JP6866008B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP6866008B2
JP6866008B2 JP2016162505A JP2016162505A JP6866008B2 JP 6866008 B2 JP6866008 B2 JP 6866008B2 JP 2016162505 A JP2016162505 A JP 2016162505A JP 2016162505 A JP2016162505 A JP 2016162505A JP 6866008 B2 JP6866008 B2 JP 6866008B2
Authority
JP
Japan
Prior art keywords
amount
intake air
egr
temperature
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016162505A
Other languages
Japanese (ja)
Other versions
JP2018031270A (en
Inventor
貴裕 尾崎
貴裕 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2016162505A priority Critical patent/JP6866008B2/en
Publication of JP2018031270A publication Critical patent/JP2018031270A/en
Application granted granted Critical
Publication of JP6866008B2 publication Critical patent/JP6866008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、排気ガス再循環(Exhaust Gas Recirculation)装置が付帯した内燃機関の制御に関する。 The present invention relates to the control of an internal combustion engine accompanied by an exhaust gas recirculation device.

外部EGR装置は、内燃機関の排気通路と吸気通路とをEGR通路により接続し、排気の一部をEGR通路経由で吸気通路に還流させて吸気に混交するものである(例えば、下記特許文献を参照)。EGRにより、気筒の燃焼室における混合気の燃焼温度を低下させてNOxの排出量を抑制し、かつポンピングロスの低減を図ることができる。 In the external EGR device, the exhaust passage and the intake passage of the internal combustion engine are connected by the EGR passage, and a part of the exhaust gas is returned to the intake passage via the EGR passage to be mixed with the intake air (for example, the following patent documents are referred to. reference). With EGR, it is possible to reduce the combustion temperature of the air-fuel mixture in the combustion chamber of the cylinder, suppress the amount of NO x discharged, and reduce the pumping loss.

排気中には、燃料に由来する水蒸気または水分が含まれている。EGRガスを吸気に混入する過程で、EGRガスに含まれる水蒸気または水分が凝縮して凝縮水が発生する。この凝縮水が特定の箇所に滞留し、それに燃料成分中の硫黄分と結びついた硫酸が溶け込むと、吸気系統の部材、例えば流路の配管やバルブ等が腐食される懸念が生じる。また、まとまった量の凝縮水が一時に気筒の燃焼室に流入することで、失火を惹起する可能性もある。 The exhaust contains water vapor or water derived from the fuel. In the process of mixing the EGR gas into the intake air, the water vapor or water contained in the EGR gas is condensed to generate condensed water. If this condensed water stays in a specific place and the sulfuric acid combined with the sulfur content in the fuel component dissolves in the condensed water, there is a concern that the members of the intake system, for example, the pipes and valves of the flow path, are corroded. In addition, a large amount of condensed water may flow into the combustion chamber of the cylinder at one time, causing a misfire.

そこで、従来より、吸気通路を凝縮水が一箇所に溜まりにくい形状に設計するとともに、吸気通路内で凝縮水が多く発生する蓋然性の高い状況、つまりは外気温または吸気温が低温(例えば、5℃以下)であるときに、一律にEGRを禁止、即ちEGRバルブを全閉しEGR通路を遮断するようにしている。しかしながら、EGRを禁止することは、燃料噴射量の削減及びポンピングロスの低減というEGRの効用を放棄することにつながる。 Therefore, conventionally, the intake passage is designed to have a shape that prevents condensed water from accumulating in one place, and there is a high possibility that a large amount of condensed water will be generated in the intake passage, that is, the outside temperature or the intake temperature is low (for example, 5). When the temperature is (° C or lower), EGR is uniformly prohibited, that is, the EGR valve is fully closed to block the EGR passage. However, prohibiting EGR leads to abandoning the utility of EGR in reducing fuel injection amount and pumping loss.

特開2016−065510号公報Japanese Unexamined Patent Publication No. 2016-065510

本発明は、従来EGRを禁止していた状況下においてもできる限りEGRを実施する機会を増やし、内燃機関の燃費性能の一層の向上を図ることを所期の目的としている。 An object of the present invention is to increase the chances of implementing EGR as much as possible even under the situation where EGR is conventionally prohibited, and to further improve the fuel efficiency of the internal combustion engine.

上述した課題を解決するべく、本発明では、気筒に向かって吸気通路を流れる吸気の流量と、気筒に充填される吸気のうちEGRガスが占める割合若しくは量と、外気温、吸気温若しくは冷却水温とに基づき、吸気通路内に存留する凝縮水の量を推定し、その凝縮水の推定量が判定閾値以上となっているならばEGRの実施を禁止するものであり、内燃機関の始動後、所定の時間が経過するまでの期間中は、吸気通路内に存留している凝縮水量をそのときの外気温に応じて推定し、内燃機関の始動後、所定の時間が経過した、吸気通路内に存留している凝縮水量を、直近の過去に演算した推定量に、そのときの吸気の流量、吸気のEGR率若しくはEGRガス量を示唆するEGRガス分圧、及び外気温に応じ単位時間あたりの凝縮水の変化量を加算することによって求めることとし、単位時間あたりの凝縮水の変化量は、吸気通路を流れる吸気の流量が多いほど小さな値となり、吸気のEGRガス分圧が低いほど小さな値となり、外気温が高いほど小さな値となり、また、EGRを禁止している間、吸気のEGRガス分圧が0となり単位時間あたりの凝縮水の変化量が負値をとることがあり、凝縮水の推定量が逓減してゆき、前記外気温は、外気温信号を参照することで知得される外気温、吸気温信号を参照することで知得される吸気温、冷却水温信号を参照することで知得される内燃機関の冷却水温のうちの最も小さい値である内燃機関の制御装置を構成した。 In order to solve the above-mentioned problems, in the present invention, the flow rate of the intake air flowing through the intake passage toward the cylinder, the ratio or amount of the EGR gas in the intake air filled in the cylinder, and the outside temperature, intake air temperature or cooling water temperature. Based on the above, the amount of condensed water remaining in the intake passage is estimated, and if the estimated amount of condensed water is equal to or greater than the judgment threshold, the implementation of EGR is prohibited. During the period until the predetermined time elapses, the amount of condensed water remaining in the intake passage is estimated according to the outside temperature at that time, and after the predetermined time elapses after the start of the internal combustion engine, the intake air is taken. The amount of condensed water remaining in the passage is estimated according to the latest calculated amount in the past, according to the flow rate of intake air at that time, the EGR rate of intake air or the EGR gas partial pressure suggesting the amount of EGR gas, and the outside temperature . It is calculated by adding the amount of change in condensed water per unit time, and the amount of change in condensed water per unit time becomes smaller as the flow rate of intake air flowing through the intake passage increases, and the EGR gas partial pressure of intake air becomes smaller. The lower the value, the smaller the value, and the higher the outside temperature, the smaller the value. Also, while EGR is prohibited, the EGR gas partial pressure of the intake air becomes 0 and the amount of change in condensed water per unit time takes a negative value. Yes, the estimated amount of condensed water gradually decreases, and the outside temperature is the outside temperature obtained by referring to the outside temperature signal, the intake temperature obtained by referring to the intake temperature signal, and the cooling water temperature. The control device of the internal combustion engine, which is the smallest value among the cooling water temperatures of the internal combustion engine known by referring to the signal, was constructed.

具体的には、吸気の流量、吸気のうちEGRガスが占める割合若しくは量、並びに、外気温、吸気温若しくは冷却水温と、吸気通路に溜まる凝縮水の単位時間あたりの変化量を示唆する値との関係を規定したマップデータを記憶保持し、単位時間毎に、そのときの吸気の流量、吸気のうちEGRガスが占める割合若しくは量、並びに、外気温、吸気温若しくは冷却水温に対応する値を前記マップデータから読み出し、読み出した値を積算し、その積算値を判定閾値と比較することで、EGRを禁止する必要があるかどうかを判断することが考えられる。 Specifically, the flow rate of the intake air, the ratio or amount of EGR gas in the intake air, the outside temperature, the intake air temperature or the cooling water temperature, and the value suggesting the amount of change in the condensed water accumulated in the intake passage per unit time. The map data that defines the relationship between the two is stored and stored, and for each unit time, the flow rate of the intake air at that time, the ratio or amount of EGR gas in the intake air, and the value corresponding to the outside temperature, intake air temperature, or cooling water temperature are stored. It is conceivable to read from the map data, integrate the read values, and compare the integrated value with the determination threshold to determine whether it is necessary to prohibit EGR.

本発明によれば、従来はEGRを禁止していた状況下においてもEGRを実施する機会を増やすことができ、内燃機関の燃費性能の一層の向上に寄与し得る。 According to the present invention, it is possible to increase the chances of implementing EGR even in a situation where EGR is conventionally prohibited, and it is possible to contribute to further improvement of the fuel efficiency performance of the internal combustion engine.

本発明の一実施形態における車両用内燃機関及び制御装置の概略構成を示す図。The figure which shows the schematic structure of the internal combustion engine for a vehicle and the control device in one Embodiment of this invention. 同実施形態の制御装置がプログラムに従い実行する処理の手順例を示すフロー図。The flow chart which shows the procedure example of the process which the control device of the same embodiment executes according to a program. 吸気の流量、吸気のEGRガス分圧及び外気温と、単位時間あたりの凝縮水の変化量Δecegrwaterとの関係を例示した図。The figure which illustrated the relationship between the flow rate of intake air, the partial pressure of EGR gas of intake air, and the outside air temperature, and the amount of change Δesegrwater of condensed water per unit time.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle according to the present embodiment. The internal combustion engine in the present embodiment is a spark-ignition type 4-stroke engine, and includes a plurality of cylinders 1 (one of which is illustrated in FIG. 1). An injector 11 for injecting fuel is provided in the vicinity of the intake port of each cylinder 1. Further, a spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives the application of the induced voltage generated by the ignition coil and induces a spark discharge between the center electrode and the ground electrode. The ignition coil is integrally built in the coil case together with the igniter which is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。 The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. An air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream on the intake passage 3.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。 The exhaust passage 4 for discharging the exhaust guides the exhaust generated by burning the fuel in the cylinder 1 to the outside from the exhaust port of each cylinder 1. An exhaust manifold 42 and a three-way catalyst 41 for purifying exhaust gas are arranged on the exhaust passage 4.

外部EGR装置2は、いわゆる高圧ループEGRを実現するものであり、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定部位に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定部位、特にサージタンク33に接続している。 The external EGR device 2 realizes a so-called high-pressure loop EGR, and is an external EGR passage 21 that communicates with the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3, and the EGR passage 21. The EGR cooler 22 provided above and the EGR valve 23 that opens and closes the EGR passage 21 and controls the flow rate of the EGR gas flowing through the EGR passage 21 are elements. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined portion downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined portion downstream of the throttle valve 32 in the intake passage 3, particularly a surge tank 33.

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。 The ECU (Electronic Control Unit) 0, which is a control device for an internal combustion engine of the present embodiment, is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、内燃機関に要求されるエンジン負荷、要求出力)として検出するセンサから出力されるアクセル開度信号c、内燃機関の温度を示唆する冷却水温を検出する水温センサから出力される冷却水温信号d、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号e、外気温(または、新気温)を検出する温度センサから出力される外気温信号f、車載のバッテリの端子電流または端子電圧を検出するセンサから出力されるバッテリ電流/電圧信号g、ブレーキペダルの踏込量またはマスタシリンダ圧を検出するセンサから出力されるブレーキ踏量信号h等が入力される。 The input interface of ECU0 includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle of the crank shaft and the engine rotation speed, and an accelerator pedal. The accelerator opening signal c output from the sensor that detects the depression amount or the opening degree of the throttle valve 32 as the accelerator opening degree (so to speak, the engine load required for the internal combustion engine, the required output), and the temperature of the internal combustion engine are suggested. Cooling water temperature signal d output from the water temperature sensor that detects the cooling water temperature, intake air temperature / intake pressure signal output from the temperature / pressure sensor that detects the intake air temperature and intake pressure in the intake passage 3 (particularly, surge tank 33). e, outside temperature signal f output from the temperature sensor that detects the outside temperature (or new temperature), battery current / voltage signal g output from the sensor that detects the terminal current or terminal voltage of the vehicle-mounted battery, brake pedal The brake depression amount signal h or the like output from the sensor that detects the depression amount or the master cylinder pressure is input.

ECU0の出力インタフェースからは、イグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。 From the output interface of ECU 0, an ignition signal i is sent to the igniter, a fuel injection signal j is sent to the injector 11, an opening operation signal k is sent to the throttle valve 32, an opening operation signal l is sent to the EGR valve 23, and the like. Output.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR率(または、EGRガス量)、吸気バルブの開閉タイミング等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。 The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates an operation parameter, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, h necessary for the operation control of the internal combustion engine via the input interface, obtains the engine speed, and fills the cylinder 1. Estimate the amount of intake air. Then, based on the engine speed, intake amount, etc., the required fuel injection amount, fuel injection timing (including the number of fuel injections per combustion), fuel injection pressure, ignition timing, required EGR rate (or EGR). Various operating parameters such as gas amount) and opening / closing timing of the intake valve are determined. The ECU 0 applies various control signals i, j, k, l corresponding to the operation parameters via the output interface.

また、ECU0は、内燃機関の始動(冷間始動であることもあれば、アイドリングストップからの復帰であることもある)時において、電動機(スタータモータまたはISG(Integrated Starter Generator))を稼働させるための制御信号oを電動機に入力し、当該電動機によりクランクシャフトを回転させるクランキングを行う。クランキングは、内燃機関が初爆から連爆へと至り、エンジン回転数即ちクランクシャフトの回転速度が内燃機関の冷却水温等に応じて定まる判定値を超えたときに(完爆したものと見なして)終了する。 Further, the ECU 0 controls to operate the electric motor (starter motor or ISG (Integrated Starter Generator)) when the internal combustion engine is started (it may be a cold start or a return from the idling stop). The signal o is input to the electric motor, and the electric motor performs cranking to rotate the crankshaft. Cranking is performed when the internal combustion engine goes from the initial explosion to the continuous explosion and the engine speed, that is, the rotation speed of the crankshaft, exceeds the judgment value determined according to the cooling water temperature of the internal combustion engine (considered to be completely detonated). ) Finish.

ECU0は、所定のアイドルストップ条件が成立したときに、内燃機関のアイドル回転を停止させるアイドルストップを実行する。ECU0は、まず、内燃機関の冷間始動後、冷却水温が所定値以上に高まり、かつ車載のバッテリの充電量または端子電圧が所定値以上となっていることを条件として、アイドルストップの実行を許可する(それまでは、アイドルストップの実行を許可しない)。その上で、ブレーキペダルの踏込量またはマスタシリンダ圧が閾値以上であり(ブレーキペダルが踏まれた)、車室内空調用のエアコンディショナの冷媒圧縮用コンプレッサが稼働しておらず、シフトポジションが走行レンジであり、前回のアイドルストップ終了からある車速以上まで加速した経歴があり、かつ現在の車速がある車速以下である(例えば、車速が13.5km/h以上から13km/hまで低下した、または9.5km/h以上から7km/hまで低下した)、といった諸条件がおしなべて成立したときに、アイドルストップを実行する。 The ECU 0 executes an idle stop system for stopping the idle rotation of the internal combustion engine when a predetermined idle stop condition is satisfied. First, after the cold start of the internal combustion engine, the ECU 0 executes idle stop on the condition that the cooling water temperature rises above a predetermined value and the charge amount or terminal voltage of the vehicle-mounted battery is above a predetermined value. Allow (until then, do not allow the execution of idle stop). On top of that, the amount of depression of the brake pedal or the pressure of the master cylinder is above the threshold (the brake pedal is depressed), the compressor for refrigerant compression of the air conditioner for vehicle interior air conditioning is not operating, and the shift position is set. It is a driving range, has a history of accelerating to a certain vehicle speed or more from the end of the previous idle stop, and the current vehicle speed is below a certain vehicle speed (for example, the vehicle speed has decreased from 13.5 km / h or more to 13 km / h). Or, when all the conditions such as (decreased from 9.5 km / h or more to 7 km / h) are satisfied, the idle stop is executed.

アイドルストップ条件の成立後、所定のアイドルストップ終了条件が成立したときには、内燃機関を再始動する。ECU0は、ブレーキペダルの踏込量またはマスタシリンダ圧が0または0に近い閾値未満となった(ブレーキペダルが踏まれなくなった)、逆にブレーキペダルの踏込量またはマスタシリンダ圧がさらに増大した(ブレーキペダルがさらに強く踏み込まれた)、アクセル開度が増大した(アクセルペダルが踏まれた)、アイドルストップ状態で所定時間(3分)が経過した、等のうちの何れかが成立したときに、アイドルストップを終了、内燃機関を再始動する。 After the idle stop condition is satisfied, the internal combustion engine is restarted when the predetermined idle stop end condition is satisfied. In ECU0, the depression amount of the brake pedal or the master cylinder pressure became 0 or less than the threshold value close to 0 (the brake pedal was not depressed), and conversely, the depression amount of the brake pedal or the master cylinder pressure further increased (brake). When any of the following is true: the pedal is depressed more strongly), the accelerator opening is increased (the accelerator pedal is depressed), the predetermined time (3 minutes) has passed in the idle stop state, and so on. Finish the idle stop and restart the internal combustion engine.

気筒1に充填される吸気に占めるEGRガスの割合であるEGR率は、そのときの内燃機関に対する要求負荷に応じて決定する。要求EGR率は、中負荷の運転領域において最も高く、そこからエンジン負荷が増大するほど低下し、またエンジン負荷が減少するほど低下する。全負荷ないし全負荷に近い高負荷の運転領域や、アイドル運転ないしアイドル運転に近い低負荷の運転領域では、要求EGR率は0となり、EGRバルブ23を全閉してEGR通路21を遮断することとなる。 The EGR ratio, which is the ratio of the EGR gas to the intake air charged in the cylinder 1, is determined according to the load required for the internal combustion engine at that time. The required EGR rate is highest in the medium load operating region, and decreases as the engine load increases, and decreases as the engine load decreases. In a high load operating region near full load or near full load, or in a low load operating region close to idle operation or idle operation, the required EGR rate becomes 0, and the EGR valve 23 is fully closed to shut off the EGR passage 21. It becomes.

要求EGR率は、そのときの内燃機関の温度の影響を受ける。一般に、内燃機関の温度が低いほど、気筒1の燃焼室での混合気の燃焼が不安定となる。故に、内燃機関の冷却水温が低い場合には、冷却水温が高い場合と比較して、要求EGR率を引き下げる。 The required EGR rate is affected by the temperature of the internal combustion engine at that time. Generally, the lower the temperature of the internal combustion engine, the more unstable the combustion of the air-fuel mixture in the combustion chamber of the cylinder 1. Therefore, when the cooling water temperature of the internal combustion engine is low, the required EGR rate is lowered as compared with the case where the cooling water temperature is high.

排気通路4から吸気通路3に還流するEGRガスには、燃料に由来した水蒸気または水分が含まれている。そして、EGRガスが吸気通路3を流通する過程で、EGRガスに含まれる水蒸気または水分が凝縮する。その凝縮水が特定の箇所に滞留し、それに燃料成分中の硫黄分と結びついた硫酸が溶け込むと、吸気通路3の配管やサージタンク33、吸気マニホルド34、またはスロットルバルブ32等が腐食されるおそれがある。のみならず、まとまった量の凝縮水が一時に気筒1の燃焼室に流入することで、失火を惹起する可能性もある。 The EGR gas that returns from the exhaust passage 4 to the intake passage 3 contains water vapor or water derived from the fuel. Then, in the process of the EGR gas flowing through the intake passage 3, the water vapor or the water contained in the EGR gas is condensed. If the condensed water stays in a specific place and the sulfuric acid combined with the sulfur content in the fuel component dissolves in it, the piping of the intake passage 3, the surge tank 33, the intake manifold 34, the throttle valve 32, etc. may be corroded. There is. Not only that, a large amount of condensed water may flow into the combustion chamber of the cylinder 1 at one time, which may cause a misfire.

そこで、本実施形態のECU0は、気筒1に向かって吸気通路3を流れる吸気の流量、気筒1に充填される吸気のEGR率(または、EGRガス量)、並びに、外気温、吸気温若しくは内燃機関の冷却水温に基づき、吸気通路3内に存留する凝縮水の量を推測するとともに、その凝縮水の量の多寡に応じて、EGRを禁止する必要があるかどうかを判断する。 Therefore, the ECU 0 of the present embodiment includes the flow rate of the intake air flowing through the intake passage 3 toward the cylinder 1, the EGR ratio (or the amount of EGR gas) of the intake air filled in the cylinder 1, and the outside temperature, the intake air temperature, or the internal combustion engine. Based on the cooling water temperature of the engine, the amount of condensed water remaining in the intake passage 3 is estimated, and it is determined whether or not it is necessary to prohibit EGR according to the amount of the condensed water.

に、本実施形態のECU0が実行する処理の手順例を示している。まず、ECU0は、停止していた内燃機関の始動後、所定の時間が経過するまでの期間中は(ステップS1)、吸気通路3内に存留している凝縮水の推定量ecegrwaterを、そのときの外気温に応じた初期値に設定する(ステップS2)。ECU0のメモリには予め、外気温と、凝縮水の推定量ecegrwaterの初期値との関係を規定したマップデータが格納されている。ECU0は、内燃機関の冷間始動時または始動直後の時期における外気温をキーとして当該マップデータを検索し、凝縮水の推定量ecegrwaterの初期値を得る。一般に、凝縮水の推定量ecegrwaterの初期値は、外気温が低いほど大きな値となる。 FIG. 2 shows an example of a procedure for processing executed by ECU 0 of the present embodiment. First, the ECU 0 sets the estimated amount of condensed water ecgrwater remaining in the intake passage 3 during the period from the start of the stopped internal combustion engine to the elapse of a predetermined time (step S1). The initial value is set according to the outside air temperature of (step S2). In the memory of the ECU 0, map data that defines the relationship between the outside air temperature and the initial value of the estimated amount of condensed water ecgrwater is stored in advance. The ECU 0 searches the map data using the outside air temperature at the time of cold start of the internal combustion engine or the time immediately after the start as a key, and obtains the initial value of the estimated amount of condensed water ecgrwater. In general, the initial value of the estimated amount of condensed water ecgrwater becomes larger as the outside air temperature is lower.

一方、内燃機関の始動から既に所定の時間が経過した後の時期においては、現在吸気通路3内に存留している凝縮水の推定量ecegrwaterを、直近の過去に演算した推定量ecegrwater’に、単位時間あたりの凝縮水の変化量Δecegrwaterを加算することによって求める(ステップS3)。変化量Δecegrwaterは、そのときの吸気の流量、吸気のEGR率若しくはEGRガス量を示唆するEGRガス分圧、及び外気温に応じた値とする。変化量Δecegrwaterは、正値即ち増加量であることもあれば、負値即ち減少量であることもある。ECU0のメモリには予め、吸気流量、EGRガス分圧及び外気温と、変化量Δecegrwaterとの関係を規定したマップデータが格納されている。ECU0は、現在の吸気流量、EGRガス分圧及び外気温をキーとして当該マップデータを検索し、変化量Δecegrwaterを得る。 On the other hand, in the period after a predetermined time has already passed since the start of the internal combustion engine, the estimated amount ecgrwater of the condensed water currently remaining in the intake passage 3 is converted to the estimated amount ecgrwater'calculated in the latest past. It is obtained by adding the amount of change Δecgrwater of condensed water per unit time (step S3). The amount of change Δacegrwater is a value according to the flow rate of the intake air at that time, the EGR rate of the intake air, the partial pressure of the EGR gas suggesting the amount of EGR gas, and the outside temperature. The amount of change Δacegrwater may be a positive value, that is, an increase amount, or a negative value, that is, a decrease amount. In the memory of the ECU 0, map data that defines the relationship between the intake flow rate, the EGR gas partial pressure, and the outside air temperature and the change amount Δescagrwater is stored in advance. The ECU 0 searches the map data using the current intake flow rate, EGR gas partial pressure, and outside air temperature as keys, and obtains the amount of change Δecgrwater.

図3に、吸気の流量、吸気のEGRガス分圧及び外気温と、単位時間あたりの凝縮水の変化量Δecegrwaterとの関係を例示している。変化量Δecegrwaterは、吸気通路3を流れる吸気の流量が多いほど小さな値となり、場合によっては負値となる。これは、吸気流量が多いほど、吸気通路3内に凝縮水が溜まりにくいことによる。吸気の流量は、エンジン回転数及びサージタンク33内吸気圧から推定することができる。ECU0のメモリには予め、エンジン回転数及びサージタンク33内吸気圧と、吸気流量との関係を規定したマップデータが格納されている。ECU0は、現在のエンジン回転数及びサージタンク33内吸気圧をキーとして当該マップデータを検索し、現在の吸気の流量の推定値を得る。尤も、吸気通路3にエアフローメータが設置されている場合には、当該エアフローメータを介して吸気の流量を直接計測することが可能である。 FIG. 3 illustrates the relationship between the flow rate of intake air, the partial pressure of EGR gas of intake air, and the outside air temperature, and the amount of change in condensed water per unit time Δacegrwater. The amount of change Δecgrwater becomes a smaller value as the flow rate of the intake air flowing through the intake passage 3 increases, and becomes a negative value in some cases. This is because the larger the intake flow rate, the more difficult it is for condensed water to collect in the intake passage 3. The intake flow rate can be estimated from the engine speed and the intake pressure in the surge tank 33. Map data that defines the relationship between the engine speed, the intake pressure in the surge tank 33, and the intake flow rate is stored in the memory of the ECU 0 in advance. The ECU 0 searches the map data using the current engine speed and the intake pressure in the surge tank 33 as keys, and obtains an estimated value of the current intake flow rate. However, when an air flow meter is installed in the intake passage 3, it is possible to directly measure the flow rate of the intake air through the air flow meter.

また、変化量Δecegrwaterは、吸気のEGRガス分圧が低いほど、つまりは吸気に含まれるEGRガスの量が少ないほど小さな値となり、場合によっては負値となる。これは、EGR率が低いほど吸気に混入する水蒸気または水分が少なくなり、吸気通路3内で凝縮水が発生しにくくなることによる。吸気に占めるEGRガスの分圧は、エンジン回転数及びEGRバルブ23の開度から推定することができる。ECU0のメモリには予め、エンジン回転数及びEGRバルブ23開度と、EGRガス分圧との関係を規定したマップデータが格納されている。ECU0は、現在のエンジン回転数及びEGRバルブ23開度をキーとして当該マップデータを検索し、現在の吸気のEGRガス分圧の推定値を得る。 Further, the change amount Δacegrwater becomes a smaller value as the partial pressure of the EGR gas in the intake air is lower, that is, as the amount of EGR gas contained in the intake air is smaller, and in some cases, it becomes a negative value. This is because the lower the EGR rate, the less water vapor or water is mixed in the intake air, and the less condensed water is generated in the intake passage 3. The partial pressure of the EGR gas in the intake air can be estimated from the engine speed and the opening degree of the EGR valve 23. Map data that defines the relationship between the engine speed, the opening degree of the EGR valve 23, and the EGR gas partial pressure is stored in the memory of the ECU 0 in advance. The ECU 0 searches the map data using the current engine speed and the EGR valve 23 opening as keys, and obtains an estimated value of the EGR gas partial pressure of the current intake air.

加えて、変化量Δecegrwaterは、外気温が高いほど小さな値となり、場合によっては負値となる。これは、外気温が高いほど吸気通路3の管壁の温度が上昇して凝縮水が発生しにくく、逆に外気温が低いほど吸気通路3の管壁の温度が低下して凝縮水が発生しやすくなることによる。なお、ステップS2及びS3では、外気温信号fを参照することで知得される外気温、吸気温・吸気圧信号eを参照することで知得される吸気温、冷却水温信号dを参照することで知得される冷却水温のうちの最も小さい値を外気温と見なす。これにより、センサを介した外気温の検出精度を高め、ひいては凝縮水の推定量ecegrwaterの演算精度を高めることができる。 In addition, the amount of change Δecgrwater becomes a small value as the outside air temperature rises, and becomes a negative value in some cases. This is because the higher the outside air temperature, the higher the temperature of the pipe wall of the intake passage 3 and the less likely it is to generate condensed water. Conversely, the lower the outside air temperature, the lower the temperature of the pipe wall of the intake passage 3 and the more condensed water is generated. By making it easier to do. In steps S2 and S3, the outside air temperature obtained by referring to the outside air temperature signal f, the intake air temperature obtained by referring to the intake air temperature / intake pressure signal e, and the cooling water temperature signal d are referred to. The smallest value of the cooling water temperature that can be known is regarded as the outside air temperature. As a result, the accuracy of detecting the outside air temperature via the sensor can be improved, and the calculation accuracy of the estimated amount of condensed water ecgrwater can be improved.

しかして、ECU0は、ステップS2またはS3を通じて演算した、吸気通路3内に存留している凝縮水の推定量ecegrwaterを判定閾値と比較する。そして、凝縮水の推定量ecegrwaterが判定閾値よりも小さいならば、EGRの実施を許可する(ステップS4)。 Then, the ECU 0 compares the estimated amount ecgrwater of the condensed water remaining in the intake passage 3 calculated through steps S2 or S3 with the determination threshold value. Then, if the estimated amount of condensed water ecgrwater is smaller than the determination threshold value, the execution of EGR is permitted (step S4).

一方、凝縮水の推定量ecegrwaterが判定閾値以上となっているならば、EGRの実施を禁止する(ステップS5)。EGRを禁止する場合、現在のエンジン負荷如何によらず、要求EGR率を0と見なし、EGRバルブ23を全閉してEGR通路21を遮断する。EGRを禁止してEGRガスの吸気通路3への流入を停止すれば、吸気通路3内に滞留する凝縮水の量を減少させることができる。このことは、吸気通路3の構成部材や吸気通路3上のバルブ等の腐食を抑制し、また多量の凝縮水が気筒1の燃焼室に流れ込むことによる失火の発生を防止することに寄与する。 On the other hand, if the estimated amount of condensed water ecgrwater is equal to or greater than the determination threshold value, the implementation of EGR is prohibited (step S5). When EGR is prohibited, the required EGR rate is regarded as 0 regardless of the current engine load, and the EGR valve 23 is fully closed to shut off the EGR passage 21. If EGR is prohibited and the inflow of EGR gas into the intake passage 3 is stopped, the amount of condensed water staying in the intake passage 3 can be reduced. This contributes to suppressing corrosion of the components of the intake passage 3 and the valves on the intake passage 3 and preventing the occurrence of misfire due to a large amount of condensed water flowing into the combustion chamber of the cylinder 1.

ECU0は、上記のステップS1ないしS5の処理を、単位時間毎に反復して実行する。EGRの実施を禁止している間は、EGRガスを含まない吸気即ち新気のみが吸気通路3を流通し、吸気通路3内に溜まった凝縮水をパージする。その凝縮水は、気筒1の燃焼室及び排気通路4を経て外部に排出される。同時に、吸気に占めるEGRガスの分圧が0となり、凝縮水の推定量の単位時間あたりの変化量Δecegrwaterが0または負値となって、ECU0で反復的に演算している凝縮水の推定量ecegrwaterが逓減してゆく。凝縮水の推定量ecegrwaterが判定閾値を下回った暁には、EGRを再開することとなる。 The ECU 0 repeatedly executes the processes of steps S1 to S5 described above every unit time. While the implementation of EGR is prohibited, only the intake air containing no EGR gas, that is, fresh air flows through the intake passage 3, and the condensed water accumulated in the intake passage 3 is purged. The condensed water is discharged to the outside through the combustion chamber of the cylinder 1 and the exhaust passage 4. At the same time, the partial pressure of the EGR gas in the intake air becomes 0, the amount of change in the estimated amount of condensed water per unit time Δescagrwater becomes 0 or a negative value, and the estimated amount of condensed water calculated repeatedly by ECU 0. The estimator gradually decreases. When the estimated amount of condensed water ecgrwater falls below the determination threshold, EGR will be restarted.

本実施形態では、気筒1に向かって吸気通路3を流れる吸気の流量と、気筒1に充填される吸気のうちEGRガスが占める割合若しくは量と、外気温、吸気温若しくは冷却水温とに基づき、EGRを禁止する必要があるかどうかを判断する内燃機関の制御装置0を構成した。より具体的には、制御装置0が、吸気の流量、吸気のうちEGRガスが占める割合若しくは量、並びに、外気温、吸気温若しくは冷却水温と、吸気通路3に溜まる凝縮水の単位時間あたりの変化量を示唆する値Δecegrwaterとの関係を規定したマップデータを記憶保持しており、単位時間毎に、そのときの吸気の流量、吸気のうちEGRガスが占める割合若しくは量、並びに、外気温、吸気温若しくは冷却水温に対応する値Δecegrwaterを前記マップデータから読み出し、読み出した値Δecegrwaterを積算(または、時間積分)して積算値ecegrwaterを求め、その積算値ecegrwaterを判定閾値と比較することで、EGRを禁止する必要があるかどうかを判断する。 In the present embodiment, based on the flow rate of the intake air flowing through the intake passage 3 toward the cylinder 1, the ratio or amount of the EGR gas in the intake air filled in the cylinder 1, and the outside temperature, the intake air temperature, or the cooling water temperature. The control device 0 of the internal combustion engine for determining whether or not the EGR needs to be prohibited is configured. More specifically, the control device 0 determines the flow rate of the intake air, the ratio or amount of the EGR gas in the intake air, the outside temperature, the intake air temperature or the cooling water temperature, and the condensed water accumulated in the intake air passage 3 per unit time. It stores and holds map data that defines the relationship with the value Δesegrwater that suggests the amount of change, and for each unit time, the flow rate of the intake air at that time, the ratio or amount of EGR gas in the intake air, and the outside temperature, By reading the value Δecegrwater corresponding to the intake air temperature or the cooling water temperature from the map data, integrating (or time-integrating) the read value Δesgrwater to obtain the integrated value eseggrwater, and comparing the integrated value eseggrwater with the judgment threshold value. Determine if EGR needs to be banned.

本実施形態によれば、従来はEGRを禁止していた状況、例えば外気温または吸気温が低温である状況下においても、吸気通路3内に存留している凝縮水の量ecegrwaterが判定閾値を下回っている限り、EGRを実施することができる。つまり、EGRの機会が増し、燃料噴射量の削減及びポンピングロスの低減というEGRの効用を十分に享受して、内燃機関の燃費性能をより一層向上させることが可能となる。 According to the present embodiment, even in a situation where EGR is conventionally prohibited, for example, a situation where the outside air temperature or the intake air temperature is low, the amount of condensed water remaining in the intake passage 3 ecgrwater determines the determination threshold value. As long as it is below, EGR can be performed. That is, the opportunity of EGR is increased, and the utility of EGR such as reduction of fuel injection amount and reduction of pumping loss can be fully enjoyed, and the fuel efficiency performance of the internal combustion engine can be further improved.

なお、本発明は以上に詳述した実施形態に限られるものではない。 The present invention is not limited to the embodiments described in detail above.

上記実施形態では、内燃機関の始動後、所定の時間が経過するまでの期間中は、吸気通路3内に存留している凝縮水の推定量ecegrwaterを、外気温に応じた初期値に設定していた。これに対し、内燃機関の始動前の停止時間の長さに応じて、当該期間中の凝縮水の推定量ecegrwaterを決定することも考えられる。例えば、冷間始動時のように内燃機関の停止している時間が顕著に長かった場合には、上記実施形態と同様、当該期間中の凝縮水の推定量ecegrwaterを、外気温に応じた初期値に設定する。一方で、アイドルストップ後の再始動時のように内燃機関の停止している時間が短かった場合には、内燃機関の直近の停止時の凝縮水の推定量ecegrwaterを引き継いで、内燃機関の再始動後の凝縮水の推定量とする。内燃機関の停止時間の長さについては、内燃機関の直近の停止時に記憶した冷却水温と、内燃機関の始動直後の冷却水温との差分を参照して判断することが可能である。即ち、前者と後者との差分の絶対値が所定値よりも大きければ、内燃機関の停止時間が長かったと判断し、差分の絶対値が所定値以下であるならば、内燃機関の停止時間は短かったと判断する。 In the above embodiment, the estimated amount of condensed water remaining in the intake passage 3 eseggrwater is set to an initial value according to the outside air temperature during the period from the start of the internal combustion engine until a predetermined time elapses. Was there. On the other hand, it is also conceivable to determine the estimated amount of condensed water ecgrwater during the period according to the length of the stop time before the start of the internal combustion engine. For example, when the internal combustion engine has been stopped for a significantly long time such as during a cold start, the estimated amount of condensed water during the period, ecgrwater, is initially set according to the outside air temperature, as in the above embodiment. Set to a value. On the other hand, if the internal combustion engine is stopped for a short time, such as when restarting after an idle stop, the internal combustion engine is restarted by taking over the estimated amount of condensed water ecegrwater at the time of the latest stop of the internal combustion engine. It is the estimated amount of condensed water after starting. The length of the stop time of the internal combustion engine can be determined by referring to the difference between the cooling water temperature stored at the time of the latest stop of the internal combustion engine and the cooling water temperature immediately after the start of the internal combustion engine. That is, if the absolute value of the difference between the former and the latter is larger than the predetermined value, it is determined that the stop time of the internal combustion engine is long, and if the absolute value of the difference is less than or equal to the predetermined value, the stop time of the internal combustion engine is short. Judge.

その他、各部の具体的構成や処理の内容等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, the specific configuration of each part, the content of processing, and the like can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に用いることができる。 The present invention can be used for controlling an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
2…排気ガス再循環(EGR)装置
21…EGR通路
23…EGRバルブ
3…吸気通路
4…排気通路
0 ... Control device (ECU)
1 ... Cylinder 2 ... Exhaust gas recirculation (EGR) device 21 ... EGR passage 23 ... EGR valve 3 ... Intake passage 4 ... Exhaust passage

Claims (2)

気筒に向かって吸気通路を流れる吸気の流量と、気筒に充填される吸気のうちEGRガスが占める割合若しくは量と、外気温、吸気温若しくは冷却水温とに基づき、吸気通路内に存留する凝縮水の量を推定し、その凝縮水の推定量が判定閾値以上となっているならばEGRの実施を禁止するものであり、
内燃機関の始動後、所定の時間が経過するまでの期間中は、吸気通路内に存留している凝縮水量をそのときの外気温に応じて推定し、
内燃機関の始動後、所定の時間が経過した、吸気通路内に存留している凝縮水量を、直近の過去に演算した推定量に、そのときの吸気の流量、吸気のEGR率若しくはEGRガス量を示唆するEGRガス分圧、及び外気温に応じ単位時間あたりの凝縮水の変化量を加算することによって求めることとし、
単位時間あたりの凝縮水の変化量は、吸気通路を流れる吸気の流量が多いほど小さな値となり、吸気のEGRガス分圧が低いほど小さな値となり、外気温が高いほど小さな値となり、
また、EGRを禁止している間、吸気のEGRガス分圧が0となり単位時間あたりの凝縮水の変化量が負値をとることがあり、凝縮水の推定量が逓減してゆき、
前記外気温は、外気温信号を参照することで知得される外気温、吸気温信号を参照することで知得される吸気温、冷却水温信号を参照することで知得される内燃機関の冷却水温のうちの最も小さい値である内燃機関の制御装置。
Condensed water remaining in the intake passage based on the flow rate of the intake air flowing through the intake passage toward the cylinder, the ratio or amount of EGR gas in the intake air filled in the cylinder, and the outside temperature, intake air temperature, or cooling water temperature. If the estimated amount of condensed water is equal to or greater than the judgment threshold, the implementation of EGR is prohibited.
During the period from the start of the internal combustion engine to the elapse of a predetermined time, the amount of condensed water remaining in the intake passage is estimated according to the outside air temperature at that time.
After the start of the internal combustion engine, after a lapse of a predetermined time, the amount of condensed water that SonTome into the intake manifold, the estimated amount calculated to the nearest past, the flow rate of the intake air at the time, EGR rate or EGR intake It is determined by adding the EGR gas partial pressure that suggests the amount of gas and the amount of change in condensed water per unit time according to the outside temperature.
The amount of change in condensed water per unit time becomes smaller as the flow rate of intake air flowing through the intake passage increases, becomes smaller as the partial pressure of EGR gas in the intake air decreases, and decreases as the outside temperature rises.
In addition, while EGR is prohibited, the partial pressure of EGR gas in the intake air may become 0 and the amount of change in condensed water per unit time may take a negative value, and the estimated amount of condensed water gradually decreases.
The outside air temperature is an internal combustion engine known by referring to an outside air temperature obtained by referring to an outside air temperature signal, an intake air temperature obtained by referring to an intake air temperature signal, and a cooling water temperature signal. A control device for an internal combustion engine, which is the smallest value of the cooling water temperature.
吸気の流量、吸気のうちEGRガスが占める割合若しくは量、並びに、外気温、吸気温若しくは冷却水温と、吸気通路に溜まる凝縮水の単位時間あたりの変化量を示唆する値との関係を規定したマップデータを記憶保持しており、
単位時間毎に、そのときの吸気の流量、吸気のうちEGRガスが占める割合若しくは量、並びに、外気温、吸気温若しくは冷却水温に対応する値を前記マップデータから読み出し、読み出した値を積算し、その積算値を判定閾値と比較することでEGRを禁止する必要があるかどうかを判断する請求項1記載の内燃機関の制御装置。
The relationship between the flow rate of the intake air, the ratio or amount of EGR gas in the intake air, and the relationship between the outside air temperature, the intake air temperature or the cooling water temperature, and the value suggesting the amount of change in the condensed water accumulated in the intake air passage per unit time is specified. It stores and retains map data.
For each unit time, the flow rate of the intake air at that time, the ratio or amount of the EGR gas in the intake air, and the values corresponding to the outside temperature, the intake air temperature, or the cooling water temperature are read from the map data, and the read values are integrated. The control device for an internal combustion engine according to claim 1, wherein it is determined whether or not it is necessary to prohibit EGR by comparing the integrated value with the determination threshold value.
JP2016162505A 2016-08-23 2016-08-23 Internal combustion engine control device Active JP6866008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016162505A JP6866008B2 (en) 2016-08-23 2016-08-23 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162505A JP6866008B2 (en) 2016-08-23 2016-08-23 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2018031270A JP2018031270A (en) 2018-03-01
JP6866008B2 true JP6866008B2 (en) 2021-04-28

Family

ID=61303150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162505A Active JP6866008B2 (en) 2016-08-23 2016-08-23 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP6866008B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7528976B2 (en) 2022-04-12 2024-08-06 トヨタ自動車株式会社 Control device for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220026A (en) * 2005-02-09 2006-08-24 Denso Corp Control device for internal combustion engine
JP5716519B2 (en) * 2011-04-27 2015-05-13 トヨタ自動車株式会社 Exhaust gas recirculation system for internal combustion engines
US9334791B2 (en) * 2012-09-17 2016-05-10 Ford Global Technologies, Llc Charge air cooler condensation control
JP6155951B2 (en) * 2013-08-12 2017-07-05 マツダ株式会社 Engine control device and vehicle control device
JP2015209782A (en) * 2014-04-24 2015-11-24 トヨタ自動車株式会社 Internal combustion engine
JP2016065510A (en) * 2014-09-25 2016-04-28 ダイハツ工業株式会社 Control device of internal combustion engine
JP6375874B2 (en) * 2014-10-31 2018-08-22 株式会社デンソー Control device

Also Published As

Publication number Publication date
JP2018031270A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
RU2573091C2 (en) Engine control process (versions) and system
US9371802B2 (en) Exhaust gas recirculation apparatus of engine with supercharger
CN101646850A (en) Control apparatus and method for internal combustion engine
KR101211454B1 (en) Internal combustion engine controller
RU2577675C2 (en) Control over exhaust gas recirculation system (egr)
US20130085658A1 (en) Control device for internal combustion engine
US10107212B2 (en) Oil dilution estimation and mitigation control in a fuel injected engine
JP6866008B2 (en) Internal combustion engine control device
JP2013155615A (en) Control device of internal combustion engine
US10001068B2 (en) Control apparatus for internal combustion engine
US6892694B2 (en) Start-up control of direct injection engine
CN108625997B (en) Control device for internal combustion engine and control method for internal combustion engine
JP2016183583A (en) Control device of internal combustion engine
JP2018105164A (en) Device for controlling internal combustion engine
JP7247955B2 (en) engine device
JP2008280865A (en) Start control device for internal combustion engine
JP7375883B1 (en) Internal combustion engine starting control device
JP4000792B2 (en) Fuel injection control device for internal combustion engine
JP6261326B2 (en) Control device for internal combustion engine
JP2006207453A (en) Control device of internal combustion engine
JP6153342B2 (en) Control device for internal combustion engine
US12000350B1 (en) Controller for hydrogen engine
JP7555677B2 (en) Control device for internal combustion engine
JP6736207B2 (en) Control device for internal combustion engine
JP7218054B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210406

R150 Certificate of patent or registration of utility model

Ref document number: 6866008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250