JP6863283B2 - Battery separator - Google Patents

Battery separator Download PDF

Info

Publication number
JP6863283B2
JP6863283B2 JP2017534467A JP2017534467A JP6863283B2 JP 6863283 B2 JP6863283 B2 JP 6863283B2 JP 2017534467 A JP2017534467 A JP 2017534467A JP 2017534467 A JP2017534467 A JP 2017534467A JP 6863283 B2 JP6863283 B2 JP 6863283B2
Authority
JP
Japan
Prior art keywords
battery separator
acrylic resin
vinylidene fluoride
particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017534467A
Other languages
Japanese (ja)
Other versions
JPWO2017026485A1 (en
Inventor
辻本 潤
潤 辻本
水野 直樹
直樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2017026485A1 publication Critical patent/JPWO2017026485A1/en
Application granted granted Critical
Publication of JP6863283B2 publication Critical patent/JP6863283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Description

本発明は、電池用セパレータに関する。 The present invention relates to a battery separator.

電池用セパレータは機械強度、耐熱性、イオン透過性、孔閉塞特性(シャットダウン特性)、溶融破膜特性(メルトダウン特性)等が要求される。そのため、これまでに多孔質膜とその表面に多孔質層を設けた電池用セパレータの利用が検討されている。さらに、近年、電極表面の凹凸や充放電に伴う電極の膨張・収縮によるセパレータと電極との界面の部分的な遊離が、電池の内部抵抗の増大や電池のサイクル特性の低下につながり問題となっている。そのため、セパレータには電池内(つまり、非水電解質の存在時)での電極との接着性(以下、湿潤時接着性という)が要求されており、湿潤時接着性を付与するため、例えば、電解液に膨潤するフッ素樹脂を含有させた多孔質層を設けた電池用セパレータが検討されている。 Battery separators are required to have mechanical strength, heat resistance, ion permeability, pore closing characteristics (shutdown characteristics), melt rupture characteristics (meltdown characteristics), and the like. Therefore, the use of a porous membrane and a battery separator provided with a porous layer on the surface thereof has been studied so far. Furthermore, in recent years, the unevenness of the electrode surface and the partial release of the interface between the separator and the electrode due to the expansion and contraction of the electrode due to charge and discharge lead to an increase in the internal resistance of the battery and a decrease in the cycle characteristics of the battery, which has become a problem. ing. Therefore, the separator is required to have adhesiveness to the electrode in the battery (that is, in the presence of a non-aqueous electrolyte) (hereinafter referred to as wet adhesiveness), and in order to impart wet adhesiveness, for example, A battery separator provided with a porous layer containing a fluororesin that swells in an electrolytic solution has been studied.

特許文献1には、正極、負極、ポリプロピレン・ポリエチレン・ポリプロピレンからなる三層セパレータと、これら電極とセパレータとの間に配置されたポリフッ化ビニリデンとアルミナ粉末からなる接着性樹脂層とを備えた電極体が記載されている。 Patent Document 1 describes an electrode provided with a three-layer separator made of a positive electrode, a negative electrode, polypropylene, polyethylene, and polypropylene, and an adhesive resin layer made of polyvinylidene fluoride and alumina powder arranged between these electrodes and the separator. The body is listed.

特許文献2の実施例1には、第一の重合体(ポリフッ化ビニリデンホモポリマー)を含むNMP溶液と、第二の重合体(アクリロニトリル単量体と、1,3−ブタジエン由来の単量体と、メタクリル酸単量体と、(メタ)ブチルアクリレート単量体とを含む重合体)を含むNMP溶液とをプライマリーミキサーで攪拌してバインダーのNMP溶液を調製し、次いで、調製後のNMP溶液とアルミナ粒子を混合、分散させて調製したスラリーをポリプロピレン製セパレータに塗布して得られる多孔膜付有機セパレータが記載されている。 In Example 1 of Patent Document 2, an NMP solution containing the first polymer (polyvinylidene fluoride homopolymer) and a second polymer (acrylonitrile monomer and a monomer derived from 1,3-butadiene) are described. And an NMP solution containing (a polymer containing a methacrylic acid monomer and a (meth) butyl acrylate monomer) are stirred with a primary mixer to prepare an NMP solution of a binder, and then the prepared NMP solution. And an organic separator with a porous film obtained by applying a slurry prepared by mixing and dispersing alumina particles to a polypropylene separator is described.

特許文献3の実施例には、球状アルミナ粉末を分散させたNMP溶液に、フッ化ビニリデン‐ヘキサフルオロプロピレン共重合体(VdF‐HFP共重合体)とポリメタクリル酸エチルからなる配合材料を溶解したNMP溶液を添加し、ボールミルで混合して調製したスラリーを基材PETフィルムに塗布し、乾燥して得られた無機微粒子含有シート(絶縁性接着層)を介して正極と負極を熱圧着させた電極体が記載されている。 In the examples of Patent Document 3, a compounding material composed of a vinylidene fluoride-hexafluoropropylene copolymer (VdF-HFP copolymer) and ethyl polymethacrylate was dissolved in an NMP solution in which spherical alumina powder was dispersed. The slurry prepared by adding the NMP solution and mixing with a ball mill was applied to the base material PET film, and the positive electrode and the negative electrode were thermally pressure-bonded via the inorganic fine particle-containing sheet (insulating adhesive layer) obtained by drying. The electrode body is described.

特許文献4の実施例1には、VdF‐HFP共重合体とシアノエチルプルランをアセトンに添加し、その後、チタン酸バリウム粉末を添加し、ボールミルで分散して得たスラリーをポリエチレン多孔性膜に塗布して得られたセパレータが記載されている。 In Example 1 of Patent Document 4, a VdF-HFP copolymer and cyanoethyl pullulan were added to acetone, then barium titanate powder was added, and the slurry obtained by dispersing with a ball mill was applied to a polyethylene porous membrane. The separator obtained in the above is described.

再表1999−036981号公報Re-table 1999-036981 特開2013−206846号公報Japanese Unexamined Patent Publication No. 2013-206846 特開2013−122009号公報Japanese Unexamined Patent Publication No. 2013-122009 特表2013−519206号公報Japanese Patent Application Laid-Open No. 2013-519206

近年、非水電解質二次電池、特に、リチウムイオン二次電池は携帯電話や携帯情報端末等の小型電子機器に限らず、大型タブレット、草刈り機、電動二輪車、電気自動車、ハイブリッド自動車、小型船舶などの大型用途向けの展開が期待されており、これに伴い電池の大型化が想定される。 In recent years, non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, are not limited to small electronic devices such as mobile phones and mobile information terminals, but also large tablets, mowers, electric motorcycles, electric vehicles, hybrid vehicles, small ships, etc. It is expected to be developed for large-scale applications, and it is expected that the size of batteries will increase accordingly.

これら電池としては、正極電極と負極電極とをセパレータを介して積層した電極体や捲回した電極体(捲回電極体)を用いた円筒型電池、その捲回電極体をプレス成型してラミネート外装体で被覆したパウチ電池や、角形外装缶に挿入した角型電池等が挙げられる。 These batteries include an electrode body in which a positive electrode and a negative electrode are laminated via a separator, a cylindrical battery using a wound electrode body (wound electrode body), and a wound electrode body that is press-molded and laminated. Examples thereof include a pouch battery covered with an outer body, a square battery inserted in a square outer can, and the like.

電池の大型化により、電極体の製造工程において電極の活物質面とセパレータの接着が不十分であると、隙間が生じて捲回電極体のたわみや歪みが発生し、所定の容積に収まらないといった問題が想定される。これにより、電極体の搬送に支障がでたり外装体への挿入が困難となったりして生産性が著しく低下するおそれがある。さらに、電解液を注入した後も上記隙間が維持され電極とセパレータとの接着が不均一となり、結果として電池のサイクル特性低下の原因となる。この傾向は電池が大型化するほど顕著に現れることが予測される。 Due to the increase in size of the battery, if the active material surface of the electrode and the separator are not sufficiently adhered in the manufacturing process of the electrode body, a gap is generated and the wound electrode body is bent or distorted and does not fit in the predetermined volume. Such a problem is assumed. This may hinder the transport of the electrode body or make it difficult to insert the electrode body into the exterior body, resulting in a significant decrease in productivity. Further, even after the electrolytic solution is injected, the gap is maintained and the adhesion between the electrode and the separator becomes non-uniform, resulting in a decrease in the cycle characteristics of the battery. It is predicted that this tendency will become more pronounced as the size of the battery increases.

そのため、電極体のたわみや歪みを防止し、生産性や電池性能を改善するために、セパレータには電極体の製造工程における電解液が湿潤していないときの電極との接着性(乾燥時接着性)が要求されるようになってきた。乾燥時の接着性を確保するために、過剰の接着成分を付与したり、過度な条件で熱圧着したりすると、セパレータの透気度を悪化させてしまう。そればかりか、湿潤時の電極間の密着性を保つための接着機能も損なわれる。このため湿潤時接着性と乾燥時接着性を両立させることが極めて困難である。 Therefore, in order to prevent bending and distortion of the electrode body and improve productivity and battery performance, the separator has adhesiveness (adhesion during drying) to the electrode when the electrolytic solution in the manufacturing process of the electrode body is not wet. Gender) has come to be required. If an excessive adhesive component is added or thermocompression bonding is performed under excessive conditions in order to ensure the adhesiveness at the time of drying, the air permeability of the separator is deteriorated. Not only that, the adhesive function for maintaining the adhesion between the electrodes when wet is also impaired. Therefore, it is extremely difficult to achieve both wet adhesiveness and dry adhesiveness.

本発明者らは透気抵抗度を悪化させることなく、将来進むであろう電池の大型化に備えた新規な課題である乾燥時接着性と、湿潤時接着性に優れた電池用セパレータの提供を目指したものである。なお、本明細書では、湿潤時接着性とはセパレータが電解液を含む状態でのセパレータと電極との接着性を意味し、後述する測定方法で得られる湿潤時曲げ強さで表される。また、乾燥時接着性とはセパレータが電解液を実質的に含まない状態でのセパレータと電極との接着性を意味し、後述する測定方法で得られる乾燥時曲げ強さで表される。なお、実質的に含まないとはセパレータ中の電解液が500ppm以下であることを意味する。 The present inventors provide a battery separator having excellent dry adhesiveness and wet adhesiveness, which is a new issue for preparing for the future increase in battery size without deteriorating the air permeability resistance. It is aimed at. In the present specification, the wet adhesiveness means the adhesiveness between the separator and the electrode in a state where the separator contains an electrolytic solution, and is represented by the flexural strength when wet obtained by the measurement method described later. Further, the adhesiveness at the time of drying means the adhesiveness between the separator and the electrode in a state where the separator does not substantially contain the electrolytic solution, and is represented by the bending strength at the time of drying obtained by the measurement method described later. In addition, substantially not contained means that the electrolytic solution in the separator is 500 ppm or less.

上記課題を解決するために本発明に係る電池用セパレータ及びその製造方法は以下の構成を有する。すなわち、
(1)微多孔膜と、該微多孔膜の少なくとも片面に設けられた多孔質層と、を備え、前記多孔質層はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体およびアクリル樹脂を含み、前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体は親水基を有する単量体単位を含み、ヘキサフルオロプロピレン単量体単位を0.3モル%以上、3モル%以下含有し、前記アクリル樹脂はブチルアクリレート単量体単位を含む、電池用セパレータ、である。
(2)本発明に係る電池用セパレータは、多孔質層が粒子を含むことが好ましい。
(3)本発明に係る電池用セパレータは、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体は親水基を有する単量体単位を0.1モル%以上、5モル%以下含有することが好ましい。
(4)本発明に係る電池用セパレータは、アクリル樹脂の含有量がフッ化ビニリデン−ヘキサフルオロプロピレン共重合体とアクリル樹脂の総量に対して、5質量%以上、40質量%未満であることが好ましい。
(5)本発明に係る電池用セパレータは、アクリル樹脂がブチルアクリレート単位とアクリロニトリル単位とを含むアクリル共重合体であることが好ましい。
(6)本発明に係る電池用セパレータは、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体の質量平均分子量が50万以上、200万以下であることが好ましい。
(7)本発明に係る電池用セパレータは、アクリル樹脂におけるブチルアクリレート単位の含有量が50モル%以上、75モル%以下であることが好ましい。
(8)本発明に係る電池用セパレータは、湿潤時曲げ強さが14N以上、かつ乾燥時曲げ強さが7N以上であることが好ましい。
(9)本発明に係る電池用セパレータは、粒子の含有量が、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体とアクリル樹脂と粒子との総量に対して、50質量%以上、85質量%以下であることが好ましい。
(10)本発明に係る電池用セパレータは、多孔質層の厚さが片面当たり0.5μm以上、3μm以下であることが好ましい。
(11)本発明に係る電池用セパレータは、粒子がアルミナ、チタニア、およびベーマイトからなる群から選ばれる少なくとも1種を含むことが好ましい。
(12)本発明に係る電池用セパレータは、粒子の平均粒径が0.3μm以上、3.0μm以下であることが好ましい。
(13)本発明に係る電池用セパレータは、微多孔膜がポリオレフィン微多孔膜であることが好ましい。
上記課題を解決するために本発明の電池用セパレータの製造方法は以下の構成を有する。
すなわち、
(14)以下の工程(a)〜(c)を順次含む電池用セパレータの製造方法である。
(a)フッ化ビニリデン−ヘキサフルオロプロピレン共重合体を溶媒に溶解したフッ素樹脂溶液を得る工程
(b)フッ素樹脂溶液にアクリル樹脂溶液を添加し、混合して塗工液を得る工程
(c)塗工液を微多孔膜に塗布し、凝固浴に浸漬し、洗浄、乾燥する工程
In order to solve the above problems, the battery separator and the manufacturing method thereof according to the present invention have the following configurations. That is,
(1) A microporous film and a porous layer provided on at least one surface of the microporous film are provided, and the porous layer contains a vinylidene fluoride-hexafluoropropylene copolymer and an acrylic resin, and the foot. The vinylidene-hexafluoropropylene copolymer contains a monomer unit having a hydrophilic group, contains a hexafluoropropylene monomer unit of 0.3 mol% or more and 3 mol% or less, and the acrylic resin is a butyl acrylate simple substance. A battery separator, including a polymer unit.
(2) In the battery separator according to the present invention, it is preferable that the porous layer contains particles.
(3) In the battery separator according to the present invention, the vinylidene fluoride-hexafluoropropylene copolymer preferably contains 0.1 mol% or more and 5 mol% or less of a monomer unit having a hydrophilic group.
(4) The battery separator according to the present invention has an acrylic resin content of 5% by mass or more and less than 40% by mass with respect to the total amount of the vinylidene fluoride-hexafluoropropylene copolymer and the acrylic resin. preferable.
(5) The battery separator according to the present invention is preferably an acrylic copolymer in which the acrylic resin contains a butyl acrylate unit and an acrylonitrile unit.
(6) The battery separator according to the present invention preferably has a vinylidene fluoride-hexafluoropropylene copolymer having a mass average molecular weight of 500,000 or more and 2 million or less.
(7) The battery separator according to the present invention preferably has a butyl acrylate unit content of 50 mol% or more and 75 mol% or less in the acrylic resin.
(8) The battery separator according to the present invention preferably has a flexural strength of 14 N or more when wet and a flexural strength of 7 N or more when dry.
(9) The battery separator according to the present invention has a particle content of 50% by mass or more and 85% by mass or less with respect to the total amount of the vinylidene fluoride-hexafluoropropylene copolymer, the acrylic resin and the particles. It is preferable to have.
(10) In the battery separator according to the present invention, the thickness of the porous layer is preferably 0.5 μm or more and 3 μm or less per side.
(11) The battery separator according to the present invention preferably contains at least one type of particles selected from the group consisting of alumina, titania, and boehmite.
(12) The battery separator according to the present invention preferably has an average particle size of 0.3 μm or more and 3.0 μm or less.
(13) In the battery separator according to the present invention, the microporous membrane is preferably a polyolefin microporous membrane.
In order to solve the above problems, the method for manufacturing a battery separator of the present invention has the following configuration.
That is,
(14) A method for manufacturing a battery separator, which sequentially includes the following steps (a) to (c).
(A) Step of obtaining a fluororesin solution in which a vinylidene fluoride-hexafluoropropylene copolymer is dissolved in a solvent (b) Step of adding an acrylic resin solution to the fluororesin solution and mixing to obtain a coating solution (c) A process in which a coating solution is applied to a microporous film, immersed in a coagulation bath, washed, and dried.

本発明によれば、透気抵抗度を悪化させることなく、乾燥時接着性と湿潤時接着性を両立した電池用セパレータ、特に、捲回型大型電池に適した電池用セパレータを提供できる。 According to the present invention, it is possible to provide a battery separator having both dry adhesiveness and wet adhesiveness, particularly a battery separator suitable for a large wound battery, without deteriorating the air permeation resistance.

湿潤時曲げ強さの試験を模式的に示す正面断面図である。It is a front sectional view which shows typically the test of bending strength at the time of wetting. 乾燥時曲げ強さの試験を模式的に示す正面断面図である。It is a front sectional view which shows typically the test of bending strength at the time of drying.

本発明の電池用セパレータにおける微多孔膜及び多孔質層について概要を説明するが、当然この代表例に限定されるものではない。
1.微多孔膜
本発明において、微多孔膜とは内部に連結した空隙を有する膜を意味する。微多孔膜としては特に限定されず、ポリオレフィン樹脂を含む微多孔膜を用いることができる。以下、微多孔膜を構成する樹脂がポリオレフィン樹脂である場合について詳細に説明するがこれに限定されるものでない。
[1]ポリオレフィン樹脂
ポリオレフィン微多孔膜を構成するポリオレフィン樹脂は、ポリエチレン樹脂を主成分とする。ポリエチレン樹脂の含有量はポリオレフィン樹脂の全質量を100質量%として、70質量%以上であるのが好ましく、より好ましくは90質量%以上、さらに好ましくは100質量%である。
The outline of the microporous membrane and the porous layer in the battery separator of the present invention will be described, but of course, the present invention is not limited to this representative example.
1. 1. Microporous Membrane In the present invention, the microporous membrane means a membrane having voids connected to the inside. The microporous membrane is not particularly limited, and a microporous membrane containing a polyolefin resin can be used. Hereinafter, the case where the resin constituting the microporous film is a polyolefin resin will be described in detail, but the present invention is not limited thereto.
[1] Polyolefin Resin The polyolefin resin constituting the polyolefin microporous film contains polyethylene resin as a main component. The content of the polyethylene resin is preferably 70% by mass or more, more preferably 90% by mass or more, still more preferably 100% by mass, assuming that the total mass of the polyolefin resin is 100% by mass.

ポリオレフィン樹脂としては、エチレン、プロピレン、1−ブテン、4−メチル1−ペンテン、1−ヘキセンなどを重合した単独重合体、2段階重合体、共重合体またはこれらの混合物等が挙げられる。ポリオレフィン樹脂には、必要に応じて、酸化防止剤、無機充填剤などの各種添加剤を本発明の効果を損なわない範囲で添加しても良い。 Examples of the polyolefin resin include homopolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl1-pentene, 1-hexene and the like, two-step polymers, copolymers and mixtures thereof. If necessary, various additives such as antioxidants and inorganic fillers may be added to the polyolefin resin as long as the effects of the present invention are not impaired.

[2]ポリオレフィン微多孔膜の製造方法
ポリオレフィン微多孔膜の製造方法としては、所望の特性を有するポリオレフィン微多孔膜が製造できれば、特に限定されず、従来公知の方法を用いることができ、例えば、日本国特許第2132327号公報および日本国特許第3347835号公報、国際公開2006/137540号等に記載された方法を用いることができる。具体的には、下記の工程(1)〜(5)を含むことが好ましく、さらに下記の工程(6)〜(8)を含むこともできる。
(1)前記ポリオレフィン樹脂と成膜用溶剤とを溶融混練し、ポリオレフィン溶液を調製する工程
(2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
(3)前記ゲル状シートを延伸する第1の延伸工程
(4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
(5)前記成膜用溶剤除去後のシートを乾燥する工程
(6)前記乾燥後のシートを延伸する第2の延伸工程
(7)前記乾燥後のシートを熱処理する工程
(8)前記延伸工程後のシートに対して架橋処理及び/又は親水化処理する工程
[2] Method for Producing Polyolefin Microporous Membrane The method for producing a polyolefin microporous membrane is not particularly limited as long as a polyolefin microporous membrane having desired characteristics can be produced, and a conventionally known method can be used, for example. The methods described in Japanese Patent No. 2132327, Japanese Patent No. 3347835, International Publication No. 2006/137540, etc. can be used. Specifically, it is preferable to include the following steps (1) to (5), and further, the following steps (6) to (8) can be included.
(1) A step of melt-kneading the polyolefin resin and a solvent for film formation to prepare a polyolefin solution (2) A step of extruding the polyolefin solution and cooling to form a gel-like sheet (3) Stretching the gel-like sheet First stretching step (4) Step of removing the film-forming solvent from the stretched gel-like sheet (5) Step of drying the sheet after removing the film-forming solvent (6) The dried sheet Second stretching step of stretching (7) Step of heat-treating the dried sheet (8) Step of cross-linking and / or hydrophilizing the sheet after the stretching step

以下、各工程についてそれぞれ説明する。
(1)ポリオレフィン溶液の調製工程
ポリオレフィン樹脂に、それぞれ適当な成膜用溶剤を添加した後、溶融混練し、ポリオレフィン溶液を調製する。溶融混練方法として、例えば日本国特許第2132327号および日本国特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
Hereinafter, each step will be described.
(1) Preparation Step of Polyolefin Solution After adding an appropriate film-forming solvent to each of the polyolefin resins, melt-knead the polyolefin resin to prepare a polyolefin solution. As the melt-kneading method, for example, a method using a twin-screw extruder described in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is known, the description thereof will be omitted.

ポリオレフィン溶液中、ポリオレフィン樹脂と成膜用溶剤との配合割合は、特に限定されないが、ポリオレフィン樹脂20〜30質量部に対して、成膜溶剤70〜80質量部であることが好ましい。ポリオレフィン樹脂の割合が上記範囲内であると、ポリオレフィン溶液を押し出す際にダイ出口でスウェルやネックインが防止でき、押出し成形体(ゲル状成形体)の成形性及び自己支持性が良好となる。 The mixing ratio of the polyolefin resin and the film-forming solvent in the polyolefin solution is not particularly limited, but is preferably 70 to 80 parts by mass of the film-forming solvent with respect to 20 to 30 parts by mass of the polyolefin resin. When the proportion of the polyolefin resin is within the above range, swells and neck-ins can be prevented at the die outlet when the polyolefin solution is extruded, and the moldability and self-supporting property of the extruded molded product (gel-shaped molded product) are improved.

(2)ゲル状シートの形成工程
ポリオレフィン溶液を押出機からダイに送給し、シート状に押し出す。同一または異なる組成の複数のポリオレフィン溶液を、押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。
(2) Gel-like sheet forming step The polyolefin solution is fed from an extruder to a die and extruded into a sheet. A plurality of polyolefin solutions having the same or different composition may be fed from an extruder to one die, where the layers may be laminated and extruded into a sheet.

押出方法はフラットダイ法及びインフレーション法のいずれでもよい。押出し温度は140〜250℃好ましく、押出速度は0.2〜15m/分が好ましい。ポリオレフィン溶液の各押出量を調節することにより、膜厚を調節することができる。押出方法としては、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。 The extrusion method may be either a flat die method or an inflation method. The extrusion temperature is preferably 140 to 250 ° C., and the extrusion speed is preferably 0.2 to 15 m / min. The film thickness can be adjusted by adjusting each extrusion amount of the polyolefin solution. As the extrusion method, for example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.

得られた押出し成形体を冷却することによりゲル状シートを形成する。ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。 A gel-like sheet is formed by cooling the obtained extruded molded product. As a method for forming the gel-like sheet, for example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Cooling is preferably performed at a rate of 50 ° C./min or higher, at least up to the gelation temperature. Cooling is preferably performed up to 25 ° C. or lower. By cooling, the microphase of the polyolefin separated by the film-forming solvent can be immobilized. When the cooling rate is within the above range, the crystallinity is maintained in an appropriate range, and a gel-like sheet suitable for stretching is obtained. As a cooling method, a method of contacting with a refrigerant such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable to contact with a roll cooled with the refrigerant for cooling.

(3)第1の延伸工程
次に、得られたゲル状シートを少なくとも一軸方向に延伸する。ゲル状シートは成膜用溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば、同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
(3) First Stretching Step Next, the obtained gel-like sheet is stretched at least in the uniaxial direction. Since the gel-like sheet contains a solvent for film formation, it can be uniformly stretched. After heating, the gel-like sheet is preferably stretched at a predetermined ratio by a tenter method, a roll method, an inflation method, or a combination thereof. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferable. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multi-stage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.

本工程における延伸倍率(面積延伸倍率)は、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。また、機械方向(MD)及び幅方向(TD)での延伸倍率は、互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。 The stretching ratio (area stretching ratio) in this step is preferably 9 times or more, more preferably 16 times or more, and particularly preferably 25 times or more. Further, the draw ratios in the mechanical direction (MD) and the width direction (TD) may be the same or different from each other. The draw ratio in this step refers to the area stretch ratio of the microporous membrane immediately before being subjected to the next step, based on the microporous membrane immediately before this step.

本工程の延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)〜Tcd+30℃の範囲内にするのが好ましく、結晶分散温度(Tcd)+5℃〜結晶分散温度(Tcd)+28℃の範囲内にするのがより好ましく、Tcd+10℃〜Tcd+26℃の範囲内にするのが特に好ましい。例えば、ポリエチレンの場合は、延伸温度を90〜140℃とするのが好ましく、より好ましくは100〜130℃にする。結晶分散温度(Tcd)は、ASTM D4065による動的粘弾性の温度特性測定により求められる。 The stretching temperature in this step is preferably in the range of the crystal dispersion temperature (Tcd) to Tcd + 30 ° C. of the polyolefin resin, and is in the range of the crystal dispersion temperature (Tcd) + 5 ° C. to the crystal dispersion temperature (Tcd) + 28 ° C. Is more preferable, and it is particularly preferable that the temperature is in the range of Tcd + 10 ° C. to Tcd + 26 ° C. For example, in the case of polyethylene, the stretching temperature is preferably 90 to 140 ° C, more preferably 100 to 130 ° C. The crystal dispersion temperature (Tcd) is determined by measuring the temperature characteristics of dynamic viscoelasticity with ASTM D4065.

以上のような延伸によりポリエチレンラメラ間に開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに細孔が拡大するが、適切な条件で延伸を行うと、貫通孔径を制御し、さらに薄い膜厚でも高い空孔率を有する事が可能となる。 Due to the above stretching, cleavage occurs between the polyethylene lamellae, the polyethylene phase becomes finer, and a large number of fibrils are formed. Fibrils form a three-dimensionally irregularly connected network structure. The mechanical strength is improved and the pores are expanded by stretching, but if stretching is performed under appropriate conditions, it is possible to control the through-hole diameter and to have a high pore ratio even with a thinner film thickness.

所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより機械的強度に優れた微多孔膜が得られる。その方法の詳細は日本国特許第3347854号公報に記載されている。 Depending on the desired physical properties, a temperature distribution may be provided in the film thickness direction for stretching, whereby a microporous film having excellent mechanical strength can be obtained. Details of the method are described in Japanese Patent No. 3347854.

(4)成膜用溶剤の除去
洗浄溶媒を用いて、成膜用溶剤の除去(洗浄)を行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号公報や特開2002−256099号公報に開示の方法を利用することができる。
(4) Removal of film-forming solvent The film-forming solvent is removed (cleaned) using a cleaning solvent. Since the polyolefin phase is phase-separated from the film-forming solvent phase, when the film-forming solvent is removed, it is composed of fibrils that form a fine three-dimensional network structure, and pores (voids) that communicate irregularly in three dimensions. A porous membrane having the above is obtained. Since the cleaning solvent and the method for removing the film-forming solvent using the cleaning solvent are known, the description thereof will be omitted. For example, the method disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.

(5)乾燥
成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特にTcdより5℃以上低いことが好ましい。乾燥は、微多孔膜を100質量%(乾燥質量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。残存洗浄溶媒が上記範囲内であると、後段の微多孔膜の延伸工程及び熱処理工程を行ったときに微多孔膜の空孔率が維持され、透過性の悪化が抑制される。
(5) Drying The microporous film from which the film-forming solvent has been removed is dried by a heat-drying method or an air-drying method. The drying temperature is preferably not less than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably 5 ° C. or more lower than Tcd. Drying is preferably carried out with the microporous membrane as 100% by mass (dry mass) until the residual cleaning solvent is 5% by mass or less, and more preferably 3% by mass or less. When the residual cleaning solvent is within the above range, the porosity of the microporous membrane is maintained when the subsequent stretching step and heat treatment step of the microporous membrane are performed, and deterioration of permeability is suppressed.

(6)第2の延伸工程
乾燥後の微多孔膜を、少なくとも一軸方向に延伸することが好ましい。微多孔膜の延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよい。本工程における延伸温度は、特に限定されないが、通常90〜135℃が好ましく、より好ましくは95〜130℃である。
(6) Second Stretching Step It is preferable to stretch the microporous membrane after drying at least in the uniaxial direction. The microporous membrane can be stretched by the tenter method or the like in the same manner as described above while heating. The stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be used. The stretching temperature in this step is not particularly limited, but is usually preferably 90 to 135 ° C, more preferably 95 to 130 ° C.

本工程における微多孔膜の延伸の一軸方向への延伸倍率(面積延伸倍率)は、一軸延伸の場合、機械方向又は幅方向に1.0〜2.0倍とする。二軸延伸の場合、面積延伸倍率は、下限値が1.0倍以上であるのが好ましく、より好ましくは1.1倍以上、さらに好ましくは1.2倍以上である。上限値は、3.5倍以下が好適である。機械方向及び幅方向に各々1.0〜2.0倍とし、機械方向と幅方向での延伸倍率が互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の延伸倍率のことをいう。 In the case of uniaxial stretching, the stretching ratio (area stretching ratio) of the stretching of the microporous membrane in this step is 1.0 to 2.0 times in the mechanical direction or the width direction. In the case of biaxial stretching, the lower limit of the area stretching ratio is preferably 1.0 times or more, more preferably 1.1 times or more, and further preferably 1.2 times or more. The upper limit is preferably 3.5 times or less. It may be 1.0 to 2.0 times in the machine direction and the width direction, respectively, and the draw ratios in the machine direction and the width direction may be the same or different from each other. The draw ratio in this step refers to the draw ratio of the microporous membrane immediately before being subjected to the next step, based on the microporous membrane immediately before this step.

(7)熱処理
また、乾燥後の微多孔膜は、熱処理を行うことができる。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いることができる。熱固定処理とは、膜の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中に機械方向や幅方向に熱収縮させる熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱緩和処理方法としては特開2002−256099号公報に開示の方法があげられる。熱処理温度はポリオレフィン樹脂のTcd〜Tmの範囲内が好ましく、微多孔膜の延伸温度±5℃の範囲内がより好ましく、微多孔膜の第2の延伸温度±3℃の範囲内が特に好ましい。
(7) Heat treatment Further, the microporous membrane after drying can be heat-treated. The heat treatment stabilizes the crystals and homogenizes the lamella. As the heat treatment method, a heat fixing treatment and / or a heat relaxation treatment can be used. The heat fixing treatment is a heat treatment in which the film is heated while being held so that the dimensions of the film do not change. The heat relaxation treatment is a heat treatment in which the membrane is heat-shrinked in the mechanical direction and the width direction during heating. The heat fixing treatment is preferably performed by a tenter method or a roll method. For example, as a heat relaxation treatment method, the method disclosed in JP-A-2002-256099 can be mentioned. The heat treatment temperature is preferably in the range of Tcd to Tm of the polyolefin resin, more preferably in the range of the stretching temperature of the microporous membrane ± 5 ° C., and particularly preferably in the range of the second stretching temperature of the microporous membrane ± 3 ° C.

(8)架橋処理、親水化処理
また、接合後又は延伸後の微多孔膜に対して、さらに、架橋処理および親水化処理を行うこともできる。例えば、微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射することにより、架橋処理を行う。電子線の照射の場合、0.1〜100Mradの電子線量が好ましく、100〜300kVの加速電圧が好ましい。架橋処理により微多孔膜のメルトダウン温度が上昇する。また、親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
(8) Crosslinking Treatment and Hydrophilization Treatment Further, the microporous membrane after bonding or stretching can be further subjected to a crosslinking treatment and a hydrophilic treatment. For example, the microporous membrane is crosslinked by irradiating it with ionizing radiation such as α-rays, β-rays, γ-rays, and electron beams. In the case of electron beam irradiation, an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable. The cross-linking treatment raises the meltdown temperature of the microporous membrane. Further, the hydrophilization treatment can be performed by a monomer graft, a surfactant treatment, a corona discharge or the like. The monomer graft is preferably carried out after the cross-linking treatment.

2.多孔質層
本発明に係る電池用セパレータが有する多孔質層は、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体およびアクリル樹脂を含む。これにより乾燥時接着性と湿潤時接着性を両立することができる。
[1]フッ化ビニリデン−ヘキサフルオロプロピレン(VdF‐HFP)共重合体
本発明に用いられるフッ化ビニリデン−ヘキサフルオロプロピレン共重合体は、非水電解液とも親和性が高く、非水電解液に対する化学的、物理的な安定性が高い。このため、この共重合体を含有する多孔質層は湿潤時接着性を発現し、高温下での使用にも電解液との親和性を十分維持できる。
2. Porous layer The porous layer contained in the battery separator according to the present invention contains a vinylidene fluoride-hexafluoropropylene copolymer and an acrylic resin. This makes it possible to achieve both dry adhesiveness and wet adhesiveness.
[1] Vinylidene Fluoride-Hexafluoropropylene (VdF-HFP) Copolymer The vinylidene fluoride-hexafluoropropylene copolymer used in the present invention has a high affinity with a non-aqueous electrolytic solution and is compatible with a non-aqueous electrolytic solution. High chemical and physical stability. Therefore, the porous layer containing this copolymer exhibits adhesiveness when wet, and can sufficiently maintain the affinity with the electrolytic solution even when used at a high temperature.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体は親水基を有する単量体単位を含む。これにより、電極表面に存在する活物質や電極中のバインダー成分と相互作用し強固に接着させることが可能となる。 The vinylidene fluoride-hexafluoropropylene copolymer contains a monomer unit having a hydrophilic group. This makes it possible to interact with the active material existing on the electrode surface and the binder component in the electrode to firmly bond them.

親水基としては、ヒドロキシル基、カルボン酸基、カルボン酸エステル基、スルホン酸基、およびこれらの塩などが挙げられる。特に、カルボン酸基、カルボン酸エステル基が好ましい。 Examples of the hydrophilic group include a hydroxyl group, a carboxylic acid group, a carboxylic acid ester group, a sulfonic acid group, and salts thereof. In particular, a carboxylic acid group and a carboxylic acid ester group are preferable.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体に親水基を導入するには、例えば、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体の合成において、無水マレイン酸、マレイン酸、マレイン酸エステル、マレイン酸モノメチルエステル等の親水基を有する単量体を共重合により主鎖に導入する方法や単量体をグラフト化により側鎖として導入する方法が挙げられる。 To introduce a hydrophilic group into the vinylidene fluoride-hexafluoropropylene copolymer, for example, in the synthesis of the vinylidene fluoride-hexafluoropropylene copolymer, maleic anhydride, maleic acid, maleic acid ester, maleic acid monomethyl ester Examples thereof include a method of introducing a monomer having a hydrophilic group such as the above into the main chain by copolymerization and a method of introducing the monomer as a side chain by grafting.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体における親水基を有する単量体単位の含有量の下限値は0.1モル%が好ましく、より好ましくは0.3モル%であり、上限値は5モル%が好ましく、より好ましくは4モル%である。親水基を有する単量体単位の含有量を上記好ましい範囲内とすることで、この親水基と、電極中の活物質表面や電極中のバインダー成分の親水部位親水基との間で相互作用が働き十分な湿潤時接着性を持たせることができる。親水基を有する単量体単位の含有量が5モル%以下であれば十分なポリマー結晶性を確保できるため、電解液に対する膨潤度を低く抑えることができ、高い湿潤時接着性が得られる。また、多孔質層に粒子が含まれる場合には、親水基を有する単量体単位の含有量を上記好ましい範囲内とすることで粒子の脱落を防ぐことができる。フッ化ビニリデン−ヘキサフルオロプロピレン共重合体における親水基を有する単量体単位の含有量はFT−IR、NMR、定量滴定などで測定できる。例えば、カルボン酸基の場合、FT−IRを用いてホモポリマーを基準として、C−H伸縮振動とカルボキシル基のC=O伸縮振動の吸収強度比から求めることができる。 The lower limit of the content of the monomer unit having a hydrophilic group in the vinylidene fluoride-hexafluoropropylene copolymer is preferably 0.1 mol%, more preferably 0.3 mol%, and the upper limit is 5 mol. % Is preferable, and more preferably 4 mol%. By setting the content of the monomer unit having a hydrophilic group within the above preferable range, the interaction between this hydrophilic group and the hydrophilic site hydrophilic group of the active material surface in the electrode or the binder component in the electrode can be caused. It works and can have sufficient adhesion when wet. When the content of the monomer unit having a hydrophilic group is 5 mol% or less, sufficient polymer crystallinity can be ensured, so that the degree of swelling with respect to the electrolytic solution can be suppressed low, and high adhesion when wet can be obtained. Further, when the porous layer contains particles, it is possible to prevent the particles from falling off by setting the content of the monomer unit having a hydrophilic group within the above preferable range. The content of the monomer unit having a hydrophilic group in the vinylidene fluoride-hexafluoropropylene copolymer can be measured by FT-IR, NMR, quantitative titration and the like. For example, in the case of a carboxylic acid group, it can be obtained from the absorption intensity ratio of CH stretching vibration and C = O stretching vibration of a carboxyl group with reference to a homopolymer using FT-IR.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体におけるヘキサフルオロプロピレン単量体単位の含有量の下限値は0.3モル%が好ましく、より好ましくは0.5モル%であり、上限値は3モル%が好ましく、より好ましくは2.5モル%である。ヘキサフルオロプロピレン単量体単位の含有量が0.3モル%未満であるとポリマー結晶性が高くなり、電解液に対する膨潤度が低くなるため十分な湿潤時接着性が得られない。また、ヘキサフルオロプロピレンの含有量が3モル%を超えると電解液に対して膨潤しすぎてしまい、湿潤時接着性が低下してしまう。 The lower limit of the content of hexafluoropropylene monomer unit in the vinylidene fluoride-hexafluoropropylene copolymer is preferably 0.3 mol%, more preferably 0.5 mol%, and the upper limit is 3 mol%. Is preferable, and more preferably 2.5 mol%. If the content of the hexafluoropropylene monomer unit is less than 0.3 mol%, the polymer crystallinity becomes high and the degree of swelling with respect to the electrolytic solution becomes low, so that sufficient adhesion when wet cannot be obtained. Further, if the content of hexafluoropropylene exceeds 3 mol%, it swells too much with respect to the electrolytic solution, and the adhesiveness at the time of wetting deteriorates.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体は公知の重合方法で得ることができる。公知の重合方法としては、例えば、特開平11−130821号公報に例示されている方法が挙げられる。イオン交換水、マレイン酸モノメチルエステル、フッ化ビニリデン及びヘキサフルオロプロピレンをオートクレーブに入れ、懸濁重合をおこない、その後、重合体スラリーを脱水、水洗した後、乾燥させて重合体粉末を得る方法である。このとき懸濁剤としてメチルセルロースや、ラジカル開始剤としてジイソプロピルパーオキシジカーボネートなどを適宜使用することができる。 The vinylidene fluoride-hexafluoropropylene copolymer can be obtained by a known polymerization method. Examples of known polymerization methods include the methods exemplified in JP-A-11-130821. This is a method in which ion-exchanged water, maleic anhydride, vinylidene fluoride and hexafluoropropylene are placed in an autoclave, suspension polymerization is carried out, and then the polymer slurry is dehydrated, washed with water and dried to obtain a polymer powder. .. At this time, methyl cellulose as a suspending agent and diisopropylperoxydicarbonate as a radical initiator can be appropriately used.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体は、特性を損なわない範囲で親水基を有する単量体単位以外の他の単量体単位をさらに重合することにより得られたものであってもよい。親水基を有する単量体単位以外の他の単量体として、例えば、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル等の単量体単位が挙げられる。 The vinylidene fluoride-hexafluoropropylene copolymer may be obtained by further polymerizing a monomer unit other than the monomer unit having a hydrophilic group as long as the properties are not impaired. Examples of the monomer other than the monomer unit having a hydrophilic group include a monomer unit such as tetrafluoroethylene, trifluoroethylene, trichlorethylene, and vinyl fluoride.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体の重量平均分子量の下限値は50万が好ましく、より好ましくは90万であり、上限値は200万が好ましく、より好ましくは150万である。フッ化ビニリデン−ヘキサフルオロプロピレン共重合体の重量平均分子量を上記好ましい範囲内にすることで、共重合体を溶媒に溶解させる時間が極端に長くならず生産性を低下させずに使用できる。また、電解液に膨潤した際に適度なゲル強度を維持できる。なお、上記重量平均分子量はゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値である。 The lower limit of the weight average molecular weight of the vinylidene fluoride-hexafluoropropylene copolymer is preferably 500,000, more preferably 900,000, and the upper limit is preferably 2 million, more preferably 1.5 million. By setting the weight average molecular weight of the vinylidene fluoride-hexafluoropropylene copolymer within the above-mentioned preferable range, the time for dissolving the copolymer in the solvent is not extremely long, and the copolymer can be used without reducing the productivity. In addition, an appropriate gel strength can be maintained when the gel is swollen in the electrolytic solution. The weight average molecular weight is a polystyrene-equivalent value obtained by gel permeation chromatography.

[2]アクリル樹脂
アクリル樹脂はブチルアクリレート単位を含む共重合体である。アクリル樹脂を含有する多孔質層は乾燥時接着性を発現させることができる。また、多孔質層に粒子が含まれる場合には、ブチルアクリレートにより塗膜の柔軟性が上がり、粒子の脱落を抑制する効果も期待できる。
[2] Acrylic resin Acrylic resin is a copolymer containing a butyl acrylate unit. The porous layer containing the acrylic resin can exhibit adhesiveness when dried. Further, when the porous layer contains particles, the butyl acrylate increases the flexibility of the coating film and can be expected to have the effect of suppressing the particles from falling off.

アクリル樹脂は電極接着性の観点から、ブチルアクリレートとアクリロニトリルの共重合体であることが好ましい。ブチルアクリレートとアクリロニトリルのモル比を制御することで電解液に対する膨潤度を調整し、さらに樹脂にほどよい柔軟性を持たせることができる。これにより湿潤時接着性も向上させることが可能になる。 The acrylic resin is preferably a copolymer of butyl acrylate and acrylonitrile from the viewpoint of electrode adhesion. By controlling the molar ratio of butyl acrylate and acrylonitrile, the degree of swelling with respect to the electrolytic solution can be adjusted, and the resin can be given moderate flexibility. This makes it possible to improve the adhesiveness when wet.

アクリル樹脂におけるブチルアクリレート単位の含有量の下限値は50モル%が好ましく、より好ましくは55モル%であり、上限値は75モル%が好ましく、より好ましくは70モル%である。アクリル樹脂におけるブチルアクリレート単位の含有量の下限値を上記好ましい範囲内にすることで、多孔質層に適度な柔軟性を持たせることができ、塗膜の脱落を抑制することができる。アクリル樹脂におけるブチルアクリレート単位の含有量を上記好ましい範囲内にすることで、乾燥時接着性と湿潤時接着性の良好なバランスが得られやすい。 The lower limit of the content of the butyl acrylate unit in the acrylic resin is preferably 50 mol%, more preferably 55 mol%, and the upper limit is preferably 75 mol%, more preferably 70 mol%. By setting the lower limit of the content of the butyl acrylate unit in the acrylic resin within the above-mentioned preferable range, the porous layer can be provided with appropriate flexibility, and the coating film can be suppressed from falling off. By setting the content of the butyl acrylate unit in the acrylic resin within the above preferable range, it is easy to obtain a good balance between the adhesiveness when dried and the adhesiveness when wet.

アクリル樹脂は公知の重合方法、例えば、特開2013−206846号公報に例示されている方法で得ることができる。攪拌機付きのオートクレーブにイオン交換水、n−ブチルアクリレート、アクリロニトリルを仕込んで乳化重合し、重合体粒子水分散液を得て、系内の水をN−メチル−2−ピロリドンに置換し、アクリル樹脂を得る方法などが挙げられる。重合時には、ラジカル重合開始剤として過硫酸カリウム、分子量調整剤としてt−ドデシルメルカプタンなどを適宜使用してもよい。 The acrylic resin can be obtained by a known polymerization method, for example, the method exemplified in JP2013-206846A. Ion-exchanged water, n-butyl acrylate, and acrylonitrile were charged into an autoclave equipped with a stirrer and emulsion-polymerized to obtain a polymer particle aqueous dispersion, and the water in the system was replaced with N-methyl-2-pyrrolidone to obtain an acrylic resin. There is a method of obtaining. At the time of polymerization, potassium persulfate as a radical polymerization initiator, t-dodecyl mercaptan as a molecular weight modifier, or the like may be appropriately used.

アクリル樹脂の含有量は、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体とアクリル樹脂の総量に対して、下限値は5質量%が好ましく、上限値は40質量%が好ましく、より好ましくは20質量%である。特に、上限値は10質量%未満であることがさらに好ましい。上記好ましい範囲内とすることで、十分な乾燥時接着性と湿潤時接着性が得られる。アクリル樹脂の含有量を5質量%以上とすることにより、湿潤時接着性と乾燥時接着性をより十分に両立することができる。アクリル樹脂の含有量を40質量%以下とすることによりフッ化ビニリデン−ヘキサフルオロプロピレン共重合体による湿潤時接着性の効果が得られやすい。 Regarding the content of the acrylic resin, the lower limit is preferably 5% by mass, the upper limit is preferably 40% by mass, and more preferably 20% by mass with respect to the total amount of the vinylidene fluoride-hexafluoropropylene copolymer and the acrylic resin. Is. In particular, the upper limit is more preferably less than 10% by mass. Within the above preferable range, sufficient adhesiveness when dried and adhesive when wet can be obtained. By setting the content of the acrylic resin to 5% by mass or more, it is possible to more sufficiently achieve both wet adhesiveness and dry adhesiveness. By setting the content of the acrylic resin to 40% by mass or less, the effect of adhesiveness when wet by the vinylidene fluoride-hexafluoropropylene copolymer can be easily obtained.

[3]粒子
本発明に係る電池用セパレータの多孔質層は粒子を含んでもよい。多孔質層に粒子を含むことで正極と負極の間のショートが起きる確率を下げることができ、安全性の向上が期待できる。粒子としては、無機粒子でも有機粒子でもよい。
[3] Particles The porous layer of the battery separator according to the present invention may contain particles. By including particles in the porous layer, the probability of a short circuit between the positive electrode and the negative electrode can be reduced, and improvement in safety can be expected. The particles may be inorganic particles or organic particles.

無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラス粒子、カオリン、タルク、チタニア、アルミナ、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ、ベーマイトなどが挙げられる。特に、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体の結晶成長性、コスト、入手のしやすさからチタニア、アルミナ、ベーマイトが好適である。 Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass particles, kaolin, talc, titania, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite, etc. Examples include molybdenum sulfide, mica, and zeolite. In particular, titania, alumina, and boehmite are preferable because of the crystal growth property, cost, and availability of the vinylidene fluoride-hexafluoropropylene copolymer.

有機粒子としては、架橋ポリスチレン粒子、架橋アクリル樹脂粒子、架橋メタクリル酸メチル系粒子などが挙げられる。 Examples of the organic particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, and crosslinked methyl methacrylate-based particles.

多孔質層に含まれる粒子の含有量は、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体とアクリル樹脂と粒子の総量に対して上限値としては85質量%が好ましく、より好ましくは80質量%、さらに好ましくは75質量%であり、下限値は50質量%が好ましく、より好ましくは60質量%、さらに好ましくは65質量%である。粒子の含有量を上記の好ましい範囲内にすることで、透気抵抗度の良好なバランスが得られやすい。 The content of the particles contained in the porous layer is preferably 85% by mass, more preferably 80% by mass, and more preferably 80% by mass with respect to the total amount of the vinylidene fluoride-hexafluoropropylene copolymer, the acrylic resin, and the particles. It is preferably 75% by mass, and the lower limit is preferably 50% by mass, more preferably 60% by mass, and further preferably 65% by mass. By keeping the particle content within the above-mentioned preferable range, a good balance of air permeation resistance can be easily obtained.

粒子の平均粒径は、粒子の脱落を抑制する観点から、微多孔膜の平均細孔径の1.5倍以上、50倍以下であることが好ましく、より好ましくは2.0倍以上、20倍以下である。平均流量細孔径は、JISK3832やASTMF316−86にならって測定され、例えば、パームポロメーター(PMI社製、CFP−1500A)を用いて、Dry−up、Wet−upの順で測定した。Wet−upには表面張力が既知のPMI社製Galwick(商品名)で十分に浸した微多孔質膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。平均流量細孔径については、Dry−up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet−up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
d=C・γ/P
上記式中、「d(μm)」は微多孔質膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数とした。
The average particle size of the particles is preferably 1.5 times or more and 50 times or less, more preferably 2.0 times or more and 20 times the average pore diameter of the microporous membrane from the viewpoint of suppressing the falling off of the particles. It is as follows. The average flow rate pore diameter was measured according to JIS K3832 or ASTMF316-86, and was measured in the order of Dry-up and Wet-up using, for example, a palm polo meter (CFP-1500A manufactured by PMI). For Wet-up, pressure was applied to a microporous membrane sufficiently immersed with Galwick (trade name) manufactured by PMI, which has a known surface tension, and the pore diameter converted from the pressure at which air began to penetrate was defined as the maximum pore diameter. Regarding the average flow rate pore diameter, the pore size was converted from the pressure at the intersection of the pressure and the slope of 1/2 of the flow rate curve in the Dry-up measurement and the pressure at the intersection of the Wet-up measurement curve. The following formula was used to convert the pressure and pore diameter.
d = C · γ / P
In the above formula, "d (μm)" is the pore size of the microporous membrane, "γ (mN / m)" is the surface tension of the liquid, "P (Pa)" is the pressure, and "C" is a constant.

粒子の平均粒径は、セル捲回時の巻き取芯とのすべり性や粒子脱落の観点から、0.3μm以上、1.8μm以下が好ましく、より好ましくは0.5μm以上、1.5μm以下、さらに好ましくは1.0μm以上、3.0μm以下である。粒子の平均粒径はレーザー回折方式や動的光散乱方式の測定装置を使用して測定できる。例えば、超音波プローブを用いて界面活性剤入り水溶液に分散させた粒子を粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)で測定し、体積換算での小粒子側から50%累積された時の粒子径(D50)の値を平均粒径とするのが好ましい。粒子の形状は真球形状、略球形状、板状、針状が挙げられるが特に限定されない。 The average particle size of the particles is preferably 0.3 μm or more and 1.8 μm or less, more preferably 0.5 μm or more and 1.5 μm or less, from the viewpoint of slipperiness with the winding core during cell winding and particle dropout. More preferably, it is 1.0 μm or more and 3.0 μm or less. The average particle size of the particles can be measured using a laser diffraction method or a dynamic light scattering method measuring device. For example, particles dispersed in an aqueous solution containing a surfactant using an ultrasonic probe were measured with a particle size distribution measuring device (Microtrac HRA manufactured by Nikkiso Co., Ltd.), and 50% of the particles were accumulated from the small particle side in terms of volume. It is preferable that the value of the particle size (D50) at the time is the average particle size. The shape of the particles includes a spherical shape, a substantially spherical shape, a plate shape, and a needle shape, but is not particularly limited.

[4]多孔質層の物性
多孔質層の膜厚は片面当たり0.5μm以上、3μm以下が好ましく、より好ましくは1μm以下、2.5μm以上、さらに好ましくは1μm以上、2μm以下である。片面あたり膜厚が0.5μm以上であれば湿潤時接着性及び乾燥時接着性が確保できる。片面あたり膜厚が3μm以下であれば巻き嵩を抑えることができ、今後、進むであろう電池の高容量化に適する。
[4] Physical characteristics of the porous layer The film thickness of the porous layer is preferably 0.5 μm or more and 3 μm or less, more preferably 1 μm or less, 2.5 μm or more, and further preferably 1 μm or more and 2 μm or less per side surface. When the film thickness per side is 0.5 μm or more, the adhesiveness when wet and the adhesiveness when dry can be ensured. If the film thickness per side is 3 μm or less, the winding volume can be suppressed, which is suitable for increasing the capacity of batteries, which will be advanced in the future.

多孔質層の空孔率は、30%以上、90%以下が好ましく、より好ましくは40%以上、70%以下である。多孔質層の空孔率を前記好ましい範囲内とすることで膜の電気抵抗の上昇を防ぎ、大電流を流すことができ、かつ膜強度を維持できる。 The porosity of the porous layer is preferably 30% or more and 90% or less, more preferably 40% or more and 70% or less. By setting the porosity of the porous layer within the above-mentioned preferable range, it is possible to prevent an increase in the electrical resistance of the film, allow a large current to flow, and maintain the film strength.

[5]電池用セパレータの製造方法
本発明の一態様に係る電池用セパレータの製造方法は以下の工程(a)〜(c)を順次含む。
(a)フッ化ビニリデン−ヘキサフルオロプロピレン共重合体を溶媒に溶解したフッ素樹脂溶液を得る工程
(b)フッ素樹脂溶液にアクリル樹脂溶液を添加し、混合して塗工液を得る工程
(c)塗工液を微多孔膜に塗布し、凝固浴に浸漬し、洗浄、乾燥する工程
[5] Method for Manufacturing Battery Separator The method for manufacturing a battery separator according to one aspect of the present invention sequentially includes the following steps (a) to (c).
(A) Step of obtaining a fluororesin solution in which a vinylidene fluoride-hexafluoropropylene copolymer is dissolved in a solvent (b) Step of adding an acrylic resin solution to the fluororesin solution and mixing to obtain a coating solution (c) A process in which a coating solution is applied to a microporous film, immersed in a coagulation bath, washed, and dried.

(a)フッ素樹脂溶液を得る工程
溶媒はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体を溶解し、アクリル樹脂を溶解または分散し、かつ、凝固液と混和しうるものであれば特に限定されない。溶解性、低揮発性の観点から、溶媒はN−メチル−2−ピロリドンが好ましい。
(A) Step of obtaining a fluororesin solution The solvent is not particularly limited as long as it dissolves a vinylidene fluoride-hexafluoropropylene copolymer, dissolves or disperses an acrylic resin, and is miscible with a coagulating solution. From the viewpoint of solubility and low volatility, the solvent is preferably N-methyl-2-pyrrolidone.

粒子を含む多孔質層を設ける場合には、予め粒子を分散させたフッ素樹脂溶液(分散液ともいう)を調製することが重要である。フッ化ビニリデン−ヘキサフルオロプロピレン共重合体を溶媒に溶解し、そこに攪拌しながら粒子を添加して一定の時間(例えば約1時間)、ディスパーなどで攪拌することで予備分散する。さらにビーズミルやペイントシェーカーを用いて粒子を分散させる工程(分散工程)を経ることにより、粒子の凝集が少ないフッ素樹脂溶液を得ることができる。 When providing a porous layer containing particles, it is important to prepare a fluororesin solution (also referred to as a dispersion liquid) in which the particles are dispersed in advance. The vinylidene fluoride-hexafluoropropylene copolymer is dissolved in a solvent, particles are added thereto with stirring, and the mixture is pre-dispersed by stirring with a disper or the like for a certain period of time (for example, about 1 hour). Further, by going through a step of dispersing the particles (dispersion step) using a bead mill or a paint shaker, a fluororesin solution with less agglutination of the particles can be obtained.

(b)塗工液を得る工程
本工程は、フッ素樹脂溶液にアクリル樹脂溶液を添加し、例えば攪拌羽根のついたスリーワンモータで混合して塗工液を調製する工程である。
(B) Step of obtaining coating liquid This step is a step of adding an acrylic resin solution to a fluororesin solution and mixing it with, for example, a three-one motor equipped with a stirring blade to prepare a coating liquid.

本工程で使用するアクリル樹脂溶液はアクリル樹脂を溶媒に溶解または分散させた溶液である。ここで用いる溶媒は工程(a)と同一の溶媒が好ましい。特に、溶解性、低揮発性の観点からN−メチル−2−ピロリドンが好ましい。アクリル樹脂溶液はアクリル樹脂を重合した後、N−メチル−2−ピロリドンを加えて蒸留するなどして溶媒を置換して得るのが操作性の観点から好ましい。 The acrylic resin solution used in this step is a solution in which acrylic resin is dissolved or dispersed in a solvent. The solvent used here is preferably the same solvent as in step (a). In particular, N-methyl-2-pyrrolidone is preferable from the viewpoint of solubility and low volatility. From the viewpoint of operability, it is preferable to obtain the acrylic resin solution by substituting the solvent by polymerizing the acrylic resin and then adding N-methyl-2-pyrrolidone and distilling.

粒子を含む多孔質層を設ける場合には、フッ素樹脂溶液に粒子を分散させた後、アクリル樹脂溶液を添加(後入れ)することが重要である。つまり、分散工程においてアクリル樹脂が入らないことが重要である。フッ化ビニリデン−ヘキサフルオロプロピレン共重合体と、アクリル樹脂と、粒子を同時に溶媒に添加した場合、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体に含まれる親水基とアクリル樹脂に含まれるブチルアクリレートとが分散時の熱およびせん断で徐々に塗工液がゲル化し始めることが推測されるため、工業的に不適である。さらに、多孔質層の厚さを3μm以下とする薄膜塗工が増粘の影響で困難となる。本発明の製造方法における工程(a)、(b)により塗工液のゲル化が抑制され、薄膜塗工が可能となり、塗工液の保存安定性も向上する。 When providing a porous layer containing particles, it is important to disperse the particles in a fluororesin solution and then add (post-insert) the acrylic resin solution. That is, it is important that the acrylic resin does not enter in the dispersion process. When vinylidene fluoride-hexafluoropropylene copolymer, acrylic resin, and particles are added to the solvent at the same time, the hydrophilic groups contained in the vinylidene fluoride-hexafluoropropylene copolymer and the butyl acrylate contained in the acrylic resin are present. It is industrially unsuitable because it is presumed that the coating liquid gradually begins to gel due to heat and shear during dispersion. Further, thin film coating with a thickness of 3 μm or less of the porous layer becomes difficult due to the influence of thickening. By the steps (a) and (b) in the production method of the present invention, gelation of the coating liquid is suppressed, thin film coating becomes possible, and the storage stability of the coating liquid is also improved.

(c)塗工液を微多孔膜に塗布し、凝固浴に浸漬し、洗浄、乾燥する工程
本工程は、微多孔膜に塗工液を塗布し、塗布した微多孔膜を凝固液に浸漬してフッ化ビニリデン−ヘキサフルオロプロピレン共重合体及びアクリル樹脂を相分離させ、三次元網目構造を有する状態で凝固させ、洗浄、乾燥する工程である。これにより微多孔膜と、その表面に多孔質層を備えた電池用セパレータが得られる。
(C) Step of applying the coating liquid to the microporous membrane, immersing it in the coagulation bath, washing and drying In this step, the coating liquid is applied to the microporous membrane and the applied microporous membrane is immersed in the coagulation liquid. Then, the vinylidene fluoride-hexafluoropropylene copolymer and the acrylic resin are phase-separated, solidified in a state having a three-dimensional network structure, washed, and dried. As a result, a microporous membrane and a battery separator having a porous layer on the surface thereof can be obtained.

塗工液を微多孔膜に塗布する方法は、公知の方法でもよく、例えば、ディップ・コート法、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法を単独あるいは組み合わせることができる。 The method of applying the coating liquid to the microporous film may be a known method, for example, a dip coating method, a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, etc. Examples include the air knife coating method, the Meyer bar coating method, the pipe doctor method, the blade coating method and the die coating method, and these methods can be used alone or in combination.

凝固液は水であることが好ましく、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体及びアクリル樹脂に対する良溶媒を1質量%以上、20質量%以下含む水溶液であることが好ましく、より好ましくは5質量%以上、15質量%以下含有する水溶液である。良溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが挙げられる。凝固浴内での浸漬時間は3秒以上とすることが好ましい。上限は制限されないが、10秒もあれば十分である。 The coagulation liquid is preferably water, preferably an aqueous solution containing 1% by mass or more and 20% by mass or less of a good solvent for the vinylidene fluoride-hexafluoropropylene copolymer and the acrylic resin, and more preferably 5% by mass. As mentioned above, it is an aqueous solution containing 15% by mass or less. Examples of good solvents include N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide. The immersion time in the coagulation bath is preferably 3 seconds or longer. The upper limit is not limited, but 10 seconds is sufficient.

洗浄には水を用いることができる。乾燥は、例えば100℃以下の熱風を用いることができる。 Water can be used for cleaning. For drying, for example, hot air of 100 ° C. or lower can be used.

本発明に係る電池用セパレータは、ニッケル−水素電池、ニッケル−カドミウム電池、ニッケル−亜鉛電池、銀−亜鉛電池、リチウムイオン二次電池、リチウムポリマー二次電池、リチウム−硫黄電池等の二次電池などの電池用セパレータとして用いることができる。特に、リチウムイオン二次電池のセパレータとして用いるのが好ましい。 The battery separator according to the present invention is a secondary battery such as a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-zinc battery, a silver-zinc battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium-sulfur battery. It can be used as a battery separator for the above. In particular, it is preferably used as a separator for a lithium ion secondary battery.

[6]電池用セパレータの物性
電池用セパレータの湿潤時接着性は、湿潤時曲げ強さにより評価することができ、湿潤時曲げ強さが14N以上である。湿潤時曲げ強さの上限値は、特に定めないが30Nあれば十分である。湿潤時曲げ強さを上記好ましい範囲内にすることで、セパレータと電極との界面での部分的な遊離を抑制し、電池内部抵抗の増大、電池特性低下を抑制できる。
[6] Physical Properties of Battery Separator The wet adhesiveness of the battery separator can be evaluated by the wet bending strength, and the wet bending strength is 14 N or more. The upper limit of the flexural strength when wet is not particularly specified, but 30 N is sufficient. By setting the flexural strength during wetting within the above preferable range, it is possible to suppress partial release at the interface between the separator and the electrode, and suppress an increase in battery internal resistance and a decrease in battery characteristics.

電池用セパレータの乾燥時接着性は、乾燥時曲げ強さにより評価することができ、乾燥時曲げ強さの下限値が好ましくは7N以上、より好ましくは9N以上である。乾燥時曲げ強さの上限値は特に定めないが30Nあれば十分である。乾燥時曲げ強さを上記好ましい範囲内にすることで、捲回電極体のたわみ、歪みを抑制しやすくなる。 The adhesiveness of the battery separator during drying can be evaluated by the bending strength during drying, and the lower limit of the bending strength during drying is preferably 7 N or more, more preferably 9 N or more. The upper limit of the bending strength during drying is not particularly set, but 30 N is sufficient. By setting the flexural strength during drying within the above-mentioned preferable range, it becomes easy to suppress the deflection and distortion of the wound electrode body.

電池用セパレータは乾燥時接着性と湿潤時接着性のバランスの観点から、湿潤時曲げ強さが14N以上、かつ乾燥時曲げ強さが7N以上であることが好ましい。 From the viewpoint of the balance between the adhesiveness during drying and the adhesiveness during wetness, the battery separator preferably has a flexural strength during wetness of 14 N or more and a flexural strength during dryness of 7 N or more.

以下、実施例を示して具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measured values in the examples are values measured by the following methods.

1.湿潤時曲げ強さ
一般に、正極にはフッ素樹脂のバインダーが用いられ、フッ素樹脂を含む多孔質層がセパレータ上に備えられている場合、フッ素樹脂同士の相互拡散により接着性が担保されやすい。一方、負極にはフッ素樹脂以外のバインダーが用いられ、フッ素樹脂の拡散が起きにくいため正極に比べ負極はセパレータとの接着性が得られにくい。そこで、本測定ではセパレータと負極との間の接着性を、以下に述べる曲げ強さを指標として評価した。
(1)負極の作製
カルボキシメチルセルロースを1.5質量部含む水溶液を人造黒鉛96.5質量部に加えて混合し、さらに、固形分として2質量部のスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが8μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.5g/cmにして、負極を作製した。
(2)試験用捲回体の作製
上記で作成された負極(機械方向161mm×幅方向30mm)と、実施例および比較例で作成したセパレータ(機械方向160mm×幅方向34mm)を重ね、金属板(長さ300mm、幅25mm、厚さ1mm)を巻き芯としてセパレータが内側になるようにセパレータと負極を巻き取り、金属板を引き抜いて試験用捲回体を得た。試験用捲回体は長さ約34mm×幅約28mmとなった。
(3)湿潤時曲げ強さの測定方法
アルミニウムとポリプロピレンからなるラミネートフィルム(長さ110mm、幅65mm、厚さ0.12mm)上に試験用捲回体を置いて、ラミネートフィルムを長さ方向に半分に折り曲げ、ラミネートフィルムの二辺を溶着し、一辺が開口する袋状にした。エチレンカーボネートとエチルメチルカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの割合で溶解させた電解液500μLをグローブボックス中で開口部から注入して試験用捲回体に含浸させ、その後、真空シーラーで開口部の一辺を封止した。
次に、ラミネートフィルムに封入した試験用捲回体を2枚のガスケット(厚さ1mm、5cm×5cm)で挟み込み、精密加熱加圧装置(新東工業株式会社製、CYPT−10)にて98℃、0.6MPaで2分間加圧し、室温で放冷した。加圧後のラミネートフィルムに封入した試験用捲回体について、万能試験機(株式会社島津製作所製、AGS−J)を用いて図1の模式図に示すように湿潤時曲げ強さを測定した。以下詳細を記載する。
2本のアルミニウム製L字アングル4(厚さ1mm、10mm×10mm、長さ5cm)を90°部分が上になるように平行に端部をそろえて配置し、90°部分を支点として支点間距離が15mmとなるよう固定した。2本のアルミニウム製L字アングルの支点間距離の中間である7.5mm地点に試験用捲回体の幅方向の辺(約28mm)の中点を合わせて、L字アングルの長さ方向の辺からはみ出さないように試験用捲回体を配置した。
次に、圧子としてアルミニウム製L字アングル3(厚さ1mm、10mm×10mm、長さ4cm)の長さ方向の辺から試験用捲回体の長さ方向の辺(約34mm)がはみ出さないようにかつ平行にして、試験用捲回体の幅方向の辺の中点にアルミニウム製L字アングル3の90°部分を合わせ、90°部分が下になるようにアルミニウム製L字アングル3を万能試験機のロードセル(ロードセル容量50N)に固定した。0.5mm/minの負荷速度で試験荷重が0.05Nとなってからのストローク0.5mm地点での測定値について、試験用捲回体3個の平均値を湿潤時曲げ強さとした。
1. 1. Flexural strength when wet Generally, when a fluororesin binder is used for the positive electrode and a porous layer containing the fluororesin is provided on the separator, the adhesiveness is easily ensured by mutual diffusion between the fluororesins. On the other hand, a binder other than the fluororesin is used for the negative electrode, and the fluororesin is less likely to diffuse, so that the negative electrode is less likely to have adhesiveness to the separator than the positive electrode. Therefore, in this measurement, the adhesiveness between the separator and the negative electrode was evaluated using the flexural strength described below as an index.
(1) Preparation of Negative Electrode An aqueous solution containing 1.5 parts by mass of carboxymethyl cellulose was added to 96.5 parts by mass of artificial graphite and mixed, and then 2 parts by mass of styrene-butadiene latex as a solid content was added and mixed to combine the negative electrodes. The slurry was prepared as an agent-containing slurry. This negative electrode mixture-containing slurry is uniformly applied to both sides of a negative electrode current collector made of copper foil having a thickness of 8 μm and dried to form a negative electrode layer, and then compression-molded by a roll press to collect current. A negative electrode was prepared by setting the density of the negative electrode layer excluding the body to 1.5 g / cm 3.
(2) Preparation of test winding body The negative electrode (machine direction 161 mm × width direction 30 mm) prepared above and the separator (machine direction 160 mm × width direction 34 mm) prepared in Examples and Comparative Examples are overlapped with each other to form a metal plate. The separator and the negative electrode were wound around the winding core (length 300 mm, width 25 mm, thickness 1 mm) so that the separator was on the inside, and the metal plate was pulled out to obtain a test wound body. The test wound body had a length of about 34 mm and a width of about 28 mm.
(3) Method for measuring bending strength when wet A test wound body is placed on a laminated film (length 110 mm, width 65 mm, thickness 0.12 mm) made of aluminum and polypropylene, and the laminated film is placed in the length direction. It was bent in half and welded on two sides of the laminated film to form a bag with one side open. 500 μL of an electrolytic solution prepared by dissolving LiPF 6 at a ratio of 1 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7 is injected through an opening in a glove box and impregnated into a test wound body. Then, one side of the opening was sealed with a vacuum sealer.
Next, the test wound body enclosed in the laminated film is sandwiched between two gaskets (thickness 1 mm, 5 cm x 5 cm), and 98 with a precision heating and pressurizing device (CYPT-10 manufactured by Shinto Kogyo Co., Ltd.). The film was pressurized at 0.6 MPa for 2 minutes and allowed to cool at room temperature. The flexural strength of the test wound body enclosed in the pressurized laminated film was measured using a universal testing machine (manufactured by Shimadzu Corporation, AGS-J) as shown in the schematic diagram of FIG. .. Details will be described below.
Two aluminum L-shaped angles 4 (thickness 1 mm, 10 mm × 10 mm, length 5 cm) are arranged in parallel with the 90 ° portion facing up, and the 90 ° portion is used as the fulcrum between the fulcrums. It was fixed so that the distance was 15 mm. Align the midpoint of the width direction side (about 28 mm) of the test winding body with the 7.5 mm point, which is the middle of the distance between the fulcrums of the two aluminum L-shaped angles, in the length direction of the L-shaped angle. The test winding body was arranged so as not to protrude from the side.
Next, as an indenter, the side (about 34 mm) in the length direction of the test winding body does not protrude from the side in the length direction of the aluminum L-shaped angle 3 (thickness 1 mm, 10 mm × 10 mm, length 4 cm). Align the 90 ° portion of the aluminum L-shaped angle 3 with the midpoint of the widthwise side of the test winding body, and align the 90 ° portion of the aluminum L-shaped angle 3 so that the 90 ° portion is on the bottom. It was fixed to the load cell (load cell capacity 50N) of the universal testing machine. For the measured values at the stroke 0.5 mm point after the test load became 0.05 N at a load speed of 0.5 mm / min, the average value of the three test winding bodies was taken as the bending strength when wet.

2.乾燥時曲げ強さ
(1)負極の作製
上記1.湿潤時曲げ強さと同一の負極を用いた。
(2)試験用捲回体の作製
上記1.湿潤時曲げ強さと同一の試験用捲回体を用いた。
(3)乾燥時曲げ強さの測定方法
準備した試験用捲回体を2枚のガスケット(厚さ1mm、5cm×5cm)で挟み込み、精密加熱加圧装置(新東工業株式会社製,CYPT−10)にて90℃、0.6MPaで2分間加圧し、室温で放冷した。加圧後の試験用捲回体について、図2に示すように、上記1.湿潤時曲げ強さの測定方法と同様に配置して万能試験機(株式会社島津製作所製、AGS−J)を用いて、以下の条件で試験用捲回体3個を測定し、最大試験力の平均値を乾燥時曲げ強さとした。
支点間距離: 15mm
セル容量: 50N
負荷速度: 0.5mm/min
2. Flexural strength during drying (1) Preparation of negative electrode 1. A negative electrode having the same bending strength as when wet was used.
(2) Preparation of test winding body 1. A test wound body having the same bending strength as when wet was used.
(3) Method for measuring flexural strength during drying The prepared test winding body is sandwiched between two gaskets (thickness 1 mm, 5 cm x 5 cm), and a precision heating and pressurizing device (manufactured by Shinto Kogyo Co., Ltd., CYPT-). The pressure was increased at 90 ° C. and 0.6 MPa for 2 minutes at 10), and the mixture was allowed to cool at room temperature. Regarding the test wound body after pressurization, as shown in FIG. 2, the above 1. Arranged in the same manner as the method for measuring flexural strength when wet, and using a universal testing machine (manufactured by Shimadzu Corporation, AGS-J), three test winding bodies were measured under the following conditions, and the maximum test force was obtained. The average value of was taken as the bending strength at the time of drying.
Distance between fulcrums: 15 mm
Cell capacity: 50N
Load speed: 0.5 mm / min

3.粉落ち評価
取っ手のついた重り(1143g)の底面(底面積5.5cm×6cm)に、多孔質層が表面となるようにシワなく平らにセパレータを固定した。画用紙(大王製紙株式会社製、C−55、くろ)の上で20cmの距離を10往復、重りを移動させた後、多孔質層が画用紙に転写する量を確認した。任意の5mm×5mmの範囲を10か所選び、光学顕微鏡を用いて150μm以上の塗膜脱落物を個数計測し、粉落ちは脱落物の個数で以下のように評価した。
良好:10か所中の塗膜脱落物の合計が50個以下
不良:10か所中の塗膜脱落物の合計が51個以上
3. 3. Evaluation of powder removal A separator was fixed flatly on the bottom surface (bottom area 5.5 cm x 6 cm) of a weight (1143 g) with a handle so that the porous layer was the surface without wrinkles. After moving the weight 10 times back and forth over a distance of 20 cm on drawing paper (manufactured by Daio Paper Corporation, C-55, Kuro), the amount of the porous layer transferred to the drawing paper was confirmed. Ten arbitrary 5 mm × 5 mm ranges were selected, and the number of coating film shed objects of 150 μm or more was measured using an optical microscope, and powder shedding was evaluated by the number of shed objects as follows.
Good: Total number of paint film shed items in 10 places is 50 or less Defective: Total number of paint film shed items in 10 places is 51 or more

4.膜厚
接触式膜厚計(株式会社ミツトヨ製“ライトマチック”(登録商標)series318)を使用して、超硬球面測定子φ9.5mmを用い、加重0.01Nの条件で20点を測定し、得られた測定値の平均値を膜厚とした。
4. Film thickness Using a contact-type film thickness meter (“Lightmatic” (registered trademark) series 318 manufactured by Mitutoyo Co., Ltd.), 20 points were measured under the condition of a weight of 0.01 N using a super hard spherical probe φ9.5 mm. The average value of the obtained measured values was taken as the film thickness.

実施例1
[フッ化ビニリデン−ヘキサフルオロプロピレン(VdF−HFP)共重合体]
フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a)を合成した。得られたフッ化ビニリデン−ヘキサフルオロプロピレン共重合体は重量平均分子量が150万、フッ化ビニリデン単量体単位/ヘキサフルオロプロピレン単量体単位/マレイン酸モノメチルエステル単量体単位のモル比が98.5/1.0/0.5であることをNMR測定で確認した。
[アクリル樹脂]
アクリロニトリル、n−ブチルアクリレートを出発原料として乳化重合法にてアクリル樹脂としてブチルアクリレート‐アクリロニトリル共重合体を合成し、その後、水をN−メチル−2−ピロリドン(NMP)に置換し、固形分濃度が5質量%のアクリル樹脂溶液を得た。得られたアクリル樹脂はTgが−5℃、アクリロニトリル単量体単位/n−ブチルアクリレート単量体単位のモル比が38/62であることをNMR測定で確認した。
[電池用セパレータの作製]
フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a)28.5質量部とNMP641質量部を混合し、その後ディスパーで攪拌しながら無機粒子としてアルミナ粒子(平均粒径1.1μm)を70質量部加えて、ディスパーで1時間、2000rpmで予備攪拌した。次いで、ダイノーミル(シンマルエンタープライゼス製ダイノーミルマルチラボ(1.46L容器、充填率80%、φ0.5mmアルミナビーズ))を用いて、流量11kg/h、周速10m/sの条件にて3回処理し、分散液を得た。分散液にアクリル樹脂溶液を混合して、攪拌羽根のついたスリーワンモータで500rpm、30分間攪拌し、濾過して固形分濃度13質量%、アルミナ粒子:共重合体(a):アクリル樹脂の質量比が70:28.5:1.5の塗工液を得た。厚さ7μmのポリエチレン微多孔膜の両面にディップ・コート法にて塗工液を塗布し、水溶液中に浸漬させ、純水で洗浄した後、50℃で乾燥し、厚み11μmの電池用セパレータを得た。
Example 1
[Vinylidene Fluoride-Hexafluoropropylene (VdF-HFP) Copolymer]
A vinylidene fluoride-hexafluoropropylene copolymer (a) was synthesized by a suspension polymerization method using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. The obtained vinylidene fluoride-hexafluoropropylene copolymer has a weight average molecular weight of 1.5 million and a molar ratio of vinylidene fluoride monomer unit / hexafluoropropylene monomer unit / maleic acid monomethyl ester monomer unit of 98. It was confirmed by NMR measurement that it was .5 / 1.0 / 0.5.
[acrylic resin]
A butyl acrylate-acrylonitrile copolymer was synthesized as an acrylic resin by an emulsion polymerization method using acrylonitrile and n-butyl acrylate as starting materials, and then water was replaced with N-methyl-2-pyrrolidone (NMP) to obtain a solid content concentration. Obtained a 5% by mass acrylic resin solution. It was confirmed by NMR measurement that the obtained acrylic resin had a Tg of −5 ° C. and a molar ratio of acrylonitrile monomer unit / n-butyl acrylate monomer unit of 38/62.
[Making a battery separator]
28.5 parts by mass of vinylidene fluoride-hexafluoropropylene copolymer (a) and 641 parts by mass of NMP are mixed, and then 70 parts by mass of alumina particles (average particle size 1.1 μm) are added as inorganic particles while stirring with a disper. Then, the mixture was pre-stirred at 2000 rpm for 1 hour with a disper. Next, using a dyno mill (Dyno Mill Multilab (1.46 L container, filling rate 80%, φ0.5 mm alumina beads) manufactured by Simmal Enterprises), the flow rate is 11 kg / h and the peripheral speed is 10 m / s. The treatment was performed 3 times to obtain a dispersion liquid. Acrylic resin solution is mixed with the dispersion, stirred with a three-one motor equipped with stirring blades at 500 rpm for 30 minutes, and filtered to have a solid content concentration of 13% by mass. Alumina particles: copolymer (a): mass of acrylic resin A coating solution having a ratio of 70: 28.5: 1.5 was obtained. A coating liquid is applied to both sides of a polyethylene microporous membrane having a thickness of 7 μm by a dip coating method, immersed in an aqueous solution, washed with pure water, and then dried at 50 ° C. to obtain a battery separator having a thickness of 11 μm. Obtained.

実施例2
固形分濃度が13質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a):アクリル樹脂の質量比が70:27.2:2.8となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。得られた電池用セパレータについて、粉落ち評価をしたところ良好であった。
Example 2
A coating solution prepared so that the solid content concentration is 13% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a): acrylic resin is 70: 27.2: 2.8. A battery separator was obtained in the same manner as in Example 1 except that it was used. The obtained battery separator was evaluated for powder removal and was good.

実施例3
固形分濃度が13質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a):アクリル樹脂の質量比が70:25.2:4.8となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 3
A coating solution prepared so that the solid content concentration is 13% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a): acrylic resin is 70: 25.2: 4.8. A battery separator was obtained in the same manner as in Example 1 except that it was used.

実施例4
固形分濃度が13質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a):アクリル樹脂の質量比が70:22.5:7.5となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 4
A coating solution prepared so that the solid content concentration is 13% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a): acrylic resin is 70: 22.5: 7.5. A battery separator was obtained in the same manner as in Example 1 except that it was used.

実施例5
固形分濃度が13質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a):アクリル樹脂の質量比が70:18:12となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 5
Except for using a coating liquid prepared so that the solid content concentration was 13% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a): acrylic resin was 70:18:12. A battery separator was obtained in the same manner as in Example 1.

実施例6
固形分濃度が12質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a):アクリル樹脂の質量比が65:31.7:3.3となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 6
A coating solution prepared so that the solid content concentration is 12% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a): acrylic resin is 65: 31.7: 3.3. A battery separator was obtained in the same manner as in Example 1 except that it was used.

実施例7
固形分濃度が18質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a):アクリル樹脂の質量比が85:12.4:2.6となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 7
A coating solution prepared so that the solid content concentration is 18% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a): acrylic resin is 85: 12.4: 2.6. A battery separator was obtained in the same manner as in Example 1 except that it was used.

実施例8
無機粒子としてベーマイト(平均粒径2.3μm)を用いて調製した塗工液を用いた以外は実施例2と同様にして電池用セパレータを得た。
Example 8
A battery separator was obtained in the same manner as in Example 2 except that a coating liquid prepared using boehmite (average particle size 2.3 μm) was used as the inorganic particles.

実施例9
無機粒子としてチタニア(平均粒径1μm)を用いて調製した塗工液を用いた以外は実施例2と同様にして電池用セパレータを得た。
Example 9
A battery separator was obtained in the same manner as in Example 2 except that a coating liquid prepared using titania (average particle size 1 μm) was used as the inorganic particles.

実施例10
電池用セパレータの厚み10μmとした以外は実施例2と同様にして電池用セパレータを得た。
Example 10
A battery separator was obtained in the same manner as in Example 2 except that the thickness of the battery separator was 10 μm.

比較例1
固形分濃度が13質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a)の質量比が70:30となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。得られた電池用セパレータについて、粉落ち評価をしたところ不良であった。
Comparative Example 1
Same as in Example 1 except that a coating liquid prepared so that the solid content concentration is 13% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a) is 70:30 is used. To obtain a separator for batteries. The obtained battery separator was evaluated as being defective when powder was removed.

比較例2
フッ化ビニリデン−ヘキサフルオロプロピレン共重合体のかわりにPVdFホモポリマー(株式会社クレハ製、KF#7300(分子量100万以上))を用いて調製した塗工液を使用した以外は実施例2と同様にして電池用セパレータを得た。
Comparative Example 2
Same as Example 2 except that a coating solution prepared using PVdF homopolymer (Kureha Corporation, KF # 7300 (molecular weight of 1 million or more)) was used instead of the vinylidene fluoride-hexafluoropropylene copolymer. To obtain a battery separator.

比較例3
フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a)のかわりにヘキサフルオロプロピレン単量体の含有量が4.5モル%のフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(b)(アルケマ株式会社製、kynar2801(VdF/HFPのモル比が95.5/4.5、分子量50万未満))を用いて調製した塗工液を使用した以外は実施例2と同様にして電池用セパレータを得た。
Comparative Example 3
Vinylidene fluoride-hexafluoropropylene copolymer (b) containing 4.5 mol% of hexafluoropropylene monomer instead of vinylidene fluoride-hexafluoropropylene copolymer (a) (manufactured by Alchema Co., Ltd.) , Kynar2801 (VdF / HFP molar ratio 95.5 / 4.5, molecular weight less than 500,000)) was used to obtain a battery separator in the same manner as in Example 2 except that a coating solution was used. ..

比較例4
[アクリル樹脂の合成]
アクリロニトリル、エチルアクリレートを出発原料として乳化重合法にてアクリル樹脂としてエチルアクリレート‐アクリロニトリル共重合体を合成し、その後、水をN−メチル−2−ピロリドンに置換し、固形分濃度が5質量%のアクリル樹脂溶液を得た。得られたアクリル樹脂はTgが10℃、アクリロニトリル単量体単位/エチルアクリレート単量体単位のモル比が37/63であることをNMR測定で確認した。このアクリル樹脂を用いて調製した塗工液を使用した以外は実施例2と同様にして電池用セパレータを得た。得られた電池用セパレータについて粉落ち評価をしたところ良好であった。
Comparative Example 4
[Synthesis of acrylic resin]
An ethyl acrylate-acrylonitrile copolymer was synthesized as an acrylic resin by an emulsion polymerization method using acrylonitrile and ethyl acrylate as starting materials, and then water was replaced with N-methyl-2-pyrrolidone, and the solid content concentration was 5% by mass. An acrylic resin solution was obtained. It was confirmed by NMR measurement that the obtained acrylic resin had a Tg of 10 ° C. and a molar ratio of acrylonitrile monomer unit / ethyl acrylate monomer unit was 37/63. A battery separator was obtained in the same manner as in Example 2 except that the coating liquid prepared using this acrylic resin was used. The obtained battery separator was evaluated for powder removal and was good.

比較例5
実施例2のアクリル樹脂溶液の代わりに固形分濃度が5質量%のCRV(信越化学工業株式会社製、シアノエチルPVA)とN−メチル−2−ピロリドンの溶液を用いて調製した塗工液を使用した以外は実施例2と同様にして電池用セパレータを得た。
Comparative Example 5
Instead of the acrylic resin solution of Example 2, a coating solution prepared by using a solution of CRV (cyanoethyl PVA manufactured by Shin-Etsu Chemical Co., Ltd.) having a solid content concentration of 5% by mass and N-methyl-2-pyrrolidone was used. A battery separator was obtained in the same manner as in Example 2 except for the above.

比較例6
固形分濃度が25質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a):アクリル樹脂の質量比が90:9.1:0.9となるように塗工液を調製した以外は実施例2と同様にして電池用セパレータを得た。
Comparative Example 6
The coating liquid was prepared so that the solid content concentration was 25% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a): acrylic resin was 90: 9.1: 0.9. A separator for a battery was obtained in the same manner as in Example 2 except for the above.

比較例7
固形分濃度が13質量%、アルミナ粒子:フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a):アクリル樹脂の質量比が70:27.2:2.8となるように、無機粒子、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a)、アクリル樹脂、N−メチル−2−ピロリドンとを同時に混合し、分散して塗工液を調製したが、塗工液は増粘してポリエチレン微多孔膜に塗工できなかった。
Comparative Example 7
Inorganic particles and fluoride so that the solid content concentration is 13% by mass and the mass ratio of alumina particles: vinylidene fluoride-hexafluoropropylene copolymer (a): acrylic resin is 70: 27.2: 2.8. Vinylidene-hexafluoropropylene copolymer (a), acrylic resin, and N-methyl-2-pyrrolidone were mixed and dispersed at the same time to prepare a coating liquid, but the coating liquid was thickened and polyethylene microporous. The film could not be coated.

実施例11(以下において比較例8を実施例11と読み替える)
電池用セパレータの厚みを9μmとした以外は、実施例2と同様にして電池用セパレータを得た。
Example 11 (Comparative Example 8 is read as Example 11 in the following)
A battery separator was obtained in the same manner as in Example 2 except that the thickness of the battery separator was 9 μm.

比較例9
フッ化ビニリデン−ヘキサフルオロプロピレン共重合体の固形分濃度が5質量%となるようにN−メチル−2−ピロリドンを用いて調製した塗工液を使用し、電池用セパレータの厚みを9.5μmとした以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 9
A coating solution prepared with N-methyl-2-pyrrolidone so that the solid content concentration of the vinylidene fluoride-hexafluoropropylene copolymer was 5% by mass was used, and the thickness of the battery separator was 9.5 μm. A battery separator was obtained in the same manner as in Example 1.

実施例1〜10、比較例1〜9で得られた電池用セパレータの特性を表1に示す。 Table 1 shows the characteristics of the battery separators obtained in Examples 1 to 10 and Comparative Examples 1 to 9.

Figure 0006863283
アクリル樹脂の含有量(質量%)とは、フッ素樹脂とアクリル樹脂との総質量に対するアクリル樹脂の質量%を表す。塗材調製の「後入」とは、粒子を分散させたフッ素樹脂溶液にアクリル樹脂溶液を加えることを表す。「同時入」とは、フッ素樹脂溶液、アクリル樹脂溶液、粒子を同時に加えて分散処理することを表す。
Figure 0006863283
The acrylic resin content (mass%) represents the mass% of the acrylic resin with respect to the total mass of the fluororesin and the acrylic resin. "Post-injection" of coating material preparation means adding an acrylic resin solution to a fluororesin solution in which particles are dispersed. "Simultaneous injection" means that a fluororesin solution, an acrylic resin solution, and particles are added at the same time for dispersion treatment.

1:負極
2:セパレータ
3:圧子用アルミニウム製L字アングル
4:アルミニウム製L字アングル
5:ラミネートフィルム
1: Negative electrode 2: Separator 3: Aluminum L-shaped angle for indenter 4: Aluminum L-shaped angle 5: Laminated film

Claims (11)

微多孔膜と、
該微多孔膜の少なくとも片面に設けられた多孔質層と、を備え、
前記多孔質層はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体およびアクリル樹脂および粒子を含み、
前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体は親水基を有する単量体単位を含み、ヘキサフルオロプロピレン単量体単位を0.3モル%以上、3モル%以下含有し、
前記アクリル樹脂はブチルアクリレート単量体単位を含
前記粒子の含有量が、前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体と、前記アクリル樹脂と、前記粒子との総重量に対して、50質量%以上、85質量%以下であり、前記多孔質層の厚さが片面当たり0.5μm以上、3μm以下である電池用セパレータ。
Microporous membrane and
A porous layer provided on at least one side of the microporous membrane is provided.
The porous layer contains a vinylidene fluoride-hexafluoropropylene copolymer and an acrylic resin and particles .
The vinylidene fluoride-hexafluoropropylene copolymer contains a monomer unit having a hydrophilic group, and contains a hexafluoropropylene monomer unit of 0.3 mol% or more and 3 mol% or less.
The acrylic resin is seen containing a butyl acrylate monomer unit,
The content of the particles is 50% by mass or more and 85% by mass or less with respect to the total weight of the vinylidene fluoride-hexafluoropropylene copolymer, the acrylic resin, and the particles, and the porous material. A battery separator having a layer thickness of 0.5 μm or more and 3 μm or less per side.
前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体は親水基を有する単量体単位を0.1モル%以上、5モル%以下含有する、請求項1に記載の電池用セパレータ。 The battery separator according to claim 1, wherein the vinylidene fluoride-hexafluoropropylene copolymer contains 0.1 mol% or more and 5 mol% or less of a monomer unit having a hydrophilic group. 前記アクリル樹脂の含有量が前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体と前記アクリル樹脂の総量に対して、5質量%%以上、40質量%未満である、請求項1〜2のいずれか1項に記載の電池用セパレータ。 Any one of claims 1 and 2, wherein the content of the acrylic resin is 5% by mass or more and less than 40% by mass with respect to the total amount of the vinylidene fluoride-hexafluoropropylene copolymer and the acrylic resin. The battery separator described in the section. 前記アクリル樹脂がブチルアクリレート単位とアクリロニトリル単位とを含むアクリル共重合体である、請求項1〜3のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3, wherein the acrylic resin is an acrylic copolymer containing a butyl acrylate unit and an acrylonitrile unit. 前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体の重量平均分子量が50万以上、200万以下である、請求項1〜4のいずれか1項に記載のセパレータ。 The separator according to any one of claims 1 to 4, wherein the vinylidene fluoride-hexafluoropropylene copolymer has a weight average molecular weight of 500,000 or more and 2 million or less. 前記アクリル樹脂におけるブチルアクリレート単位の含有量が50モル%以上、75モル%以下である、請求項1〜5のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 5, wherein the content of the butyl acrylate unit in the acrylic resin is 50 mol% or more and 75 mol% or less. 湿潤時曲げ強さが14N以上、かつ乾燥時曲げ強さが7N以上である、請求項1〜6のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 6, wherein the flexural strength when wet is 14 N or more and the flexural strength when dry is 7 N or more. 前記粒子がアルミナ、チタニア、およびベーマイトからなる群から選ばれる少なくとも1種を含む請求項1〜7のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 7, wherein the particles contain at least one selected from the group consisting of alumina, titania, and boehmite. 前記粒子の平均粒径が0.3μm以上、3.0μm以下である請求項1〜8のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 8, wherein the average particle size of the particles is 0.3 μm or more and 3.0 μm or less. 微多孔膜がポリオレフィン微多孔膜である請求項1〜9のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 9, wherein the microporous membrane is a polyolefin microporous membrane. 以下の工程(a)〜(c)を順次含む請求項1から10の電池用セパレータの製造方法。
(a)フッ化ビニリデン−ヘキサフルオロプロピレン共重合体を溶媒に溶解し、粒子を分散させたフッ素樹脂溶液を得る工程
(b)フッ素樹脂溶液にアクリル樹脂溶液を添加し、混合して塗工液を得る工程
(c)塗工液を微多孔膜に塗布し、凝固浴に浸漬し、洗浄、乾燥する工程
The method for manufacturing a battery separator according to claim 1 to 10, further comprising the following steps (a) to (c) in sequence.
(A) Step of dissolving vinylidene fluoride-hexafluoropropylene copolymer in a solvent to obtain a fluororesin solution in which particles are dispersed (b) Add an acrylic resin solution to the fluororesin solution, mix and coat the solution. Step (c) A step of applying a coating solution to a microporous film, immersing it in a coagulation bath, washing and drying it.
JP2017534467A 2015-08-11 2016-08-09 Battery separator Active JP6863283B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015159096 2015-08-11
JP2015159096 2015-08-11
JP2016152305 2016-08-02
JP2016152305 2016-08-02
PCT/JP2016/073452 WO2017026485A1 (en) 2015-08-11 2016-08-09 Battery separator

Publications (2)

Publication Number Publication Date
JPWO2017026485A1 JPWO2017026485A1 (en) 2018-05-31
JP6863283B2 true JP6863283B2 (en) 2021-04-21

Family

ID=57983551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017534467A Active JP6863283B2 (en) 2015-08-11 2016-08-09 Battery separator

Country Status (4)

Country Link
JP (1) JP6863283B2 (en)
KR (1) KR102190595B1 (en)
CN (1) CN107925036B (en)
WO (1) WO2017026485A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6779157B2 (en) * 2017-02-22 2020-11-04 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP7138267B2 (en) * 2017-02-27 2022-09-16 パイオトレック株式会社 Method for producing base material having surface coat layer with network structure
CN110249449B (en) * 2017-03-17 2022-03-08 东丽株式会社 Battery separator, electrode body, and nonaqueous electrolyte secondary battery
PL3627586T3 (en) * 2017-05-17 2022-11-07 Teijin Limited Separator for non-aqueous secondary batteries, non-aqueous secondary battery, and method for producing non-aqueous secondary battery
CN109565022A (en) * 2018-09-21 2019-04-02 香港应用科技研究院有限公司 Rechargeable battery diaphragm
KR102437371B1 (en) * 2018-09-28 2022-08-26 주식회사 엘지에너지솔루션 A separator for an electrochemical device and a method for manufacturing the same
CN111584804B (en) * 2020-05-08 2022-05-17 贵州大学 Preparation method of lithium-sulfur battery diaphragm barrier layer based on two-dimensional nano clay
EP4206242A1 (en) * 2020-08-28 2023-07-05 Kureha Corporation Resin composition, coating composition comprising same, electrode for stacking, separator for stacking, and nonaqueous-electrolyte secondary battery and production method therefor
CN114311911A (en) * 2020-09-29 2022-04-12 宁德新能源科技有限公司 Packaging film, electrochemical device comprising same and electronic device
CN112909431B (en) * 2021-01-22 2022-09-09 中国科学技术大学 Lithium ion battery composite diaphragm, preparation method thereof and lithium ion battery
KR102631754B1 (en) 2022-09-06 2024-01-31 주식회사 엘지에너지솔루션 Separator for electrochemical device and electrochemical device comprising the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248570B2 (en) 1997-10-09 2002-01-21 日本電気株式会社 Method for manufacturing semiconductor device
KR100759541B1 (en) * 2001-06-21 2007-09-18 삼성에스디아이 주식회사 Polymer lithium battery and preparing method therefor
KR100947181B1 (en) * 2007-11-19 2010-03-15 주식회사 엘지화학 A separator having porous coating layer and electrochemical device containing the same
KR101173202B1 (en) 2010-02-25 2012-08-13 주식회사 엘지화학 Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
JP5853400B2 (en) * 2011-04-21 2016-02-09 ソニー株式会社 Separator and non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
KR101358761B1 (en) * 2011-05-03 2014-02-07 주식회사 엘지화학 A separator having porous coating layer and electrochemical device containing the same
JP6095654B2 (en) * 2011-06-23 2017-03-15 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Method for manufacturing battery components
WO2013058369A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
JP5867044B2 (en) 2011-12-12 2016-02-24 株式会社村田製作所 Insulating adhesive layer and power storage device using the same
JP2013197078A (en) * 2012-03-23 2013-09-30 Nippon Zeon Co Ltd Porous film for secondary battery, porous film slurry composition for secondary battery, secondary battery electrode, secondary battery separator, and secondary battery
JP5974578B2 (en) * 2012-03-27 2016-08-23 日本ゼオン株式会社 Composite particle for secondary battery positive electrode, positive electrode for secondary battery and secondary battery
JP2013206846A (en) 2012-03-29 2013-10-07 Nippon Zeon Co Ltd Slurry composition for secondary battery porous membrane
EP2688123B1 (en) * 2012-07-16 2017-07-05 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Process for manufacturing a Li-ion battery comprising a fluoropolymeric separator
MX361511B (en) * 2012-12-05 2018-12-07 Solvay Specialty Polymers It Solid composite fluoropolymer layer.
JP2014149936A (en) * 2013-01-31 2014-08-21 Nippon Zeon Co Ltd Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
JP5647378B1 (en) * 2013-03-19 2014-12-24 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5673987B1 (en) * 2013-03-27 2015-02-18 Jsr株式会社 Binder composition for electricity storage device
EP3033782B1 (en) * 2013-08-12 2017-11-22 Solvay Sa Solid composite fluoropolymer separator

Also Published As

Publication number Publication date
CN107925036B (en) 2020-12-22
JPWO2017026485A1 (en) 2018-05-31
CN107925036A (en) 2018-04-17
WO2017026485A1 (en) 2017-02-16
KR102190595B1 (en) 2020-12-14
KR20180034393A (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6863283B2 (en) Battery separator
JP6766411B2 (en) Battery separator and its manufacturing method
JP7330885B2 (en) Battery separator, electrode body and non-aqueous electrolyte secondary battery
JP6988881B2 (en) Separator for secondary batteries containing polyethylene microporous membrane
JP7229775B2 (en) Battery separator, electrode body and non-aqueous electrolyte secondary battery
JP2017139117A (en) Separator for power storage device and method for manufacturing the same
JP6927047B2 (en) Laminated wound body
JP2019102126A (en) Battery separator and non-aqueous electrolyte secondary battery
TWI715676B (en) Separator for battery and manufacturing method thereof
JP2022053727A (en) Battery separator, electrode body, non-aqueous electrolyte secondary battery, and manufacturing method of battery separator
JP2021082481A (en) Separator for battery, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing separator for battery
JPWO2020050377A1 (en) Separator for electrochemical device and electrochemical device using it
TW201907603A (en) Battery separator, electrode laminate, electrode coil, and battery
JP2019009117A (en) Separator wound body for power storage device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6863283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151