by filtration through a 0.2 μm membrane filter. Finally, 200 g of ion-exchanged water was added and ethanol was distilled off under reduced pressure, and then the water content was adjusted to obtain "green tea extract B". The concentration of non-polymer catechins in green tea extract B was 0.13% by mass, the concentration of caffeine was 0.0034% by mass, the percentage of gallate was 46.4% by mass, and the mass with caffeine / non-polymer catechins. The ratio was 0.026.

実施例1
調製例1で得られたリポソーム懸濁液A1.0mLと、調製例9で得られた緑茶抽出物A(非重合体カテキン類濃度197mg/100mL)1.0mLとを25℃で混合した。混合物を25℃にて30分震盪しつつ、インキュベートした。次いで、分離操作として4℃、166000G(回転数50000rpm、30分)の条件にて遠心分離を行い、リポソーム相を沈殿させ、上澄みの液相を除去した。沈殿相の精製緑茶抽出物を回収した。得られた精製緑茶抽出物について分析を行った。なお、沈殿相中の非重合体カテキン類及びカフェインの各取り込み率は、遠心分離によってリン脂質が100%沈降したとして配合質量を元に換算した。その結果を表1に示す。
Example 1
1.0 mL of the liposome suspension A obtained in Preparation Example 1 and 1.0 mL of green tea extract A (non-polymer catechin concentration 197 mg / 100 mL) obtained in Preparation Example 9 were mixed at 25 ° C. The mixture was incubated at 25 ° C. for 30 minutes with shaking. Then, as a separation operation, centrifugation was performed under the conditions of 4 ° C. and 166000 G (rotation speed: 50,000 rpm, 30 minutes) to precipitate the liposome phase, and the liquid phase of the supernatant was removed. The purified green tea extract of the precipitated phase was recovered. The obtained purified green tea extract was analyzed. The uptake rates of non-polymer catechins and caffeine in the precipitated phase were converted based on the blended mass assuming that 100% of the phospholipids had precipitated by centrifugation. The results are shown in Table 1.

実施例2
リポソーム懸濁液Aの代わりに、調製例2で得られたリポソーム懸濁液B0.5mLを、また緑茶抽出物Aの代わりに、緑茶抽出物Bを1.0mLと、リン酸バッファ(17mM―Na2HPO4+49mM−KH2PO4、pH6.4)0.5mLを用い、これらを60℃で300分混合したこと以外は、実施例1と同様の操作により、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を表1に示す。
Example 2
Instead of the liposome suspension A, 0.5 mL of the liposome suspension B obtained in Preparation Example 2 and 1.0 mL of green tea extract B instead of the green tea extract A, and a phosphate buffer (17 mM-). A purified green tea extract was obtained by the same operation as in Example 1 except that 0.5 mL of Na 2 HPO 4 + 49 mM-KH 2 PO 4, pH 6.4) was used and these were mixed at 60 ° C. for 300 minutes. .. The obtained purified green tea extract was analyzed. The results are shown in Table 1.

比較例1及び2
リポソーム懸濁液Aの代わりに、調製例7で得られた脂質懸濁液Aを0.4mL用い、緑茶抽出物A1.0mLとリン酸バッファ0.6mLとともに、25℃又は60℃で混合したこと以外は、実施例1と同様の操作を行い、水相の上部に浮上した脂質相を回収し、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を表1に示す。
Comparative Examples 1 and 2
Instead of the liposome suspension A, 0.4 mL of the lipid suspension A obtained in Preparation Example 7 was used and mixed with 1.0 mL of the green tea extract A and 0.6 mL of the phosphate buffer at 25 ° C. or 60 ° C. Except for the above, the same operation as in Example 1 was carried out, and the lipid phase floating on the upper part of the aqueous phase was recovered to obtain a purified green tea extract. The obtained purified green tea extract was analyzed. The results are shown in Table 1.

比較例3及び4
リポソーム懸濁液Aの代わりに、調製例8で得られた脂質懸濁液Bを0.4mL用い、緑茶抽出物A1.0mLとリン酸バッファ0.6mLとともに、25℃又は60℃で混合したこと以外は、実施例1と同様の操作行い、水相の上部に浮上した脂質相を回収し、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を表1に示す。
Comparative Examples 3 and 4
Instead of the liposome suspension A, 0.4 mL of the lipid suspension B obtained in Preparation Example 8 was used and mixed with 1.0 mL of the green tea extract A and 0.6 mL of the phosphate buffer at 25 ° C. or 60 ° C. Except for this, the same operation as in Example 1 was carried out, and the lipid phase floating on the upper part of the aqueous phase was recovered to obtain a purified green tea extract. The obtained purified green tea extract was analyzed. The results are shown in Table 1.

Figure 0006866060
Figure 0006866060

実施例3〜6
リポソーム懸濁液Aと、緑茶抽出物Aと、リン酸バッファとの混合割合を表2に示す量に変更し、更に実施例4及び5においては混合時間を60分に変更したこと以外は、実施例1と同様の操作により、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を実施例1の結果とともに表2に示す。
Examples 3 to 6
Except that the mixing ratio of the liposome suspension A, the green tea extract A, and the phosphate buffer was changed to the amount shown in Table 2, and the mixing time was changed to 60 minutes in Examples 4 and 5. A purified green tea extract was obtained by the same operation as in Example 1. The obtained purified green tea extract was analyzed. The results are shown in Table 2 together with the results of Example 1.

Figure 0006866060
Figure 0006866060

実施例7〜9
リポソーム懸濁液Aの代わりに、調製例3〜5で得られたリポソーム懸濁液C〜Eをそれぞれ用い、更に実施例8においては混合時間を60分に変更したこと以外は、実施例1と同様の操作により、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を実施例1の結果とともに表3に示す。
Examples 7-9
Example 1 except that the liposome suspensions C to E obtained in Preparation Examples 3 to 5 were used instead of the liposome suspension A, and the mixing time was changed to 60 minutes in Example 8. A purified green tea extract was obtained by the same operation as in the above. The obtained purified green tea extract was analyzed. The results are shown in Table 3 together with the results of Example 1.

Figure 0006866060
Figure 0006866060

実施例10
緑茶抽出物Aの代わりに、緑茶抽出物Bを用い、混合時間を300分に変更したこと以外は、実施例1と同様の操作により、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を実施例2の結果とともに表4に示す。
Example 10
A purified green tea extract was obtained by the same operation as in Example 1 except that the green tea extract B was used instead of the green tea extract A and the mixing time was changed to 300 minutes. The obtained purified green tea extract was analyzed. The results are shown in Table 4 together with the results of Example 2.

実施例11
混合温度を60℃にしたこと以外は、実施例10と同様の操作により、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を実施例2の結果とともに表4に示す。
Example 11
A purified green tea extract was obtained by the same operation as in Example 10 except that the mixing temperature was set to 60 ° C. The obtained purified green tea extract was analyzed. The results are shown in Table 4 together with the results of Example 2.

実施例12
混合温度を25℃に変更したこと以外は、実施例2と同様の操作により、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を実施例2の結果とともに表4に示す。
Example 12
A purified green tea extract was obtained by the same operation as in Example 2 except that the mixing temperature was changed to 25 ° C. The obtained purified green tea extract was analyzed. The results are shown in Table 4 together with the results of Example 2.

実施例13、14
リポソーム懸濁液Aの代わりに、調製例6で得られたリポソーム懸濁液F 1.0mLと、また緑茶抽出物Aの代わりに、緑茶抽出物B 1.0mLとを、5℃又は60℃で30分混合したこと以外は、実施例1と同様の操作により、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を実施例2の結果とともに表4に示す。
Examples 13 and 14
Instead of the liposome suspension A, 1.0 mL of the liposome suspension F obtained in Preparation Example 6 and 1.0 mL of the green tea extract B instead of the green tea extract A were added at 5 ° C. or 60 ° C. A purified green tea extract was obtained by the same operation as in Example 1 except that the mixture was mixed for 30 minutes. The obtained purified green tea extract was analyzed. The results are shown in Table 4 together with the results of Example 2.

Figure 0006866060
Figure 0006866060

実施例15
リン脂質として、大豆ホスファチジルコリン(コートソームNC20、日油株式会社製相転移温度の測定値:―10℃)を0.806gと、緑茶抽出物粉末(非重合体カテキン類濃度32質量%)を0.247gとを、10.014gのイオン交換水と混合した。混合物を25℃にて30分震盪しつつ、インキュベートした。震盪後の混合物を1.0mL採取し、混合後懸濁液組成の分析を行った。次いで、分離操作として25℃、1000G(回転数3000rpm)30分の条件にて遠心分離を行い、リン脂質相を沈殿させ、上澄みの液相を除去した。沈殿相の精製緑茶抽出物を回収した。得られた精製緑茶抽出物について分析を行った。その結果を表5に示す。
Example 15
As phospholipids, 0.806 g of soybean phosphatidylcholine (Coatsome NC20, measured value of phase transition temperature manufactured by Nichiyu Co., Ltd .: -10 ° C) and 0 of green tea extract powder (non-polymer catechin concentration 32% by mass). .247 g was mixed with 10.104 g of ion-exchanged water. The mixture was incubated at 25 ° C. for 30 minutes with shaking. 1.0 mL of the mixture after shaking was collected, and the suspension composition was analyzed after mixing. Next, as a separation operation, centrifugation was performed under the conditions of 25 ° C. and 1000 G (rotation speed 3000 rpm) for 30 minutes to precipitate the phospholipid phase and remove the liquid phase of the supernatant. The purified green tea extract of the precipitated phase was recovered. The obtained purified green tea extract was analyzed. The results are shown in Table 5.

実施例16
リン脂質として、大豆ホスファチジルコリンを0.203gと、緑茶抽出物粉末を0.124gとを、10.009gのイオン交換水と混合した以外は、実施例15と同様の操作により、精製緑茶抽出物を得た。得られた精製緑茶抽出物について分析を行った。その結果を表5に示す。
Example 16
As phospholipids, 0.203 g of soybean phosphatidylcholine and 0.124 g of green tea extract powder were mixed with 10.09 g of ion-exchanged water, and the purified green tea extract was prepared by the same operation as in Example 15. Obtained. The obtained purified green tea extract was analyzed. The results are shown in Table 5.

Figure 0006866060
Figure 0006866060

表1〜5から、茶抽出物とリン脂質とを混合し、混合液中からリン脂質相を回収することで、カフェインが低減された精製茶抽出物が得られることがわかる。 From Tables 1 to 5, it can be seen that a purified tea extract with reduced caffeine can be obtained by mixing the tea extract and the phospholipid and recovering the phospholipid phase from the mixed solution.

Claims (8)

(A)非重合体カテキン類と(C)カフェインとの質量比[(C)/(A)]が0.01以上である茶抽出物とリン脂質とを水存在下で混合し、混合液中からリン脂質相を回収する工程を含む、精製茶抽出物の製造方法。 A tea extract having a mass ratio of (A) non-polymeric catechins and (C) caffeine [(C) / (A)] of 0.01 or more and a phospholipid are mixed and mixed in the presence of water. A method for producing a purified tea extract, which comprises a step of recovering the phospholipid phase from the liquid. リン脂質の相転移温度よりも高い温度で茶抽出物とリン脂質とを混合する、請求項1記載の精製茶抽出物の製造方法。 The method for producing a purified tea extract according to claim 1, wherein the tea extract and the phospholipid are mixed at a temperature higher than the phase transition temperature of the phospholipid. リン脂質の相転移温度が−25〜60℃である、請求項1又は2記載の精製茶抽出物の製造方法。 The method for producing a purified tea extract according to claim 1 or 2, wherein the phase transition temperature of the phospholipid is 25 to 60 ° C. リン脂質がリポソームの形態である、請求項1〜3のいずれか1項に記載の精製茶抽出
物の製造方法。
The method for producing a purified tea extract according to any one of claims 1 to 3, wherein the phospholipid is in the form of liposomes.
リポソームは、体積基準の累積粒度分布におけるメジアン径が10〜20,000nmである、請求項4記載の精製茶抽出物の製造方法。 The method for producing a purified tea extract according to claim 4, wherein the liposome has a median diameter of 10 to 20,000 nm in a volume-based cumulative particle size distribution. 茶抽出物とリン脂質との混合割合が、茶抽出物中の(A)非重合体カテキン類と(B)リン脂質との質量比[(A)/(B)]として、0.001〜0.20である、請求項1〜5のいずれか1項に記載の精製茶抽出物の製造方法。 The mixing ratio of the tea extract and the phospholipid is 0.001 to the mass ratio of (A) non-polymeric catechins and (B) phospholipid in the tea extract [(A) / (B)]. The method for producing a purified tea extract according to any one of claims 1 to 5, which is 0.20. 茶抽出物とリン脂質との混合時間が10〜360分である、請求項1〜6のいずれか1項に記載の精製茶抽出物の製造方法。 The method for producing a purified tea extract according to any one of claims 1 to 6, wherein the mixing time of the tea extract and the phospholipid is 10 to 360 minutes. 混合液中からリン脂質相を遠心分離により回収する、請求項1〜7のいずれか1項に記載の精製茶抽出物の製造方法。 The method for producing a purified tea extract according to any one of claims 1 to 7, wherein the phospholipid phase is recovered from the mixed solution by centrifugation.
JP2015170653A 2014-10-27 2015-08-31 Manufacturing method of refined tea extract Active JP6866060B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014218033 2014-10-27
JP2014218033 2014-10-27

Publications (2)

Publication Number Publication Date
JP2016082966A JP2016082966A (en) 2016-05-19
JP6866060B2 true JP6866060B2 (en) 2021-04-28

Family

ID=55971469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015170653A Active JP6866060B2 (en) 2014-10-27 2015-08-31 Manufacturing method of refined tea extract

Country Status (1)

Country Link
JP (1) JP6866060B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109463489B (en) * 2019-01-11 2021-07-30 中南林业科技大学 Rice bran protein tea beverage and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324840A (en) * 1980-06-16 1982-04-13 General Foods Corporation Adsorption decaffeination
JPS607933A (en) * 1983-06-29 1985-01-16 Dai Ichi Seiyaku Co Ltd Preparation of liposome
JPS607934A (en) * 1983-06-29 1985-01-16 Dai Ichi Seiyaku Co Ltd Preparation of liposome
JPS63277618A (en) * 1987-03-31 1988-11-15 Noebia:Kk Production of liposome
JP3138781B2 (en) * 1992-10-30 2001-02-26 太陽化学株式会社 Method for removing caffeine from aqueous solution containing caffeine
JP3281733B2 (en) * 1994-10-11 2002-05-13 三井農林株式会社 Production method of low caffeine tea polyphenol
GB9813100D0 (en) * 1998-06-18 1998-08-19 Secr Defence Method of forming liposomes
EP1954243A2 (en) * 2005-10-26 2008-08-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem A method for preparing liposomes and uses thereof
JP2007262026A (en) * 2006-03-29 2007-10-11 Konica Minolta Medical & Graphic Inc Method of producing lyposome
JP4732307B2 (en) * 2006-11-20 2011-07-27 株式会社アンズコーポレーション Nanoemulsion and cosmetics containing the same
EP2172117B1 (en) * 2008-09-25 2011-11-16 Nestec S.A. Reducing astringency in compositions containing phenolic compounds
WO2010113983A1 (en) * 2009-03-30 2010-10-07 エーザイ・アール・アンド・ディー・マネジメント株式会社 Method for producing liposome composition

Also Published As

Publication number Publication date
JP2016082966A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP4225814B2 (en) Caffeine-containing catechin composition decaffeination method
JP5393470B2 (en) Process for producing processed tea
AU779856B2 (en) Process for extracting polyphenolic antioxidants from purine-containing plants
JP4800779B2 (en) Method for producing purified green tea extract
JP7136879B2 (en) instant powdered tea
Deese et al. Retinal rod outer segment lipids form bilayers in the presence and absence of rhodopsin: a 31P NMR study
JP7136880B2 (en) instant powdered tea
JP6866060B2 (en) Manufacturing method of refined tea extract
JP4181863B2 (en) Caffeine-containing catechin composition decaffeination method
Han et al. Improved bioavailability of EGCG after complexation with royal jelly protein
JP3662561B2 (en) Purification method of catechin preparation
JP2007202567A (en) Packaged green tea beverage for sales by warming, and method for producing the same
JP6730788B2 (en) Method for producing purified catechin-containing composition
JPH08506811A (en) Sphingomyelin extraction method
IE62791B1 (en) A method for separating glycolipids from a lipid mixture and uses of the fractions obtained
WO2011037094A1 (en) Method of separation
US20220023214A1 (en) Lecithin Vesicles for Oral Delivery
JP2012005413A (en) Method for preparing fermented tea extract containing polymer polyphenol
JP6891057B2 (en) Method for producing non-polymeric catechin-containing composition
JP6312418B2 (en) Production method of tea extract
KR101242002B1 (en) Method of preparing polyphenol concentrate using cacao bean
JP2005160348A (en) Method for producing green tea extract
JPH05123387A (en) Deodorant and its manufacture
US20080102177A1 (en) Method of purifying theavlavins
JP5307649B2 (en) Method for producing purified tea extract

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200110

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200114

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200306

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200310

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200811

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210224

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210330

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R151 Written notification of patent or utility model registration

Ref document number: 6866060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250