以下の技術は、CDMA(code division multiple access)、FDMA(frequency division multiple access)、TDMA(time division multiple access)、OFDMA(orthogonal frequency division multiple access)、SC−FDMA(single carrier frequency division multiple access)などのような多様な無線通信システムに使われることができる。CDMAは、UTRA(universal terrestrial radio access)やCDMA2000のような無線技術(radio technology)で具現されることができる。TDMAは、GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)のような無線技術で具現されることができる。OFDMAは、IEEE(institute of electrical and electronics engineers)802.11(Wi−Fi)、IEEE802.16(WiMAX)、IEEE802−20、E−UTRA(evolved UTRA)などのような無線技術で具現されることができる。IEEE802.16mは、IEEE802.16eの進化であり、IEEE802.16eに基づくシステムとの後方互換性(backward compatibility)を提供する。UTRAは、UMTS(universal mobile telecommunications system)の一部である。3GPP(3rd generation partnership project)LTE(long term evolution)は、E−UTRA(evolved−UMTS terrestrial radio access)を使用するE−UMTS(evolved UMTS)の一部であり、ダウンリンクでOFDMAを採用し、アップリンクでSC−FDMAを採用する。LTE−A(advanced)は、3GPP LTEの進化である。5G通信システムは、LTE−Aの進化である。
説明を明確にするために、LTE−A/5Gを中心に記述するが、本発明の技術的思想がこれに制限されるものではない。
図1は、LTEシステム構造を示す。通信ネットワークは、IMS(IP multimedia subsystem)を介したVoIP(voice over IP)及びパケットデータのような多様な通信サービスを提供するために広範囲に配置される。
図1を参照すると、LTEシステム構造は、E−UTRAN(evolved UMTS terrestrial radio access network)、EPC(evolved packet core)及び一つ以上の端末(UE;user equipment)10を含む。UE10は、ユーザにより運搬される通信装置を示す。UE10は、固定されてもよいし、移動性を有してもよく、MS(mobile station)、UT(user terminal)、SS(subscriber station)または無線装置(wireless device)などと呼ばれることもある。
E−UTRANは、一つ以上のeNB(evolved node−B)20を含むことができ、一つのセルに複数の端末が存在できる。eNB20は、制御プレーン(control plane)とユーザプレーン(user plane)の終端点を端末に提供する。eNB20は、一般的に端末10と通信する固定局(fixed station)を意味し、BS(base station)、BTS(base transceiver system)、アクセスポイント(access point)等、他の用語で呼ばれることもある。一つのeNB20は、セル毎に配置されることができる。eNB20のカバレッジ内に一つ以上のセルが存在できる。一つのセルは、1.25、2.5、5、10及び20MHzなどの帯域幅のうち一つを有するように設定され、複数の端末にダウンリンク(DL;downlink)またはアップリンク(UL;uplink)送信サービスを提供することができる。このとき、互いに異なるセルは、互いに異なる帯域幅を提供するように設定されることができる。
以下、ダウンリンク(DL;downlink)は、eNB20からUE10への通信を示し、アップリンク(UL;uplink)は、UE10からeNB20への通信を示す。DLにおいて、送信機はeNB20の一部であり、受信機はUE10の一部である。ULにおいて、送信機はUE10の一部であり、受信機はeNB20の一部である。
EPCは、制御プレーンの機能を担当するMME(mobility management entity)、ユーザプレーンの機能を担当するS−GW(system architecture evolution(SAE)gateway)を含むことができる。MME/S−GW30は、ネットワークの端に位置でき、外部ネットワークと連結される。MMEは、端末の接続情報や端末の能力に対する情報を有し、このような情報は、主に端末の移動性管理に使われることができる。S−GWは、E−UTRANを終端点として有するゲートウェイである。MME/S−GW30は、セッションの終端点と移動性管理機能を端末10に提供する。EPCは、PDN(packet data network)−GW(gateway)をさらに含むことができる。PDN−GWは、PDNを終端点として有するゲートウェイである。
MMEは、eNB20へのNAS(non−access stratum)シグナリング、NASシグナリングセキュリティ、AS(access stratum)セキュリティ制御、3GPPアクセスネットワーク間の移動性のためのinterCN(core network)ノードシグナリング、アイドルモード端末到達可能性(ページング再送信の制御及び実行を含む)、トラッキング領域リスト管理(アイドルモード及び活性化モードである端末のために)、P−GW及びS−GW選択、MME変更と共にハンドオーバのためのMME選択、2Gまたは3G 3GPPアクセスネットワークへのハンドオーバのためのSGSN(serving GPRS support node)選択、ローミング、認証、専用ベアラ設定を含むベアラ管理機能、PWS(public warning system:地震/津波警報システム(ETWS)及び常用モバイル警報システム(CMAS)を含む)メッセージ送信サポートなどの多様な機能を提供する。S−GWホストは、ユーザ別基盤パケットフィルタリング(例えば、深層パケット検査を介して)、合法的な遮断、端末IP(internet protocol)アドレス割当、DLの送信レベルパッキングマーキング、UL/DLサービスレベル課金、ゲーティング及び等級強制、APN−AMBRに基づくDL等級強制の各種機能を提供する。明確性のためにMME/S−GW30は、“ゲートウェイ”と単純に表現し、これはMME及びS−GWを両方とも含むことができる。
ユーザトラフィック送信または制御トラフィック送信のためのインターフェースが使われることができる。端末10及びeNB20は、Uuインターフェースにより連結されることができる。eNB20は、X2インターフェースにより相互間連結されることができる。隣接したeNB20は、X2インターフェースによるネットワーク型ネットワーク構造を有することができる。eNB20は、S1インターフェースによりEPCと連結されることができる。eNB20は、S1−MMEインターフェースによりEPCと連結されることができ、S1−UインターフェースによりS−GWと連結されることができる。S1インターフェースは、eNB20とMME/S−GW30との間に多対多関係(many−to−many−relation)をサポートする。
eNB20は、ゲートウェイ30に対する選択、RRC(radio resource control)活性(activation)の間におけるゲートウェイ30へのルーティング(routing)、ページングメッセージのスケジューリング及び送信、BCH(broadcast channel)情報のスケジューリング及び送信、UL及びDLで端末10へのリソースの動的割当、eNB測定の設定(configuration)及び提供(provisioning)、無線ベアラ制御、RAC(radio admission control)及びLTE活性状態における連結移動性制御機能を実行することができる。前記言及のように、ゲートウェイ30は、EPCでページング開始、LTEアイドル状態管理、ユーザプレーンの暗号化、SAEベアラ制御及びNASシグナリングの暗号化と無欠性保護機能を実行することができる。
図2は、制御プレーンに対するLTEシステムの無線インターフェースプロトコルを示す。図3は、ユーザプレーンに対するLTEシステムの無線インターフェースプロトコルを示す。
端末とE−UTRANとの間の無線インターフェースプロトコルの階層は、通信システムで広く知られたOSI(open system interconnection)モデルの下位3層に基づいてL1(第1層)、L2(第2層)及びL3(第3層)に区分される。端末とE−UTRANとの間の無線インターフェースプロトコルは、水平的に物理層、データリンク層(datalink layer)、及びネットワーク層(network layer)に区分されることができ、垂直的に制御信号送信のためのプロトコルスタック(protocol stack)である制御プレーン(control plane)とデータ情報送信のためのプロトコルスタックであるユーザプレーン(user plane)とに区分されることができる。無線インターフェースプロトコルの階層は、端末とE−UTRANで対(pair)で存在でき、これはUuインターフェースのデータ送信を担当することができる。
物理層(PHY;physical layer)は、L1に属する。物理層は、物理チャネルを介して上位層に情報送信サービスを提供する。物理層は、上位層であるMAC(media access control)層とトランスポートチャネル(transport channel)を介して連結される。物理チャネルは、トランスポートチャネルにマッピングされる。トランスポートチャネルを介してMAC層と物理層との間にデータが送信されることができる。互いに異なる物理層間、即ち、送信機の物理層と受信機の物理層との間のデータは、物理チャネルを介して無線リソースを利用して送信されることができる。物理層は、OFDM(orthogonal frequency division multiplexing)方式を利用して変調されることができ、時間と周波数を無線リソースとして活用する。
物理層は、いくつかの物理制御チャネル(physical control channel)を使用する。PDCCH(physical downlink control channel)は、PCH(paging channel)及びDL−SCH(downlink shared channel)のリソース割当、DL−SCHと関連するHARQ(hybrid automatic repeat request)情報に対して端末に報告する。PDCCHは、アップリンク送信のリソース割当に対して端末に報告するためにアップリンクグラントを伝送することができる。PCFICH(physical control format indicator channel)は、PDCCHのために使われるOFDMシンボルの個数を端末に知らせ、全てのサブフレーム毎に送信される。PHICH(physical hybrid ARQ indicator channel)は、UL−SCH送信に対するHARQ ACK(acknowledgement)/NACK(non−acknowledgement)信号を伝送する。PUCCH(physical uplink control channel)は、ダウンリンク送信のためのHARQ ACK/NACK、スケジューリング要求及びCQIのようなUL制御情報を伝送する。PUSCH(physical uplink shared channel)は、UL−SCH(uplink shared channel)を伝送する。
物理チャネルは、時間領域で複数のサブフレーム(subframe)と周波数領域で複数の副搬送波(subcarrier)で構成される。一つのサブフレームは、時間領域で複数のシンボルで構成される。一つのサブフレームは、複数のリソースブロック(RB;resource block)で構成される。一つのリソースブロックは、複数のシンボルと複数の副搬送波で構成される。また、各サブフレームは、PDCCHのために該当サブフレームの特定シンボルの特定副搬送波を利用することができる。例えば、サブフレームの最初のシンボルがPDCCHのために使われることができる。PDCCHは、PRB(physical resource block)及びMCS(modulation and coding schemes)のように動的に割り当てられたリソースを伝送することができる。データが送信される単位時間であるTTI(transmission time interval)は、1個のサブフレームの長さと同じである。サブフレーム一つの長さは、1msである。
トランスポートチャネルは、チャネルが共有されるかどうかによって共通トランスポートチャネル及び専用トランスポートチャネルに分類される。ネットワークから端末にデータを送信するDLトランスポートチャネル(DL transport channel)は、システム情報を送信するBCH(broadcast channel)、ページングメッセージを送信するPCH(paging channel)、ユーザトラフィックまたは制御信号を送信するDL−SCHなどを含む。DL−SCHは、HARQ、変調、コーディング及び送信電力の変化による動的リンク適応及び動的/半静的リソース割当をサポートする。また、DL−SCHは、セル全体にブロードキャスト及びビームフォーミングの使用を可能にすることができる。システム情報は、一つ以上のシステム情報ブロックを伝送する。全てのシステム情報ブロックは、同じ周期に送信されることができる。MBMS(multimedia broadcast/multicast service)のトラフィックまたは制御信号は、MCH(multicast channel)を介して送信される。
端末からネットワークにデータを送信するULトランスポートチャネルは、初期制御メッセージ(initial control message)を送信するRACH(random access channel)、ユーザトラフィックまたは制御信号を送信するUL−SCHなどを含む。UL−SCHは、HARQ及び送信電力及び潜在的な変調及びコーディングの変化による動的リンク適応をサポートすることができる。また、UL−SCHは、ビームフォーミングの使用を可能にすることができる。RACHは、一般的にセルへの初期接続に使われる。
L2に属するMAC層は、論理チャネル(logical channel)を介して上位層であるRLC(radio link control)層にサービスを提供する。MAC層は、複数の論理チャネルから複数のトランスポートチャネルへのマッピング機能を提供する。また、MAC層は、複数の論理チャネルから単数のトランスポートチャネルへのマッピングによる論理チャネル多重化機能を提供する。MAC副層は、論理チャネル上のデータ送信サービスを提供する。
論理チャネルは、送信される情報の種類によって、制御プレーンの情報伝達のための制御チャネルとユーザプレーンの情報伝達のためのトラフィックチャネルとに分けられる。即ち、論理チャネルタイプのセットは、MAC層により提供される他のデータ送信サービスのために定義される。論理チャネルは、トランスポートチャネルの上位に位置してトランスポートチャネルにマッピングされる。
制御チャネルは、制御プレーンの情報伝達のみのために使われる。MAC層により提供される制御チャネルは、BCCH(broadcast control channel)、PCCH(paging control channel)、CCCH(common control channel)、MCCH(multicast control channel)及びDCCH(dedicated control channel)を含む。BCCHは、システム制御情報を放送するためのダウンリンクチャネルである。PCCHは、ページング情報の送信及びセル単位の位置がネットワークに知られていない端末をページングするために使われるダウンリンクチャネルである。CCCHは、ネットワークとRRC接続を有しないとき、端末により使われる。MCCHは、ネットワークから端末にMBMS制御情報を送信するのに使われる一対多のダウンリンクチャネルである。DCCHは、RRC接続状態で端末とネットワークとの間の専用制御情報送信のために端末により使われる一対一の双方向チャネルである。
トラフィックチャネルは、ユーザプレーンの情報伝達のみのために使われる。MAC層により提供されるトラフィックチャネルは、DTCH(dedicated traffic channel)及びMTCH(multicast traffic channel)を含む。DTCHは、一対一のチャネルで一つの端末のユーザ情報の送信のために使われ、アップリンク及びダウンリンクの両方に存在できる。MTCHは、ネットワークから端末にトラフィックデータを送信するための一対多のダウンリンクチャネルである。
論理チャネルとトランスポートチャネルとの間のアップリンク連結は、UL−SCHにマッピングされることができるDCCH、UL−SCHにマッピングされることができるDTCH、及びUL−SCHにマッピングされることができるCCCHを含む。論理チャネルとトランスポートチャネルとの間のダウンリンク連結は、BCHまたはDL−SCHにマッピングされることができるBCCH、PCHにマッピングされることができるPCCH、DL−SCHにマッピングされることができるDCCH、DL−SCHにマッピングされることができるDTCH、MCHにマッピングされることができるMCCH、及びMCHにマッピングされることができるMTCHを含む。
RLC層は、L2に属する。RLC層の機能は、下位層がデータの送信に適するように無線セクションで上位層から受信されたデータの分割/連結によるデータの大きさ調整を含む。無線ベアラ(RB;radio bearer)が要求する多様なQoSを保証するために、RLC層は、透過モード(TM;transparent mode)、非確認モード(UM;unacknowledged mode)、及び確認モード(AM;acknowledged mode)の三つの動作モードを提供する。AM RLCは、信頼性のあるデータ送信のためにARQ(automatic repeat request)を介して再送信機能を提供する。一方、RLC層の機能は、MAC層内部の機能ブロックで具現されることができ、このとき、RLC層は、存在しないこともある。
PDCP(packet data convergence protocol)層は、L2に属する。PDCP層は、相対的に帯域幅が小さい無線インターフェース上でIPv4またはIPv6のようなIPパケットを導入して送信されるデータが効率的に送信されるように不要な制御情報を減らすヘッダ圧縮機能を提供する。ヘッダ圧縮は、データのヘッダに必要な情報のみを送信することによって無線セクションで送信効率を上げる。さらに、PDCP層は、セキュリティ機能を提供する。セキュリティ機能は、第3者の検査を防止する暗号化及び第3者のデータ操作を防止する無欠性保護を含む。
RRC(radio resource control)層は、L3に属する。L3の最も下段部分に位置するRRC層は、制御プレーンでのみ定義される。RRC層は、端末とネットワークとの間の無線リソースを制御する役割を実行する。そのために、端末とネットワークは、RRC層を介してRRCメッセージを交換する。RRC層は、RBの構成(configuration)、再構成(re−configuration)、及び解除(release)と関連して論理チャネル、トランスポートチャネル、及び物理チャネルの制御を担当する。RBは、端末とネットワークとの間のデータ伝達のために、L1及びL2により提供される論理的経路である。即ち、RBは、端末とE−UTRANとの間のデータ送信のために、L2により提供されるサービスを意味する。RBが設定されるということは、特定サービスを提供するために無線プロトコル階層及びチャネルの特性を規定し、各々の具体的なパラメータ及び動作方法を決定することを意味する。RBは、SRB(signaling RB)とDRB(data RB)の二つに区分されることができる。SRBは、制御プレーンでRRCメッセージを送信する通路として使われ、DRBは、ユーザプレーンでユーザデータを送信する通路として使われる。
RRC層の上位に位置するNAS(Non−Access Stratum)層は、連結管理(Session Management)と移動性管理(Mobility Management)などの機能を実行する。
図2を参照すると、RLC及びMAC層(ネットワーク側でeNBで終了)は、スケジューリング、ARQ及びHARQのような機能を実行することができる。RRC層(ネットワーク側でeNBで終了)は、放送、ページング、RRC接続管理、RB制御、移動性機能及び端末測定報告/制御のような機能を実行することができる。NAS制御プロトコル(ネットワーク側でゲートウェイのMMEで終了)は、SAEベアラ管理、認証、LTE_IDLE移動性ハンドリング、LTE_IDLEでページング開始及び端末とゲートウェイとの間のシグナリングのためのセキュリティ制御のような機能を実行することができる。
図3を参照すると、RLC及びMAC層(ネットワーク側でeNBで終了)は、制御プレーンでの機能と同じ機能を実行することができる。PDCP層(ネットワーク側でeNBで終了)は、ヘッダ圧縮、無欠性保護及び暗号化のようなユーザプレーン機能を実行することができる。
以下、システム情報に対して説明する。
図4は、MIB(Master Information Block)、SIB1(System Information Block1)及びその他のSIB(System Information Block)が送信される例を示す。
LTEセルは、IDLE_MODE端末及びCONNECTED_MODE端末の動作に必要な基本的なパラメータを複数個の情報ブロック(Information Block)に分けて放送する。情報ブロックの例として、MIBとSIB1、SIB2及びその他のSystem Information Block(SIBn)がある。
MIBは、端末がセルへの接続に必要な最も基本的なパラメータを含む。図4を参照すると、MIBメッセージは、40msの周期にBCHを介して放送され、40ms周期内の全てのラジオフレームでMIB送信が繰り返される。MIBから受信したパラメータを使用することで、端末は、SIBメッセージを受信する。
SIBは、多様なタイプが存在する。
SIB1は、セル接続に関連した情報を含み、特にSIB1を除く他のSIB(SIB2〜SIBn)のスケジューリング情報を含む。SIB1を除く他のSIのうち同じ送信周期を有するSIBは、同じシステム情報(SI)メッセージに含まれて伝達される。したがって、スケジューリング情報は、各SIBとSIメッセージのマッピング関係を含む。SIメッセージは、時間領域のウィンドウ(SI−window)内で送信され、各SIメッセージは、一個のSI−windowと関連づけられている。互いに異なるSIのSI−windowは重ならないため、任意のSI−window内には一個のSIメッセージのみが送信される。したがって、スケジューリング情報は、SI−windowの長さとSI送信周期を含む。SIメッセージが送信される時間/周波数は、基地局の動的スケジューリングに決まる。SIB1は、8個の無線フレーム周期(即ち、80ms周期)でダウンリンク共通チャネル(DL−SCH)を介して放送され、80ms周期内でSFN mod2である無線フレームの5番サブフレーム上でSIB1は繰り返して再送信される。
SIB2は、端末がセルに接続するために必要な情報を含む。これはアップリンクセル帯域幅、ランダムアクセスパラメータ、アップリンク電力制御と関連したパラメータなどに対する情報を含む。
SIB3は、セル再選択情報を含む。SIB4は、サービングセルの周波数情報と、セル再選択と関連した隣接セルのイントラ周波数情報と、を含む。SIB5は、他のE−UTRA周波数に対する情報と、セル再選択と関連した隣接セルのインター周波数に対する情報を含む。SIB6は、UTRA周波数に対する情報と、セル再選択と関連したUTRA隣接セルに対する情報と、を含む。SIB7は、セル再選択と関連したGERAN周波数に対する情報を含む。SIB8は、隣接セルに対する情報を含む。
SIB9は、HeNB(Home eNodeB)のIDを含む。SIB10乃至SIB12は、例えば、地震警報のような公共警報(public warning)メッセージを含む。SIB14は、改善されたアクセス制限(enhanced access barring)のサポートに使われ、端末がセルに接続することを制御する。SIB15は、隣接した搬送波周波数のMBMS受信に必要な情報を含む。SIB16は、GPS時間とUTC(Coordinated Universal Time)関連情報を含む。SIB17は、RAN補助情報を含む。
全てのSIBが常に存在すべきものではない。例えば、SIB9は、HeNBを事業者が構築するモードでは必要でなく、SIB13は、該当セルでMBMSが提供されない場合には必要でない。
システム情報は、セル内接続した全ての端末に共通して適用され、端末は、正しい動作のために常に最新のシステム情報を維持しなければならない。システム情報が変わる場合、基地局が新しいシステム情報を送信する時点を端末があらかじめ知っているべきである。新しいシステム情報が送信されることができるラジオフレーム区間を基地局と端末が相互認識するために、“3GPP TS 36.331 v9.3.0”は、BCCH変更区間(modification period)という概念を導入した。以下、具体的に説明する。
図5は、システム情報の更新を示す。
図5を参照すると、もし、n+1番目の変更区間でシステム情報を更新しようとする基地局は、n番目の変更区間で端末にシステム情報の更新をあらかじめ通知する。n番目の変更区間でシステム情報の更新に対する通知を受けた端末は、n+1番目の変更区間の開始と同時に新しいシステム情報を受信して適用する。システム情報の更新が予定された場合、基地局は、ページングメッセージにシステム情報修正指示子を含ませる。一般的にページングメッセージは、アイドルモード端末が受信するメッセージであるが、システム情報の更新をページングメッセージを介して通知するため、連結モード端末もページングメッセージを時々受信することでシステム情報の更新可否を確認しなければならない。
以下、ランダムアクセス(random access)に対して説明する。
ランダムアクセスは、端末が基地局とアップリンク同期を得たりアップリンク無線リソースの割当を受けたりするために使われる。電源がオンになった後、端末は、初期セルとのダウンリンク同期を取得してシステム情報を受信する。また、前記システム情報から使用可能なランダムアクセスプリアンブル(random access preamble)の集合とランダムアクセスプリアンブルの送信に使われる無線リソースに対する情報を得る。ランダムアクセスプリアンブルの送信に使われる無線リソースは、無線フレーム及び/または少なくとも一つ以上のサブフレームの組み合わせで特定される。端末は、ランダムアクセスプリアンブルの集合から任意に選択したランダムアクセスプリアンブルを送信し、前記ランダムアクセスプリアンブルを受信した基地局は、アップリンク同期のためのTA(timing alignment)値をランダムアクセス応答を介して端末に送る。これで、端末は、アップリンク同期を取得する。
即ち、基地局は、特定端末に指定されたランダムアクセスプリアンブル(dedicated random access preamble)を割り当て、端末は、該当ランダムアクセスプリアンブルで非コンテンションランダムアクセス(non−contention random access)を実行する。即ち、ランダムアクセスプリアンブルを選択する過程で、特定の集合内から端末が任意に一つを選択して使用するコンテンションベースのランダムアクセス(contention based random access)と、基地局が特定端末にのみ割り当てたランダムアクセスプリアンブルを使用する非コンテンションランダムアクセスと、がある。非コンテンションランダムアクセスは、ハンドオーバのための手順や基地局の命令により要求される場合に使われることができる。
図6は、コンテンションベースのランダムアクセス手順を示す。
図6を参照すると、端末は、システム情報またはハンドオーバ命令(handover command)を介して指示されたランダムアクセスプリアンブルの集合から任意に(randomly)一つのランダムアクセスプリアンブルを選択する。また、ランダムアクセスプリアンブルを送信することができる無線リソースを選択し、選択されたランダムアクセスプリアンブルを送信する(S610)。前記無線リソースは、特定サブフレームであり、これはPRACH(Physical Random Access Channel)を選択することである。
端末は、ランダムアクセスプリアンブル送信後に、システム情報またはハンドオーバ命令を介して指示されたランダムアクセス応答受信ウィンドウ内に、ランダムアクセス応答受信を試みて、それによって、ランダムアクセス応答を受信する(S620)。ランダムアクセス応答は、MAC PDUフォーマットで送信され、前記MAC PDUは、PDSCH(Physical Downlink Shared Channel)に伝達される。また、PDSCHに伝達される情報を端末が適切に受信するためにPDCCH(Physical Downlink Control Channel)も共に伝達される。即ち、PDCCHは、前記PDSCHを受信する端末の情報、前記PDSCHの無線リソースの周波数、時間情報、及び前記PDSCHの送信形式などが含まれている。端末が自分に伝達されるPDCCHの受信に成功すると、前記PDCCHの情報に基づいてPDSCHに送信されるランダムアクセス応答を適切に受信する。
ランダムアクセス応答にはランダムアクセスプリアンブル識別子(ID)、UL Grant(アップリンク無線リソース)、臨時C−RNTI(Temporary Cell−Radio Network Temporary Identifier)、及びTAC(Time Alignment Command)が含まれる。一つのランダムアクセス応答には一つ以上の端末のためのランダムアクセス応答情報が含まれるため、ランダムアクセスプリアンブル識別子は、含まれているUL Grant、臨時C−RNTI、及びTACがどの端末に有効かを知らせるために含まれる。ランダムアクセスプリアンブル識別子は、基地局が受信したランダムアクセスプリアンブルに対する識別子である。TACは、端末がアップリンク同期を調整するための情報として含まれる。ランダムアクセス応答は、PDCCH上のランダムアクセス識別子、即ち、RA−RNTI(Random Access−Radio Network Temporary Identifier)により指示される。
自分に有効なランダムアクセス応答を受信すると、端末は、ランダムアクセス応答に含まれている情報を処理し、基地局にスケジューリングされた送信を実行する(S630)。即ち、端末は、TACを適用させ、臨時C−RNTIを格納する。また、UL Grantを利用して、端末のバッファに格納されたデータまたは新しく生成されたデータを基地局に送信する。この場合、端末を識別することができる情報が含まれなければならない。これはコンテンションベースのランダムアクセス過程ではどんな端末がランダムアクセスを実行するかを基地局が判断することができなくて、以後コンテンション解決をするために端末を識別する必要があるためである。
端末を識別することができる情報を含ませる方法には、二つの方法が存在する。端末がランダムアクセス実行以前に既に該当セルで割当を受けた有効なセル識別子を有している場合、端末は、前記UL Grantを介して自分のセル識別子を送信する。それに対して、もし、ランダムアクセス過程以前に有効なセル識別子の割当を受けることができない場合、端末は、自分の固有識別子(例えば、S−TMSIまたはRandom ID)を含んで送信する。一般的に前記の固有識別子は、セル識別子より長い。端末は、前記UL Grantを介してデータを送信した場合、コンテンション解決のためのタイマ(contention resolution timer)を開始する。
端末は、ランダムアクセス応答を受信して割当を受けたUL Grantを介して自分の識別子を含むデータを送信した以後、コンテンション解決のために基地局の指示を待つ(S640)。即ち、特定メッセージを受信するためにPDCCHの受信を試みる。PDCCHを受信する方法として二つが提案される。前述した通り、UL Grantを介して送信された自分の識別子がセル識別子である場合、自分のセル識別子を利用してPDCCHの受信を試みることができる。この場合、コンテンション解決タイマが満了される前に自分のセル識別子を介してPDCCHを受信すると、端末は、正常にランダムアクセスが実行されたと判断してランダムアクセスを終了する。UL Grantを介して送信された識別子が固有識別子である場合、ランダムアクセス応答に含まれている臨時C−RNTIを利用してPDCCHの受信を試みる。この場合、コンテンション解決タイマが満了される前に臨時セル識別子を介してPDCCHを受信した場合、PDCCHが指示するPDSCHが伝達するデータを確認する。自分の固有識別子がデータに含まれている場合、端末は、正常にランダムアクセスが実行されたと判断してランダムアクセスを終了することができる。
図7は、非コンテンションベースのランダムアクセス手順を示す。
コンテンションベースのランダムアクセスとは違って、非コンテンションベースのランダムアクセスは、端末がランダムアクセス応答を受信することによって終了される。
非コンテンションベースのランダムアクセスは、ハンドオーバ及び/または基地局の命令のように要求により開始される。ただし、前述した二つの場合で、コンテンションベースのランダムアクセスも実行される。
端末は、基地局からコンテンションの可能性がない指定されたランダムアクセスプリアンブルの割当を受ける。ランダムアクセスプリアンブルの割当を受けることは、ハンドオーバ命令とPDCCH命令を介して実行される(S710)。
端末は、自分のために指定されたランダムアクセスプリアンブルの割当を受けた後に、該当するランダムアクセスプリアンブルを基地局に送信する(S720)。
基地局は、ランダムアクセスプリアンブルを受信すると、これに対する応答としてランダムアクセス応答を端末に送信する(S730)。ランダムアクセス応答と関連した手順は、前述した図6のS620を参照することができる。
一方、システム情報ブロックの個数は、持続的に増加している。システム情報ブロックの放送のために無線リソースの使用が必要であるため、システム情報ブロックの個数が増加するにつれ、システム情報ブロックの放送に必要な無線リソースの量も増加せざるを得ない。このような問題を解決するために、新しい類型のシステム情報が提案された。
図8は、端末が新しい類型のシステム情報を受信する手順を示す。
図8を参照すると、新しい類型のシステム情報は、ミニマムシステム情報(minimum system information)とその他のシステム情報(other system information)とに区分されることができる。ミニマムシステム情報は、周期的に放送されることができる。ミニマムシステム情報は、セルにイニシャルアクセスのために必要な基本情報及びオンデマンド基盤を介してプロヴィジョンされ(provisioned)、または周期的に放送されるその他のシステム情報を取得するための情報を含むことができる。ミニマムシステム情報は、SFN、PLMNのリスト、セルID、セルキャンプパラメータ、RACHパラメータのうち少なくともいずれか一つを含むことができる。ネットワークがオンデマンドメカニズムを許容する場合、その他のシステム情報を要求するために必要なパラメータがミニマムシステム情報に含まれることができる。その他のシステム情報は、ミニマムシステム情報で放送されない全てのシステム情報を意味する。
一方、端末は、その他のシステム情報を取得するために、ネットワークにシステム情報の送信を要求することができる。例えば、ネットワークが特定システム情報を放送しない場合、RRC_IDLE状態の端末は、RACH手順を利用して特定システム情報をネットワークに要求できる。端末がRACH手順を利用して特定システム情報をネットワークに要求する場合、第1のメッセージがシステム情報要求を送信するために使われることができ、要求されたシステム情報は放送されることができる。第1のメッセージがシステム情報の要求のために使われる場合、端末が第3のメッセージをネットワークに送信することは不要である。さらに、第1のメッセージがシステム情報の要求のために使われる場合、端末が第3のメッセージをネットワークに送信する必要がないため、第3のメッセージに対するアップリンクグラントも第2のメッセージに含まれる必要がない。以下、本発明の一実施例によって、端末がランダムアクセス手順でシステム情報を要求する方法及びこれをサポートする装置に対して説明する。本明細書において、システム情報要求のためのランダムアクセス手順は、システム情報要求手順とも呼ばれる。本明細書において、ランダムアクセス手順で、1番目に送信されるメッセージは第1のメッセージまたはMSG1といい、2番目に送信されるメッセージは第2のメッセージまたはMSG2といい、3番目に送信されるメッセージは第3のメッセージまたはMSG3といい、4番目に送信されるメッセージは第4のメッセージまたはMSG4という。
図9は、本発明の一実施例によって、端末がランダムアクセス手順でシステム情報を要求する手順を示す。
図9を参照すると、ステップS910において、端末は、第1のメッセージを基地局に送信できる。前記第1のメッセージは、ランダムアクセスプリアンブルである。前記ランダムアクセスプリアンブルは、システム情報要求のために使われることができる。前記第1のメッセージは、システム情報要求のために予約された第1のメッセージリソースを利用して送信されることができる。例えば、端末がその他のシステム情報(other system information)を受信することを所望する場合、端末は、関心あるその他のシステム情報に対応する第1のメッセージリソースを選択し、選択された第1のメッセージリソースを使用してシステム情報の送信を要求する第1のメッセージを送信することができる。前記端末は、RRC_IDLE状態またはRRC_INACTIVE状態である。
ステップS920において、端末は、送信されたランダムアクセスプリアンブルに対応するRAPID(random access preamble identifier)を含む第2のメッセージを基地局から受信することができる。即ち、端末は、送信された第1のメッセージリソースにマッチングされる第1のリソース識別子を含む第2のメッセージを基地局から受信することができる。前記第2のメッセージは、ランダムアクセス応答またはシステム情報要求応答である。
前記第2のメッセージは、ただRAPIDだけ含むことができる。システム情報要求のためのランダムアクセスプリアンブルが送信される場合、基地局は、前記送信されたランダムアクセスプリアンブルに対応するRAPIDのみを含む第2のメッセージを端末に送信できる。前記第2のメッセージは、ステップS910でシステム情報要求のために送信されたランダムアクセスプリアンブルに対応するRAPIDのみを含み、それに対し、MAC RAR(Medium Access Control Random Access Response)を含まない。即ち、前記第2のメッセージは、ステップS910でシステム情報要求のために送信されたランダムアクセスプリアンブルにマッピングされるアップリンクグラントを含まない。前記RAPIDがシステム情報要求のために設定されたランダムアクセスプリアンブルのうちいずれか一つに対応する場合、MAC RARは、MAC subPDUに含まれない。
図10は、本発明の一実施例に係る、ただRAPIDだけ含むMACサブヘッダの一例を示す。
また、図9を参照すると、ステップS930において、端末がただRAPIDだけ含む(即ち、MAC RARまたはアップリンクグラントを含まない)第2のメッセージを受信する場合、端末は、システム情報要求のためのランダムアクセス手順が完了したと決定できる。したがって、端末は、システム情報要求のためのランダムアクセス手順を終了することができる。したがって、端末は、第3のメッセージを基地局に送信しない。そして、端末は、要求されたシステム情報が放送されることを予想することができる。付加的に、端末は、前記システム情報要求に対するACKの受信を上位層に指示できる。
ステップS940において、端末は、要求されたシステム情報がいつ放送されるかを確認することができ、要求されたシステム情報を受信することができる。前記要求されたシステム情報は、放送方式(broadcast manner)で受信されることができる。
その代替案として、図9に示していないが、ステップS920において、端末は、送信されたランダムアクセスプリアンブルに対応するMAC RARを含む第2のメッセージを受信することができる。したがって、アップリンクグラントを含む第2のメッセージを受信した端末は、4ステップのランダムアクセス手順を進行することができ、RRC_CONNECTED状態に進入できる。即ち、端末は、第3のメッセージを基地局に送信し、第4のメッセージを基地局から受信することで、RRC_CIONNECTED状態に進入できる。以後、端末は、要求したシステム情報を専用方式(dedicated manner)で受信することができる。
本発明の一実施例によると、端末がシステム情報要求のためのランダムアクセスプリアンブルを基地局に送信する場合、基地局は、前記送信されたランダムアクセスプリアンブルに対応するRAPIDのみを含むランダムアクセス応答を端末に送信できる。これを受信した端末は、システム情報要求のためのランダムアクセス手順が終了されたと見なすことができる。したがって、端末が第3のメッセージを不要に基地局に送信することによって発生できる無線リソース浪費またはバッテリ消耗などの問題を解決することができる。
図11は、本発明の一実施例に係る、MAC PDUの一例を示す。
図11を参照すると、MAC PDUは、MAC PDUヘッダと0個以上のMAC RARとで構成されることができる。一つのMAC PDUヘッダは、一つ以上のMAC PDUサブヘッダで構成されることができる。RAPIDを含むそれぞれのMAC PDUサブヘッダに対して、対応するMAC RARは、MAC PDUに含まれてもよいし、含まれなくてもよい。RAPIDを含む1番目のMACサブヘッダは、1番目のMAC RARにマッピングされることができる。RAPIDを含む2番目のMACサブヘッダは、2番目のMAC RARにマッピングされることができる。即ち、RAPID2を含むMACサブヘッダは、アップリンクグラントを含む1番目のMAC RARにマッピングされることができ、RAPID4を含むMACサブヘッダは、アップリンクグラントを含む2番目のMAC RARにマッピングされることができる。それに対し、RAPIDを含む3番目及び4番目のMACサブヘッダにマッピングされるMAC RARは存在しないこともある。
図11の実施例において、端末がRAPID2またはRAPID4を有する第1のメッセージリソースを使用した場合、端末は、4ステップのランダムアクセス手順を進行することができる。即ち、端末がランダムアクセスプリアンブルに対応してアップリンクグラントを含むランダムアクセス応答を受信したため、第2のメッセージを受信した端末は、以後、第3のメッセージを送信し、第4のメッセージを受信することができる。
図11の実施例において、端末がRAPID1またはRAPID3を有する第1のメッセージリソースを使用した場合、端末は、システム情報要求が成功したと見なすことができる。したがって、ランダムアクセス手順を完了するために第3のメッセージは送信されない。端末がランダムアクセスプリアンブルに対応してアップリンクグラントを含まないランダムアクセス応答を受信したため、端末は、第3のメッセージを送信せずに、ランダムアクセス手順を完了することができる。
図11の実施例において、付加的に、MAC RARがMAC PDUに含まれるかどうかを指示するために、RAPIDを含む新しい指示子がMACサブヘッダに含まれることができる。
以下、本発明の一実施例によって、端末がランダムアクセス手順で新しいタイプのRARウィンドウに基づいてシステム情報を要求して受信する方法及びこれをサポートする装置に対して説明する。第1のメッセージを受信したネットワークは、端末により要求されたシステム情報を放送するかまたはユニキャストするかを決定する必要があり、このためにもっと多くの時間が要求されることができる。したがって、第1のメッセージがシステム情報要求のために使われる時、既存のRARは適しないため、新しいタイプのRARウィンドウが提案される必要がある。本明細書において、第1のRARウィンドウは、第1のメッセージが一般的なRACHの目的として送信される時に使われるRARウィンドウであり、第2のRARウィンドウは、第1のメッセージがシステム情報要求の目的として送信される時に使われるRARウィンドウである。第1のメッセージがシステム情報要求の目的でない一般的なRACHの目的として送信される場合、第2のメッセージは、第1のRARウィンドウ内で受信されることができる。それに対し、第1のメッセージがシステム情報要求の目的として送信される場合、第2のメッセージは、第2のRARウィンドウ内で受信されることができる。例えば、端末がシステム情報要求のために予約されたリソースを使用して第1のメッセージを送信する場合、端末は、第2のメッセージをネットワークから受信するために第2のRARウィンドウに対する設定を適用することができる。そうでない場合、端末は、第2のメッセージをネットワークから受信するために第1のRARウィンドウに対する設定を適用することができる。
図12は、本発明の一実施例によって、端末がランダムアクセス手順で新しいタイプのRARウィンドウに基づいてシステム情報を要求及び受信する方法を示す。具体的に、図12の(a)は、第1のメッセージが一般的なRACHの目的として送信される例を示し、図12の(b)及び(c)は、第1のメッセージがシステム情報要求の目的として送信される例を示す。
図12の(a)を参照すると、ステップS1201において、端末は、RRC接続を確立するためのRACH手順を開始することができる。端末は、第1のメッセージリソースを選択し、選択された第1のメッセージリソースを使用して第1のメッセージを送信することができる。前記第1のメッセージは、ランダムアクセスプリアンブルである。前記選択された第1のメッセージリソースは、システム情報要求と関連したリソースでない。したがって、端末は、第2のメッセージが第1のRARウィンドウ内で受信されると期待することができる。前記第2のメッセージは、ランダムアクセス応答である。
ステップS1202において、端末は、第1のRARウィンドウ内で第2のメッセージを受信することができる。前記第2のメッセージは、第1のRAR設定によって受信されることができる。ステップS1203において、端末は、第3のメッセージをネットワークに送信できる。前記第3のメッセージは、UE IDを含むことができる。そして、ステップS1204において、端末は、第4のメッセージをネットワークから受信することができる。例えば、前記第4のメッセージは、RRC接続セットアップメッセージである。以後、端末は、RRC_CONNECTED状態に進入できる。
図12の(b)を参照すると、ステップS1211において、端末がその他のシステム情報(other system information)を受信することを所望する場合、端末は、関心あるその他のシステム情報に対応する第1のメッセージリソースを選択することができる。そして、端末は、選択された第1のメッセージリソースを使用してシステム情報の送信を要求する第1のメッセージを送信することができる。前記第1のメッセージは、ランダムアクセスプリアンブルである。前記選択された第1のメッセージリソースは、システム情報要求と関連したリソースである。したがって、端末は、第2のメッセージが第2のRARウィンドウ内で受信されると期待することができる。前記第2のメッセージは、ランダムアクセス応答またはシステム情報要求応答である。
付加的に、ネットワークは、要求されたシステム情報を放送するかまたはユニキャスト送信するかを決定することができる。図12の(b)において、ネットワークは、要求されたシステム情報を放送するように決定すると仮定する。
ステップS1212において、端末は、送信されたランダムアクセスプリアンブルに対応するRAPID(random access preamble identifier)を含む第2のメッセージを第2のRARウィンドウ内で受信することができる。前記第2のメッセージは、第2のRAR設定によって受信されることができる。前記第2のRAR設定は、第1のRAR設定と共に周期的に放送されることができる。送信されたランダムアクセスプリアンブルに対応するRAPIDを含む第2のメッセージが受信されると、端末は、システム情報要求が成功したと決定できる。そうでない場合、端末は、システム情報要求が失敗したと見なし、システム情報要求のための第1のメッセージを再送信することができる。
前記第2のメッセージは、送信されたランダムアクセスプリアンブルにマッピングされるアップリンクグラントまたはMAC RARを含まない。端末が送信されたランダムアクセスプリアンブルにマッピングされるアップリンクグラントまたはMAC RARを含まない第2のメッセージを受信すると、端末は、システム情報要求のためのRACH手順またはシステム情報要求手順が完了したと見なすことができる。端末は、システム情報要求のためのRACH手順またはシステム情報要求手順を中断または完了することができる。付加的に、端末は、要求されたシステム情報が放送されると予想できる。
ステップS1213において、端末は、要求されたシステム情報がいつ放送されるかを確認することができる。そして、端末は、要求されたシステム情報を放送方式(broadcast manner)で受信することができる。
図12の(c)を参照すると、ステップS1221において、端末がその他のシステム情報(other system information)を受信することを所望する場合、端末は、関心あるその他のシステム情報に対応する第1のメッセージリソースを選択することができる。そして、端末は、選択された第1のメッセージリソースを使用してシステム情報の送信を要求する第1のメッセージを送信することができる。前記第1のメッセージは、ランダムアクセスプリアンブルである。前記選択された第1のメッセージリソースは、システム情報要求と関連したリソースである。したがって、端末は、第2のメッセージが第2のRARウィンドウ内で受信されると期待することができる。前記第2のメッセージは、ランダムアクセス応答またはシステム情報要求応答である。
付加的に、ネットワークは、要求されたシステム情報を放送するかまたはユニキャスト送信するかを決定することができる。図12の(c)において、ネットワークは、要求されたシステム情報をユニキャスト送信するように決定すると仮定する。
ステップS1222において、端末は、送信されたランダムアクセスプリアンブルに対応するRAPID(random access preamble identifier)を含む第2のメッセージを第2のRARウィンドウ内で受信することができる。前記第2のメッセージは、第2のRAR設定によって受信されることができる。前記第2のRAR設定は、第1のRAR設定と共に周期的に放送されることができる。送信されたランダムアクセスプリアンブルに対応するRAPIDを含む第2のメッセージが受信されると、端末は、システム情報要求が成功したと決定できる。そうでない場合、端末は、システム情報要求が失敗したと見なし、システム情報要求のための第1のメッセージを再送信することができる。
前記第2のメッセージは、送信されたランダムアクセスプリアンブルにマッピングされるアップリンクグラントまたはMAC RARを含むことができる。端末が送信されたランダムアクセスプリアンブルにマッピングされるアップリンクグラントまたはMAC RARを含む第2のメッセージを受信すると、端末は、システム情報要求のためのRACH手順またはシステム情報要求手順を進行し続けることができる。端末は、要求されたシステム情報がユニキャスト送信されると予想することができ、要求されたシステム情報を専用方式(dedicated manner)で受信するために4ステップのRACH手順を進行し続けることができる。
ステップS1223において、端末は、第3のメッセージをネットワークに送信できる。前記第3のメッセージは、UE IDを含むことができる。そして、ステップS1224において、端末は、第4のメッセージをネットワークから受信することができる。例えば、前記第4のメッセージは、RRC接続セットアップメッセージである。以後、ステップS1225において、端末は、RRC_CONNECTED状態に進入でき、要求されたシステム情報を専用シグナリング(dedicated signaling)を介して受信することができる。
図13は、本発明の一実施例によって、要求されたシステム情報が第2のRARウィンドウ内で提供される一例を示す。
図13の(a)を参照すると、端末が第1のメッセージをN番目の第2のRARウィンドウ内で送信する場合、端末は、第2のメッセージがN+1番目の第2のRARウィンドウ内で送信されると予想できる。第2のRARウィンドウに対する設定は、周期的に放送されることができる。
図13の(b)を参照すると、多数の端末がシステム情報ブロックをN番目の第2のRARウィンドウ内で要求する場合、ネットワークは、要求されたシステム情報ブロックをN+1番目の第2のRARウィンドウ内で放送するように決定できる。この場合、MACサブヘッダに対応するMAC RARは、存在しないこともある。それに対し、一つの端末がシステム情報ブロックをN番目の第2のRARウィンドウ内で要求する場合、ネットワークは、要求されたシステム情報ブロックをN+1番目の第2のRARウィンドウ内で放送するように決定できる。または、ネットワークは、要求されたシステム情報ブロックをN+1番目の第2のRARウィンドウ内でユニキャスト送信するように決定できる。この場合、MACサブヘッダに対応するアップリンクグラントを含むMAC RARは、存在できる。
図14は、本発明の一実施例によって、端末がシステム情報を要求する方法を示すブロック図である。
図14を参照すると、ステップS1410において、端末は、システム情報要求のためのランダムアクセスプリアンブルを基地局に送信できる。
ステップS1420において、端末は、前記送信されたランダムアクセスプリアンブルに対応するRAPID(random access preamble identifier)のみを含むランダムアクセス応答を前記基地局から受信することができる。前記ランダムアクセス応答は、前記RAPIDに対応するMAC RARを含まない。前記ランダムアクセス応答は、前記RAPIDに対応するアップリンクグラントを含まない。前記ただRAPIDだけ含むランダムアクセス応答は、前記システム情報要求に対するACKである。前記ランダムアクセス応答は、MAC PDUを利用して前記基地局から受信されることができる。
前記ランダムアクセス応答は、前記システム情報要求のためのランダムアクセスプリアンブルに対応してランダムアクセス応答を受信するために新しく定義されたRARウィンドウで受信されることができる。
ステップS1430において、端末は、ランダムアクセス手順が完了したと見なすことができる。前記端末がただRAPIDだけ含むランダムアクセス応答を受信する場合、前記ランダムアクセス手順は完了したと見なされることができる。
前記ランダムアクセス手順で、第3のメッセージは、前記ランダムアクセス応答に対する応答として前記基地局に送信されない。
付加的に、端末は、前記システム情報要求に対するACKの受信を上位層に送信できる。
付加的に、端末は、前記要求されたシステム情報が放送されるかどうかを確認することができる。そして、端末は、前記要求されたシステム情報を受信することができる。
図15は、本発明の実施例が具現される無線通信システムのブロック図である。
基地局1500は、プロセッサ1501、メモリ1502及び送受信機1503を含む。メモリ1502は、プロセッサ1501と連結され、プロセッサ1501を駆動するための多様な情報を格納する。送受信機1503は、プロセッサ1501と連結され、無線信号を送信及び/または受信する。プロセッサ1501は、提案された機能、過程及び/または方法を具現する。前述した実施例において、 基地局の動作は、プロセッサ1501により具現されることができる。
端末1510は、プロセッサ(processor)1511、メモリ(memory)1512及び送受信機(transceiver)1513を含む。メモリ1512は、プロセッサ1511と連結され、プロセッサ1511を駆動するための多様な情報を格納する。送受信機1513は、プロセッサ1511と連結され、無線信号を送信及び/または受信する。プロセッサ1511は、提案された機能、過程及び/または方法を具現する。前述した実施例において、 端末の動作は、プロセッサ1511により具現されることができる。
プロセッサは、ASIC(application−specific integrated circuit)、他のチップセット、論理回路及び/またはデータ処理装置を含むことができる。メモリは、ROM(read−only memory)、RAM(random access memory)、フラッシュメモリ、メモリカード、格納媒体及び/または他の格納装置を含むことができる。送受信機は、無線信号を処理するためのベースバンド回路を含むことができる。実施例がソフトウェアで具現される時、前述した技法は、前述した機能を遂行するモジュール(過程、機能など)で具現されることができる。モジュールは、メモリに格納され、プロセッサにより実行されることができる。メモリは、プロセッサの内部または外部にあり、よく知られた多様な手段でプロセッサと連結されることができる。
前述した一例に基づいて本明細書による多様な技法が図面と図面符号を介して説明された。説明の便宜のために、各技法は、特定の順序によって複数のステップやブロックを説明したが、このようなステップやブロックの具体的順序は、請求項に記載された発明を制限するものではなく、各ステップやブロックは、異なる順序で具現され、または異なるステップやブロックと同時に実行されることが可能である。また、通常の技術者であれば、各ステップやブロックが限定的に記述されたものではなく、発明の保護範囲に影響を与えない範囲内で少なくとも一つの他のステップが追加されたり削除されたりすることが可能であるということを知ることができる。
前述した実施例は、多様な一例を含む。通常の技術者であれば、発明の全ての可能な一例の組み合わせが説明されることができないという点を知ることができ、また、本明細書の技術から多様な組み合わせが派生することができるという点を知ることができる。したがって、発明の保護範囲は、請求の範囲に記載された範囲を外れない範囲内で、詳細な説明に記載された多様な一例を組み合わせて判断しなければならない。