JP6864648B2 - Raw material recovery method for valuable metal refining - Google Patents

Raw material recovery method for valuable metal refining Download PDF

Info

Publication number
JP6864648B2
JP6864648B2 JP2018079683A JP2018079683A JP6864648B2 JP 6864648 B2 JP6864648 B2 JP 6864648B2 JP 2018079683 A JP2018079683 A JP 2018079683A JP 2018079683 A JP2018079683 A JP 2018079683A JP 6864648 B2 JP6864648 B2 JP 6864648B2
Authority
JP
Japan
Prior art keywords
slurry
raw material
dust
cement
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018079683A
Other languages
Japanese (ja)
Other versions
JP2018119216A (en
Inventor
智典 竹本
智典 竹本
泰之 石田
泰之 石田
一坪 幸輝
幸輝 一坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018079683A priority Critical patent/JP6864648B2/en
Publication of JP2018119216A publication Critical patent/JP2018119216A/en
Application granted granted Critical
Publication of JP6864648B2 publication Critical patent/JP6864648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、有価金属精錬用原料回収方法に関し、特に、都市ごみ焼却灰、汚泥等の廃棄物に含まれる有価金属を回収する方法に関する。 The present invention relates to a marketable raw material recovery method for metal refining, particularly municipal waste incineration ash, a method of recovering valuable metals contained in waste such as sludge.

従来、家電に使用される電子基板類をリサイクルし、金、銀、銅、錫、ニッケル等の有価金属を回収している。また、水銀灯や蛍光灯のリサイクルを通じて水銀の回収も行われている。 Conventionally, electronic substrates used in home appliances are recycled to recover valuable metals such as gold, silver, copper, tin, and nickel. In addition, mercury is being recovered through the recycling of mercury lamps and fluorescent lamps.

さらに、特許文献1には、都市ごみ等の廃棄物を破砕機で破砕し、必要に応じて乾燥機で水分除去し、熱分解炉で熱分解して熱分解残渣を生成し、該熱分解残渣からチャーを選別装置で選別した後微粉化装置で微粉化し、微粉化したチャーを移送手段で移送し、別設備で燃料として燃焼させることで、良質な有価金属やガラス類を回収し得る廃棄物の燃料利用方法が提案されている。 Further, in Patent Document 1, waste such as municipal waste is crushed by a crusher, water is removed by a dryer as necessary, and pyrolysis is carried out in a pyrolysis furnace to generate a pyrolysis residue, which is then pyrolyzed. After sorting the char from the residue with a sorting device, it is pulverized with a pulverizing device, and the pulverized char is transferred by a transfer means and burned as fuel in another facility, so that high-quality valuable metals and glasses can be recovered. A method of using fuel for goods has been proposed.

また、特許文献2には、飛灰を脱塩素洗浄し、該脱塩素洗浄した飛灰、亜鉛含有原料、フラックス及び石炭を混合し、乾燥させて粉砕した後、団鉱とし、該団鉱を溶融還元することで有価金属を回収する方法が記載されている。 Further, in Patent Document 2, fly ash is dechlorinated and washed, and the dechlorinated fly ash, zinc-containing raw material, flux and coal are mixed, dried and crushed to form an aggregate, and the aggregate is used as an aggregate. A method for recovering valuable metals by melt-reduction is described.

特開2000−283430号公報Japanese Unexamined Patent Publication No. 2000-283430 特開2007−186761号公報Japanese Unexamined Patent Publication No. 2007-186761

しかし、上記従来の技術では、廃棄物等の乾燥粉砕や熱処理等に大量のエネルギーを消費するため運転コストが高騰する。一方、小規模のバッチ式等の回収装置を用いた場合には、採算面から実現が困難であるという問題があった。 However, in the above-mentioned conventional technique, a large amount of energy is consumed for drying and crushing waste and heat treatment, so that the operating cost rises. On the other hand, when a small-scale batch type collection device is used, there is a problem that it is difficult to realize from the viewpoint of profitability.

そこで、本発明は、上記問題点に鑑みてなされたものであって、都市ごみ焼却灰、汚泥等の廃棄物をセメント原料として有効活用しつつ、これらの廃棄物に含まれる有価金属を低コストで回収することを目的とする。 Therefore, the present invention has been made in view of the above problems, and while effectively utilizing wastes such as municipal waste incineration ash and sludge as cement raw materials, the valuable metals contained in these wastes can be used at low cost. The purpose is to collect it at.

上記目的を達成するため、本発明は、有価金属精錬用原料回収方法であって、セメント原料の一部として都市ごみ焼却灰を、クリンカ1トンあたり20kg以上用いて普通ポルトランドセメントを製造し、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を冷却しながら抽気し、該抽気ガスを固気分離して150mg/kg以上の銀を含む有価金属精錬用原料を回収することを特徴とする。
In order to achieve the above object , the present invention is a method for recovering raw materials for refining valuable metals, in which ordinary Portland cement is produced by using city waste incineration ash as a part of cement raw materials in an amount of 20 kg or more per ton of a cleaner to produce cement. A part of the combustion gas is extracted from the kiln exhaust gas flow path from the kiln kiln end to the bottom cyclone while cooling, and the extracted gas is separated into solid air and is a raw material for refining valuable metals containing 150 mg / kg or more of silver. It is characterized by collecting.

本発明によれば、セメントキルンの排ガス処理の過程で回収コストを掛けずに、都市ごみ焼却灰等の廃棄物から有価金属精錬用原料を得ることができる。また、廃棄物を有効利用することができると共に、希少価値の高い資源を節約することができる。 According to the present invention, a raw material for refining valuable metals can be obtained from waste such as municipal waste incineration ash without incurring a recovery cost in the process of treating exhaust gas from a cement kiln. In addition, waste can be effectively used and resources with high scarcity value can be saved.

以上のように、本発明によれば、回収コストを掛けずに、又は低コストで有価金属精錬用原料を得ることができる。 As described above, according to the present invention, a raw material for refining valuable metals can be obtained without incurring a recovery cost or at a low cost.

本発明に係る有価金属精錬用原料回収方法を適用したセメントキルン抽気ダストの処理装置の一実施の形態を示す全体構成図である。It is an overall block diagram which shows one Embodiment of the cement kiln bleeding dust processing apparatus to which the raw material recovery method for valuable metal refining which concerns on this invention is applied. 図1のセメントキルン抽気ダストの処理装置におけるHMX処理工程を説明するためのフローチャートである。It is a flowchart for demonstrating the HMX processing process in the cement kiln bleeding dust processing apparatus of FIG.

次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。 Next, a mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る有価金属精錬用原料回収方法を適用したセメントキルン抽気ダストの処理装置を示し、この処理装置1は、大別して、ガス抽気部2と、ガス処理部3と、微粉末処理部4とで構成される。 FIG. 1 shows a cement kiln bleeding dust treatment device to which the method for recovering raw materials for smelting valuable metals according to the present invention is applied. It is composed of a powder processing unit 4.

ガス抽気部2は、セメントキルン5の窯尻から最下段サイクロン(不図示)に至るまでのキルン排ガス流路より、燃焼ガスの一部を抽気するための設備である。このガス抽気部2は、燃焼ガスを抽気するプローブ6と、プローブ6内に冷風を供給して抽気した燃焼ガスを急冷する冷却ファン7と、プローブ6から排出された抽気ガスG1に含まれるダスト中の粗粉D1を分離する分級機としてのサイクロン10等で構成される。 The gas extraction unit 2 is a facility for extracting a part of combustion gas from the kiln exhaust gas flow path from the kiln bottom of the cement kiln 5 to the lowermost cyclone (not shown). The gas extraction unit 2 includes a probe 6 that extracts combustion gas, a cooling fan 7 that supplies cold air into the probe 6 to quench the extracted combustion gas, and dust contained in the extraction gas G1 discharged from the probe 6. It is composed of a cyclone 10 or the like as a classifier for separating the coarse powder D1 inside.

ガス処理部3は、サイクロン10から排出された排ガスG2に含まれる微粉D2を捕集するための設備である。このガス処理部3は、サイクロン10から排出された微粉D2を含む排ガスG2を冷却する冷却器11と、冷却器11に冷風を供給する冷却ファン12と、冷却器11で冷却された排ガスG3中のダストD4を集塵するバグフィルタ13と、冷却器11及びバグフィルタ13から排出されたダストD3、D4を回収するダストタンク14とを備える。 The gas treatment unit 3 is a facility for collecting fine powder D2 contained in the exhaust gas G2 discharged from the cyclone 10. The gas processing unit 3 includes a cooler 11 that cools the exhaust gas G2 containing the fine powder D2 discharged from the cyclone 10, a cooling fan 12 that supplies cold air to the cooler 11, and the exhaust gas G3 cooled by the cooler 11. A bag filter 13 for collecting the dust D4 and a dust tank 14 for collecting the dusts D3 and D4 discharged from the cooler 11 and the bag filter 13 are provided.

微粉末処理部4は、ダストタンク14に貯留された塩素バイパスダストD5を水洗し、HMX処理及び浮遊選鉱するための設備である。 The fine powder processing unit 4 is a facility for washing the chlorine bypass dust D5 stored in the dust tank 14 with water, treating it with HMX, and performing flotation.

この微粉末処理部4は、ダストタンク14に貯留した塩素バイパスダストD5を酸性下で水洗する溶解槽20と、溶解槽20で水洗されて生成したスラリーS1を固液分離する第1の固液分離機21と、第1の固液分離機21で得られたケーキC1をHMX処理するHMX処理工程22と、HMX処理工程22から排出されたケーキC2に硫化剤及び水を添加してスラリー化するスラリータンク23と、スラリータンク23で生成したスラリーS2に硫酸等のpH調整剤を添加する調整槽24と、pH調整後のスラリーS3に捕集剤としての疎水化剤を添加する調整槽25とを備える。 The fine powder processing unit 4 solid-liquid separates the dissolution tank 20 for washing the chlorine bypass dust D5 stored in the dust tank 14 with water under acidic conditions and the slurry S1 generated by washing with water in the dissolution tank 20. The separator 21 and the HMX treatment step 22 for HMX-treating the cake C1 obtained by the first solid-liquid separator 21 and the cake C2 discharged from the HMX treatment step 22 are added with a sulfide and water to form a slurry. The slurry tank 23, the adjusting tank 24 for adding a pH adjusting agent such as sulfuric acid to the slurry S2 generated in the slurry tank 23, and the adjusting tank 25 for adding a hydrophobic agent as a collecting agent to the slurry S3 after adjusting the pH. And.

また、微粉末処理部4は、スラリーS4中の硫化物を気泡に付着させ、浮上させて分離する浮選機26と、浮選機26からのフロスFを固液分離する第2の固液分離機27と、浮選機26からのテールTにアルカリ剤を添加してpH調整する調整槽28と、調整槽28からのスラリーS5を固液分離する第3の固液分離機29等で構成される。 Further, the fine powder processing unit 4 has a flotation machine 26 in which the sulfide in the slurry S4 is attached to bubbles to float and separate the sulfide, and a second solid-liquid separation of the floss F from the flotation machine 26. The separator 27, the adjusting tank 28 for adjusting the pH by adding an alkaline agent to the tail T from the flotation machine 26, and the third solid-liquid separator 29 for solid-liquid separating the slurry S5 from the adjusting tank 28. It is composed.

HMX処理工程22は、第1の固液分離機21で得られたケーキC1から、さらに品位の高い有価金属精錬用原料を回収するために備えられ、図2に示すように、ケーキC1に水を添加して水洗する水洗工程と、水洗後のスラリーS6を水と硫酸とを用いて酸浸出させる酸浸出工程と、酸浸出後のスラリーS7に苛性ソーダを添加してアルカリ性の状態とするアルカリ浸出工程とで構成される。 The HMX treatment step 22 is provided for recovering a higher quality valuable metal refining raw material from the cake C1 obtained by the first solid-liquid separator 21, and as shown in FIG. 2, water is added to the cake C1. A water washing step of adding water and washing with water, an acid leaching step of acid leaching the slurry S6 after washing with water and sulfuric acid, and alkaline leaching of adding caustic soda to the slurry S7 after acid leaching to make it alkaline. It consists of processes.

次に、本発明に係る有価金属精錬用原料回収方法について、図1及び図2を参照しながら説明する。 Next, the method for recovering raw materials for refining valuable metals according to the present invention will be described with reference to FIGS. 1 and 2.

図1において、セメントキルン5に付設されたプレヒーター(不図示)に供給されたセメント原料は、プレヒーターで予熱され、仮焼炉(不図示)で仮焼された後、セメントキルン5で焼成される。 In FIG. 1, the cement raw material supplied to the preheater (not shown) attached to the cement kiln 5 is preheated by the preheater, calcined in a calcining furnace (not shown), and then fired in the cement kiln 5. Will be done.

セメント原料には、汎用の原料(石灰石、粘土、鉄滓等)に加え、焼却主灰、焼却飛灰、汚泥、シュレッダーダスト等の各種廃棄物が用いられる。例えば、焼却主灰や焼却飛灰には、金が0.1〜4ppm、銀が5〜50ppm、ビスマスが1〜50ppm含まれている事例が確認されている。焼却主灰や焼却飛灰の使用量は、クリンカ1トンあたり10kg以上、より好ましくは20kg以上とすることが好ましい。10kg以上使用することで、塩素バイパスダストの金、銀、ビスマスの濃度が高くなり、精錬用原料としてより有用なものとなる。 As the cement raw material, in addition to general-purpose raw materials (limestone, clay, iron slag, etc.), various wastes such as incineration main ash, incineration fly ash, sludge, and shredder dust are used. For example, it has been confirmed that the incinerated main ash and the incinerated fly ash contain 0.1 to 4 ppm of gold, 5 to 50 ppm of silver, and 1 to 50 ppm of bismuth. The amount of incinerated main ash and incinerated fly ash used is preferably 10 kg or more, more preferably 20 kg or more per ton of clinker. By using 10 kg or more, the concentration of gold, silver and bismuth of chlorine bypass dust becomes high, and it becomes more useful as a raw material for refining.

セメントキルン5の窯尻から最下段サイクロンに至るまでのキルン排ガス流路より、燃焼ガスの一部をプローブ6によって抽気すると、燃焼ガス中の揮発成分の微結晶が生成され、抽気ガスG1に含まれるダストの微粉側に有価金属が偏在しているため、サイクロン10で分級した粗粉D1をセメントキルン系に戻す。一方、サイクロン10によって分離された微粉D2を含む抽気ガスG2は、熱交換器11に導入されて抽気ガスG2と媒体との熱交換が行われる。熱交換によって冷却された抽気ガスG3は、バグフィルタ13に導入され、バグフィルタ13において抽気ガスG3に含まれるダストD4が回収される。バグフィルタ13で回収されたダストD4は、熱交換器11から排出されたダストD3と共にダストタンク14に一旦貯留される。 When a part of the combustion gas is extracted by the probe 6 from the kiln exhaust gas flow path from the kiln tail of the cement kiln 5 to the lowermost cyclone, microcrystals of volatile components in the combustion gas are generated and contained in the extracted gas G1. Since valuable metals are unevenly distributed on the fine powder side of the dust, the crude powder D1 classified by the cyclone 10 is returned to the cement kiln system. On the other hand, the bleed air gas G2 containing the fine powder D2 separated by the cyclone 10 is introduced into the heat exchanger 11 to exchange heat between the bleed air gas G2 and the medium. The bleed air G3 cooled by heat exchange is introduced into the bug filter 13, and the dust D4 contained in the bleed air G3 is recovered by the bag filter 13. The dust D4 collected by the bag filter 13 is temporarily stored in the dust tank 14 together with the dust D3 discharged from the heat exchanger 11.

ダストタンク14に貯留された塩素バイパスダストD5(D3+D4)は、塩素と共に、焼却主灰等の各種廃棄物等に由来する金や銀の貴金属を含む。塩素バイパスダストD5は、塩素濃度を目安として、好ましくは10質量%以上、より好ましくは15%以上とすることで有価金属濃度を高めることができる。 The chlorine bypass dust D5 (D3 + D4) stored in the dust tank 14 contains chlorine and gold and silver precious metals derived from various wastes such as incineration main ash. The chlorine bypass dust D5 can increase the valuable metal concentration by preferably 10% by mass or more, more preferably 15% or more, using the chlorine concentration as a guide.

塩素バイパスダストD5は、10μm通過分が多くなるほど、カルシウムやケイ素を含む粗粉D1が除去されて有価金属濃度が高くなるので、サイクロン23の分級点を調整してダストD5の10μm通過分を80質量%以上とすることが好ましい。 As the amount of chlorine bypass dust D5 passing through 10 μm increases, the coarse powder D1 containing calcium and silicon is removed and the concentration of valuable metals increases. Therefore, the classification point of the cyclone 23 is adjusted to pass the amount of dust D5 passing through 10 μm to 80. It is preferably mass% or more.

また、塩素バイパス設備1における抽気ガスG1の量(抽気量)は、上記キルン排ガス流路を流れる燃焼ガスの0.1〜20%とすることが好ましい。抽気量の上限値を20%とするのは、熱損失が大きく、経済的なキルンの安定運転が確保できなくなると共に、有価金属濃度が低下するためである。一方、抽気量の下限値を0.1%とするのは、有価金属がセメントクリンカに排出されることなく、より多く回収するためである。 Further, the amount of the extracted gas G1 (extracted amount) in the chlorine bypass equipment 1 is preferably 0.1 to 20% of the combustion gas flowing through the kiln exhaust gas flow path. The reason why the upper limit of the amount of extracted air is set to 20% is that the heat loss is large, the stable operation of the kiln cannot be ensured economically, and the concentration of valuable metals decreases. On the other hand, the lower limit of the extraction amount is set to 0.1% in order to recover more valuable metal without being discharged to the cement clinker.

カルシウムやケイ素は粗粉D1に多く含まれているため、カルシウムやケイ素の濃度が低く有価金属の濃度が高い塩素バイパスダストD5を有価金属精錬用原料とすることで、一般的にセメント原料に用いられる都市ごみ焼却灰よりも有価金属濃度が数倍高い有価金属精錬用原料を得ることができる。 Since calcium and silicon are contained in a large amount in the crude powder D1, chlorine bypass dust D5, which has a low concentration of calcium and silicon and a high concentration of valuable metals, is generally used as a raw material for cement by using chlorine bypass dust D5 as a raw material for refining valuable metals. It is possible to obtain a raw material for refining valuable metals, which has a valuable metal concentration several times higher than that of incinerated municipal waste ash.

次に、溶解槽20において、ダストタンク14からの塩素バイパスダストD5を水洗することができる。溶解槽20には、塩素バイパスダストD5、水洗用のろ液W2及び酸を供給し、塩素バイパスダストD5を酸性下で水洗することもできる。塩酸又は硝酸を添加することで、有価金属濃度の低下原因となる石膏が生成するのを防ぐことができる。また、銀の溶出を防ぐために塩酸を添加することが好ましい。 Next, in the dissolution tank 20, the chlorine bypass dust D5 from the dust tank 14 can be washed with water. Chlorine bypass dust D5, a filtrate W2 for washing with water, and an acid can be supplied to the dissolution tank 20, and the chlorine bypass dust D5 can be washed with water under acidic conditions. By adding hydrochloric acid or nitric acid, it is possible to prevent the formation of gypsum, which causes a decrease in the concentration of valuable metals. Further, it is preferable to add hydrochloric acid to prevent the elution of silver.

次いで、溶解槽20で生成されたスラリーS1を第1の固液分離機21により固液分離し、スラリーS1をろ液W1とケーキC1とに分離し、分離したケーキC1をそのまま有価金属精錬用原料とすることもできる。ろ液W1は最終排水処理工程に送る。 Next, the slurry S1 produced in the melting tank 20 is solid-liquid separated by the first solid-liquid separator 21, the slurry S1 is separated into a filtrate W1 and a cake C1, and the separated cake C1 is used as it is for valuable metal refining. It can also be used as a raw material. The filtrate W1 is sent to the final wastewater treatment process.

図2に示すように、ケーキC1を水で水洗し、水洗によって発生したアルカリ塩を含む廃液W4を最終排水処理工程に導入し、水洗後のスラリーS6を水と硫酸とを用いて酸浸出し、酸浸出によって得られたスラリーS7に苛性ソーダを添加してアルカリ性の状態とし、スラリーS7を固液分離して得られたケーキC2をスラリータンク23に供給する。最終排水処理工程で生じたケーキは、セメント原料として使用するか廃棄処分する。尚、水洗を省略し、ケーキC1の代わりに塩素バイパスダストD5を供給することもできる。 As shown in FIG. 2, the cake C1 is washed with water, the waste liquid W4 containing the alkaline salt generated by the washing is introduced into the final wastewater treatment step, and the slurry S6 after the washing is acid-leached using water and sulfuric acid. , The slurry S7 obtained by acid leaching is made alkaline by adding caustic soda, and the cake C2 obtained by solid-liquid separation of the slurry S7 is supplied to the slurry tank 23. The cake produced in the final wastewater treatment process is used as a raw material for cement or disposed of. It is also possible to omit washing with water and supply chlorine bypass dust D5 instead of cake C1.

また、ケーキC2は、HMX処理によってアルカリ塩や銅、鉛、亜鉛等が除去されているため、ケーキC2を有価金属精錬用原料とすることで、より品位の高い有価金属精錬用原料を得ることができる。 Further, since cake C2 has alkali salts, copper, lead, zinc and the like removed by HMX treatment, by using cake C2 as a raw material for valuable metal refining, a higher quality raw material for valuable metal refining can be obtained. Can be done.

次に、ケーキC2を供給したスラリータンク23に水及び硫化剤を添加してスラリーS2を生成し、スラリーS2を調整槽24に供給する。また、調整槽24において、スラリーS2にpH調整剤として硫酸又は塩酸を添加してスラリーS2のpH値を2〜4に調整した後、pH値が調整されたスラリーS3を調整槽25に供給する。さらに、調整槽25において捕集剤としての疎水化剤を添加する。尚、水洗やHMX処理を省略し、ケーキC2の代わりに塩素バイパスダストD5、又はケーキC1を供給することもできる。 Next, water and a sulfurizing agent are added to the slurry tank 23 to which the cake C2 has been supplied to generate the slurry S2, and the slurry S2 is supplied to the adjusting tank 24. Further, in the adjusting tank 24, sulfuric acid or hydrochloric acid is added to the slurry S2 as a pH adjusting agent to adjust the pH value of the slurry S2 to 2 to 4, and then the slurry S3 having the adjusted pH value is supplied to the adjusting tank 25. .. Further, a hydrophobizing agent as a collecting agent is added in the adjusting tank 25. It is also possible to omit washing with water and HMX treatment and supply chlorine bypass dust D5 or cake C1 instead of cake C2.

次に、疎水化剤が添加されたスラリーS4と空気とを浮選機26に供給し、浮選機26において気泡を発生させて気泡に硫化物を付着させ、銀やビスマス等の硫化物が付着して浮上した気泡、すなわちフロスFを回収する。このとき、スラリーS4に含まれる石膏は、浮選機26からテールTとして排出される。 Next, the slurry S4 to which the hydrophobizing agent is added and air are supplied to the flotation machine 26, and bubbles are generated in the flotation machine 26 to attach sulfides to the bubbles, and sulfides such as silver and bismuth are generated. The bubbles that have adhered and floated, that is, the sulfide F, are collected. At this time, the gypsum contained in the slurry S4 is discharged as the tail T from the flotation machine 26.

次に、第2の固液分離機27において、浮選機26からのフロスFを固液分離し、ケーキC3を生成して有価金属精錬用原料を回収する。これにより、特に銀やビスマスの濃度が高い有価金属精錬用原料を回収することができる。この際に発生するろ液W2を、最終排水処理工程に送るか、又は溶解槽20に供給して、溶解槽20内のスラリーの固液比の調整に使用する。 Next, in the second solid-liquid separator 27, the floss F from the flotation machine 26 is solid-liquid separated to produce cake C3, and the raw material for valuable metal refining is recovered. This makes it possible to recover raw materials for refining valuable metals, which have a particularly high concentration of silver and bismuth. The filtrate W2 generated at this time is sent to the final wastewater treatment step or supplied to the dissolution tank 20 to be used for adjusting the solid-liquid ratio of the slurry in the dissolution tank 20.

それと併行して、調整槽28に浮選機26のテールTを供給し、アルカリ剤を添加してテールTのpHを調整し、残留するカドミウムなどの重金属類を沈殿化する。アルカリ剤として、消石灰、水酸化ナトリウム、水酸化バリウム等を使用することができる。さらに、アルカリ剤として消石灰を使用する場合については、フッ素、硫酸根を沈殿化し、液中から除去することができる。この場合、硫酸根の系内循環によるトラブルを回避することができる。特に、硫酸根を除去することで、セメント製造工程におけるコーチング成長や、排ガス中のSOx濃度上昇のトラブルを回避することができる。 At the same time, the tail T of the flotation machine 26 is supplied to the adjusting tank 28, the pH of the tail T is adjusted by adding an alkaline agent, and residual heavy metals such as cadmium are precipitated. As the alkaline agent, slaked lime, sodium hydroxide, barium hydroxide and the like can be used. Furthermore, when slaked lime is used as the alkaline agent, fluorine and sulfate roots can be precipitated and removed from the liquid. In this case, troubles due to the circulation of sulfate roots in the system can be avoided. In particular, by removing the sulfate root, it is possible to avoid problems such as coaching growth in the cement manufacturing process and an increase in SOx concentration in the exhaust gas.

調整槽28で生成したスラリーS5を第3の固液分離機29に供給し、沈殿化した重金属類及び石膏SをケーキC4側に回収することができる。この石膏Sには重金属類が含まれるが、極微量であるため問題にならない。また、ろ液W3を最終排水処理工程で処理する。最終排水処理工程で生じたケーキは、セメント原料として使用するか廃棄処分する。 The slurry S5 produced in the adjusting tank 28 can be supplied to the third solid-liquid separator 29, and the precipitated heavy metals and gypsum S can be recovered on the cake C4 side. This gypsum S contains heavy metals, but it does not matter because it is a very small amount. Further, the filtrate W3 is treated in the final wastewater treatment step. The cake produced in the final wastewater treatment process is used as a raw material for cement or disposed of.

以上のように、本実施の形態によれば、セメントキルンの排ガス処理の過程で回収コストを掛けずに、又は低コストで、都市ごみ焼却灰等の廃棄物から有価金属精錬用原料を得ることができる。また、塩素バイパスダストを有効利用することができるのでより多くの廃棄物をセメント原料として使用できるようになると共に、希少価値の高い金、銀、ビスマスの資源を節約することができる。 As described above, according to the present embodiment, a raw material for refining valuable metals can be obtained from waste such as municipal waste incineration ash without incurring recovery costs or at low cost in the process of treating exhaust gas from a cement kiln. Can be done. In addition, since chlorine bypass dust can be effectively used, more waste can be used as a raw material for cement, and resources of rare gold, silver, and bismuth can be saved.

尚、上記実施の形態においては、サイクロン10で粗粉D1を分級した後に、微粉D2を含む排ガスG2を冷却器11を介してバグフィルタ13に導入したが、サイクロン10を設けることなく、プローブ6で抽気した抽気ガスG1を直接冷却器11を介してバグフィルタ13に導入してもよい。また、バグフィルタ13に高温ガスを処理可能なものを使用し、冷却器11を設置しない構成とすることもできる。さらに、溶解槽20にろ液W2を供給する代わりに新たに工業用水を供給することもできる。 In the above embodiment, after the coarse powder D1 is classified by the cyclone 10, the exhaust gas G2 containing the fine powder D2 is introduced into the bag filter 13 via the cooler 11, but the probe 6 is not provided with the cyclone 10. The extracted gas G1 extracted in 1 may be directly introduced into the bug filter 13 via the cooler 11. Further, it is also possible to use a bug filter 13 capable of processing high temperature gas and not to install a cooler 11. Further, instead of supplying the filtrate W2 to the dissolution tank 20, it is also possible to newly supply industrial water.

また、上記実施の形態においては、バグフィルタ13を用いて微粉D2を乾式集塵したが、微粉D2をスクラバ等の湿式集塵機を介して水と硫化剤を添加しながらスラリー化してもよい。 Further, in the above embodiment, the fine powder D2 is dry-type dust collected using the bag filter 13, but the fine powder D2 may be made into a slurry while adding water and a sulfurizing agent via a wet dust collector such as a scrubber.

Aセメント工場にて、都市ごみ焼却灰をクリンカ1トンあたり20kg使用し、その他廃棄物、石灰石も使用して普通ポルトランドセメントを製造した。その結果、図1に示す塩素バイパス設備1において、Au:2mg/kg、Ag:150mg/kg、Bi:160mg/kg、CaO:41質量%、Cl:18質量%の塩素バイパスダストD5を得た。 At the A cement factory, 20 kg of municipal waste incineration ash was used per ton of clinker, and other waste and limestone were also used to produce ordinary Portland cement. As a result, in the chlorine bypass facility 1 shown in FIG. 1, chlorine bypass dust D5 having Au: 2 mg / kg, Ag: 150 mg / kg, Bi: 160 mg / kg, CaO: 41% by mass, and Cl: 18% by mass was obtained. ..

Bセメント工場にて、都市ごみ焼却灰をクリンカ1トンあたり40kg使用し、その他廃棄物、石灰石も使用して普通ポルトランドセメントを製造した。その結果、図1に示す塩素バイパス設備1において、Au:6mg/kg、Ag:380mg/kg、Bi:170mg/kg、CaO:14質量%、Cl:30質量%の塩素バイパスダストD5を得た。 At the B cement factory, 40 kg of municipal waste incineration ash was used per ton of clinker, and other waste and limestone were also used to produce ordinary Portland cement. As a result, in the chlorine bypass facility 1 shown in FIG. 1, chlorine bypass dust D5 having Au: 6 mg / kg, Ag: 380 mg / kg, Bi: 170 mg / kg, CaO: 14% by mass, and Cl: 30% by mass was obtained. ..

このように、得られる塩素バイパスダストD5は、金、銀、ビスマスの濃度が焼却灰の数倍以上になり、一般的な天然の鉱石に比べても数倍以上となった。 In this way, the chlorine bypass dust D5 obtained has a concentration of gold, silver, and bismuth that is several times higher than that of incinerated ash, and is several times higher than that of general natural ore.

実施例2(Bセメント工場)で得られた塩素バイパスダスト1質量部に対して水3質量部を混合し、30分間撹拌後、脱水乾燥した。その結果、Au:10mg/kg、Ag:940mg/kg、Bi:350mg/kgの水洗ダストを得た。 3 parts by mass of water was mixed with 1 part by mass of chlorine bypass dust obtained in Example 2 (B cement factory), stirred for 30 minutes, and then dehydrated and dried. As a result, washing dust of Au: 10 mg / kg, Ag: 940 mg / kg, and Bi: 350 mg / kg was obtained.

実施例2(Bセメント工場)で得られた塩素バイパスダスト1質量部に対して水3質量部を混合し、塩酸を添加してpH8を維持しながら30分間撹拌後、脱水乾燥した。その結果、Au:14mg/kg、Ag:1200mg/kg、Bi:440mg/kgの塩酸処理ダストを得た。 3 parts by mass of water was mixed with 1 part by mass of chlorine bypass dust obtained in Example 2 (B cement factory), hydrochloric acid was added, the mixture was stirred for 30 minutes while maintaining pH 8, and then dehydrated and dried. As a result, hydrochloric acid-treated dust having Au: 14 mg / kg, Ag: 1200 mg / kg, and Bi: 440 mg / kg was obtained.

実施例2(Bセメント工場)で得られた塩素バイパスダスト1質量部に対して水3質量部を混合し、硝酸を添加してpH3を維持しながら30分間撹拌後、脱水乾燥した。その結果、Au:16mg/kg、Ag:910mg/kg、Bi:240mg/kgの硝酸処理ダストを得た。 3 parts by mass of water was mixed with 1 part by mass of chlorine bypass dust obtained in Example 2 (B cement factory), nitric acid was added, the mixture was stirred for 30 minutes while maintaining pH 3, and then dehydrated and dried. As a result, nitric acid-treated dust having Au: 16 mg / kg, Ag: 910 mg / kg, and Bi: 240 mg / kg was obtained.

実施例1(Aセメント工場)で得られた塩素バイパスダスト130g及び蒸留水1300ミリリットルを混合槽に投入し、撹拌して均一なスラリーを得た。当該塩素バイパスダストには鉛が1.7質量%と多く含まれるため、水硫化ソーダ/鉛のモル比が1.0となるよう、硫化剤として水硫化ソーダ水溶液(濃度:10%)をスラリーに加えて撹拌し、硫化物を含むスラリーを得た。次いで、このスラリーに塩酸(濃度:36%)を加えて撹拌し、液性をpH2.0に調整した。このスラリーに疎水化剤としてザンセート水溶液(濃度:5%)を加えて15分間撹拌した。ザンセートの添加量は、ザンセート/鉛のモル比が0.04となる量であった。次に、このスラリーを1段目の浮遊選鉱機に導き、20分間、浮遊選鉱処理を行なった。処理後、浮遊選鉱機から、浮鉱を含むスラリー部分、及び、沈鉱を含むスラリー部分を回収した。 130 g of chlorine bypass dust and 1300 ml of distilled water obtained in Example 1 (A cement factory) were put into a mixing tank and stirred to obtain a uniform slurry. Since the chlorine bypass dust contains as much lead as 1.7% by mass, an aqueous solution of sodium hydrosulfide (concentration: 10%) is used as a sulfurizing agent so that the molar ratio of sodium hydrosulfide / lead becomes 1.0. In addition to the above, the mixture was stirred to obtain a slurry containing sulfide. Next, hydrochloric acid (concentration: 36%) was added to this slurry and stirred to adjust the liquid property to pH 2.0. An aqueous solution of Zansate (concentration: 5%) was added to this slurry as a hydrophobizing agent, and the mixture was stirred for 15 minutes. The amount of zansate added was such that the molar ratio of zansate / lead was 0.04. Next, this slurry was guided to a first-stage flotation machine and subjected to flotation treatment for 20 minutes. After the treatment, the slurry portion containing the flotation and the slurry portion containing the sedimentation were recovered from the flotation machine.

一方、1段目の浮遊選鉱機から回収した沈鉱を含むスラリー部分に、ザンセート水溶液(濃度:5%)を加えて15分間撹拌した。ザンセートの添加量は、ザンセート/鉛のモル比が0.04となる量であった。次に、このスラリー部分を2段目の浮遊選鉱機に導き、10分間、浮遊選鉱処理を行なった。処理後、浮遊選鉱機から、浮鉱を含むスラリー部分、及び、沈鉱を含むスラリー部分を回収した。 On the other hand, an aqueous solution of Zansate (concentration: 5%) was added to the slurry portion containing the sediment recovered from the first-stage flotation machine, and the mixture was stirred for 15 minutes. The amount of zansate added was such that the molar ratio of zansate / lead was 0.04. Next, this slurry portion was guided to a second-stage flotation machine and subjected to flotation treatment for 10 minutes. After the treatment, the slurry portion containing the flotation and the slurry portion containing the sedimentation were recovered from the flotation machine.

一方、2段目の浮遊選鉱機から回収した沈鉱を含むスラリー部分に、ザンセート水溶液(濃度:5%)を加えて15分間撹拌した。ザンセートの添加量は、ザンセート/鉛のモル比が0.04となる量であった。次に、このスラリー部分を3段目の浮遊選鉱機に導き、10分間、浮遊選鉱処理を行なった。処理後、浮遊選鉱機から、浮鉱を含むスラリー部分、及び、沈鉱を含むスラリー部分を回収した。 On the other hand, an aqueous solution of Zansate (concentration: 5%) was added to the slurry portion containing the sediment recovered from the second-stage flotation machine, and the mixture was stirred for 15 minutes. The amount of zansate added was such that the molar ratio of zansate / lead was 0.04. Next, this slurry portion was guided to a third-stage flotation machine and subjected to flotation treatment for 10 minutes. After the treatment, the slurry portion containing the flotation and the slurry portion containing the sedimentation were recovered from the flotation machine.

3段分の浮鉱を回収、脱水乾燥した。その結果、Ag:550mg/kg、Bi:820mg/kgの浮遊選鉱処理ダストを得た。 Three stages of floating ore were recovered and dehydrated and dried. As a result, flotation-treated dust having Ag: 550 mg / kg and Bi: 820 mg / kg was obtained.

塩酸(濃度:36%)を加えて液性をpH4.0に調整した以外は、実施例6と同様の方法にて、実施例2(Bセメント工場)で得られた塩素バイパスダスト(鉛含有量0.4質量%)の浮遊選鉱処理を行った。その結果、Ag:1900mg/kg、Bi:900mg/kgの浮遊選鉱処理ダストを得た。 Chlorine bypass dust (lead-containing) obtained in Example 2 (B cement factory) in the same manner as in Example 6 except that hydrochloric acid (concentration: 36%) was added to adjust the liquid property to pH 4.0. A flotation treatment (amount of 0.4% by mass) was carried out. As a result, flotation-treated dust having Ag: 1900 mg / kg and Bi: 900 mg / kg was obtained.

1 処理装置
2 ガス抽気部
3 ガス処理部
4 微粉末処理部
5 セメントキルン
6 プローブ
7 冷却ファン
10 サイクロン
11 冷却器
12 冷却ファン
13 バグフィルタ
14 ダストタンク
20 溶解槽
21 第1の固液分離機
22 HMX処理工程
23 スラリータンク
24、25 調整槽
26 浮選機
27 第2の固液分離機
28 調整槽
29 第3の固液分離機
C1〜C4 ケーキ
D1 粗粉
D2 微粉
D3、D4 ダスト
D5 塩素バイパスダスト
F フロス
G1 抽気ガス
G2、G3 排ガス
S1〜S7 スラリー
T テール
W1〜W3 ろ液
W4 廃液
1 Processing device 2 Gas extraction unit 3 Gas processing unit 4 Fine powder processing unit 5 Cement kiln 6 Probe 7 Cooling fan 10 Cyclone 11 Cooler 12 Cooling fan 13 Bug filter 14 Dust tank 20 Melting tank 21 First solid-liquid separator 22 HMX processing process 23 Slurry tank 24, 25 Adjustment tank 26 Floating machine 27 Second solid-liquid separator 28 Adjustment tank 29 Third solid-liquid separator C1 to C4 Cake D1 Coarse powder D2 Fine powder D3, D4 Dust D5 Chlorine bypass Dust F Fross G1 Extracted gas G2, G3 Exhaust gas S1 to S7 Slurry T Tail W1 to W3 Filter W4 Waste liquid

Claims (1)

セメント原料の一部として都市ごみ焼却灰を、クリンカ1トンあたり20kg以上用いて普通ポルトランドセメントを製造し、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より燃焼ガスの一部を冷却しながら抽気し、該抽気ガスを固気分離して150mg/kg以上の銀を含む有価金属精錬用原料を回収することを特徴とする有価金属精錬用原料回収方法。 Ordinary Portland cement is manufactured using 20 kg or more of municipal waste incineration ash as part of the cement raw material, and part of the combustion gas from the kiln exhaust gas flow path from the kiln butt of the cement kiln to the bottom cyclone. A method for recovering a raw material for refining a valuable metal, which comprises extracting air while cooling the material, separating the extracted gas into a solid air, and recovering a raw material for refining valuable metal containing 150 mg / kg or more of silver.
JP2018079683A 2018-04-18 2018-04-18 Raw material recovery method for valuable metal refining Active JP6864648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018079683A JP6864648B2 (en) 2018-04-18 2018-04-18 Raw material recovery method for valuable metal refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079683A JP6864648B2 (en) 2018-04-18 2018-04-18 Raw material recovery method for valuable metal refining

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014104235A Division JP6357009B2 (en) 2014-05-20 2014-05-20 Raw materials for refining valuable metals and raw material recovery methods for refining valuable metals

Publications (2)

Publication Number Publication Date
JP2018119216A JP2018119216A (en) 2018-08-02
JP6864648B2 true JP6864648B2 (en) 2021-04-28

Family

ID=63043099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079683A Active JP6864648B2 (en) 2018-04-18 2018-04-18 Raw material recovery method for valuable metal refining

Country Status (1)

Country Link
JP (1) JP6864648B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094229A (en) * 2018-12-10 2020-06-18 太平洋セメント株式会社 Method of and device for recovering high noble metal-including dust and high noble metal-including dust
IT202100002831A1 (en) * 2021-02-09 2022-08-09 Mercurio Srl EQUIPMENT FOR THE RECOVERY OF PRECIOUS METALS, SUCH AS PLATINUM, RHODIUM, GOLD, SILVER, ETC., FROM CONTAMINATED CEMENT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334312B2 (en) * 2009-09-09 2013-11-06 太平洋セメント株式会社 Cement manufacturing apparatus and manufacturing method
JP5686470B2 (en) * 2011-02-15 2015-03-18 太平洋セメント株式会社 Silver and lead recovery methods

Also Published As

Publication number Publication date
JP2018119216A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6357009B2 (en) Raw materials for refining valuable metals and raw material recovery methods for refining valuable metals
CN104911356B (en) A kind of solid waste gas ash, the comprehensive recycling process of vanadium slag containing zinc-iron
CN203728902U (en) Integrated solid waste gas ash and zinc-containing ferrovanadium slag recovery device
CN101723713A (en) Overall treatment method of steel works sintering dust
CN108998657A (en) A kind of arsenic-containing smoke dust dearsenification and the method for recycling valuable metal
JPWO2012020691A1 (en) Method and apparatus for treating chlorine bypass dust and exhaust gas
CN110976481B (en) Copper-containing hazardous waste treatment process
JP6864648B2 (en) Raw material recovery method for valuable metal refining
CN106119556A (en) A kind of Application way of steel plant zinc smoke ash
JP5355431B2 (en) Method and apparatus for treating incinerated fly ash and cement kiln combustion gas bleed dust
JP3306471B2 (en) Treatment method of exhaust gas from cement kiln
KR20190134085A (en) Method of recycling chlorine bypass dust generated in cement manufacturing process
JP2004035937A (en) Method of recovering chloride from aqueous solution
JP5686470B2 (en) Silver and lead recovery methods
US9139892B2 (en) Process for magnesium production
JP6327943B2 (en) Method for recovering valuable metals in waste
JP2008190019A (en) Method for collecting lead from cement production process, and collecting apparatus therefor
Vaysgant et al. A low-temperature technique for recycling lead/acid battery scrap without wastes and with improved environmental control
CN110055403A (en) Method for joint treatment of electroplating sludge and blast furnace gas ash
CN108706615A (en) A kind of method of comprehensive utilization of ardealite, high-sulfur bauxite and flyash
JPS6122011B2 (en)
JPH11302748A (en) Method for recovering valuable metal
JP2007186761A (en) Method for recovering valuable metal
JP2005213527A (en) Method for dechlorinating zinc hydroxide
JP2003286050A (en) Treatment method for dust in kiln exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191023

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191024

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191213

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191217

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200715

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201006

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210224

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210330

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6864648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250