JP6766411B2 - Battery separator and its manufacturing method - Google Patents

Battery separator and its manufacturing method Download PDF

Info

Publication number
JP6766411B2
JP6766411B2 JP2016072419A JP2016072419A JP6766411B2 JP 6766411 B2 JP6766411 B2 JP 6766411B2 JP 2016072419 A JP2016072419 A JP 2016072419A JP 2016072419 A JP2016072419 A JP 2016072419A JP 6766411 B2 JP6766411 B2 JP 6766411B2
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
copolymer
acrylic resin
weight
battery separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016072419A
Other languages
Japanese (ja)
Other versions
JP2017183212A (en
Inventor
辻本 潤
潤 辻本
水野 直樹
直樹 水野
篤史 梶田
篤史 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016072419A priority Critical patent/JP6766411B2/en
Priority to TW106102415A priority patent/TWI724094B/en
Priority to KR1020170034452A priority patent/KR102209887B1/en
Priority to CN201710203782.2A priority patent/CN107492625B/en
Publication of JP2017183212A publication Critical patent/JP2017183212A/en
Application granted granted Critical
Publication of JP6766411B2 publication Critical patent/JP6766411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2323/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Description

本発明は電池用セパレータおよびその製造方法に関する。 The present invention relates to a battery separator and a method for manufacturing the same.

非水電解質二次電池、特に、リチウムイオン二次電池は携帯電話や携帯情報端末等の小型電子機器に使用されて広く普及し、円筒型電池、角型電池、ラミネート型電池等が開発されている。一般に、これら電池は正極電極と負極電極とをセパレータを介して積層した電極体(積層電極体)や渦巻き状に巻回した電極体(巻回電極体)と、非水電解液とが外装体に収納された構成を有する。 Non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, are widely used in small electronic devices such as mobile phones and mobile information terminals, and cylindrical batteries, square batteries, laminated batteries, etc. have been developed. There is. Generally, these batteries are composed of an electrode body (laminated electrode body) in which a positive electrode and a negative electrode are laminated via a separator, an electrode body (wound electrode body) wound in a spiral shape, and a non-aqueous electrolyte solution. Has a configuration housed in.

従来の非水電解質二次電池用セパレータは主にポリオレフィン樹脂からなる微多孔膜が使用されており、電池の異常発熱時にセパレータの細孔が閉塞することで電流の流れを抑制し、発火などを防いでいる。 Conventional separators for non-aqueous electrolyte secondary batteries mainly use a microporous membrane made of polyolefin resin, and when the battery generates abnormal heat, the pores of the separator are blocked, which suppresses the flow of current and causes ignition. I'm preventing it.

近年では微多孔膜の片面または両面に多孔質層を設けることで電池特性を向上させる試みがなされている。例えば、電極接着性などの機能を付与するためにフッ素樹脂やアクリル樹脂を含有する多孔質層を設けたセパレータがある(先行文献1〜8)。また、多孔質層に無機粒子を加えると、事故などで電池に鋭利な金属が貫き、急な短絡を起こし発熱した場合でもセパレータの溶融収縮を防ぎ、電極間における短絡部の拡大を抑制することができる。 In recent years, attempts have been made to improve battery characteristics by providing a porous layer on one side or both sides of a microporous membrane. For example, there are separators provided with a porous layer containing a fluororesin or an acrylic resin in order to impart functions such as electrode adhesiveness (Prior Documents 1 to 8). In addition, when inorganic particles are added to the porous layer, sharp metal penetrates the battery due to an accident or the like, causing a sudden short circuit and preventing heat generation from melting and shrinking of the separator and suppressing the expansion of the short circuit between the electrodes. Can be done.

特許文献1には、正極、負極、ポリプロピレン・ポリエチレン・ポリプロピレンからなる三層セパレータと、これら電極とセパレータとの間に配置されたポリフッ化ビニリデンとアルミナ粉末からなる接着性樹脂層とを備えた電極体が記載されている。 Patent Document 1 describes an electrode provided with a three-layer separator made of a positive electrode, a negative electrode, polypropylene, polyethylene, and polypropylene, and an adhesive resin layer made of polyvinylidene fluoride and alumina powder arranged between these electrodes and the separator. The body is listed.

特許文献2の実施例1には、第一の重合体(ポリフッ化ビニリデンホモポリマー)を含むNMP溶液と、第二の重合体(アクリロニトリル単量体、1,3−ブタジエン由来の単量体、メタクリル酸単量体、及びブチルアクリレート単量体を含む重合体)を含むNMP溶液とをプライマリーミキサーで撹拌してバインダーのNMP溶液を調整し、次いで、調整後のNMP溶液とアルミナ粒子を混合、分散させて調整したスラリーをポリプロピレン製セパレータに塗布して得られる多孔膜付有機セパレータが記載されている。 In Example 1 of Patent Document 2, an NMP solution containing the first polymer (polyvinylidene fluoride homopolymer) and a second polymer (acrylonitrile monomer, monomer derived from 1,3-butadiene, The NMP solution containing the methacrylic acid monomer and the polymer containing the butyl acrylate monomer) is stirred with a primary mixer to prepare the NMP solution of the binder, and then the adjusted NMP solution and the alumina particles are mixed. Described is an organic separator with a porous film obtained by applying a dispersed and prepared slurry to a polypropylene separator.

特許文献3の実施例には、球状アルミナ粉末を分散させたNMP溶液に、フッ化ビニリデン‐ヘキサフルオロプロピレン共重合体(VdF‐HFP共重合体)とポリメタクリル酸エチルからなる配合材料を溶解したNMP溶液を添加し、ボールミルで混合して調製したスラリーを基材PETフィルムに塗布し、乾燥して得られた無機微粒子含有シート(絶縁性接着層)を介して正極と負極を熱圧着させた電極体が記載されている。 In the example of Patent Document 3, a compounding material composed of a vinylidene fluoride-hexafluoropropylene copolymer (VdF-HFP copolymer) and ethyl polymethacrylate was dissolved in an NMP solution in which spherical alumina powder was dispersed. The slurry prepared by adding the NMP solution and mixing with a ball mill was applied to the base material PET film, and the positive electrode and the negative electrode were thermally pressure-bonded via the inorganic fine particle-containing sheet (insulating adhesive layer) obtained by drying. The electrode body is described.

特許文献4の実施例1には、VdF‐HFP共重合体とシアノエチルプルランをアセトンに添加し、その後、チタン酸バリウム粉末を添加し、ボールミルで分散して得たスラリーをポリエチレン多孔性膜に塗布して得られたセパレータが記載されている。 In Example 1 of Patent Document 4, a VdF-HFP copolymer and cyanoethyl pullulan were added to acetone, then barium titanate powder was added, and the slurry obtained by dispersing with a ball mill was applied to a polyethylene porous film. The separator obtained in the above is described.

特許文献5の実施例1には、VdF‐HFP共重合体(HFP単位0.6モル%)とVdF‐HFP共重合体(重量平均分子量47万、HFP単位4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔質層が形成されたセパレータが記載されている。 In Example 1 of Patent Document 5, a VdF-HFP copolymer (HFP unit 0.6 mol%) and a VdF-HFP copolymer (weight average molecular weight 470,000, HFP unit 4.8 mol%) are dimethylacetamide. And a separator which is dissolved in a tripropylene glycol solution and coated on a polyethylene microporous film to form a porous layer are described.

特許文献6の実施例1には、PVdF(重量平均分子量50万)とVdF‐HFP共重合体(重量平均分子量40万、HFP単位5モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔質層が形成されたセパレータが記載されている。 In Example 1 of Patent Document 6, PVdF (weight average molecular weight 500,000) and VdF-HFP copolymer (weight average molecular weight 400,000, HFP unit 5 mol%) were dissolved in a solution of dimethylacetamide and tripropylene glycol. A separator in which a porous layer is formed by applying this to a polyethylene microporous film is described.

特許文献7の実施例1には、PVdF(重量平均分子量70万)とVdF‐HFP共重合体(重量平均分子量47万、HFP単位4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔質層が形成されたセパレータが記載されている。 In Example 1 of Patent Document 7, PVdF (weight average molecular weight 700,000) and VdF-HFP copolymer (weight average molecular weight 470,000, HFP unit 4.8 mol%) are dissolved in a solution of dimethylacetamide and tripropylene glycol. A separator in which a porous layer is formed by applying this to a polyethylene microporous film is described.

特許文献8の実施例1には、PVdF(重量平均分子量35万)とVdF‐HFP重合体(重量平均分子量27万、HFP共重合4.8モル%)をジメチルアセトアミドとトリプロピレングリコール溶液に溶解し、これをポリエチレン微多孔膜に塗工して多孔質層が形成されたセパレータが記載されている。 In Example 1 of Patent Document 8, PVdF (weight average molecular weight 350,000) and VdF-HFP polymer (weight average molecular weight 270,000, HFP copolymer 4.8 mol%) are dissolved in a solution of dimethylacetamide and tripropylene glycol. A separator in which a porous layer is formed by applying this to a polyethylene microporous film is described.

特許文献1〜8に開示されているセパレータ及び電極とセパレータとの間に配置される層はいずれもポリフッ化ビニリデン系樹脂を含む。 The separators disclosed in Patent Documents 1 to 8 and the layers arranged between the electrodes and the separators all contain a polyvinylidene fluoride resin.

再表1999−036981号公報Re-table 1999-036981 特開2013−206846号公報Japanese Unexamined Patent Publication No. 2013-206846 特開2013−122009号公報Japanese Unexamined Patent Publication No. 2013-122009 特表2013−519206号公報Special Table 2013-519206 特許第5282179号Patent No. 5282179 特許第5282180号Patent No. 5282180 特許第5282181号Patent No. 5282181 特許第5342088号Patent No. 534208

近年、非水電解質二次電池は大型タブレット、草刈り機、電動二輪車、電気自動車、ハイブリッド自動車、小型船舶などの大型用途向けの展開が期待されており、これに伴い大型電池の普及が想定される。 In recent years, non-aqueous electrolyte secondary batteries are expected to be developed for large-scale applications such as large tablets, mowers, electric motorcycles, electric vehicles, hybrid vehicles, and small vessels, and large batteries are expected to become widespread accordingly.

巻回電極体は、正極電極と負極電極とをセパレータを介して各部材に張力をかけながら巻回して製造される。このとき、金属集電体に塗工された正極電極や負極電極は張力に対してほとんど伸び縮みしないが、セパレータは機械方向にある程度伸びながら巻回されることになる。この巻回体をしばらく放置するとセパレータ部分がゆっくりと縮んでもとの長さに戻ろうとする。この結果、電極とセパレータとの境界面において平行方向の力が発生し、巻回電極体(特に扁平に巻回した電極体)はたわみや歪みが発生しやすくなる。さらに、電池の大型化に伴うセパレータの広幅化や長尺化によりこれら問題が顕在化し、生産時の歩留り悪化が懸念される。巻回電極体のたわみや歪みが発生するのを抑制するため、セパレータには今まで以上に電極との接着性が求められることが予想される。本明細書ではこの接着性について、後述する測定方法により得られる乾燥時曲げ強さを指標とした。 The wound electrode body is manufactured by winding a positive electrode and a negative electrode while applying tension to each member via a separator. At this time, the positive electrode and the negative electrode coated on the metal current collector hardly expand or contract with respect to the tension, but the separator is wound while extending to some extent in the mechanical direction. If this wound body is left for a while, the separator part will slowly shrink and try to return to its original length. As a result, a force in the parallel direction is generated at the boundary surface between the electrode and the separator, and the wound electrode body (particularly the flatly wound electrode body) is liable to be bent or distorted. Further, these problems become apparent due to the widening and lengthening of the separator due to the increase in size of the battery, and there is a concern that the yield at the time of production may deteriorate. It is expected that the separator is required to have more adhesiveness to the electrode than ever in order to suppress the occurrence of bending and distortion of the wound electrode body. In the present specification, the bending strength at the time of drying obtained by the measuring method described later is used as an index for this adhesiveness.

また、電極体を搬送する際、各部材が十分に接着された状態でなければ電極とセパレータが剥がれてしまい歩留りよく搬送させることができない。搬送時の接着性の問題は電池の大型化により顕在化し、歩留り悪化が懸念される。そのため、セパレータには電極から剥離しにくい、高い乾燥時剥離力が求められると予想される。 Further, when the electrode body is conveyed, the electrode and the separator are peeled off unless the members are sufficiently adhered to each other, and the electrode body cannot be conveyed with good yield. The problem of adhesiveness during transportation becomes apparent due to the increase in size of the battery, and there is a concern that the yield may deteriorate. Therefore, it is expected that the separator is required to have a high peeling force at the time of drying, which is difficult to peel off from the electrode.

さらに、特にラミネート型電池内においては、外装体で圧力をかけられる角型、円筒型電池に比べて、圧力をかけづらく、充放電に伴う電極の膨潤・収縮により、セパレータと電極の界面での部分的な遊離がおこりやすい。その結果、電池の膨れ、電池内部の抵抗増大、サイクル性能の低下につながる。そのため、電解液を注入後の電池内での電極との接着性がセパレータには要求されている。本明細書ではこの接着性について、後述する測定方法により得られる湿潤時曲げ強さを指標とした。この強さが大きいと充放電繰り返し後の電池の膨れ抑制などの電池特性向上が期待される。 Furthermore, especially in a laminated battery, it is harder to apply pressure than a square or cylindrical battery to which pressure is applied by the exterior body, and due to the expansion and contraction of the electrode due to charging and discharging, the interface between the separator and the electrode Partial release is likely to occur. As a result, the battery swells, the resistance inside the battery increases, and the cycle performance deteriorates. Therefore, the separator is required to have adhesiveness to the electrode in the battery after the electrolytic solution is injected. In the present specification, the bending strength at the time of wetting obtained by the measuring method described later is used as an index for this adhesiveness. If this strength is large, improvement of battery characteristics such as suppression of battery swelling after repeated charging and discharging is expected.

従来技術では、乾燥時曲げ強さ、乾燥時剥離力、湿潤時曲げ強さはトレードオフの関係があり全ての物性を満たすことが極めて困難であった。本発明は将来進むであろう電池(特にラミネート型電池)の大型化の普及に備え、乾燥時曲げ強さ、乾燥時剥離力、湿潤時曲げ強さを満たす電池用セパレータの提供を目指したものである。 In the prior art, there is a trade-off relationship between the bending strength during drying, the peeling force during drying, and the bending strength during wetting, and it is extremely difficult to satisfy all the physical properties. The present invention aims to provide a battery separator that satisfies flexural strength during drying, peeling strength during drying, and bending strength during wetness in preparation for the widespread use of large-sized batteries (particularly laminated batteries) that will advance in the future. Is.

なお、本明細書でいう湿潤時曲げ強さとはセパレータが電解液を含む状態でのセパレータと電極との接着性を表す。乾燥時曲げ強さと乾燥時剥離力はセパレータが電解液を実質的に含まない状態でのセパレータと電極との境界面に対する接着性を表す。なお、実質的に含まないとはセパレータ中の電解液が500ppm以下であることを意味する。 The bending strength when wet as used herein refers to the adhesiveness between the separator and the electrode when the separator contains an electrolytic solution. The bending strength during drying and the peeling force during drying represent the adhesiveness to the interface between the separator and the electrode when the separator contains substantially no electrolytic solution. It should be noted that substantially not contained means that the electrolytic solution in the separator is 500 ppm or less.

上記課題を解決するために本発明の電池用セパレータ及びその製造方法は以下の構成を有する。すなわち、
(1)微多孔膜と、微多孔膜の少なくとも片面に設けられた多孔質層とを備え、前記多孔質層はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)と、フッ化ビニリデン単位を含む重合体(B)と、アクリル樹脂とを含有し、前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)は親水基と、ヘキサフルオロプロピレン単位を0.3mol%〜3mol%含有し、前記フッ化ビニリデン単位を含む重合体(B)は融点が60℃以上145℃以下、重量平均分子量が10万以上75万以下である電池用セパレータ、である。
(2)本発明の電池用セパレータは、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)が重量平均分子量が75万より大きく200万以下であることが好ましい。
(3)本発明の電池用セパレータは、多孔質層が粒子を含むことが好ましい。
(4)本発明の電池用セパレータは、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)の含有量が、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)とフッ化ビニリデン単位を含む重合体(B)の総重量に対して15重量%以上85重量%以下であり、アクリル樹脂の含有量が、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)、フッ化ビニリデン単位を含む重合体(B)及びアクリル樹脂の総重量に対して4重量%以上40重量%以下であることが好ましい。
(5)本発明の電池用セパレータは、アクリル樹脂が(メタ)アクリル酸エステルとシアノ基を有する単量体との共重合体であることが好ましい。
(6)本発明の電池用セパレータは、アクリル樹脂がブチルアクリレートを含む共重合体であることが好ましい。
(7)本発明の電池用セパレータは、アクリル樹脂がブチルアクリレートとアクリロニトリルとの共重合体であることが好ましい。
(8)本発明の電池用セパレータは、アクリル樹脂におけるブチルアクリレートの含有量が50mol%〜75mol%であることが好ましい。
(9)本発明の電池用セパレータは、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)の親水基の含有量が0.1mol%〜5mol%であることが好ましい。
(10)本発明の電池用セパレータは、湿潤時曲げ強さが4N以上、乾燥時曲げ強さが5N以上、かつ乾燥時剥離力が8N/mであることが好ましい。
(11)本発明の電池用セパレータは、粒子の含有量が多孔質層の総重量に対して50重量%以上90重量%以下であることが好ましい。
(12)本発明の電池用セパレータは、粒子がアルミナ、チタニア、ベーマイトからなる群から選ばれる少なくとも1種を含むことが好ましい。
(13)本発明の電池用セパレータは、多孔質層の厚さが片面あたり0.5〜3μmであることが好ましい。
(14)本発明の電池用セパレータは、微多孔膜がポリオレフィン微多孔膜であることが好ましい。
上記課題を解決するために本発明のポリオレフィン微多孔膜の製造方法は以下の構成を有する。すなわち、
(15)本発明の電池用セパレータは、
(1)フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン単位を含む重合体(B)を溶媒に溶解したフッ素系樹脂溶液を得る工程と、
(2)アクリル樹脂を溶媒に溶解したアクリル樹脂溶液をフッ素系樹脂溶液に添加し、混合して塗工液を得る工程と、
(3)塗工液を微多孔膜に塗布して凝固液に浸漬し、洗浄、乾燥する工程とを順次含み、前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)は親水基と、ヘキサフルオロプロピレン単位を0.3mol%〜3mol%含有し、前記フッ化ビニリデン単位を含む重合体(B)は融点が60℃以上145℃以下、重量平均分子量が10万以上75万以下であり、前記アクリル樹脂はブチルアクリレートを含む請求項1〜14のいずれか1項に記載の電池用セパレータの製造方法、である。
In order to solve the above problems, the battery separator of the present invention and the method for manufacturing the same have the following configurations. That is,
(1) A microporous film and a porous layer provided on at least one side of the microporous film are provided, and the porous layer contains a vinylidene fluoride-hexafluoropropylene copolymer (A) and a vinylidene fluoride unit. The polymer (B) containing the polymer (B) and an acrylic resin are contained, and the vinylidene fluoride-hexafluoropropylene copolymer (A) contains a hydrophilic group and a hexafluoropropylene unit in an amount of 0.3 mol% to 3 mol%. The polymer (B) containing a vinylidene fluoride unit is a separator for a battery having a melting point of 60 ° C. or higher and 145 ° C. or lower and a weight average molecular weight of 100,000 or higher and 750,000 or lower.
(2) In the battery separator of the present invention, it is preferable that the vinylidene fluoride-hexafluoropropylene copolymer (A) has a weight average molecular weight of more than 750,000 and 2 million or less.
(3) In the battery separator of the present invention, it is preferable that the porous layer contains particles.
(4) The battery separator of the present invention has a weight in which the content of the vinylidene fluoride-hexafluoropropylene copolymer (A) contains the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride unit. A polymer containing 15% by weight or more and 85% by weight or less based on the total weight of the coalescence (B), and the content of the acrylic resin is the vinylidene fluoride-hexafluoropropylene copolymer (A) and the vinylidene fluoride unit. It is preferably 4% by weight or more and 40% by weight or less with respect to the total weight of (B) and the acrylic resin.
(5) In the battery separator of the present invention, the acrylic resin is preferably a copolymer of a (meth) acrylic acid ester and a monomer having a cyano group.
(6) The battery separator of the present invention is preferably a copolymer in which the acrylic resin contains butyl acrylate.
(7) In the battery separator of the present invention, the acrylic resin is preferably a copolymer of butyl acrylate and acrylonitrile.
(8) The battery separator of the present invention preferably has a butyl acrylate content of 50 mol% to 75 mol% in the acrylic resin.
(9) The battery separator of the present invention preferably has a hydrophilic group content of vinylidene fluoride-hexafluoropropylene copolymer (A) of 0.1 mol% to 5 mol%.
(10) The battery separator of the present invention preferably has a flexural strength of 4 N or more when wet, a flexural strength of 5 N or more when dry, and a peeling force of 8 N / m when dry.
(11) The battery separator of the present invention preferably has a particle content of 50% by weight or more and 90% by weight or less with respect to the total weight of the porous layer.
(12) The battery separator of the present invention preferably contains at least one type of particles selected from the group consisting of alumina, titania, and boehmite.
(13) In the battery separator of the present invention, the thickness of the porous layer is preferably 0.5 to 3 μm per side.
(14) In the battery separator of the present invention, the microporous membrane is preferably a polyolefin microporous membrane.
In order to solve the above problems, the method for producing a microporous polyolefin membrane of the present invention has the following constitution. That is,
(15) The battery separator of the present invention is
(1) A step of obtaining a fluororesin solution in which a vinylidene fluoride-hexafluoropropylene copolymer (A) and a polymer (B) containing a vinylidene fluoride unit are dissolved in a solvent.
(2) A step of adding an acrylic resin solution in which an acrylic resin is dissolved in a solvent to a fluororesin solution and mixing them to obtain a coating liquid.
(3) The step of applying the coating liquid to the microporous film, immersing it in the coagulating liquid, washing and drying is sequentially included, and the vinylidene fluoride-hexafluoropropylene copolymer (A) has a hydrophilic group and hexa. The polymer (B) containing 0.3 mol% to 3 mol% of fluoropropylene units and containing the vinylidene fluoride unit has a melting point of 60 ° C. or higher and 145 ° C. or lower, and a weight average molecular weight of 100,000 or more and 750,000 or lower. The method for producing a battery separator according to any one of claims 1 to 14, wherein the acrylic resin contains butyl acrylate.

本発明によれば、将来進むであろう電池の大型化の普及に備え、乾燥時曲げ強さ、乾燥時剥離力、湿潤時曲げ強さを満たす電池用セパレータを提供することができる。 According to the present invention, it is possible to provide a battery separator that satisfies the flexural strength during drying, the peeling force during drying, and the bending strength during wetness in preparation for the widespread use of larger batteries that will progress in the future.

湿潤時曲げ強さ試験を模式的に示す正面断面図である。It is a front sectional view which shows typically the bending strength test at the time of wetting. 乾燥時曲げ強さ試験を模式的に示す正面断面図である。It is a front sectional view which shows typically the bending strength test at the time of drying.

本発明の微多孔膜と多孔質層とを少なくとも有する電池用セパレータについて概要を説明するが、当然この代表例に限定されるものではない。
1.微多孔膜
まず、本発明の微多孔膜について説明する。
本発明において、微多孔膜とは内部に連結した空隙を有する膜を意味する。微多孔膜としては特に限定されず、不織布や微多孔膜を用いることができる。以下、微多孔膜を構成する樹脂がポリオレフィン樹脂である場合について詳細に説明するがこれに限定されるものでない。
The outline of the battery separator having at least the microporous membrane and the porous layer of the present invention will be described, but of course, the present invention is not limited to this representative example.
1. 1. Microporous Membrane First, the microporous membrane of the present invention will be described.
In the present invention, the microporous membrane means a membrane having voids connected to the inside. The microporous membrane is not particularly limited, and a non-woven fabric or a microporous membrane can be used. Hereinafter, the case where the resin constituting the microporous film is a polyolefin resin will be described in detail, but the present invention is not limited thereto.

[1]ポリオレフィン樹脂
ポリオレフィン微多孔膜を構成するポリオレフィン樹脂は、ポリエチレン樹脂やポリプロピレン樹脂を主成分とする。ポリエチレン樹脂の含有量はポリオレフィン樹脂の全質量を100質量%として、70質量%以上であるのが好ましく、より好ましくは90質量%以上、さらに好ましくは100質量%である。
[1] Polyolefin Resin The polyolefin resin constituting the polyolefin microporous film is mainly composed of polyethylene resin or polypropylene resin. The content of the polyethylene resin is preferably 70% by mass or more, more preferably 90% by mass or more, still more preferably 100% by mass, assuming that the total mass of the polyolefin resin is 100% by mass.

ポリオレフィン樹脂としては、エチレン、プロピレン、1−ブテン、4−メチル1−ペンテン、1−ヘキセンなどを重合した単独重合体、2段階重合体、共重合体またはこれらの混合物等が挙げられる。ポリオレフィン樹脂には、必要に応じて、酸化防止剤、無機充填剤などの各種添加剤を本発明の効果を損なわない範囲で添加しても良い。 Examples of the polyolefin resin include homopolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl1-pentene, 1-hexene and the like, two-step polymers, copolymers and mixtures thereof. If necessary, various additives such as antioxidants and inorganic fillers may be added to the polyolefin resin as long as the effects of the present invention are not impaired.

[2]ポリオレフィン微多孔膜の製造方法
ポリオレフィン微多孔膜の製造方法としては、所望の特性を有するポリオレフィン微多孔膜が製造できれば、特に限定されず、従来公知の方法を用いることができ、例えば、日本国特許第2132327号および日本国特許第3347835号の明細書、国際公開2006/137540号等に記載された方法を用いることができる。具体的には、下記の工程(1)〜(5)を含むことが好ましい。
(1)前記ポリオレフィン樹脂と成膜用溶剤とを溶融混練し、ポリオレフィン溶液を調製する工程
(2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
(3)前記ゲル状シートを延伸する第1の延伸工程
(4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
(5)前記成膜用溶剤除去後のシートを乾燥する工程
[2] Method for Producing Polyolefin Microporous Film The method for producing a polyolefin microporous film is not particularly limited as long as a polyolefin microporous film having desired characteristics can be produced, and a conventionally known method can be used, for example. The methods described in Japanese Patent No. 2132327, Japanese Patent No. 3347835, International Publication No. 2006/137540, etc. can be used. Specifically, it is preferable to include the following steps (1) to (5).
(1) A step of melt-kneading the polyolefin resin and a solvent for film formation to prepare a polyolefin solution (2) A step of extruding the polyolefin solution and cooling it to form a gel-like sheet (3) Stretching the gel-like sheet First stretching step (4) Step of removing the film-forming solvent from the stretched gel sheet (5) Step of drying the sheet after removing the film-forming solvent.

以下、各工程についてそれぞれ説明する。
(1)ポリオレフィン溶液の調製工程
ポリオレフィン樹脂に、それぞれ適当な成膜用溶剤を添加した後、溶融混練し、ポリオレフィン溶液を調製する。溶融混練方法として、例えば日本国特許第2132327号および日本国特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
Hereinafter, each step will be described.
(1) Preparation Step of Polyolefin Solution After adding an appropriate solvent for film formation to each polyolefin resin, melt-knead to prepare a polyolefin solution. As the melt-kneading method, for example, a method using a twin-screw extruder described in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is known, the description thereof will be omitted.

ポリオレフィン溶液中、ポリオレフィン樹脂と成膜用溶剤との配合割合は、特に限定されないが、ポリオレフィン樹脂20〜30質量部に対して、成膜溶剤70〜80質量部であることが好ましい。ポリオレフィン樹脂の割合が上記範囲内であると、ポリオレフィン溶液を押し出す際にダイ出口でスウェルやネックインが防止でき、押出し成形体(ゲル状成形体)の成形性及び自己支持性が良好となる。 The blending ratio of the polyolefin resin and the film-forming solvent in the polyolefin solution is not particularly limited, but is preferably 70 to 80 parts by mass of the film-forming solvent with respect to 20 to 30 parts by mass of the polyolefin resin. When the proportion of the polyolefin resin is within the above range, swells and neck-ins can be prevented at the die outlet when the polyolefin solution is extruded, and the moldability and self-supporting property of the extruded molded product (gel-shaped molded product) are improved.

(2)ゲル状シートの形成工程
ポリオレフィン溶液を押出機からダイに送給し、シート状に押し出す。同一または異なる組成の複数のポリオレフィン溶液を、押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。
(2) Gel-like sheet forming step The polyolefin solution is fed from an extruder to a die and extruded into a sheet. A plurality of polyolefin solutions having the same or different composition may be fed from an extruder to one die, where the layers may be laminated and extruded into a sheet.

押出方法はフラットダイ法及びインフレーション法のいずれでもよい。押出し温度は140〜250℃好ましく、押出速度は0.2〜15m/分が好ましい。ポリオレフィン溶液の各押出量を調節することにより、膜厚を調節することができる。押出方法としては、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。 The extrusion method may be either a flat die method or an inflation method. The extrusion temperature is preferably 140 to 250 ° C., and the extrusion speed is preferably 0.2 to 15 m / min. The film thickness can be adjusted by adjusting each extrusion amount of the polyolefin solution. As the extrusion method, for example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.

得られた押出し成形体を冷却することによりゲル状シートを形成する。ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。 A gel-like sheet is formed by cooling the obtained extruded molded product. As a method for forming the gel-like sheet, for example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Cooling is preferably performed at a rate of 50 ° C./min or higher, at least up to the gelation temperature. Cooling is preferably performed up to 25 ° C. or lower. By cooling, the microphase of polyolefin separated by the film-forming solvent can be immobilized. When the cooling rate is within the above range, the crystallinity is maintained in an appropriate range, and a gel-like sheet suitable for stretching is obtained. As a cooling method, a method of contacting with a refrigerant such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable to contact with a roll cooled with the refrigerant for cooling.

(3)第1の延伸工程
次に、得られたゲル状シートを少なくとも一軸方向に延伸する。ゲル状シートは成膜用溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば、同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
(3) First Stretching Step Next, the obtained gel-like sheet is stretched at least in the uniaxial direction. Since the gel-like sheet contains a solvent for film formation, it can be uniformly stretched. After heating, the gel sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferable. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multi-stage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.

本工程における延伸倍率(面積延伸倍率)は、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。また、機械方向(MD)及び幅方向(TD)での延伸倍率は、互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。 The stretching ratio (area stretching ratio) in this step is preferably 9 times or more, more preferably 16 times or more, and particularly preferably 25 times or more. Further, the draw ratios in the mechanical direction (MD) and the width direction (TD) may be the same or different from each other. The draw ratio in this step refers to the area stretch ratio of the microporous membrane immediately before being subjected to the next step, based on the microporous membrane immediately before this step.

本工程の延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)〜Tcd+30℃の範囲内にするのが好ましく、結晶分散温度(Tcd)+5℃〜結晶分散温度(Tcd)+28℃の範囲内にするのがより好ましく、Tcd+10℃〜Tcd+26℃の範囲内にするのが特に好ましい。例えば、ポリエチレンの場合は、延伸温度を90〜140℃とするのが好ましく、より好ましくは100〜130℃にする。結晶分散温度(Tcd)は、ASTM D4065による動的粘弾性の温度特性測定により求められる。 The stretching temperature in this step is preferably in the range of the crystal dispersion temperature (Tcd) to Tcd + 30 ° C. of the polyolefin resin, and is in the range of the crystal dispersion temperature (Tcd) + 5 ° C. to the crystal dispersion temperature (Tcd) + 28 ° C. Is more preferable, and it is particularly preferable that the temperature is in the range of Tcd + 10 ° C. to Tcd + 26 ° C. For example, in the case of polyethylene, the stretching temperature is preferably 90 to 140 ° C, more preferably 100 to 130 ° C. The crystal dispersion temperature (Tcd) is determined by measuring the temperature characteristics of dynamic viscoelasticity with ASTM D4065.

以上のような延伸によりポリエチレンラメラ間に開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに細孔が拡大するが、適切な条件で延伸を行うと、貫通孔径を制御し、さらに薄い膜厚でも高い空孔率を有する事が可能となる。 Due to the above stretching, cleavage occurs between the polyethylene lamellae, the polyethylene phase becomes finer, and a large number of fibrils are formed. Fibrils form a three-dimensionally irregularly connected network structure. The mechanical strength is improved and the pores are expanded by stretching, but if stretching is performed under appropriate conditions, it is possible to control the through-hole diameter and to have a high pore ratio even with a thinner film thickness.

所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより機械的強度に優れた微多孔膜が得られる。その方法の詳細は日本国特許第3347854号に記載されている。 Depending on the desired physical properties, a temperature distribution may be provided in the film thickness direction for stretching, whereby a microporous film having excellent mechanical strength can be obtained. Details of the method are described in Japanese Patent No. 3347854.

(4)成膜用溶剤の除去
洗浄溶媒を用いて、成膜用溶剤の除去(洗浄)を行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002−256099号公報に開示の方法を利用することができる。
(4) Removal of film-forming solvent The film-forming solvent is removed (cleaned) using a cleaning solvent. Since the polyolefin phase is phase-separated from the film-forming solvent phase, when the film-forming solvent is removed, it is composed of fibrils that form a fine three-dimensional network structure, and pores (voids) that communicate irregularly in three dimensions. A porous membrane having the above is obtained. Since the cleaning solvent and the method for removing the film-forming solvent using the cleaning solvent are known, the description thereof will be omitted. For example, the method disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.

(5)乾燥
成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特にTcdより5℃以上低いのが好ましい。乾燥は、微多孔膜を100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。残存洗浄溶媒が上記範囲内であると、後段の微多孔膜の延伸工程及び熱処理工程を行ったときに微多孔膜の空孔率が維持され、透過性の悪化が抑制される。
(5) Drying The microporous film from which the film-forming solvent has been removed is dried by a heat drying method or an air drying method. The drying temperature is preferably not less than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably 5 ° C. or more lower than Tcd. The drying is preferably carried out with the microporous membrane as 100% by mass (dry weight) until the residual cleaning solvent is 5% by mass or less, and more preferably 3% by mass or less. When the residual cleaning solvent is within the above range, the porosity of the microporous membrane is maintained when the subsequent stretching step and heat treatment step of the microporous membrane are performed, and deterioration of permeability is suppressed.

2.多孔質層
本発明において、多孔質層はフッ化ビニリデン−ヘキサフルオロプロピレン(VdF‐HFP)共重合体(A)、フッ化ビニリデン単位を含む重合体(B)及びアクリル樹脂を含む。各樹脂について以下に説明する。
[1]フッ化ビニリデン−ヘキサフルオロプロピレン(VdF‐HFP)共重合体(A)
本発明に用いられるフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)は、親水基を含み、ヘキサフルオロプロピレンを0.3mol%〜3mol%含有する。共重合体(A)は非水電解液に対して親和性が高く、化学的、物理的な安定性が高く、湿潤時曲げ強さを発現し、高温下での使用にも電解液との親和性を十分維持できる。
2. Porous layer In the present invention, the porous layer contains a vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer (A), a polymer (B) containing a vinylidene fluoride unit, and an acrylic resin. Each resin will be described below.
[1] Vinylidene Fluoride-Hexafluoropropylene (VdF-HFP) Copolymer (A)
The vinylidene fluoride-hexafluoropropylene copolymer (A) used in the present invention contains a hydrophilic group and contains 0.3 mol% to 3 mol% of hexafluoropropylene. The copolymer (A) has a high affinity for a non-aqueous electrolytic solution, has high chemical and physical stability, exhibits bending strength when wet, and can be used at high temperatures with the electrolytic solution. Affinity can be sufficiently maintained.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)は親水基を有することで電極表面に存在する活物質や電極中のバインダー成分と強固に接着することが可能となる。このような接着力は水素結合によるものと推測される。親水基としては、ヒドロキシル基、カルボン酸基、スルホン酸基、およびこれらの塩などが挙げられる。特に、カルボン酸基、カルボン酸エステルが好ましい。 Since the vinylidene fluoride-hexafluoropropylene copolymer (A) has a hydrophilic group, it can be firmly adhered to the active material existing on the electrode surface and the binder component in the electrode. It is presumed that such adhesive force is due to hydrogen bonds. Examples of the hydrophilic group include a hydroxyl group, a carboxylic acid group, a sulfonic acid group, and salts thereof. In particular, carboxylic acid groups and carboxylic acid esters are preferable.

フッ化ビニリデンに親水基を導入する場合には、例えば、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)の合成において、無水マレイン酸、マレイン酸、マレイン酸エステル、マレイン酸モノメチルエステル等の親水基を有する単量体を共重合させることにより主鎖に導入する方法やグラフト化により側鎖として導入する方法が挙げられる。親水基変性率はFT−IR、NMR、定量滴定などで測定できる。例えば、カルボン酸基の場合、FT−IRを用いてホモポリマーを基準としてC−H伸縮振動とカルボキシル基のC=O伸縮振動の吸収強度比から求めることができる。 When a hydrophilic group is introduced into vinylidene fluoride, for example, in the synthesis of vinylidene fluoride-hexafluoropropylene copolymer (A), hydrophilicity such as maleic anhydride, maleic acid, maleic acid ester, and maleic acid monomethyl ester is used. Examples thereof include a method of introducing a monomer having a group into a main chain by copolymerizing it and a method of introducing it as a side chain by grafting. The hydrophilic group denaturation rate can be measured by FT-IR, NMR, quantitative titration, or the like. For example, in the case of a carboxylic acid group, it can be obtained from the absorption intensity ratio of CH stretching vibration and C = O stretching vibration of a carboxyl group with reference to a homopolymer using FT-IR.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)における親水基の含有量の下限値は0.1mol%以上が好ましく、より好ましくは0.3mol%以上であり、上限値は5mol%以下が好ましく、より好ましくは4mol%以下である。親水基の含有量が5mol%を超えるとポリマー結晶性が低くなりすぎ、電解液に対する膨潤度が高くなり湿潤時曲げ強さが悪化する。また、多孔質層に粒子が含まれる場合、親水基の含有量を上記好ましい範囲内とすることで粒子の脱落を抑制することができる。 The lower limit of the content of hydrophilic groups in the vinylidene fluoride-hexafluoropropylene copolymer (A) is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, and the upper limit is preferably 5 mol% or less. , More preferably 4 mol% or less. If the content of the hydrophilic group exceeds 5 mol%, the polymer crystallinity becomes too low, the degree of swelling with respect to the electrolytic solution becomes high, and the bending strength at the time of wetting deteriorates. Further, when the porous layer contains particles, it is possible to suppress the particles from falling off by setting the content of the hydrophilic groups within the above preferable range.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)におけるヘキサフルオロプロピレンの含有量の下限値は0.3mol%以上が好ましく、より好ましくは0.5mol%以上であり、上限値は3mol%以下が好ましく、より好ましくは2.5mol%以下である。ヘキサフルオロプロピレンの含有量が0.3mol%未満であるとポリマー結晶性が高くなり、電解液に対する膨潤度が低くなるため湿潤時曲げ強さが十分に得られにくい。また、3mol%を超えると電解液に対して膨潤しすぎてしまい湿潤時曲げ強さが低下する。 The lower limit of the hexafluoropropylene content in the vinylidene fluoride-hexafluoropropylene copolymer (A) is preferably 0.3 mol% or more, more preferably 0.5 mol% or more, and the upper limit is 3 mol% or less. It is preferably, more preferably 2.5 mol% or less. If the content of hexafluoropropylene is less than 0.3 mol%, the polymer crystallinity becomes high and the degree of swelling with respect to the electrolytic solution becomes low, so that it is difficult to obtain sufficient bending strength when wet. On the other hand, if it exceeds 3 mol%, it swells too much with respect to the electrolytic solution, and the bending strength at the time of wetting decreases.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)の含有量は、共重合体(A)と重合体(B)の総重量に対して、下限値は15重量%以上が好ましく、より好ましくは25重量%以上であり、上限値は85重量%以下が好ましく、より好ましくは25重量%以下である。 The lower limit of the content of the vinylidene fluoride-hexafluoropropylene copolymer (A) is preferably 15% by weight or more, more preferably 15% by weight or more, based on the total weight of the copolymer (A) and the polymer (B). It is 25% by weight or more, and the upper limit value is preferably 85% by weight or less, more preferably 25% by weight or less.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)の重量平均分子量の下限値は75万より大きく、好ましくは90万以上であり、上限値は200万以下が好ましく、より好ましくは150万以下である。共重合体(A)の重量平均分子量を上記好ましい範囲内にすることで共重合体(A)を溶媒に溶解させる時間が極端に長くならず、生産効率を上げることができる。また、電解液に膨潤した際に適度なゲル強度を維持でき、湿潤時曲げ強さが向上する。なお、本発明でいう重量平均分子量はゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値である。 The lower limit of the weight average molecular weight of the vinylidene fluoride-hexafluoropropylene copolymer (A) is larger than 750,000, preferably 900,000 or more, and the upper limit is preferably 2 million or less, more preferably 1.5 million or less. is there. By setting the weight average molecular weight of the copolymer (A) within the above-mentioned preferable range, the time for dissolving the copolymer (A) in the solvent is not extremely long, and the production efficiency can be improved. In addition, an appropriate gel strength can be maintained when the gel is swollen in the electrolytic solution, and the bending strength when wet is improved. The weight average molecular weight referred to in the present invention is a polystyrene-equivalent value obtained by gel permeation chromatography.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)は公知の重合方法で得ることができる。公知の重合方法としては、例えば、特開平11−130821に例示されている方法が挙げられる。イオン交換水、マレイン酸モノメチルエステル、フッ化ビニリデン及びヘキサフルオロプロピレンをオートクレーブに入れ、懸濁重合をおこない、その後、重合体スラリーを脱水、水洗した後、乾燥させて重合体粉末を得る方法である。このとき懸濁剤としてメチルセルロースや、ラジカル開始剤としてジイソプロピルパーオキシジカーボネートなどを適宜使用することができる。 The vinylidene fluoride-hexafluoropropylene copolymer (A) can be obtained by a known polymerization method. As a known polymerization method, for example, the method exemplified in JP-A-11-130821 can be mentioned. This is a method in which ion-exchanged water, maleic anhydride, vinylidene fluoride and hexafluoropropylene are placed in an autoclave, suspension polymerization is carried out, and then the polymer slurry is dehydrated, washed with water and then dried to obtain a polymer powder. .. At this time, methyl cellulose as a suspending agent and diisopropylperoxydicarbonate as a radical initiator can be appropriately used.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)は、特性を損なわない範囲で親水基を有する単量体以外の他の単量体をさらに重合した共重合体であってもよい。親水基を有する単量体以外の他の単量体として、例えば、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、フッ化ビニル等の単量体が挙げられる。 The vinylidene fluoride-hexafluoropropylene copolymer (A) may be a copolymer obtained by further polymerizing a monomer other than the monomer having a hydrophilic group as long as the characteristics are not impaired. Examples of the monomer other than the monomer having a hydrophilic group include a monomer such as tetrafluoroethylene, trifluoroethylene, trichlorethylene, and vinyl fluoride.

[2]フッ化ビニリデン単位を含む重合体(B)
本発明に用いられるフッ化ビニリデン単位を含む重合体(B)は、融点60℃以上145℃以下で、重量平均分子量が10万以上75万以下であり、非水電解液に対して親和性が高く、化学的、物理的な安定性が高く、乾燥時曲げ強さおよび乾燥時剥離力が得られる。これについてメカニズムは明らかでないが乾燥時曲げ強さおよび乾燥時剥離力を発現するような加熱及び加圧条件下で重合体(B)は流動性を帯び、電極の多孔質層に入り込むことでアンカーとなり、これにより多孔質層と電極との間は強固な接着性を有するためと発明者らは推測している。重合体(B)は乾燥時曲げ強さや乾燥時剥離力に寄与し、巻回電極体や積層電極体のたわみ、歪み防止や搬送性の改善に寄与することができる。なお、フッ化ビニリデン単位を含む重合体(B)はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)と異なる樹脂である。
[2] Polymer containing vinylidene fluoride unit (B)
The polymer (B) containing a vinylidene fluoride unit used in the present invention has a melting point of 60 ° C. or higher and 145 ° C. or lower, a weight average molecular weight of 100,000 or more and 750,000 or less, and has an affinity for a non-aqueous electrolytic solution. It is highly stable, chemically and physically stable, and provides bending strength during drying and peeling force during drying. Although the mechanism is not clear about this, the polymer (B) becomes fluid under heating and pressurizing conditions that develop bending strength during drying and peeling force during drying, and anchors by entering the porous layer of the electrode. The inventors speculate that this is because the porous layer and the electrode have strong adhesiveness. The polymer (B) contributes to the bending strength during drying and the peeling force during drying, and can contribute to the prevention of bending and distortion of the wound electrode body and the laminated electrode body and the improvement of transportability. The polymer (B) containing a vinylidene fluoride unit is a resin different from the vinylidene fluoride-hexafluoropropylene copolymer (A).

フッ化ビニリデン単位を含む重合体(B)の融点の下限値は60℃以上が好ましく、より好ましくは80℃以上であり、上限値は145℃以下が好ましく、より好ましくは140℃以下である。なお、ここでいう融点とは、示差走査熱量測定(DSC)法で測定された昇温時の吸熱ピークのピークトップの温度である。 The lower limit of the melting point of the polymer (B) containing vinylidene fluoride units is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and the upper limit is preferably 145 ° C. or lower, more preferably 140 ° C. or lower. The melting point referred to here is the temperature of the peak top of the endothermic peak at the time of temperature rise measured by the differential scanning calorimetry (DSC) method.

フッ化ビニリデン単位を含む重合体(B)は、ポリフッ化ビニリデン又はフッ化ビニリデン単位を有する共重合体からなる樹脂である。重合体(B)は共重合体(A)と同様の懸濁重合法などで得ることができる。重合体(B)の融点は、フッ化ビニリデン単位からなる部位の結晶性を制御することで調整することができる。例えば、重合体(B)にフッ化ビニリデン単位以外の単量体が含まれる場合、フッ化ビニリデン単位の割合を制御することで融点を調整できる。フッ化ビニリデン単位以外の単量体は、テトラフルオロエチレン、トリフルオロエチレン、トリクロロエチレン、ヘキサフルオロプロピレン、フッ化ビニル無水マレイン酸、マレイン酸、マレイン酸エステル、マレイン酸モノメチルエステル等を1種類又は2種以上有してもよい。重合体(B)を重合するときに上記単量体を添加して、共重合により主鎖に導入する方法やグラフト化により側鎖として導入する方法が挙げられる。また、フッ化ビニリデン単位のHead−to−Head結合(−CH−CF−CF−CH−)の割合を制御することで融点を調整してもよい。 The polymer (B) containing a vinylidene fluoride unit is a resin made of polyvinylidene fluoride or a copolymer having a vinylidene fluoride unit. The polymer (B) can be obtained by a suspension polymerization method similar to that of the copolymer (A). The melting point of the polymer (B) can be adjusted by controlling the crystallinity of the moiety composed of vinylidene fluoride units. For example, when the polymer (B) contains a monomer other than the vinylidene fluoride unit, the melting point can be adjusted by controlling the ratio of the vinylidene fluoride unit. As the monomer other than the vinylidene fluoride unit, one or two kinds of tetrafluoroethylene, trifluoroethylene, trichlorethylene, hexafluoropropylene, vinyl fluoride maleic anhydride, maleic acid, maleic acid ester, maleic acid monomethyl ester and the like are used. You may have more than that. Examples thereof include a method in which the above-mentioned monomer is added when the polymer (B) is polymerized and introduced into the main chain by copolymerization, and a method in which the polymer (B) is introduced as a side chain by grafting. Further, the melting point may be adjusted by controlling the ratio of the head-to-Head bond (-CH 2- CF 2- CF 2- CH 2- ) in units of vinylidene fluoride.

フッ化ビニリデン単位を含む重合体(B)の重量平均分子量の下限値は10万以上が好ましく、より好ましくは15万以上であり、上限値は75万以下が好ましく、より好ましくは70万以下である。 The lower limit of the weight average molecular weight of the polymer (B) containing vinylidene fluoride unit is preferably 100,000 or more, more preferably 150,000 or more, and the upper limit is preferably 750,000 or less, more preferably 700,000 or less. is there.

フッ化ビニリデン単位を含む重合体(B)の融点及び重量平均分子量を上記好ましい範囲内にすることで、加熱及び加圧条件下で重合体(B)は流動しやすくなり、十分な乾燥時曲げ強さ、乾燥時剥離力が得られる。重合体(B)の融点が上記好ましい範囲の上限値を超えると、乾燥時曲げ強さ、乾燥時剥離力を得るために、捲回体の製造工程におけるプレス温度を高くする必要がある。そうするとポリオレフィンを主成分とする微多孔膜は収縮するおそれがある。また、重合体(B)の重量平均分子量が上記好ましい範囲の上限値を超えると、分子鎖の絡み合い量が増加し、プレス条件下で十分に流動できなくなるおそれがある。重合体(B)の重量平均分子量が上記好ましい範囲の下限値を下回る場合は、分子鎖の絡み合い量が少なすぎるため樹脂強度が弱くなり、多孔質層の凝集破壊がおこりやすくなる。 By keeping the melting point and weight average molecular weight of the polymer (B) containing vinylidene fluoride units within the above-mentioned preferable ranges, the polymer (B) becomes easy to flow under heating and pressurizing conditions, and is sufficiently bent during drying. Strength and peeling power when dried can be obtained. When the melting point of the polymer (B) exceeds the upper limit of the above preferable range, it is necessary to raise the press temperature in the process of manufacturing the wound product in order to obtain bending strength during drying and peeling force during drying. Then, the microporous membrane containing polyolefin as a main component may shrink. Further, when the weight average molecular weight of the polymer (B) exceeds the upper limit of the above preferable range, the amount of entanglement of the molecular chains increases, and there is a possibility that the polymer (B) cannot sufficiently flow under the pressing conditions. When the weight average molecular weight of the polymer (B) is less than the lower limit of the above-mentioned preferable range, the amount of entanglement of the molecular chains is too small, the resin strength is weakened, and the porous layer is likely to be aggregated and broken.

[3]アクリル樹脂
さらに、多孔質層はアクリル樹脂を含むことで、乾燥時曲げ強さと乾燥時剥離力を向上させることができる。フッ化ビニリデン−ヘキサフルオロプロピレン(VdF‐HFP)共重合体(A)及びフッ化ビニリデン単位を含む重合体(B)だけでは乾燥時曲げ強さ、湿潤時曲げ強さ及び乾燥時剥離力を満たすセパレータを得ることができない。
[3] Acrylic Resin Further, by containing the acrylic resin in the porous layer, the bending strength at the time of drying and the peeling power at the time of drying can be improved. The vinylidene fluoride-hexafluoropropylene (VdF-HFP) copolymer (A) and the polymer (B) containing the vinylidene fluoride unit alone satisfy the flexural strength during drying, the bending strength during wetness, and the peeling force during drying. I can't get a separator.

アクリル樹脂は(メタ)アクリル酸エステル重合体又はその共重合体が好ましい。本発明において(メタ)アクリル酸エステルとはアクリル酸エステル(アクリレート)とメタクリル酸エステル(メタクリレート)をあらわす。(メタ)アクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、2−エチルヘキシルメタクリレートなどが挙げられる。特に、ブチルアクリレートを含むことが好ましい。ブチルアクリレートは塗膜の柔軟性を上げ、粒子の脱落を抑制する効果も期待できる。 The acrylic resin is preferably a (meth) acrylic acid ester polymer or a copolymer thereof. In the present invention, the (meth) acrylic acid ester represents an acrylic acid ester (acrylate) and a methacrylic acid ester (methacrylate). Examples of the (meth) acrylic acid ester include methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, and 2-ethylhexyl methacrylate. And so on. In particular, it preferably contains butyl acrylate. Butyl acrylate can be expected to have the effect of increasing the flexibility of the coating film and suppressing the shedding of particles.

電極との接着性の観点から、アクリル樹脂は(メタ)アクリル酸エステルとシアノ基を有する単量体との共重合体がより好ましい。シアノ基を有する単量体としては、シアノ基を有するα,β−エチレン性不飽和単量体が挙げられ、例えば、アクリロニトリル又はメタクリロニトリルが好ましい。さらに、アクリル樹脂はブチルアクリレートとアクリロニトリルとの共重合体が特に好ましく、モル比を制御することで電解液に対する膨潤度を調整し、さらに樹脂にほどよい柔軟性を持たせることができ、湿潤時曲げ強さも向上させることが可能になる。アクリル樹脂におけるブチルアクリレート単位の含有量の下限値は50mol%以上が好ましく、より好ましくは55mol%以上であり、上限値は75mol%以下が好ましく、より好ましくは70mol%以下である。アクリル樹脂におけるブチルアクリレート単位の含有量の下限値を上記好ましい範囲にすることで、多孔質層に適度な柔軟性を持たせることができ、多孔膜の脱落を抑制することができる。また、アクリル樹脂におけるブチルアクリレート単位の含有量を上記好ましい範囲内にすることで、乾燥時曲げ強さと湿潤時曲げ強さと、乾燥時剥離力のバランスが良好となる。 From the viewpoint of adhesiveness to the electrode, the acrylic resin is more preferably a copolymer of a (meth) acrylic acid ester and a monomer having a cyano group. Examples of the monomer having a cyano group include α, β-ethylenically unsaturated monomers having a cyano group, and for example, acrylonitrile or methacrylonitrile is preferable. Further, the acrylic resin is particularly preferably a copolymer of butyl acrylate and acrylonitrile, and the degree of swelling with respect to the electrolytic solution can be adjusted by controlling the molar ratio, and the resin can be given moderate flexibility when wet. Bending strength can also be improved. The lower limit of the content of the butyl acrylate unit in the acrylic resin is preferably 50 mol% or more, more preferably 55 mol% or more, and the upper limit is preferably 75 mol% or less, more preferably 70 mol% or less. By setting the lower limit of the content of the butyl acrylate unit in the acrylic resin to the above-mentioned preferable range, the porous layer can be provided with appropriate flexibility, and the loss of the porous film can be suppressed. Further, by setting the content of the butyl acrylate unit in the acrylic resin within the above preferable range, the balance between the bending strength during drying, the bending strength during wetting, and the peeling force during drying becomes good.

アクリル樹脂は公知の重合方法、例えば、特開2013−206846号公報に例示されている方法で得ることができる。撹拌機付きのオートクレーブにイオン交換水、n−ブチルアクリレート、アクリロニトリルを仕込んで乳化重合によって得られる重合体粒子が水に分散した分散液の水をN−メチル−2−ピロリドンに置換し、アクリル樹脂溶液を得る方法などが挙げられる。重合反応の際にラジカル重合開始剤として過硫酸カリウム、分子量調整剤としてt−ドデシルメルカプタンなどを適宜使用してもよい。 The acrylic resin can be obtained by a known polymerization method, for example, the method exemplified in JP2013-206846A. Ion-exchanged water, n-butyl acrylate, and acrylonitrile were charged into an autoclave equipped with a stirrer, and the water in the dispersion in which the polymer particles obtained by emulsion polymerization were dispersed in water was replaced with N-methyl-2-pyrrolidone to replace the acrylic resin. Examples include a method of obtaining a solution. In the polymerization reaction, potassium persulfate as a radical polymerization initiator, t-dodecyl mercaptan or the like as a molecular weight modifier may be appropriately used.

アクリル樹脂の含有量は、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)、フッ化ビニリデン単位を含む重合体(B)及びアクリル樹脂の総重量に対して、下限値は4重量%以上が好ましく、より好ましくは5重量%以上であり、上限値は40重量%以下が好ましく、より好ましくは30重量%以下、さらに好ましくは20重量%以下である。アクリル樹脂の含有量を上記好ましい範囲内とすることで、共重合体(A)の含有量と重合体(B)の含有量の総量を一定以上とし、多孔質層の耐酸化性を維持することができる。 The lower limit of the acrylic resin content is 4% by weight or more with respect to the total weight of the vinylidene fluoride-hexafluoropropylene copolymer (A), the polymer (B) containing the vinylidene fluoride unit, and the acrylic resin. It is preferable, more preferably 5% by weight or more, and the upper limit value is preferably 40% by weight or less, more preferably 30% by weight or less, still more preferably 20% by weight or less. By setting the content of the acrylic resin within the above preferable range, the total content of the copolymer (A) and the polymer (B) is kept above a certain level, and the oxidation resistance of the porous layer is maintained. be able to.

フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)の含有量及びアクリル樹脂の含有量を上記好ましい範囲内とすることで、多孔質層は乾燥時曲げ強さ、湿潤時曲げ強さと乾燥時剥離力が得られる。 By setting the content of the vinylidene fluoride-hexafluoropropylene copolymer (A) and the content of the acrylic resin within the above preferable ranges, the porous layer has bending strength during drying, bending strength during wetness and peeling during drying. Power is gained.

[4]粒子
本発明における多孔質層は粒子を含んでもよい。多孔質層に粒子を含むことで正極と負極との間のショートが起きる確率を下げることができ、安全性の向上が期待できる。粒子としては無機粒子あるいは有機粒子が挙げられる。
[4] Particles The porous layer in the present invention may contain particles. By including particles in the porous layer, the probability of a short circuit between the positive electrode and the negative electrode can be reduced, and improvement in safety can be expected. Examples of the particles include inorganic particles and organic particles.

無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラス粒子、カオリン、タルク、二酸化チタン、アルミナ、シリカ−アルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ、ベーマイト、酸化マグネシウムなどが挙げられる。特に、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体の結晶成長性、コスト、入手のしやすさから二酸化チタン、アルミナ、ベーマイト、硫酸バリウムが好適である。 Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass particles, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, and zeolite. , Molybdenum sulfide, mica, zeolite, magnesium oxide and the like. In particular, titanium dioxide, alumina, boehmite, and barium sulfate are preferable because of the crystal growth property, cost, and availability of the vinylidene fluoride-hexafluoropropylene copolymer.

有機粒子としては、架橋ポリスチレン粒子、架橋アクリル樹脂粒子、架橋メタクリル酸メチル系粒子などが挙げられる。 Examples of the organic particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, and crosslinked methyl methacrylate-based particles.

多孔質層に含まれる粒子の含有量は、多孔質層の総重量に対して、上限値は90重量%以下が好ましく、より好ましくは85重量%以下であり、下限値は50重量%以上が好ましく、より好ましくは60重量%以上、さらに好ましくは65重量%以上である。粒子の含有量を上記好ましい範囲内にすることで、透気抵抗度の良好なバランスが得られやすい。 Regarding the content of particles contained in the porous layer, the upper limit is preferably 90% by weight or less, more preferably 85% by weight or less, and the lower limit is 50% by weight or more with respect to the total weight of the porous layer. It is preferable, more preferably 60% by weight or more, still more preferably 65% by weight or more. By keeping the content of the particles within the above preferable range, a good balance of air permeation resistance can be easily obtained.

多孔質層に接着性を持たない粒子が含まれると湿潤時曲げ強さ、乾燥時曲げ強さや乾燥時剥離力は低下する傾向にある。しかし、本発明の樹脂組成により得られる多孔質層は粒子を上記好ましい範囲で含有しても電極に対する湿潤時曲げ強さ、乾燥時曲げ強さと乾燥時剥離力のバランスが良好である。 When the porous layer contains particles having no adhesiveness, the bending strength when wet, the bending strength when drying, and the peeling force when drying tend to decrease. However, even if the porous layer obtained by the resin composition of the present invention contains particles in the above-mentioned preferable range, the balance between the bending strength when wet, the bending strength when drying and the peeling force when drying is good with respect to the electrode.

粒子脱落の観点から、粒子の平均粒径は微多孔膜の平均流量細孔径の1.5倍以上、50倍以下であることが好ましく、より好ましくは2.0倍以上、20倍以下である。平均流量細孔径は、JIS K3832やASTM F316−86にならって測定され、例えば、パームポロメーター(PMI社製、CFP−1500A)を用いて、Dry−up、Wet−upの順で測定した。Wet−upには表面張力が既知のPMI社製Galwick(商品名)で十分に浸した微多孔質膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。平均流量細孔径については、Dry−up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet−up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
d=C・γ/P(上記式中、「d(μm)」は微多孔質膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数とした。)
From the viewpoint of particle shedding, the average particle size of the particles is preferably 1.5 times or more and 50 times or less, more preferably 2.0 times or more and 20 times or less the average flow rate pore diameter of the microporous membrane. .. The average flow rate pore diameter was measured according to JIS K3832 or ASTM F316-86, and was measured in the order of Dry-up and Wet-up using, for example, a palm polo meter (CFP-1500A manufactured by PMI). For Wet-up, pressure was applied to a microporous membrane sufficiently immersed with Galwick (trade name) manufactured by PMI, which has a known surface tension, and the pore diameter converted from the pressure at which air began to penetrate was defined as the maximum pore diameter. Regarding the average flow rate pore diameter, the pore size was converted from the pressure at the intersection of the pressure and the slope of 1/2 of the flow rate curve in the Dry-up measurement and the pressure at the intersection of the Wet-up measurement curve. The following formula was used to convert the pressure and pore diameter.
d = C · γ / P (In the above formula, “d (μm)” is the pore size of the microporous membrane, “γ (mN / m)” is the surface tension of the liquid, “P (Pa)” is the pressure, and “ "C" is a constant.)

セル巻回時の巻き取芯とのすべり性や粒子脱落の観点から、粒子の平均粒径は0.3μm〜1.8μmが好ましく、より好ましくは0.5μm〜1.5μm、さらに好ましくは0.9μm〜1.3μmである。粒子の平均粒径はレーザー回折方式や動的光散乱方式の測定装置を使用して測定できる。例えば、超音波プローブを用いて界面活性剤入り水溶液に分散させた粒子を粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)で測定し、体積換算での小粒子側から50%累積された時の粒子径(D50)の値を平均粒径とするのが好ましい。粒子の形状は真球形状、略球形状、板状、針状が挙げられるが特に限定されない。 The average particle size of the particles is preferably 0.3 μm to 1.8 μm, more preferably 0.5 μm to 1.5 μm, and further preferably 0, from the viewpoint of slipperiness with the winding core during cell winding and particle dropout. It is 9.9 μm to 1.3 μm. The average particle size of the particles can be measured using a laser diffraction method or a dynamic light scattering method measuring device. For example, particles dispersed in an aqueous solution containing a surfactant using an ultrasonic probe were measured with a particle size distribution measuring device (Microtrac HRA manufactured by Nikkiso Co., Ltd.), and 50% of the particles were accumulated from the small particle side in terms of volume. It is preferable that the value of the particle size (D50) at the time is the average particle size. The shape of the particles includes a spherical shape, a substantially spherical shape, a plate shape, and a needle shape, but is not particularly limited.

[5]多孔質層の物性
多孔質層の膜厚は、片面当たり0.5〜3μmが好ましく、より好ましくは1〜2.5μm、さらに好ましくは1〜2μmである。片面あたり膜厚が0.5μm以上であれば、湿潤時曲げ強さ、乾燥時曲げ強さと乾燥時剥離力が確保できる。片面あたり膜厚が3μm以下であれば巻き嵩を抑えることができ、今後、進むであろう電池の高容量化に適する。
[5] Physical properties of the porous layer The film thickness of the porous layer is preferably 0.5 to 3 μm, more preferably 1 to 2.5 μm, and further preferably 1 to 2 μm per side. When the film thickness per side is 0.5 μm or more, the bending strength when wet, the bending strength when drying, and the peeling force when drying can be secured. If the film thickness per side is 3 μm or less, the winding volume can be suppressed, which is suitable for increasing the capacity of batteries, which will be advanced in the future.

多孔質層の空孔率は、30〜90%が好ましく、より好ましくは40〜70%である。多孔質層の空孔率を上記好ましい範囲内とすることでセパレータの電気抵抗の上昇を防ぎ、大電流を流すことができ、かつ膜強度を維持できる。 The porosity of the porous layer is preferably 30 to 90%, more preferably 40 to 70%. By setting the porosity of the porous layer within the above preferable range, it is possible to prevent an increase in the electrical resistance of the separator, allow a large current to flow, and maintain the film strength.

[6]電池用セパレータの製造方法
本発明の電池用セパレータの製造方法は以下の工程(1)〜(3)を順次含む。
(1)フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン単位を含む重合体(B)を溶媒に溶解したフッ素樹脂溶液を得る工程
(2)フッ素系樹脂溶液にアクリル樹脂溶液を添加し、混合して塗工液を得る工程
(3)塗工液を微多孔膜に塗布して凝固液に浸漬し、洗浄、乾燥する工程
[6] Method for Manufacturing Battery Separator The method for manufacturing a battery separator of the present invention sequentially includes the following steps (1) to (3).
(1) Step of obtaining a fluororesin solution in which a vinylidene fluoride-hexafluoropropylene copolymer (A) and a polymer (B) containing a vinylidene fluoride unit are dissolved in a solvent (2) Acrylic resin solution in a fluororesin solution Step of adding and mixing to obtain a coating liquid (3) Step of applying the coating liquid to a microporous film, immersing it in a coagulating liquid, washing and drying

(1)フッ素系樹脂溶液を得る工程
溶媒はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン単位を含む重合体(B)を溶解でき、アクリル樹脂を溶解または分散させることができて、かつ、凝固液と混和しうるものであれば特に限定されない。溶解性、低揮発性の観点から、溶媒はN−メチル−2−ピロリドンが好ましい。
(1) Step of obtaining a fluororesin solution The solvent can dissolve the vinylidene fluoride-hexafluoropropylene copolymer (A) and the polymer (B) containing the vinylidene fluoride unit, and can dissolve or disperse the acrylic resin. It is not particularly limited as long as it can be produced and can be mixed with the coagulating liquid. From the viewpoint of solubility and low volatility, the solvent is preferably N-methyl-2-pyrrolidone.

粒子を含む多孔質層を設ける場合には、予め粒子を分散させたフッ素樹脂溶液(分散液ともいう)を調整することが重要である。フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン単位を含む重合体(B)を溶媒に溶解し、そこに撹拌しながら粒子を添加して一定の時間(例えば、約1時間)ディスパーなどで撹拌することで予備分散し、さらにビーズミルやペイントシェーカーを用いて粒子を分散させる工程(分散工程)を経て、粒子の凝集を減らしたフッ素樹脂溶液を得る。 When providing a porous layer containing particles, it is important to prepare a fluororesin solution (also referred to as a dispersion liquid) in which particles are dispersed in advance. The vinylidene fluoride-hexafluoropropylene copolymer (A) and the polymer (B) containing the vinylidene fluoride unit are dissolved in a solvent, and particles are added thereto with stirring for a certain period of time (for example, about 1 hour). ) Pre-disperse by stirring with a disper or the like, and further disperse the particles using a bead mill or a paint shaker (dispersion step) to obtain a fluororesin solution with reduced aggregation of the particles.

(2)塗工液を得る工程
フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)及びフッ化ビニリデン単位を含む重合体(B)を含むフッ素樹脂溶液にアクリル樹脂溶液を添加し、例えば、撹拌羽根のついたスリーワンモータで混合して塗工液を調製する。
(2) Step of obtaining a coating liquid An acrylic resin solution is added to a fluororesin solution containing a vinylidene fluoride-hexafluoropropylene copolymer (A) and a polymer (B) containing a vinylidene fluoride unit, and for example, stirring is performed. A coating liquid is prepared by mixing with a three-one motor with blades.

アクリル樹脂溶液はアクリル樹脂を溶媒に溶解または分散させた溶液であり、ここで用いる溶媒は工程(1)と同一の溶媒が好ましい。特に、溶解性、低揮発性の観点からN−メチル−2−ピロリドンが好ましい。アクリル樹脂溶液はアクリル樹脂を重合した後、N−メチル−2−ピロリドンを加えて蒸留するなどして溶媒を置換して得るのが操作性の観点から好ましい。 The acrylic resin solution is a solution in which an acrylic resin is dissolved or dispersed in a solvent, and the solvent used here is preferably the same solvent as in step (1). In particular, N-methyl-2-pyrrolidone is preferable from the viewpoint of solubility and low volatility. From the viewpoint of operability, it is preferable to obtain the acrylic resin solution by substituting the solvent by polymerizing the acrylic resin and then adding N-methyl-2-pyrrolidone and distilling.

粒子を含む多孔質層を設ける場合には、粒子を分散させたフッ素樹脂溶液(分散液)にアクリル樹脂溶液を添加することが重要である。つまり、分散工程においてアクリル樹脂が入らないことが重要となる。フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)、フッ化ビニリデン単位を含む重合体(B)、アクリル樹脂と、粒子を同時に溶媒に添加して塗工液を作製すると、共重合体(A)に含まれる親水基とアクリル樹脂(特にブチルアクリレートを含む場合)とが分散時の熱およびせん断により、塗工液が徐々にゲル化し始めることが推測され、工業的に不適である。さらに、増粘の影響で多孔質層の厚さを片面あたり3μm以下とする薄膜塗工が困難となる。本発明の製造方法における工程(1)、(2)により塗工液のゲル化を抑制し、薄膜塗工が可能となり、塗工液の保存安定性も向上する。 When providing a porous layer containing particles, it is important to add an acrylic resin solution to the fluororesin solution (dispersion solution) in which the particles are dispersed. That is, it is important that the acrylic resin does not enter in the dispersion step. When vinylidene fluoride-hexafluoropropylene copolymer (A), polymer containing vinylidene fluoride unit (B), acrylic resin and particles are added to the solvent at the same time to prepare a coating liquid, the copolymer (A) ) And the acrylic resin (particularly when butyl acrylate is contained) are presumed to gradually start gelling due to heat and shear during dispersion, which is industrially unsuitable. Further, due to the effect of thickening, it becomes difficult to apply a thin film so that the thickness of the porous layer is 3 μm or less per side. By the steps (1) and (2) in the production method of the present invention, gelation of the coating liquid is suppressed, thin film coating becomes possible, and the storage stability of the coating liquid is also improved.

(3)塗工液を微多孔膜に塗布し、凝固液に浸漬し、洗浄、乾燥する工程
微多孔膜に塗工液を塗布し、塗布した微多孔膜を凝固液に浸漬してフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)、フッ化ビニリデン単位を含む重合体(B)及びアクリル樹脂を相分離させ、三次元網目構造を有する状態で凝固させ、洗浄、乾燥する。これにより微多孔膜と、微多孔膜の表面に多孔質層を備えた電池用セパレータが得られる。
(3) Step of applying the coating liquid to the microporous membrane, immersing it in the coagulating liquid, washing and drying the coating liquid is applied to the microporous membrane, and the applied microporous membrane is immersed in the coagulating liquid to form fluoride. The vinylidene-hexafluoropropylene copolymer (A), the polymer (B) containing a vinylidene fluoride unit, and the acrylic resin are phase-separated, coagulated in a state having a three-dimensional network structure, washed, and dried. As a result, a microporous membrane and a battery separator having a porous layer on the surface of the microporous membrane can be obtained.

塗工液を微多孔膜に塗布する方法は、公知の方法でもよく、例えば、ディップ・コート法、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法を単独あるいは組み合わせることができる。 The method of applying the coating liquid to the microporous film may be a known method, for example, a dip coating method, a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, a spray coating method, etc. Examples include the air knife coating method, the Meyer bar coating method, the pipe doctor method, the blade coating method and the die coating method, and these methods can be used alone or in combination.

凝固液は水であることが好ましく、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)、フッ化ビニリデン単位を含む重合体(B)、及びアクリル樹脂に対する良溶媒を1〜20重量%含む水溶液が好ましく、より好ましくは5〜15重量%含有する水溶液である。良溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが挙げられる。凝固液内での浸漬時間は3秒以上とすることが好ましい。上限は制限されないが、10秒もあれば十分である。 The coagulation liquid is preferably water, and is an aqueous solution containing 1 to 20% by weight of a vinylidene fluoride-hexafluoropropylene copolymer (A), a polymer (B) containing a vinylidene fluoride unit, and a good solvent for an acrylic resin. Is preferable, and more preferably, it is an aqueous solution containing 5 to 15% by weight. Examples of good solvents include N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide. The immersion time in the coagulating liquid is preferably 3 seconds or longer. The upper limit is not limited, but 10 seconds is sufficient.

洗浄には水を用いることができる。乾燥は、例えば100℃以下の熱風を用いた乾燥することができる。 Water can be used for cleaning. Drying can be performed using, for example, hot air at 100 ° C. or lower.

本発明の電池用セパレータは、ニッケル−水素電池、ニッケル−カドミウム電池、ニッケル−亜鉛電池、銀−亜鉛電池、リチウムイオン二次電池、リチウムポリマー二次電池、リチウム−硫黄電池等の二次電池などの電池用セパレータとして用いることができる。特に、リチウムイオン二次電池のセパレータとして用いるのが好ましい。 The battery separator of the present invention includes secondary batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium ion secondary batteries, lithium polymer secondary batteries, and lithium-sulfur batteries. It can be used as a battery separator. In particular, it is preferably used as a separator for a lithium ion secondary battery.

[7]電池用セパレータの物性
電池用セパレータの湿潤時曲げ強さは4N以上が好ましい。湿潤時曲げ強さの上限値は特に定めないが、15Nあれば十分である。上記好ましい範囲内にすることで、セパレータと電極との界面での部分的な遊離を抑制し、電池内部抵抗の増大、電池特性の低下を抑制できる。
[7] Physical Properties of Battery Separator The bending strength of the battery separator when wet is preferably 4N or more. The upper limit of the flexural strength when wet is not particularly set, but 15N is sufficient. By setting the content within the above preferable range, partial release at the interface between the separator and the electrode can be suppressed, an increase in battery internal resistance and a decrease in battery characteristics can be suppressed.

電池用セパレータの乾燥時曲げ強さは好ましくは5N以上である。乾燥時曲げ強さの上限値は特に定めないが25Nあれば十分である。上記好ましい範囲内にすることで、巻回電極体のたわみ、歪みを抑制することが期待できる。 The flexural strength of the battery separator during drying is preferably 5N or more. The upper limit of the flexural strength during drying is not particularly set, but 25N is sufficient. By keeping the temperature within the above preferable range, it can be expected that the bending and distortion of the wound electrode body can be suppressed.

電池用セパレータの乾燥時剥離力は好ましくは8N/m以上である。乾燥時剥離力の上限値は特に定めないが40N/mあれば十分である。上記好ましい範囲内にすることで、巻回電極体又は積層電極体を電極体がばらけることなく搬送できることが期待される。 The peeling force of the battery separator during drying is preferably 8 N / m or more. The upper limit of the peeling force during drying is not particularly set, but 40 N / m is sufficient. Within the above preferable range, it is expected that the wound electrode body or the laminated electrode body can be conveyed without the electrode body being separated.

電池用セパレータは湿潤時曲げ強さと乾燥時曲げ強さと乾燥時剥離力を両立し、具体的には下記に示す測定方法にて湿潤時曲げ強さが4N以上、乾燥時曲げ強さが5N以上かつ乾燥時剥離力が8N/m以上を満たす。 The battery separator has both a wet bending strength, a dry bending strength, and a dry peeling force. Specifically, the wet bending strength is 4 N or more and the dry bending strength is 5 N or more by the measurement method shown below. Moreover, the peeling force at the time of drying satisfies 8 N / m or more.

以下、実施例を示して具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measured values in the examples are values measured by the following methods.

1.湿潤時曲げ強さ
一般に、正極にはフッ素樹脂のバインダーが用いられ、フッ素樹脂を含む多孔質層がセパレータ上に備えられている場合、フッ素樹脂同士の相互拡散により接着性が担保されやすい。一方、負極にはフッ素樹脂以外のバインダーが用いられ、フッ素系樹脂の拡散が起きにくいため正極に比べ負極はセパレータとの接着性が得られにくい。そこで、本測定ではセパレータと負極との間の接着性を、以下に述べる曲げ強さを指標として評価した。
(1)負極の作製
カルボキシメチルセルロースを1.5質量部含む水溶液を人造黒鉛96.5質量部に加えて混合し、さらに固形分として2質量部のスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが8μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.5g/cmにして、負極を作製した。
(2)試験用巻回体の作製
上記で作成された負極(機械方向161mm×幅方向30mm)と、実施例および比較例で作成したセパレータ(機械方向160mm×幅方向34mm)とを重ね、金属板(長さ300mm、幅25mm、厚さ1mm)を巻き芯としてセパレータが内側になるようにセパレータと負極を巻き取り、金属板を引き抜いて試験用巻回体を得た。試験用巻回体は長さ約34mm×幅約28mmとなった。
(3)湿潤時曲げ強さの測定方法
ポリプロピレンからなるラミネートフィルム(長さ70mm、幅65mm、厚さ0.07mm)2枚を重ね、4辺のうち3辺を溶着した袋状のラミネートフィルム内に試験用巻回体を入れた。エチレンカーボネートとエチルメチルカーボネートを体積比3:7で混合した溶媒にLiPFを1mol/Lの割合で溶解させた電解液500μLをグローブボックス中でラミネートフィルムの開口部から注入し、試験用巻回体に含浸させ、真空シーラーで開口部の一辺を封止した。
次に、ラミネートフィルムに封入した試験用巻回体を2枚のガスケット(厚さ1mm、5cm×5cm)で挟み込み、精密加熱加圧装置(新東工業株式会社製、CYPT−10)にて98℃、0.6MPaで2分間加圧し、室温で放冷した。ラミネートフィルムに封入したまま、加圧後の試験用巻回体について、万能試験機(株式会社島津製作所製、AGS−J)を用いて湿潤時曲げ強さを測定した。以下、詳細を記載する。
2本のアルミニウム製L字アングル(厚さ1mm、10mm×10mm、長さ5cm)を90°部分が上になるように平行に、端部をそろえて配置し、90°部分を支点として支点間距離が15mmとなるよう固定した。2本のアルミニウム製L字アングルの支点間距離の中間である7.5mm地点に試験用巻回体の幅方向の辺(約28mm)の中点を合わせてL字アングルの長さ方向の辺からはみ出さないように試験用巻回体を配置した。
次に、圧子としてアルミニウム製L字アングル(厚さ1mm、10mm×10mm、長さ4cm)の長さ方向の辺から試験用巻回体の長さ方向の辺(約34mm)がはみ出さないようにかつ平行にして、試験用巻回体の幅方向の辺の中点にアルミニウム製L字アングルの90°部分を合わせ、90°部分が下になるようにアルミニウム製L字アングルを万能試験機のロードセル(ロードセル容量50N)に固定した。3個の試験用巻回体を負荷速度0.5mm/minにて測定し得られた最大試験力の平均値を湿潤時曲げ強度とした。
1. 1. Flexural strength when wet Generally, when a fluororesin binder is used for the positive electrode and a porous layer containing the fluororesin is provided on the separator, the adhesiveness is easily ensured by mutual diffusion between the fluororesins. On the other hand, a binder other than the fluororesin is used for the negative electrode, and diffusion of the fluororesin is unlikely to occur, so that the negative electrode is less likely to obtain adhesiveness to the separator than the positive electrode. Therefore, in this measurement, the adhesiveness between the separator and the negative electrode was evaluated using the flexural strength described below as an index.
(1) Preparation of Negative Electrode A negative electrode mixture is prepared by adding an aqueous solution containing 1.5 parts by mass of carboxymethyl cellulose to 96.5 parts by mass of artificial graphite and mixing, and further adding 2 parts by mass of styrene-butadiene latex as a solid content and mixing. It was used as a contained slurry. This negative electrode mixture-containing slurry is uniformly applied to both sides of a negative electrode current collector made of copper foil having a thickness of 8 μm and dried to form a negative electrode layer, and then compression-molded by a roll press to collect current. A negative electrode was prepared by setting the density of the negative electrode layer excluding the body to 1.5 g / cm 3 .
(2) Preparation of test winding body The negative electrode (machine direction 161 mm × width direction 30 mm) prepared above and the separator (machine direction 160 mm × width direction 34 mm) prepared in Examples and Comparative Examples are overlapped and metal. The separator and the negative electrode were wound around a plate (length 300 mm, width 25 mm, thickness 1 mm) so that the separator was on the inside, and the metal plate was pulled out to obtain a test wound body. The test winding body had a length of about 34 mm and a width of about 28 mm.
(3) Method for measuring flexural strength when wet Inside a bag-shaped laminated film in which two polypropylene laminated films (length 70 mm, width 65 mm, thickness 0.07 mm) are stacked and three of the four sides are welded together. The test winding body was put in. 500 μL of an electrolytic solution prepared by dissolving LiPF 6 at a ratio of 1 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7 is injected through the opening of the laminate film in a glove box, and the test winding is performed. The body was impregnated and one side of the opening was sealed with a vacuum sealer.
Next, the test winding body enclosed in the laminate film was sandwiched between two gaskets (thickness 1 mm, 5 cm x 5 cm), and 98 with a precision heating and pressurizing device (CYPT-10, manufactured by Shinto Kogyo Co., Ltd.). The film was pressurized at 0.6 MPa for 2 minutes and allowed to cool at room temperature. The bending strength when wet was measured using a universal testing machine (AGS-J, manufactured by Shimadzu Corporation) for the test wound body after pressurization while being sealed in the laminate film. Details will be described below.
Two aluminum L-shaped angles (thickness 1 mm, 10 mm x 10 mm, length 5 cm) are arranged in parallel with the 90 ° part facing up, with the ends aligned, and between the fulcrums with the 90 ° part as the fulcrum. It was fixed so that the distance was 15 mm. Align the midpoint of the width direction side (about 28 mm) of the test winding body with the 7.5 mm point, which is the middle of the distance between the fulcrums of the two aluminum L-shaped angles, and the side in the length direction of the L-shaped angle. The test winding body was arranged so as not to protrude from the outside.
Next, as an indenter, the side (about 34 mm) in the length direction of the test winding body should not protrude from the side in the length direction of the aluminum L-shaped angle (thickness 1 mm, 10 mm × 10 mm, length 4 cm). Align the 90 ° part of the aluminum L-shaped angle with the midpoint of the width direction side of the test winding body, and make the aluminum L-shaped angle a universal tester so that the 90 ° part is on the bottom. It was fixed to the load cell (load cell capacity 50N). The average value of the maximum test forces obtained by measuring the three test winding bodies at a load speed of 0.5 mm / min was taken as the bending strength when wet.

2.乾燥時曲げ強さ
(1)負極の作製
上記1.湿潤時曲げ強さと同一の負極を用いた。
(2)試験用巻回体の作製
上記1.湿潤時曲げ強さと同一の試験用巻回体を用いた。
(3)乾燥時曲げ強さの測定方法
準備した試験用巻回体を2枚のガスケット(厚さ1mm、5cm×5cm)で挟み込み、精密加熱加圧装置(新東工業株式会社製、CYPT−10)にて70℃、0.6MPaで2分間加圧し、室温で放冷した。試験用巻回体について、上記1.湿潤時曲げ強さの測定方法と同様に配置して万能試験機(株式会社島津製作所製、AGS−J)を用いて、以下の条件で3個の試験用巻回体を測定して得られた最大試験力の平均値を乾燥時曲げ強度とした。
支点間距離 : 15mm
ロードセル容量: 50N
負荷速度 : 0.5mm/min
2. Flexural strength during drying (1) Preparation of negative electrode 1. A negative electrode having the same bending strength as when wet was used.
(2) Preparation of test winding body 1. A test wound body having the same bending strength as when wet was used.
(3) Method for measuring flexural strength during drying The prepared test winding body is sandwiched between two gaskets (thickness 1 mm, 5 cm x 5 cm), and a precision heating and pressurizing device (manufactured by Shinto Kogyo Co., Ltd., CYPT-). The pressure was increased at 70 ° C. and 0.6 MPa for 2 minutes at 10), and the mixture was allowed to cool at room temperature. Regarding the test winding body, the above 1. Obtained by measuring three test windings under the following conditions using a universal testing machine (manufactured by Shimadzu Corporation, AGS-J) arranged in the same manner as the method for measuring flexural strength when wet. The average value of the maximum test force was taken as the bending strength during drying.
Distance between fulcrums: 15 mm
Load cell capacity: 50N
Load speed: 0.5 mm / min

3.乾燥時剥離力
(1)負極の作製
上記1.湿潤時曲げ強さと同一の負極を用いた。
(2)剥離試験片の作成
上記で作成された負極(70mm×15mm)と、実施例および比較例で作成したセパレータ(機械方向90mm×幅方向20mm)とを重ね、これを2枚のガスケット(厚さ0.5mm、95mm×27mm)で挟み込み、精密加熱加圧装置(新東工業株式会社製、CYPT−10)にて90℃、8MPaで2分間加圧し、室温で放冷した。この負極とセパレータとの積層体の負極側に幅1cmからなる両面テープを貼りつけ、両面テープのもう一方の面をSUS板(厚さ3mm、長さ150mm×幅50mm)に、セパレータの機械方向とSUS板長さ方向が平行になるよう貼り付けた。これを剥離試験片とした。
(3)乾燥時剥離力の測定方法
万能試験機(株式会社島津製作所製、AGS−J)を用いてセパレータをロードセル側チャックに挟み込み、試験速度300mm/分にて180度剥離試験を実施した。剥離試験中のストローク20mmから70mmまでの測定値を平均化した値を剥離試験片の剥離力とした。計3個の剥離試験片を測定し、剥離力の平均値を幅換算した値を乾燥時剥離力(N/m)とした。
3. 3. Peeling force during drying (1) Preparation of negative electrode 1. A negative electrode having the same bending strength as when wet was used.
(2) Preparation of peeling test piece The negative electrode (70 mm × 15 mm) prepared above and the separator (machine direction 90 mm × width direction 20 mm) prepared in Examples and Comparative Examples are overlapped with each other, and two gaskets (20 mm in width direction) are laminated. It was sandwiched between (thickness 0.5 mm, 95 mm × 27 mm), pressurized with a precision heating and pressurizing device (CYPT-10 manufactured by Shinto Kogyo Co., Ltd.) at 90 ° C. and 8 MPa for 2 minutes, and allowed to cool at room temperature. A double-sided tape having a width of 1 cm is attached to the negative electrode side of the laminate of the negative electrode and the separator, and the other side of the double-sided tape is placed on a SUS plate (thickness 3 mm, length 150 mm × width 50 mm) in the mechanical direction of the separator. And the SUS plate were attached so that the length direction was parallel. This was used as a peeling test piece.
(3) Method for measuring peeling force during drying A separator was sandwiched between load cell side chucks using a universal testing machine (AGS-J manufactured by Shimadzu Corporation), and a 180-degree peeling test was carried out at a test speed of 300 mm / min. The value obtained by averaging the measured values of the strokes from 20 mm to 70 mm during the peeling test was taken as the peeling force of the peeling test piece. A total of three peeling test pieces were measured, and the value obtained by converting the average value of the peeling force into a width was defined as the peeling force during drying (N / m).

4.融点測定
示差走査熱量分析装置(株式会社パーキンエルマー製DSC)にて、測定パンに7mgの樹脂を入れ測定用試料とし、以下の条件にて測定した。初めに昇温、冷却した後、第2回目の昇温時の吸熱ピークのピークトップを融点とした。
昇温、冷却速度 : ±10℃/min
測定温度範囲 : 30〜230℃
4. Melting point measurement With a differential scanning calorimetry device (DSC manufactured by PerkinElmer Co., Ltd.), 7 mg of resin was placed in a measuring pan to prepare a sample for measurement, and measurement was performed under the following conditions. After the temperature was raised and cooled first, the peak top of the endothermic peak at the time of the second temperature rise was taken as the melting point.
Temperature rise and cooling rate: ± 10 ° C / min
Measurement temperature range: 30-230 ° C

5.膜厚
接触式膜厚計(株式会社ミツトヨ製“ライトマチック”(登録商標)series318)を使用して、超硬球面測定子φ9.5mmを用い、加重0.01Nの条件で20点を測定し、得られた測定値の平均値を膜厚とした。
5. Film thickness Using a contact-type film thickness meter (“Lightmatic” (registered trademark) series 318 manufactured by Mitutoyo Co., Ltd.), 20 points were measured under the condition of a weight of 0.01 N using a super hard spherical probe φ9.5 mm. The average value of the obtained measured values was taken as the film thickness.

実施例1
[共重合体(a)]
共重合体(A)として、以下のように共重合体(a)を合成した。フッ化ビニリデン、ヘキサフルオロプロピレン及びマレイン酸モノメチルエステルを出発原料として懸濁重合法にてフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(a)を合成した。得られた共重合体(a)は重量平均分子量が150万、フッ化ビニリデン/ヘキサフルオロプロピレン/マレイン酸モノメチルエステルのモル比が98.0/1.5/0.5であることをNMR測定で確認した。
[共重合体(b1)]
重合体(B)として、以下のように共重合体(b1)を合成した。フッ化ビニリデン及びヘキサフルオロプロピレンを出発原料として懸濁重合法にてフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(b1)を合成した。得られた共重合体(b1)は重量平均分子量が30万、フッ化ビニリデン/ヘキサフルオロプロピレンのモル比が93/7であることをNMR測定で確認した。
[アクリル樹脂]
アクリロニトリル、n−ブチルアクリレートを出発原料として乳化重合法にてアクリル樹脂を合成し、その後、水をN−メチル−2−ピロリドンに置換し、固形分濃度が5質量%のアクリル樹脂溶液を得た。得られたアクリル樹脂はTgが−5℃、アクリロニトリル単位/アクリル酸エステル単位のモル比が38/62であることをNMR測定で確認した。
[電池用セパレータの作製]
共重合体(a)7.1質量部、共重合体(b1)21.4質量部と、NMP359.3質量部を混合し、その後ディスパーで撹拌しながらアルミナ粒子(平均粒径1.1μm)を70質量部加えて、さらに、ディスパーで1時間、2000rpmで予備攪拌した。次いで、ダイノーミル(シンマルエンタープライゼス製ダイノーミルマルチラボ(1.46L容器、充填率80%、φ0.5mmアルミナビーズ))を用いて、流量11kg/hr、周速10m/sの条件下で3回処理し、分散液を得た。分散液にアクリル樹脂溶液を混合して、撹拌羽根のついたスリーワンモータで500rpm、30分間攪拌し、濾過して固形分濃度20.5質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:7.1:21.4:1.5の塗工液を得た。厚さ7μmのポリエチレン微多孔膜の両面にディップコート法にて塗工液を塗布し、水溶液中に浸漬させ、純水で洗浄した後、50℃で乾燥し、厚み11μmの電池用セパレータを得た。
Example 1
[Copolymer (a)]
As the copolymer (A), the copolymer (a) was synthesized as follows. A vinylidene fluoride-hexafluoropropylene copolymer (a) was synthesized by a suspension polymerization method using vinylidene fluoride, hexafluoropropylene and maleic acid monomethyl ester as starting materials. The obtained copolymer (a) had a weight average molecular weight of 1.5 million, and the molar ratio of vinylidene fluoride / hexafluoropropylene / maleic acid monomethyl ester was 98.0 / 1.5 / 0.5 by NMR measurement. I confirmed it in.
[Copolymer (b1)]
As the polymer (B), the copolymer (b1) was synthesized as follows. A vinylidene fluoride-hexafluoropropylene copolymer (b1) was synthesized by a suspension polymerization method using vinylidene fluoride and hexafluoropropylene as starting materials. It was confirmed by NMR measurement that the obtained copolymer (b1) had a weight average molecular weight of 300,000 and a molar ratio of vinylidene fluoride / hexafluoropropylene of 93/7.
[acrylic resin]
An acrylic resin was synthesized by an emulsion polymerization method using acrylonitrile and n-butyl acrylate as starting materials, and then water was replaced with N-methyl-2-pyrrolidone to obtain an acrylic resin solution having a solid content concentration of 5% by mass. .. It was confirmed by NMR measurement that the obtained acrylic resin had a Tg of −5 ° C. and a molar ratio of acrylonitrile unit / acrylic acid ester unit of 38/62.
[Manufacturing of battery separator]
7.1 parts by mass of the copolymer (a), 21.4 parts by mass of the copolymer (b1), and 359.3 parts by mass of NMP are mixed, and then alumina particles (average particle size 1.1 μm) are stirred with a disper. Was added in an amount of 70 parts by mass, and the mixture was further pre-stirred with a disper for 1 hour at 2000 rpm. Next, using a Dynomill (Dynomill Multilab (1.46 L container, filling rate 80%, φ0.5 mm alumina beads) manufactured by Simmal Enterprises), under the conditions of a flow rate of 11 kg / hr and a peripheral speed of 10 m / s. The treatment was performed 3 times to obtain a dispersion liquid. Acrylic resin solution is mixed with the dispersion, stirred with a three-one motor equipped with stirring blades at 500 rpm for 30 minutes, filtered, and solid content concentration is 20.5% by mass. Alumina particles: copolymer (a): copolymer weight. A coating solution having a weight ratio of coalescing (b1): acrylic resin of 70: 7.1: 21.4: 1.5 was obtained. A coating liquid is applied to both sides of a polyethylene microporous membrane having a thickness of 7 μm by a dip coating method, immersed in an aqueous solution, washed with pure water, and then dried at 50 ° C. to obtain a battery separator having a thickness of 11 μm. It was.

実施例2
固形分濃度が18.0質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:14.3:14.2:1.5の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 2
Coating liquid having a solid content concentration of 18.0% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin 70: 14.3: 14.2: 1.5 A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例3
固形分濃度が15.5質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:21.4:7.1:1.5の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 3
Coating liquid having a solid content concentration of 15.5% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin 70: 21.4: 7.1: 1.5 A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例4
固形分濃度が20.5質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:6.8:20.2:3.0の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 4
A coating liquid having a solid content concentration of 20.5% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 70: 6.8: 20.2: 3.0. A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例5
固形分濃度が18.0質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:13.5:13.5:3.0の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 5
Coating liquid with solid content concentration of 18.0% by mass, alumina particles: copolymer (a): copolymer (b1): acrylic resin with a weight ratio of 70: 13.5: 13.5: 3.0 A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例6
固形分濃度が15.5質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:20.2:6.8:3.0の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 6
Coating liquid having a solid content concentration of 15.5% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 70: 20.2: 6.8: 3.0. A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例7
固形分濃度が20.5質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:6.4:19.1:4.5の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 7
Coating liquid having a solid content concentration of 20.5% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 70: 6.4: 19.1: 4.5. A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例8
固形分濃度が18.0質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:12.8:12.7:4.5の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 8
Coating liquid having a solid content concentration of 18.0% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 70: 12.8: 12.7: 4.5. A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例9
固形分濃度が19.5質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:19.1:6.4:4.5の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 9
A coating liquid having a solid content concentration of 19.5% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 70: 19.1: 6.4: 4.5. A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例10
固形分濃度が20.5質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:6.0:18.0:6.0の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 10
Coating liquid having a solid content concentration of 20.5% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 70: 6.0: 18.0: 6.0. A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例11
固形分濃度が18.0質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:12.0:12.0:6.0の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 11
Coating liquid having a solid content concentration of 18.0% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 70: 12.0: 12.0: 6.0. A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例12
固形分濃度が15.5質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が70:18.0:6.0:6.0の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 12
Coating liquid having a solid content concentration of 15.5% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 70: 18.0: 6.0: 6.0. A battery separator was obtained in the same manner as in Example 1 except that the above was used.

実施例13
固形分濃度が21.0質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が78.8:9.0:9.0:3.2の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 13
Coating with a solid content concentration of 21.0% by mass, alumina particles: copolymer (a): copolymer (b1): acrylic resin with a weight ratio of 78.8: 9.0: 9.0: 3.2 A battery separator was obtained in the same manner as in Example 1 except that the working solution was used.

実施例14
固形分濃度が25.0質量%、アルミナ粒子:共重合体(a):共重合体(b1):アクリル樹脂の重量比が85.2:6.3:6.3:2.2の塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 14
Coating with a solid content concentration of 25.0% by mass and a weight ratio of alumina particles: copolymer (a): copolymer (b1): acrylic resin of 85.2: 6.3: 6.3: 2.2. A battery separator was obtained in the same manner as in Example 1 except that the working solution was used.

実施例15
[共重合体(b2)]
重合体(B)として、以下のように共重合体(b2)を合成した。フッ化ビニリデン、テトラフルオロエチレンを出発原料として懸濁重合法にてフッ化ビニリデン−テトラフルオロエチレン共重合体(b2)を合成した。得られたフッ化ビニリデン−テトラフルオロエチレン共重合体(b2)は重量平均分子量が28万、フッ化ビニリデン/テトラフルオロエチレンのモル比が90/10であることをNMR測定で確認した。
[電池用セパレータの作製]
共重合体(b1)の代わりに共重合体(b2)を用いて、固形分濃度が18.0質量%、アルミナ粒子:共重合体(a):共重合体(b2):アクリル樹脂の重量比が70:13.5:13.5:3.0となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Example 15
[Copolymer (b2)]
As the polymer (B), the copolymer (b2) was synthesized as follows. A vinylidene fluoride-tetrafluoroethylene copolymer (b2) was synthesized by a suspension polymerization method using vinylidene fluoride and tetrafluoroethylene as starting materials. It was confirmed by NMR measurement that the obtained vinylidene fluoride-tetrafluoroethylene copolymer (b2) had a weight average molecular weight of 280,000 and a molar ratio of vinylidene fluoride / tetrafluoroethylene of 90/10.
[Manufacturing of battery separator]
Using the copolymer (b2) instead of the copolymer (b1), the solid content concentration is 18.0% by mass, alumina particles: copolymer (a): copolymer (b2): weight of acrylic resin. A battery separator was obtained in the same manner as in Example 1 except that a coating liquid prepared so that the ratio was 70: 13.5: 13.5: 3.0 was used.

実施例16
共重合体(a)45質量部、共重合体(b1)45質量部と、NMP1329質量部を混合し溶解させた。この液にアクリル樹脂溶液を混合して、撹拌羽根のついたスリーワンモータで500rpm、30分間攪拌し、濾過して固形分濃度6.6質量%、共重合体(a):共重合体(b1):アクリル樹脂の重量比が45.0:45.0:10.0の塗工液を得た。厚さ7μmのポリエチレン微多孔膜の両面にディップコート法にて塗工液を塗布し、水溶液中に浸漬させ、純水で洗浄した後、50℃で乾燥し、厚み11μmの電池用セパレータを得た。
Example 16
45 parts by mass of the copolymer (a), 45 parts by mass of the copolymer (b1), and 1329 parts by mass of NMP were mixed and dissolved. Acrylic resin solution is mixed with this solution, stirred with a three-one motor equipped with a stirring blade at 500 rpm for 30 minutes, filtered to have a solid content concentration of 6.6% by mass, and the copolymer (a): copolymer (b1). ): A coating solution having a weight ratio of acrylic resin of 45.0: 45.0: 10.0 was obtained. A coating liquid is applied to both sides of a polyethylene microporous membrane having a thickness of 7 μm by a dip coating method, immersed in an aqueous solution, washed with pure water, and then dried at 50 ° C. to obtain a battery separator having a thickness of 11 μm. It was.

比較例1
共重合体(b1)30.0質量部と、NMP334.8質量部を混合し、その後ディスパーで撹拌しながらアルミナ粒子(平均粒径1.1μm)を70質量部加えて、さらに、ディスパーで1時間、2000rpmで予備攪拌した。次いで、ダイノーミル(シンマルエンタープライゼス製ダイノーミルマルチラボ(1.46L容器、充填率80%、φ0.5mmアルミナビーズ))を用いて、流量11kg/hr、周速10m/sの条件下で3回処理し、分散液を得た。これを濾過して固形分濃度23.0質量%、アルミナ粒子:共重合体(b1)の重量比が70:30.0の塗工液を得た。厚さ7μmのポリエチレン微多孔膜の両面にディップコート法にて塗工液を塗布し、水溶液中に浸漬させ、純水で洗浄した後、50℃で乾燥し、厚み11μmの電池用セパレータを得た。
Comparative Example 1
30.0 parts by mass of the copolymer (b1) and 334.8 parts by mass of NMP are mixed, and then 70 parts by mass of alumina particles (average particle size 1.1 μm) are added while stirring with a disper, and further, 1 with a disper. Pre-stirring at 2000 rpm for hours. Next, using a Dynomill (Dynomill Multilab (1.46 L container, filling rate 80%, φ0.5 mm alumina beads) manufactured by Simmal Enterprises), under the conditions of a flow rate of 11 kg / hr and a peripheral speed of 10 m / s. The treatment was performed 3 times to obtain a dispersion liquid. This was filtered to obtain a coating liquid having a solid content concentration of 23.0% by mass and an alumina particle: copolymer (b1) weight ratio of 70: 30.0. A coating liquid is applied to both sides of a polyethylene microporous membrane having a thickness of 7 μm by a dip coating method, immersed in an aqueous solution, washed with pure water, and then dried at 50 ° C. to obtain a battery separator having a thickness of 11 μm. It was.

比較例2
共重合体(a)7.5質量部、共重合体(b1)22.5質量部と、NMP387.8質量部を混合した以外は、比較例1と同様に調製、濾過して固形分濃度が20.5質量%、アルミナ粒子:共重合体(a):共重合体(b1)の重量比が70:7.5:22.5となるように調製した塗工液を得た。これを比較例1と同様にして塗工して電池用セパレータを得た。
Comparative Example 2
Prepared and filtered in the same manner as in Comparative Example 1 except that 7.5 parts by mass of the copolymer (a), 22.5 parts by mass of the copolymer (b1), and 387.8 parts by mass of NMP were mixed. Was 20.5% by mass, and a coating liquid prepared so that the weight ratio of alumina particles: copolymer (a): copolymer (b1) was 70: 7.5: 22.5 was obtained. This was applied in the same manner as in Comparative Example 1 to obtain a battery separator.

比較例3
固形分濃度が18.0質量%、アルミナ粒子:共重合体(a):共重合体(b1)の重量比が70:15.0:15.0となるように調製した塗工液を用いた以外は比較例2と同様にして電池用セパレータを得た。
Comparative Example 3
A coating liquid prepared so that the solid content concentration is 18.0% by mass and the weight ratio of alumina particles: copolymer (a): copolymer (b1) is 70: 15.0: 15.0 is used. A battery separator was obtained in the same manner as in Comparative Example 2 except that the particles were present.

比較例4
固形分濃度が15.5質量%、アルミナ粒子:共重合体(a):共重合体(b1)の重量比が70:22.5:7.5となるように調製した塗工液を用いた以外は比較例2と同様にして電池用セパレータを得た。
Comparative Example 4
A coating liquid prepared so that the solid content concentration is 15.5% by mass and the weight ratio of alumina particles: copolymer (a): copolymer (b1) is 70: 22.5: 7.5 is used. A battery separator was obtained in the same manner as in Comparative Example 2 except that the particles were present.

比較例5
共重合体(a)30質量部と、NMP669.2質量部を混合した以外は、比較例1と同様に調製、濾過して固形分濃度が13.0質量%、アルミナ粒子:共重合体(a)の重量比が70:30.0となるように調製した塗工液を得た。これを比較例1と同様にして塗工して電池用セパレータを得た。
Comparative Example 5
The copolymer (a) was prepared in the same manner as in Comparative Example 1 except that 30 parts by mass and NMP669.2 parts by mass were mixed, and the solid content concentration was 13.0% by mass. Alumina particles: copolymer (copolymer (a) A coating liquid prepared so that the weight ratio of a) was 70: 30.0 was obtained. This was applied in the same manner as in Comparative Example 1 to obtain a battery separator.

比較例6
固形分濃度が23.0質量%、アルミナ粒子:共重合体(b1):アクリル樹脂の重量比が70:28.5:1.5となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 6
Except for using a coating liquid prepared so that the solid content concentration is 23.0% by mass and the weight ratio of alumina particles: copolymer (b1): acrylic resin is 70: 28.5: 1.5. A battery separator was obtained in the same manner as in Example 1.

比較例7
固形分濃度が13.0質量%、アルミナ粒子:共重合体(a):アクリル樹脂の重量比が70:28.5:1.5となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 7
Except for using a coating liquid prepared so that the solid content concentration is 13.0% by mass and the weight ratio of alumina particles: copolymer (a): acrylic resin is 70: 28.5: 1.5. A battery separator was obtained in the same manner as in Example 1.

比較例8
固形分濃度が23.0質量%、アルミナ粒子:共重合体(b1):アクリル樹脂の重量比が70:27.0:3.0となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 8
Except for using a coating liquid prepared so that the solid content concentration is 23.0% by mass and the weight ratio of alumina particles: copolymer (b1): acrylic resin is 70: 27.0: 3.0. A battery separator was obtained in the same manner as in Example 1.

比較例9
固形分濃度が13.0質量%、アルミナ粒子:共重合体(a):アクリル樹脂の重量比が70:27.0:3.0となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 9
Except for using a coating liquid prepared so that the solid content concentration is 13.0% by mass and the weight ratio of alumina particles: copolymer (a): acrylic resin is 70: 27.0: 3.0. A battery separator was obtained in the same manner as in Example 1.

比較例10
固形分濃度が23.0質量%、アルミナ粒子:共重合体(b1):アクリル樹脂の重量比が70:25.5:4.5となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 10
Except for using a coating liquid prepared so that the solid content concentration is 23.0% by mass and the weight ratio of alumina particles: copolymer (b1): acrylic resin is 70: 25.5: 4.5. A battery separator was obtained in the same manner as in Example 1.

比較例11
固形分濃度が23.0質量%、アルミナ粒子:共重合体(b1):アクリル樹脂の重量比が70:24.0:6.0となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 11
Except for using a coating liquid prepared so that the solid content concentration is 23.0% by mass and the weight ratio of alumina particles: copolymer (b1): acrylic resin is 70: 24.0: 6.0. A battery separator was obtained in the same manner as in Example 1.

比較例12
[共重合体(b3)]
フッ化ビニリデン及びテトラフルオロエチレンを出発原料として懸濁重合法にてフッ化ビニリデン−テトラフルオロエチレン共重合体を合成した。得られたフッ化ビニリデン−テトラフルオロエチレン共重合体は重量平均分子量が95万、フッ化ビニリデン/テトラフルオロエチレンのモル比が95/5であることをNMR測定で確認した。
[電池用セパレータの作製]
共重合体(b1)の代わりに共重合体(b3)を用いて、固形分濃度が18.0質量%、アルミナ粒子:共重合体(a):共重合体(b3):アクリル樹脂の重量比が70:13.5:13.5:3.0となるように調製した塗工液を用いた以外は実施例1と同様にして電池用セパレータを得た。
Comparative Example 12
[Copolymer (b3)]
A vinylidene fluoride-tetrafluoroethylene copolymer was synthesized by a suspension polymerization method using vinylidene fluoride and tetrafluoroethylene as starting materials. It was confirmed by NMR measurement that the obtained vinylidene fluoride-tetrafluoroethylene copolymer had a weight average molecular weight of 950,000 and a molar ratio of vinylidene fluoride / tetrafluoroethylene was 95/5.
[Manufacturing of battery separator]
Using the copolymer (b3) instead of the copolymer (b1), the solid content concentration is 18.0% by mass, alumina particles: copolymer (a): copolymer (b3): weight of acrylic resin. A battery separator was obtained in the same manner as in Example 1 except that a coating liquid prepared so that the ratio was 70: 13.5: 13.5: 3.0 was used.

実施例1〜16、比較例1〜12で得られた電池用セパレータの特性を表1に示す。 Table 1 shows the characteristics of the battery separators obtained in Examples 1 to 16 and Comparative Examples 1 to 12.

Figure 0006766411

共重合体(A)の含有量(%):共重合体(A)と重合体(B)の総重量に対する共重合体(A)の重量%を表す。
アクリル樹脂の含有量(%)**:共重合体(A)、重合体(B)及びアクリル樹脂の総重量に対するアクリル樹脂の重量%を表す。
Figure 0006766411

Content of copolymer (A) (%) * : Represents the weight% of the copolymer (A) with respect to the total weight of the copolymer (A) and the polymer (B).
Acrylic resin content (%) ** : Represents the weight% of the acrylic resin with respect to the total weight of the copolymer (A), the polymer (B) and the acrylic resin.

1:負極
2:電池用セパレータ
3:ラミネートフィルム
4:アルミニウム製L字アングル
5:圧子用アルミニウム製L字アングル
1: Negative electrode 2: Battery separator 3: Laminated film 4: Aluminum L-shaped angle 5: Aluminum L-shaped angle for indenter

Claims (13)

微多孔膜と、微多孔膜の少なくとも片面に設けられた多孔質層とを備え、前記多孔質層はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)と、フッ化ビニリデン単位を含む重合体(B)と、アクリル樹脂とを含有し、前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)は親水基の含有量は0.1mol%〜5mol%であり、ヘキサフルオロプロピレン単位を0.3mol%〜3mol%含有し、重量平均分子量が75万より大きく200万以下であり、前記フッ化ビニリデン単位を含む重合体(B)は融点が60℃以上145℃以下、重量平均分子量が10万以上75万以下である電池用セパレータ。 A microporous film and a porous layer provided on at least one side of the microporous film are provided, and the porous layer is a polymer containing a vinylidene fluoride-hexafluoropropylene copolymer (A) and a vinylidene fluoride unit. The vinylidene fluoride-hexafluoropropylene copolymer (A) containing (B) and an acrylic resin has a hydrophilic group content of 0.1 mol% to 5 mol%, and has a hexafluoropropylene unit of 0. The polymer (B) containing 3 mol% to 3 mol%, having a weight average molecular weight of more than 750,000 and 2 million or less, and containing the vinylidene fluoride unit has a melting point of 60 ° C. or higher and 145 ° C. or lower, and a weight average molecular weight of 100,000. Separator for batteries that is 750,000 or less. 多孔質層は粒子を含む請求項1に記載の電池用セパレータ。 The battery separator according to claim 1, wherein the porous layer contains particles. フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)の含有量が、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)とフッ化ビニリデン単位を含む重合体(B)の総重量に対して15重量%以上85重量%以下であり、アクリル樹脂の含有量が、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)、フッ化ビニリデン単位を含む重合体(B)及びアクリル樹脂の総重量に対して4重量%以上40重量%以下である請求項1又は2に記載の電池用セパレータ。 The content of the vinylidene fluoride-hexafluoropropylene copolymer (A) is 15 relative to the total weight of the vinylidene fluoride-hexafluoropropylene copolymer (A) and the polymer (B) containing the vinylidene fluoride unit. By weight% or more and 85% by weight or less, the content of the acrylic resin is based on the total weight of the vinylidene fluoride-hexafluoropropylene copolymer (A), the polymer (B) containing the vinylidene fluoride unit, and the acrylic resin. The battery separator according to claim 1 or 2 , wherein the content is 4% by weight or more and 40% by weight or less. アクリル樹脂は(メタ)アクリル酸エステルとシアノ基を有する単量体との共重合体である請求項1〜のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3 , wherein the acrylic resin is a copolymer of a (meth) acrylic acid ester and a monomer having a cyano group. アクリル樹脂はブチルアクリレートを含む共重合体である請求項1〜のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3 , wherein the acrylic resin is a copolymer containing butyl acrylate. アクリル樹脂はブチルアクリレートとアクリロニトリルとの共重合体である請求項1〜のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3 , wherein the acrylic resin is a copolymer of butyl acrylate and acrylonitrile. アクリル樹脂におけるブチルアクリレートの含有量は50mol%〜75mol%である請求項又はに記載の電池用セパレータ。 The battery separator according to claim 5 or 6 , wherein the content of butyl acrylate in the acrylic resin is 50 mol% to 75 mol%. 湿潤時曲げ強さが4N以上、乾燥時曲げ強さが5N以上、かつ乾燥時剥離力が8N/mである請求項1〜いずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 7, wherein the flexural strength when wet is 4 N or more, the flexural strength when dry is 5 N or more, and the peeling force when dry is 8 N / m. 粒子の含有量は多孔質層の総重量に対して50重量%以上90重量%以下である請求項のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 2 to 8 , wherein the content of the particles is 50% by weight or more and 90% by weight or less with respect to the total weight of the porous layer. 粒子がアルミナ、チタニア、ベーマイト、硫酸バリウムからなる群から選ばれる少なくとも1種を含む請求項のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 2 to 9 , wherein the particles include at least one selected from the group consisting of alumina, titania, boehmite, and barium sulfate. 多孔質層の厚さが片面あたり0.5〜3μmである請求項1〜1のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 10 , wherein the thickness of the porous layer is 0.5 to 3 μm per side. 微多孔膜がポリオレフィン微多孔膜である請求項1〜1のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 11, wherein the microporous membrane is a polyolefin microporous membrane. (1)フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)と、フッ化ビニリデン単位を含む重合体(B)を溶媒に溶解したフッ素系樹脂溶液を得る工程と、
(2)アクリル樹脂を溶媒に溶解したアクリル樹脂溶液をフッ素系樹脂溶液に添加し、混合して塗工液を得る工程と、
(3)塗工液を微多孔膜に塗布して凝固液に浸漬し、洗浄、乾燥する工程とを順次含み、前記フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(A)は親水基の含有量は0.1mol%〜5mol%であり、ヘキサフルオロプロピレン単位を0.3mol%〜3mol%含有し、重量平均分子量が75万より大きく200万以下であり、前記フッ化ビニリデン単位を含む重合体(B)は融点が60℃以上145℃以下、重量平均分子量が10万以上75万以下であり、前記アクリル樹脂はブチルアクリレート単位を含む請求項1〜1のいずれか1項に記載の電池用セパレータの製造方法。
(1) A step of obtaining a fluororesin solution in which a vinylidene fluoride-hexafluoropropylene copolymer (A) and a polymer (B) containing a vinylidene fluoride unit are dissolved in a solvent.
(2) A step of adding an acrylic resin solution in which an acrylic resin is dissolved in a solvent to a fluororesin solution and mixing them to obtain a coating liquid.
(3) The step of applying the coating liquid to the microporous film, immersing it in the coagulating liquid, washing and drying is sequentially included, and the vinylidene fluoride-hexafluoropropylene copolymer (A) has a hydrophilic group content. Is 0.1 mol% to 5 mol%, contains 0.3 mol% to 3 mol% of hexafluoropropylene units, has a weight average molecular weight of more than 750,000 and is 2 million or less, and contains the vinylidene fluoride unit. B) has a melting point of 60 ° C. or higher and 145 ° C. or lower, a weight average molecular weight of 100,000 or more and 750,000 or less, and the acrylic resin contains a butyl acrylate unit for a battery according to any one of claims 1 to 12 . Method of manufacturing separator.
JP2016072419A 2016-03-31 2016-03-31 Battery separator and its manufacturing method Active JP6766411B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016072419A JP6766411B2 (en) 2016-03-31 2016-03-31 Battery separator and its manufacturing method
TW106102415A TWI724094B (en) 2016-03-31 2017-01-23 Diaphragm for battery and manufacturing method thereof
KR1020170034452A KR102209887B1 (en) 2016-03-31 2017-03-20 Separator for batteries and method for producing same
CN201710203782.2A CN107492625B (en) 2016-03-31 2017-03-30 Battery separator and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072419A JP6766411B2 (en) 2016-03-31 2016-03-31 Battery separator and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017183212A JP2017183212A (en) 2017-10-05
JP6766411B2 true JP6766411B2 (en) 2020-10-14

Family

ID=60006369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072419A Active JP6766411B2 (en) 2016-03-31 2016-03-31 Battery separator and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6766411B2 (en)
KR (1) KR102209887B1 (en)
CN (1) CN107492625B (en)
TW (1) TWI724094B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6955355B2 (en) * 2017-03-31 2021-10-27 株式会社クレハ Core-shell type particles and their uses and manufacturing methods
WO2019176290A1 (en) * 2018-03-16 2019-09-19 帝人株式会社 Separator for non-aqueous secondary batteries, and non-aqueous secondary battery
CN108630866B (en) * 2018-04-25 2021-03-19 苏州名列膜材料有限公司 Hydrophilic perfluoro battery diaphragm and preparation method thereof
HUE064617T2 (en) 2018-06-20 2024-04-28 Lg Chemical Ltd Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
KR101996642B1 (en) * 2018-07-13 2019-07-04 주식회사 엘지화학 A separator for an electrochemical device comprising a coating layer with low resistance and a method for manufacturing the same
JP7067378B2 (en) * 2018-09-06 2022-05-16 東レ株式会社 Separator
WO2020055217A1 (en) * 2018-09-12 2020-03-19 주식회사 엘지화학 Separator for electrochemical device, and manufacturing method therefor
CN111435761B (en) * 2019-01-11 2021-08-10 荣盛盟固利新能源科技有限公司 All-solid-state lithium ion battery and hot-pressing preparation method of multilayer electrolyte membrane thereof
JP2020155208A (en) * 2019-03-18 2020-09-24 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR102580239B1 (en) * 2020-03-09 2023-09-19 삼성에스디아이 주식회사 Method for preparing Composite Separator, Composite Seaparator, and Lithium battery comprising Composite Separator
JP7324175B2 (en) * 2020-06-19 2023-08-09 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
CN113140864B (en) * 2021-03-04 2022-12-23 乐凯胶片股份有限公司 Diaphragm and preparation method and application thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342088B2 (en) 1973-09-25 1978-11-09
JP3248570B2 (en) 1997-10-09 2002-01-21 日本電気株式会社 Method for manufacturing semiconductor device
JP2008041504A (en) * 2006-08-08 2008-02-21 Sony Corp Nonaqueous electrolyte battery
CN102421832B (en) * 2009-05-01 2015-04-22 阿科玛股份有限公司 Foamed polyvinylidene fluoride structure
KR101173202B1 (en) 2010-02-25 2012-08-13 주식회사 엘지화학 Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
JP5664138B2 (en) * 2010-11-08 2015-02-04 ソニー株式会社 Shrink-resistant microporous membrane, battery separator, and lithium ion secondary battery
CN102610789B (en) * 2011-01-20 2016-03-02 三星Sdi株式会社 For electrode and the lithium rechargeable battery comprising this electrode of lithium rechargeable battery
JP5853400B2 (en) * 2011-04-21 2016-02-09 ソニー株式会社 Separator and non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US9431638B2 (en) 2011-10-21 2016-08-30 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
WO2013058369A1 (en) 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
CN103891002B (en) 2011-10-21 2017-03-15 帝人株式会社 Diaphragm for non-water system secondary battery and non-aqueous secondary battery
WO2013058371A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
JP5867044B2 (en) 2011-12-12 2016-02-24 株式会社村田製作所 Insulating adhesive layer and power storage device using the same
JP2013206846A (en) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd Slurry composition for secondary battery porous membrane
JP2014149935A (en) * 2013-01-31 2014-08-21 Nippon Zeon Co Ltd Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
KR101739299B1 (en) * 2013-09-24 2017-06-08 삼성에스디아이 주식회사 Composite binder composition for secondary battery, cathode and lithium battery containing the binder
EP3059784B1 (en) * 2013-10-18 2018-07-11 LG Chem, Ltd. Separation membrane and lithium-sulfur battery comprising same
KR20150106808A (en) * 2013-11-21 2015-09-22 삼성에스디아이 주식회사 A secondary cell and a method for preparing the same
KR101785263B1 (en) * 2013-12-02 2017-10-16 삼성에스디아이 주식회사 Binder composition, separator including a binder formed thereby, lithium battery including the separator, and method of preparing the binder composition
JP5893811B1 (en) * 2014-05-08 2016-03-23 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP2016062835A (en) * 2014-09-19 2016-04-25 株式会社クレハ Aqueous latex, separator/intermediate layer laminate, and structure for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
TW201807864A (en) 2018-03-01
KR102209887B1 (en) 2021-02-01
KR20170113145A (en) 2017-10-12
TWI724094B (en) 2021-04-11
JP2017183212A (en) 2017-10-05
CN107492625A (en) 2017-12-19
CN107492625B (en) 2021-02-26

Similar Documents

Publication Publication Date Title
JP6766411B2 (en) Battery separator and its manufacturing method
JP6863283B2 (en) Battery separator
JP7330885B2 (en) Battery separator, electrode body and non-aqueous electrolyte secondary battery
JP6698326B2 (en) Multilayer porous film and separator for electricity storage device
JP6927047B2 (en) Laminated wound body
JP7229775B2 (en) Battery separator, electrode body and non-aqueous electrolyte secondary battery
JP2013093297A (en) Binder for electrode, electrode coating, electrode and lithium ion secondary battery
JPWO2019230219A1 (en) Adhesive composition, separator structure, electrode structure, non-aqueous electrolyte secondary battery and its manufacturing method
JP2017139117A (en) Separator for power storage device and method for manufacturing the same
JP6762107B2 (en) Separator for power storage device
JP6718669B2 (en) Storage device separator winding body
TWI715676B (en) Separator for battery and manufacturing method thereof
JP2022053727A (en) Battery separator, electrode body, non-aqueous electrolyte secondary battery, and manufacturing method of battery separator
WO2020050377A1 (en) Separator for electrochemical element and electrochemical element using same
JP2021082481A (en) Separator for battery, electrode body, nonaqueous electrolyte secondary battery, and method for manufacturing separator for battery
TW201907603A (en) Battery separator, electrode laminate, electrode coil, and battery
JP2019104162A (en) Laminate porous film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6766411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151