JP6862135B2 - Catalytic metal carrier - Google Patents

Catalytic metal carrier Download PDF

Info

Publication number
JP6862135B2
JP6862135B2 JP2016186336A JP2016186336A JP6862135B2 JP 6862135 B2 JP6862135 B2 JP 6862135B2 JP 2016186336 A JP2016186336 A JP 2016186336A JP 2016186336 A JP2016186336 A JP 2016186336A JP 6862135 B2 JP6862135 B2 JP 6862135B2
Authority
JP
Japan
Prior art keywords
tubular case
fin
forming body
fin forming
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016186336A
Other languages
Japanese (ja)
Other versions
JP2018047440A (en
Inventor
瑞貴 野田
瑞貴 野田
和也 篠宮
和也 篠宮
Original Assignee
株式会社エッチ・ケー・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エッチ・ケー・エス filed Critical 株式会社エッチ・ケー・エス
Priority to JP2016186336A priority Critical patent/JP6862135B2/en
Publication of JP2018047440A publication Critical patent/JP2018047440A/en
Application granted granted Critical
Publication of JP6862135B2 publication Critical patent/JP6862135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は触媒メタル担体に関する。 The present invention relates to catalytic metal carriers.

従来、自動車エンジン等の内燃機関から排出される排ガスを浄化する触媒メタル担体として、特許文献1、2に記載のものがある。 Conventionally, there are those described in Patent Documents 1 and 2 as catalytic metal carriers for purifying exhaust gas discharged from an internal combustion engine such as an automobile engine.

特許文献1に記載の自動車エンジン用触媒メタル担体は、ステンレス鋼製筒状ケースの内周面に、複数の凹部が円周方向に連続して形成された円筒形状のステンレス鋼製金属箔(箔厚約200μm)がロー付けされて構成される。これにより、筒状ケースが形成する排気通路の内部に、円筒形状の金属箔によって仕切られる多数の小排気流路を区画する。そして、筒状ケースの内周面、並びに上記小排気流路を画成している金属箔の表面には、触媒が塗布、焼付けされて担持される。 The catalyst metal carrier for an automobile engine described in Patent Document 1 is a cylindrical stainless steel metal foil (foil) in which a plurality of recesses are continuously formed in the circumferential direction on the inner peripheral surface of a stainless steel tubular case. It is constructed by rowing (thickness about 200 μm). As a result, a large number of small exhaust passages partitioned by the cylindrical metal leaf are partitioned inside the exhaust passage formed by the tubular case. Then, a catalyst is applied, baked and supported on the inner peripheral surface of the tubular case and the surface of the metal foil defining the small exhaust flow path.

特許文献2に記載の自動車エンジン用触媒メタル担体は、ステンレス鋼製筒状ケースの内部に、複数個のメタルハニカム体を離隔配置するとともに、メタルハニカム体の間にチューブ形状体及び/又はプレート形状体を配置し、当該筒状ケースの内周面にそれらのメタルハニカム体、チューブ形状体及び/又はプレート形状体がロー付けされて構成される。メタルハニカム体はステンレス鋼等の金属製の平箔及び波箔を用いて構成される。これにより、筒状ケースが形成する排気通路の内部に、メタルハニカム体の小孔からなる多数の小排気流路を形成するとともに、チューブ形状体及び/又はプレート形状体によって仕切られる小排気流路を区画する。そして、筒状ケースの内周面、並びに上記小排気流路を画成しているメタルハニカム体の小孔内面、チューブ形状体及び/又はプレート形状体の表面には、触媒がコーティングされて担持される。 In the catalyst metal carrier for an automobile engine described in Patent Document 2, a plurality of metal honeycomb bodies are separately arranged inside a stainless steel tubular case, and a tube shape body and / or a plate shape are formed between the metal honeycomb bodies. A body is arranged, and these metal honeycomb bodies, tube-shaped bodies and / or plate-shaped bodies are brazed to the inner peripheral surface of the tubular case. The metal honeycomb body is constructed by using flat foil and corrugated foil made of metal such as stainless steel. As a result, a large number of small exhaust passages composed of small holes of the metal honeycomb body are formed inside the exhaust passage formed by the tubular case, and the small exhaust passages are partitioned by the tube shape and / or the plate shape. To partition. Then, a catalyst is coated and supported on the inner peripheral surface of the tubular case, the inner surface of the small holes of the metal honeycomb body defining the small exhaust flow path, and the surface of the tube-shaped body and / or the plate-shaped body. Will be done.

特開2001-129407号公報Japanese Unexamined Patent Publication No. 2001-129407 特開2008-142682号公報Japanese Unexamined Patent Publication No. 2008-142682

特許文献1に記載の触媒メタル担体には以下の問題点がある。
(1)筒状ケースの内周面に円筒形状の金属箔をロー付けしている。
自動車エンジンの高負荷運転時に排ガス温度がロー付け材の融点(例えば1050℃程度)を超える高温になると、ロー付け材が溶けて、円筒形状の金属箔を筒状ケースに固定できなくなる。
The catalytic metal carrier described in Patent Document 1 has the following problems.
(1) A cylindrical metal foil is brazed to the inner peripheral surface of the tubular case.
When the exhaust gas temperature exceeds the melting point of the brazed material (for example, about 1050 ° C.) during high-load operation of the automobile engine, the brazed material melts and the cylindrical metal foil cannot be fixed to the tubular case.

また、自動車エンジンの高負荷運転で高温になった排ガスにより歪んだ金属箔と空冷下の筒状ケース間に大きな熱応力を発生させ、或いは自動車の車体及びエンジンの振動が激しくなると、これらの熱応力や激しい振動が金属箔を破壊し、円筒形状の金属箔を筒状ケースに固定できなくなる。 In addition, when a large thermal stress is generated between the metal leaf distorted by the exhaust gas that has become hot due to the high load operation of the automobile engine and the tubular case under air cooling, or when the vibration of the automobile body and the engine becomes intense, these heats are generated. Stress and violent vibration destroy the metal leaf, making it impossible to fix the cylindrical metal leaf to the tubular case.

特許文献2に記載の触媒メタル担体には以下の問題点がある。
(2)筒状ケースの内周面にメタルハニカム体や、チューブ形状体及び/又はプレート形状体をロー付けしている。
The catalytic metal carrier described in Patent Document 2 has the following problems.
(2) A metal honeycomb body, a tube shape body and / or a plate shape body is brazed to the inner peripheral surface of the tubular case.

自動車エンジンの高負荷運転時に排ガス温度がロー付け材の融点(例えば1050℃程度)を超える高温になると、ロー付け材が溶けて、メタルハニカム体や、チューブ形状体及び/又はプレート形状体を筒状ケースに固定できなくなる。 When the exhaust gas temperature exceeds the melting point of the brazed material (for example, about 1050 ° C.) during high-load operation of an automobile engine, the brazed material melts and forms a metal honeycomb body, a tube-shaped body, and / or a plate-shaped body. It cannot be fixed to the shape case.

また、自動車エンジンの高負荷運転で高温になった排ガスにより歪んだメタルハニカム体と空冷下の筒状ケース間に大きな熱応力を発生させ、或いは自動車の車体及びエンジンの振動が激しくなると、これらの熱応力や激しい振動がメタルハニカム体を破壊し、メタルハニカム体を筒状ケースに固定できなくなる。 In addition, when a large thermal stress is generated between the metal honeycomb body distorted by the exhaust gas that has become hot due to the high load operation of the automobile engine and the tubular case under air cooling, or when the vibration of the automobile body and the engine becomes intense, these Thermal stress and violent vibration destroy the metal honeycomb body, making it impossible to fix the metal honeycomb body to the tubular case.

特許文献1、2に記載の触媒メタル担体が、例えば自動車レース競技等の自動車の過酷な走行環境下で使用されると、排ガス温度の高温化、車体及びエンジンの振動の増大化がとりわけ激しくなることから、上述(1)、(2)の問題点は一層顕著になる。 When the catalytic metal carrier described in Patent Documents 1 and 2 is used in a harsh driving environment of an automobile such as an automobile race competition, the exhaust gas temperature becomes high and the vibration of the vehicle body and the engine increases particularly severely. Therefore, the problems (1) and (2) described above become more prominent.

尚、特許文献1、2に記載の触媒メタル担体に採用されているロー付け部が仮に、スポット溶接等による溶接部に単に置き換えられたとしても、自動車の過酷な走行環境下では、高温の排ガスに起因する熱応力や激しい車体及びエンジンの振動による金属箔やメタルハニカム体の破壊を回避するに至らない。 Even if the brazed portion used in the catalyst metal carrier described in Patent Documents 1 and 2 is simply replaced with a welded portion by spot welding or the like, high-temperature exhaust gas is emitted under the harsh driving environment of an automobile. It is not possible to avoid the destruction of the metal foil and the metal honeycomb body due to the thermal stress caused by the heat stress and the violent vibration of the vehicle body and the engine.

特に、自動車レース競技等の過酷な走行条件においては、未燃ガスが触媒メタル担体における筒状ケースの内周面、円筒形状の金属箔、或いはメタルハニカム体や、チューブ形状体及び/又はプレート形状体に付着してアフターファイヤを生じ、円筒形状の金属箔、或いはメタルハニカム体や、チューブ形状体及び/又はプレート形状体は一層高温、高圧の排ガスに曝されるものになる。 In particular, under harsh driving conditions such as automobile racing competitions, the unburned gas is the inner peripheral surface of the tubular case in the catalyst metal carrier, the cylindrical metal foil, or the metal honeycomb body, the tube shape body and / or the plate shape. It adheres to the body and causes afterfire, and the cylindrical metal foil or metal honeycomb body, the tube shape body and / or the plate shape body is exposed to higher temperature and higher pressure exhaust gas.

そして、特許文献1、2に記載の触媒メタル担体において、円筒形状の金属箔、或いはメタルハニカム体や、チューブ形状体及び/又はプレート形状体が筒状ケースに固定できなくなると、それらの円筒形状の金属箔、或いはメタルハニカム体や、チューブ形状体及び/又はプレート形状体が筒状ケースから脱落して浄化性能を喪失するだけでなく、走路上に散乱し、後続車両の安全な走行を妨害するものになり、レース中断等を招くおそれもある。 Then, in the catalyst metal carriers described in Patent Documents 1 and 2, when the cylindrical metal foil, the metal honeycomb body, the tube shape body and / or the plate shape body cannot be fixed to the tubular case, those cylindrical shapes are formed. Not only does the metal leaf, metal honeycomb, tube-shaped body and / or plate-shaped body fall off from the tubular case and lose purification performance, but it also scatters on the track and interferes with the safe running of the following vehicle. There is a risk that the race will be interrupted.

本発明の課題は、過酷な使用環境下で高い耐久性を確保できる触媒メタル担体を提供することにある。 An object of the present invention is to provide a catalytic metal carrier capable of ensuring high durability in a harsh usage environment.

請求項1に係る発明は、筒状ケースが形成する排気通路の内部に金属製のフィン形成体が配置されてなる触媒メタル担体であって、フィン形成体が多数個の板厚を0.8乃至3mmとし、表面に触媒を担持して構成される板状のフィンを有し、各フィンの板長手方向の中間部に熱歪吸収用の曲がり部を備え、各フィンがその板長手方向で筒状ケースの内周面に交差するように排気通路内に延在され、相隣るフィンによって該排気通路内に多数の小排気流路を区画し、フィン形成体の各フィンにおける筒状ケースの内周面に交差する端部が、該筒状ケースの内周面に設けた回り止め部に該筒状ケースの周方向で係合するように設けられて回り止めされるとともに、フィン形成体が多数個の板状のフィンが一体をなすように削り出された一体物からなるものであり、フィン形成体が、多数個の板状のフィンとともに一体をなしてそれらのフィンの先端部につながって該フィンを囲む外環部を有し、この外環部が筒状ケースの内周面に設けた回り止め部に該筒状ケースの周方向で係合するように設けられて回り止めされるように構成され、フィン形成体の筒状ケースからの脱落を防止する抜け止め部材が、該フィン形成体のフィンに接合されることなく、該フィン形成体を該筒状ケースの筒軸方向に保持する状態で、該筒状ケースに支持されるようにしたものである。 The invention according to claim 1 is a catalytic metal carrier in which metal fin forming bodies are arranged inside an exhaust passage formed by a tubular case, and the thickness of a large number of fin forming bodies is 0.8 to 3 mm. It has plate-shaped fins formed by supporting a catalyst on the surface, and each fin is provided with a bent portion for absorbing thermal strain in the middle portion in the plate longitudinal direction, and each fin is tubular in the plate longitudinal direction. It extends in the exhaust passage so as to intersect the inner peripheral surface of the case, and a large number of small exhaust passages are partitioned in the exhaust passage by adjacent fins, and the inside of the tubular case in each fin of the fin forming body. The end portion intersecting the peripheral surface is provided so as to engage with the detent portion provided on the inner peripheral surface of the tubular case so as to engage in the circumferential direction of the tubular case, and the fin forming body is formed. It consists of an integral body carved out so that a large number of plate-shaped fins are integrated, and the fin forming body is integrated with a large number of plate-shaped fins and connected to the tips of those fins. It has an outer ring portion that surrounds the fins, and the outer ring portion is provided so as to engage with a detent portion provided on the inner peripheral surface of the tubular case in the circumferential direction of the tubular case to prevent detent. A retaining member for preventing the fin forming body from falling off from the tubular case is not joined to the fins of the fin forming body, and the fin forming body is moved in the tubular axial direction of the tubular case. It is supported by the tubular case while being held in place.

(a)フィン形成体の板状の各フィンにおける筒状ケースの内周面に交差する端部が、該筒状ケースの内周面にロー付け、溶接止めされることなく、該内周面に設けた回り止め部に該筒状ケースの周方向で係合するように設けられて回り止めされる。更に、フィン形成体の筒状ケースからの脱落を防止する抜け止め部材が、該筒状ケースに支持されて、該フィン形成体を該筒状ケースの筒軸方向に保持する。従って、フィン形成体は、筒状ケースの内部に回り止めされ、かつ軸方向でも保持され、筒状ケースに安定的に保持されて該筒状ケースから外方への脱落を防止される。 (a) The ends of the plate-shaped fins of the fin forming body that intersect the inner peripheral surface of the tubular case are brazed to the inner peripheral surface of the tubular case and are not welded to the inner peripheral surface. It is provided so as to engage with the detent portion provided in the above in the circumferential direction of the tubular case to prevent detent. Further, a retaining member for preventing the fin forming body from falling off from the tubular case is supported by the tubular case and holds the fin forming body in the tubular axial direction of the tubular case. Therefore, the fin forming body is prevented from rotating inside the tubular case, is also held in the axial direction, is stably held by the tubular case, and is prevented from falling out from the tubular case.

(b)自動車エンジンの過酷な使用環境下で、排ガス温度が高負荷運転によって、例えば1000℃乃至1200℃程度の高温になる長時間連続使用環境下でも、フィン形成体は上記高温の排ガスに曝されて溶損するロー付け部、溶接止め部を用いて筒状ケースに固定されるものでない。即ち、フィン形成体は、高温の排ガスに曝されても破壊に至るおそれがない上述の回り止め構造及び抜け止め構造によって筒状ケースに安定的に保持され、フィン形成体を筒状ケースに安定的に保持できる。 (b) The fin forming body is exposed to the above-mentioned high-temperature exhaust gas even in a long-term continuous use environment in which the exhaust gas temperature becomes high, for example, about 1000 ° C. to 1200 ° C. due to high-load operation under the harsh usage environment of an automobile engine. It is not fixed to the tubular case by using a brazed part and a welding stop part that are melted and damaged. That is, the fin-forming body is stably held in the tubular case by the above-mentioned anti-rotation structure and anti-removal structure that are not likely to be destroyed even when exposed to high-temperature exhaust gas, and the fin-forming body is stable in the tubular case. Can be held as a target.

(c)自動車の車体及びエンジンの振動が激しくなるときにも、フィン形成体は、上述の回り止め構造及び抜け止め構造によって筒状ケースに安定的に保持され、フィン形成体を筒状ケースに安定的に保持できる。 (c) The fin forming body is stably held in the tubular case by the above-mentioned anti-rotation structure and the retaining structure even when the vehicle body and the engine of the automobile violently vibrate, and the fin forming body is made into the tubular case. Can be held stably.

(d)抜け止め部材は、フィン形成体のフィンに接合されず、該フィン形成体を筒状ケースの筒軸方向に保持して該フィン形成体を抜け止めし、フィン形成体の外方への脱落を確実に防止する。ここで、抜け止め部材は、フィン形成体の各フィンに溶接等されて固定されるものに比して、各フィンにおける板長手方向の変形を該抜け止め部材との係わりによって拘束することがない。これにより、フィン形成体は、高温の排ガスに曝されることによる各フィンの板長手方向の熱歪を抜け止め部材の存在によって阻止されることなく、この熱歪に起因する大きな熱応力を抜け止め部材との間に発生させることがなく、該抜け止め部材によって安定的に保持される。 (d) The retaining member is not joined to the fins of the fin forming body, but holds the fin forming body in the tubular axial direction of the tubular case to prevent the fin forming body from coming off, and moves outward to the fin forming body. Make sure to prevent it from falling off. Here, the retaining member does not restrain the deformation of each fin in the plate longitudinal direction by the engagement with the retaining member, as compared with the one fixed to each fin of the fin forming body by welding or the like. .. As a result, the fin forming body can release the large thermal stress caused by the thermal strain without being blocked by the presence of the retaining member from the thermal strain in the plate longitudinal direction of each fin due to the exposure to the high temperature exhaust gas. It is not generated between the stopper member and is stably held by the retaining member.

抜け止め部材が上述(d)の如くに、フィン形成体の各フィンの板長手方向の変形を拘束しない構造は、後述(e)の各フィンに備えた曲がり部による各フィンの熱歪の吸収効果を阻害しないという効果を奏する。 As described in (d) above, the structure in which the retaining member does not restrain the deformation of each fin of the fin forming body in the plate longitudinal direction is such that the bending portion provided in each fin of (e) described later absorbs the thermal strain of each fin. It has the effect of not inhibiting the effect.

(e)尚、フィン形成体は、各フィンの板長手方向の中間部に、熱歪吸収用の曲がり部を備えることもできる。 (e) The fin forming body may also be provided with a bent portion for absorbing thermal strain at an intermediate portion in the plate longitudinal direction of each fin.

この場合には、高温の排ガスに曝されるフィン形成体における各フィンの熱歪が、当該フィンの中間部に備えた曲がり部の熱的変形によって吸収され、各フィンの端部の回り止め部に及びにくくし、回り止め部の周辺に大きな熱応力を発生させず、回り止め部を破壊させることがないから、フィン形成体を筒状ケースに安定的に保持できる。 In this case, the thermal strain of each fin in the fin forming body exposed to the high temperature exhaust gas is absorbed by the thermal deformation of the bent portion provided in the middle portion of the fin, and the detent portion at the end of each fin is absorbed. Since it is difficult to reach the surface, a large thermal stress is not generated around the detent portion, and the detent portion is not broken, the fin forming body can be stably held in the tubular case.

また、車体及びエンジンの激しい振動に起因してフィン形成体の各フィンに生ずる振動による破壊は、金属箔やメタルハニカムに比べ厚肉のフィン(例えば0.8乃至3mm)を用いることでフィン形成体の強度を向上させることによって回避できるから、フィン形成体を筒状ケースに安定的に保持できる。 Further, the destruction due to the vibration generated in each fin of the fin forming body due to the violent vibration of the vehicle body and the engine can be prevented by using thick fins (for example, 0.8 to 3 mm) as compared with the metal foil or the metal honeycomb. Since it can be avoided by improving the strength, the fin forming body can be stably held in the tubular case.

(f)前記筒状ケースの内部に、該筒状ケースの排気通路に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体が配置される。触媒を担持する、筒状ケースの全長に渡る内周面積、及び全フィン形成体の合計表面積を増大化し、触媒メタル担体の浄化性能を向上できる。 (f) Inside the tubular case, a plurality of fin forming bodies arranged in order from one end side to the other end side along the exhaust passage of the tubular case are arranged. The inner peripheral area over the entire length of the tubular case that supports the catalyst and the total surface area of all fin-forming bodies can be increased, and the purification performance of the catalyst metal carrier can be improved.

(g)前記フィン形成体が多数個の板状のフィンが一体をなすように削り出された一体物からなるものとすることにより、各フィンを例えば板厚0.8乃至3mm、より好適には1乃至2mmの板状とし、フィン形成体の耐熱強度、耐振動強度等を確保し、触媒メタル担体の耐久性を容易に確保できる。 (g) By making the fin forming body consist of an integral body carved so as to form a large number of plate-shaped fins, each fin has a plate thickness of, for example, 0.8 to 3 mm, more preferably 1 It has a plate shape of up to 2 mm, and the heat resistance and vibration resistance of the fin forming body can be secured, and the durability of the catalyst metal carrier can be easily secured.

(h)前記フィン形成体が、多数個の板状のフィンとともに一体をなしてそれらのフィンにつながって該フィンを囲む外環部を有し、この外環部が筒状ケースの内周面に設けた回り止め部に係合するように設けられる。一体物をなすフィン形成体の各フィンにおける筒状ケースの内周面に交差する端部を、該端部につながる外環部を介して、筒状ケースの内周面に設けた回り止め部に係合するように単純かつ確実に設けることができる。 (h) The fin forming body has an outer ring portion that is integrally connected with a large number of plate-shaped fins and is connected to the fins and surrounds the fins, and the outer ring portion is the inner peripheral surface of the tubular case. It is provided so as to engage with the detent portion provided in. An end portion of each fin of the fin forming body forming an integral body that intersects the inner peripheral surface of the tubular case is provided on the inner peripheral surface of the tubular case via an outer ring portion connected to the end portion. Can be simply and reliably provided to engage with.

図1は第1実施形態の触媒メタル担体を示す正面図である。FIG. 1 is a front view showing the catalyst metal carrier of the first embodiment. 図2は触媒メタル担体を示し、(A)は図1のII−II線に沿う断面図、(B)はその変形例を示す断面図である。2A and 2B show a catalyst metal carrier, FIG. 2A is a cross-sectional view taken along the line II-II of FIG. 1, and FIG. 2B is a cross-sectional view showing a modified example thereof. 図3は筒状ケースを示し、(A)は正面図、(B)は側面図である。3A and 3B show a tubular case, where FIG. 3A is a front view and FIG. 3B is a side view. 図4は回り止め部材を示す側面図である。FIG. 4 is a side view showing a detent member. 図5はフィン形成体を示し、(A)は正面図、(B)はフィンの変形例を示す模式図である。5A and 5B show fin-forming bodies, FIG. 5A is a front view, and FIG. 5B is a schematic view showing a modified example of fins. 図6は抜け止め部材を示し、(A)は正面図、(B)は側面図である。6A and 6B show a retaining member, FIG. 6A is a front view, and FIG. 6B is a side view. 図7は抜け止め部材を示す正面図である。FIG. 7 is a front view showing a retaining member. 図8は参考例の触媒メタル担体を示す正面図である。FIG. 8 is a front view showing a catalyst metal carrier of a reference example. 図9は触媒メタル担体を示し、(A)は側面図、(B)はその変形例を示す側面図である。9A and 9B show a catalyst metal carrier, FIG. 9A is a side view, and FIG. 9B is a side view showing a modified example thereof. 図10は回り止め部材を示す側面図である。FIG. 10 is a side view showing a detent member. 図11はフィン形成体となる板組体を構成する板を示し、(A)は正面図、(B)は側面図である。11A and 11B show a plate constituting a plate structure to be a fin forming body, where FIG. 11A is a front view and FIG. 11B is a side view. 図12は板組体を示す正面図である。FIG. 12 is a front view showing the plate assembly. 図13は板組体が挿入された筒状ケースを示す正面図である。FIG. 13 is a front view showing a tubular case into which a plate structure is inserted. 図14は抜け止め部材を示す正面図である。FIG. 14 is a front view showing a retaining member.

(第1実施形態)(図1乃至図7)
図1、図2に示す触媒メタル担体1は、自動車エンジンの排気ポートに連通する排気管の出口端部(中間部でも可)に接続されて用いられる。触媒メタル担体1は、円筒状等の筒状ケース10が形成する排気通路11の内部に金属製のフィン形成体20が配置され、フィン形成体20が有する多数個の板状のフィン21の表面に触媒を担持して構成される。
(First Embodiment) (FIGS. 1 to 7)
The catalytic metal carrier 1 shown in FIGS. 1 and 2 is used by being connected to an outlet end portion (or an intermediate portion) of an exhaust pipe communicating with an exhaust port of an automobile engine. In the catalyst metal carrier 1, a metal fin forming body 20 is arranged inside an exhaust passage 11 formed by a cylindrical case 10 having a cylindrical shape or the like, and the surface of a large number of plate-shaped fins 21 included in the fin forming body 20. It is constructed by supporting a catalyst on the surface.

触媒メタル担体1は、エンジン回転の上昇、下降の度に加熱冷却がくり返され、空冷下の筒状ケース10に拘束されるフィン形成体20の各フィン21と該筒状ケース10との接合部には大きな熱歪に基づく大きな熱応力ひいては熱疲労を発生させ易く、厳しい熱的環境にある。触媒メタル担体1が自動車エンジンの過酷な長時間連続使用環境下で使用されるときには、フィン形成体20を構成する各フィン21は、高負荷運転による高温排ガスの高熱に曝され、或いは触媒の反応による発熱を受けて熱せられ、更には付着した未燃ガスが爆発して生ずるアフターファイヤによって過熱され、一層大きな熱歪を生ずる。 The catalyst metal carrier 1 is repeatedly heated and cooled each time the engine speed rises and falls, and the fins 21 of the fin forming body 20 restrained by the tubular case 10 under air cooling are joined to the tubular case 10. The part is in a harsh thermal environment because it is prone to generate large thermal stress and thus thermal fatigue due to large thermal strain. When the catalytic metal carrier 1 is used in a harsh long-term continuous use environment of an automobile engine, each fin 21 constituting the fin forming body 20 is exposed to the high heat of high-temperature exhaust gas due to high load operation, or the reaction of the catalyst. It is heated by receiving the heat generated by the engine, and further, the attached unburned gas is overheated by the afterfire generated by the explosion, which causes a larger thermal strain.

また、触媒メタル担体1は、激しい車体及びエンジンの振動に起因する激しい振動が繰り返し付与され、フィン形成体20の各フィン21と筒状ケース10との接合部には大きな繰り返し応力を発生させ易く、厳しい振動環境にある。 Further, the catalyst metal carrier 1 is repeatedly subjected to violent vibration due to violent vibration of the vehicle body and the engine, and a large repetitive stress is likely to be generated at the joint portion between each fin 21 of the fin forming body 20 and the tubular case 10. , In a harsh vibration environment.

触媒メタル担体1は、以上のような過酷な熱的環境及び振動環境で使用されても、高い耐久性を確保するため、筒状ケース10、フィン形成体20、及び抜け止め部材40、50を以下の如くに組立てて構成される。 The catalyst metal carrier 1 includes a tubular case 10, fin forming bodies 20, and retaining members 40 and 50 in order to ensure high durability even when used in the above-mentioned harsh thermal environment and vibration environment. It is assembled and configured as follows.

(筒状ケース10)
筒状ケース10は、図1、図2、図3に示す如く、例えばステンレス鋼板の帯状材(例えばSUS430材、板厚1.5mm)を円筒状に曲げ成形し、その両端部が突き合せ状態でTIG溶接等で溶接されて形成される(溶接部W1)。
(Cylindrical case 10)
As shown in FIGS. 1, 2, and 3, the tubular case 10 is formed by bending, for example, a strip of stainless steel plate (for example, SUS430 material, plate thickness 1.5 mm) into a cylindrical shape, and both ends thereof are in a butt state. It is formed by welding by TIG welding or the like (welded portion W1).

(フィン形成体20)
フィン形成体20は、図1、図2、図5に示す如く、多数個の例えばステンレス鋼板の板状フィン21を有し、各フィン21がその板長手方向で筒状ケース10の内周面に交差し、かつその板幅方向で筒状ケース10の筒軸方向に沿うように排気通路11内に延在され、相隣るフィン21によって該排気通路11内に多数の小排気流路12を区画する。
(Fin forming body 20)
As shown in FIGS. 1, 2, and 5, the fin forming body 20 has a large number of plate-shaped fins 21 of, for example, stainless steel plates, and each fin 21 has an inner peripheral surface of the tubular case 10 in the longitudinal direction of the plate. A large number of small exhaust passages 12 are extended in the exhaust passage 11 by adjacent fins 21 so as to intersect the exhaust passage 11 and extend in the exhaust passage 11 along the tubular axis direction of the tubular case 10 in the plate width direction thereof. To partition.

本実施形態のフィン形成体20は、多数個の板状のフィン21が一体をなすように削り出された一体物から構成される。フィン形成体20は、本実施形態ではステンレス鋼の板材或いはブロック体からレーザー加工によって削り出されて形成される。 The fin forming body 20 of the present embodiment is composed of an integral body carved so that a large number of plate-shaped fins 21 are integrated. In the present embodiment, the fin forming body 20 is formed by being machined from a stainless steel plate or block body by laser processing.

ここで、本実施形態のフィン形成体20は、図5に示す如く、多数個(本実施形態では12個)の板状のフィン21を中心部22から周方向に一定の間隔(本実施形態では30度間隔)を介して半径方向に延在され、各フィン21の先端部につながって該フィン21を囲む外環部23を有する。フィン21と中心部22と外環部23が一体物をなす。 Here, as shown in FIG. 5, the fin forming body 20 of the present embodiment has a large number of plate-shaped fins 21 (12 in the present embodiment) at regular intervals in the circumferential direction from the central portion 22 (the present embodiment). It has an outer ring portion 23 that extends in the radial direction via (30 degree intervals) and is connected to the tip end portion of each fin 21 and surrounds the fin 21. The fin 21, the central portion 22, and the outer ring portion 23 form an integral body.

本実施形態のフィン形成体20は、各フィン21を中心部22から外環部23に向けて渦巻き線状等の如くの湾曲線(二次曲線又は三次曲線等)状に延在される。但し、各フィン21は中心部22から外環部23に向けて半径方向に沿う直線状に延在されても良い。 The fin forming body 20 of the present embodiment extends each fin 21 from the central portion 22 toward the outer ring portion 23 in a curved line (quadratic curve, cubic curve, etc.) such as a spiral line. However, each fin 21 may extend linearly along the radial direction from the central portion 22 toward the outer ring portion 23.

更に、フィン形成体20にあっては、各フィン21における筒状ケース10の内周面に交差する端部が、外環部23とともに、該筒状ケース10の内周面に設けた回り止め部13に該筒状ケース10の周方向で係合するように設けられて回り止めされる。 Further, in the fin forming body 20, the end portion of each fin 21 that intersects the inner peripheral surface of the tubular case 10 is provided on the inner peripheral surface of the tubular case 10 together with the outer ring portion 23 to prevent rotation. The portion 13 is provided so as to engage with the tubular case 10 in the circumferential direction and is prevented from rotating.

本実施形態において、筒状ケース10の内周面の周方向に一定の間隔をなす複数位置(本実施形態では3位置)には、図4に示したキー状の回り止め部材13Aが設けられる。回り止め部材13Aは、その一部が筒状ケース10の周方向の3位置に設けられた切欠孔13B(図3)に埋め込まれて該筒状ケース10の外周面の側からTIG溶接等で溶接されて固定される(溶接部W2)。回り止め部材13Aの上記溶接された一部を除く残部が筒状ケース10の内方に突出して回り止め部13となる。 In the present embodiment, the key-shaped detent members 13A shown in FIG. 4 are provided at a plurality of positions (three positions in the present embodiment) forming a constant interval in the circumferential direction of the inner peripheral surface of the tubular case 10. .. A part of the detent member 13A is embedded in notch holes 13B (FIG. 3) provided at three positions in the circumferential direction of the tubular case 10 and is TIG welded from the outer peripheral surface side of the tubular case 10. It is welded and fixed (welded portion W2). The remaining portion of the detent member 13A except for the welded part projects inward of the tubular case 10 to form the detent portion 13.

他方、フィン形成体20における外環部23の周方向で上記筒状ケース10の回り止め部13に対応する位置には、内径側へ凹ませた屈曲部24が形成され、外環部23の外周面上にて屈曲部24が形成する凹部を回り止め溝部25とする。これにより、フィン形成体20が筒状ケース10の内周面に嵌合するように挿入されるとき、フィン形成体20の外環部23が備える回り止め溝部25が筒状ケース10の内周面に設けた上述の回り止め部13に係入し、結果として、フィン形成体20が筒状ケース10の周方向で係合するように設けられて回り止めされるものになる。 On the other hand, in the fin forming body 20, a bent portion 24 recessed toward the inner diameter side is formed at a position corresponding to the detent portion 13 of the tubular case 10 in the circumferential direction of the outer ring portion 23, and the outer ring portion 23 is formed. The recess formed by the bent portion 24 on the outer peripheral surface is referred to as the detent groove portion 25. As a result, when the fin forming body 20 is inserted so as to fit on the inner peripheral surface of the tubular case 10, the detent groove portion 25 provided in the outer ring portion 23 of the fin forming body 20 is formed on the inner circumference of the tubular case 10. It engages with the above-mentioned detent portion 13 provided on the surface, and as a result, the fin forming body 20 is provided so as to engage in the circumferential direction of the tubular case 10 and is detented.

尚、フィン形成体20にあっては、各フィン21の先端部につながる外環部23を備えないとき、各フィン21の先端部を直接的に筒状ケース10の内周面に設けた回り止め部に該筒状ケース10の周方向で係合するように設けて回り止めしても良い。 When the fin forming body 20 does not have the outer ring portion 23 connected to the tip end portion of each fin 21, the tip portion of each fin 21 is directly provided on the inner peripheral surface of the tubular case 10. The stopper may be provided so as to engage with the tubular case 10 in the circumferential direction to prevent rotation.

本実施形態のフィン形成体20は、図5に示す如く、外環部23の周方向に一定間隔をなす複数位置(本実施形態では3位置)で該外環部23を周方向において切離した、熱歪吸収用の切離部23Rを備える。 As shown in FIG. 5, the fin forming body 20 of the present embodiment is separated from the outer ring portion 23 in the circumferential direction at a plurality of positions (3 positions in the present embodiment) at regular intervals in the circumferential direction of the outer ring portion 23. , A separation portion 23R for absorbing thermal strain is provided.

尚、フィン形成体20にあっては、各フィン21の板長手方向の中間部に熱歪吸収用の曲がり部(例えばU字状曲がり部)21Rを設けても良い(図5(B))。 In the fin forming body 20, a bent portion (for example, a U-shaped bent portion) 21R for absorbing thermal strain may be provided in the middle portion of each fin 21 in the plate longitudinal direction (FIG. 5 (B)). ..

更に、本実施形態の触媒メタル担体1は、筒状ケース10の内部に、該筒状ケース10の排気通路11に沿う一端側から他端側に向けて順に並ぶ複数個(本実施形態では4個)のフィン形成体20が配置される。このとき、相並ぶフィン形成体20は、図1に示す如く、それらの表裏を交互に反転され、それらの相隣るフィン形成体20の間で隣接し合う各フィン21の湾曲方向(渦巻き方向)を逆方向にして配置される。 Further, a plurality of catalyst metal carriers 1 of the present embodiment are arranged in order inside the tubular case 10 from one end side to the other end side along the exhaust passage 11 of the tubular case 10 (4 in the present embodiment). The fin forming body 20 is arranged. At this time, as shown in FIG. 1, the fin forming bodies 20 side by side are alternately inverted on the front and back sides, and the bending direction (swirl direction) of each fin 21 adjacent to each other between the fin forming bodies 20 adjacent to each other. ) Is placed in the opposite direction.

ここで、フィン形成体20を複数個使用し、筒状ケース10の排気通路11に沿う一端側から他端側に向けて相並ぶフィン形成体20を表裏交互に反転して配置した場合、相並ぶフィン形成体20におけるそれらのフィン21端面の重なり合わない部分が排気通路11に露出し、触媒と排気ガスの接する表面積が増加することで、排気ガスの浄化性能が向上する。また互いのフィン21が重なり合わない部分を設けることで、上流側に配置されたフィン形成体20におけるフィン21の排気下流側に排気が流入可能な空間ができる。この空間ひとつひとつが排気の流れを細かく分割する排気の経路となり、排気通路11内では異なる経路を通る排気の流れ同士が干渉し合うことで流れが乱れて抵抗となり、排気ガスがメタル担体1を通過する時間が長くなる。つまり触媒と排気ガスの接する時間が増加することにより、排気ガスの浄化性能がより一層向上する。 Here, when a plurality of fin forming bodies 20 are used and the fin forming bodies 20 arranged side by side from one end side to the other end side along the exhaust passage 11 of the tubular case 10 are alternately reversed on the front and back sides, the phases are arranged. The non-overlapping portions of the end faces of the fins 21 of the lined fin forming bodies 20 are exposed in the exhaust passage 11, and the surface area in contact between the catalyst and the exhaust gas is increased, so that the purification performance of the exhaust gas is improved. Further, by providing a portion in which the fins 21 do not overlap each other, a space is created on the exhaust downstream side of the fins 21 in the fin forming body 20 arranged on the upstream side so that the exhaust can flow in. Each of these spaces becomes an exhaust path that divides the exhaust flow into small pieces, and in the exhaust passage 11, the exhaust flows that pass through different paths interfere with each other, so that the flow is disturbed and becomes resistance, and the exhaust gas passes through the metal carrier 1. It takes longer to do. That is, the purification performance of the exhaust gas is further improved by increasing the contact time between the catalyst and the exhaust gas.

尚、複数個の相並ぶフィン形成体20は、互いに反転するものに限らず、周方向で互いにずらして配置し、互いに反転し、かつ周方向にずらして配置し、或いは互いに反転させず、かつ周方向でずらさずに配置しても良い。 It should be noted that the plurality of arrayed fin forming bodies 20 are not limited to those that are inverted from each other, and are arranged so as to be offset from each other in the circumferential direction, inverted from each other, and arranged to be displaced from each other in the circumferential direction, or are not inverted from each other. It may be arranged without shifting in the circumferential direction.

フィン形成体20を複数個使用し、筒状ケース10の排気通路11に沿う一端側から他端側に向けて相並ぶフィン形成体20を周方向で互いにθ度ずらして配置した場合、相並ぶフィン形成体20におけるそれらのフィン21端面の重なり合わない部分が排気通路11に露出し、触媒と排気ガスの接する表面積が増加することで、排気ガスの浄化性能が向上する。また互いのフィン21が重なり合わない部分を設けることで、上流側に配置されたフィン形成体20におけるフィン21の排気下流側に排気が流入可能な空間ができる。この空間ひとつひとつが排気の流れを細かく分割する排気の経路となり、排気通路11内では異なる経路を通る排気の流れ同士が干渉し合うことで流れが乱れて排気の抵抗となり、排気ガスがメタル担体1を通過する時間が長くなる。つまり触媒と排気ガスの接する時間が増加することにより、排気ガスの浄化性能がより一層向上する。 When a plurality of fin forming bodies 20 are used and the fin forming bodies 20 arranged side by side from one end side to the other end side along the exhaust passage 11 of the tubular case 10 are arranged so as to be offset by θ degrees from each other in the circumferential direction, they are arranged side by side. The non-overlapping portions of the end faces of the fins 21 in the fin forming body 20 are exposed in the exhaust passage 11, and the surface area in contact between the catalyst and the exhaust gas is increased, so that the purification performance of the exhaust gas is improved. Further, by providing a portion in which the fins 21 do not overlap each other, a space is created on the exhaust downstream side of the fins 21 in the fin forming body 20 arranged on the upstream side so that the exhaust can flow in. Each of these spaces becomes an exhaust path that divides the exhaust flow into small pieces, and in the exhaust passage 11, the exhaust flows that pass through different paths interfere with each other, so that the flow is disturbed and becomes an exhaust resistance, and the exhaust gas becomes the metal carrier 1. It takes longer to pass through. That is, the purification performance of the exhaust gas is further improved by increasing the contact time between the catalyst and the exhaust gas.

フィン形成体20を複数個使用し、筒状ケース10の排気通路11に沿う一端側から他端側に向けて相並ぶフィン形成体20を表裏交互に反転し、かつ相並ぶフィン形成体20を周方向で互いにθ度ずらして配置した場合、相並ぶフィン形成体20におけるそれらのフィン21端面の重なり合わない部分が排気通路11に露出し、触媒と排気ガスの接する表面積が増加することで、排気ガスの浄化性能が向上する。また互いのフィン21が重なり合わない部分を設けることで、上流側に配置されたフィン形成体20におけるフィン21の排気下流側に排気が流入可能な空間ができる。この空間ひとつひとつが排気の流れを細かく分割する排気の経路となり、排気通路11内では異なる経路を通る排気の流れ同士が干渉し合うことで流れが乱れて排気の抵抗となり、排気ガスがメタル担体1を通過する時間が長くなる。つまり触媒と排気ガスの接する時間が増加することにより、排気ガスの浄化性能がより一層向上する。 Using a plurality of fin forming bodies 20, the fin forming bodies 20 arranged side by side from one end side to the other end side along the exhaust passage 11 of the tubular case 10 are alternately inverted on the front and back sides, and the fin forming bodies 20 arranged side by side are arranged. When the fins are arranged so as to be offset by θ degrees in the circumferential direction, the non-overlapping portions of the end faces of the fins 21 in the fin forming bodies 20 arranged side by side are exposed in the exhaust passage 11, and the surface area where the catalyst and the exhaust gas are in contact with each other increases. Exhaust gas purification performance is improved. Further, by providing a portion in which the fins 21 do not overlap each other, a space is created on the exhaust downstream side of the fins 21 in the fin forming body 20 arranged on the upstream side so that the exhaust can flow in. Each of these spaces becomes an exhaust path that divides the exhaust flow into small pieces, and in the exhaust passage 11, the exhaust flows that pass through different paths interfere with each other, so that the flow is disturbed and becomes an exhaust resistance, and the exhaust gas becomes the metal carrier 1. It takes longer to pass through. That is, the purification performance of the exhaust gas is further improved by increasing the contact time between the catalyst and the exhaust gas.

フィン形成体20を複数個使用し、筒状ケース10の排気通路11に沿う一端側から他端側に向けて相並ぶフィン形成体20を互いに反転させず、かつ周方向でずらさず(同一向き、かつそれらのフィン21が互いに重なり合うようにして)配置した場合、メタル担体1におけるフィン21とその相並ぶフィン21によって区画される小排気流路12の小排気流路断面積は、フィン形成体20単体における小排気流路12の小排気流路断面積と等しく、相並ぶフィン形成体20を表裏交互に反転した場合や、相並ぶフィン形成体20においてそれらのフィン21を周方向で互いにθ度ずらして配置した場合、あるいはそれら両方を組み合わせた場合に比べて小排気流路断面積を広く確保できるため、排気抵抗を低減でき、エンジン出力を向上できる。またメタル担体1の排気上流側から排気下流側にかけて、相並ぶフィン形成体20におけるそれらのフィン21が互いに同一位置で重なり合う状態は、フィン21の板幅方向長さを増加させることと同義であり、メタル担体1の内部において排気を整流する効果も得られるため、排気抵抗の低減はより顕著となる。 A plurality of fin forming bodies 20 are used, and the fin forming bodies 20 arranged side by side from one end side to the other end side along the exhaust passage 11 of the tubular case 10 are not inverted from each other and are not shifted in the circumferential direction (same direction). When arranged (so that the fins 21 overlap each other), the cross-sectional area of the small exhaust flow path 12 of the small exhaust flow path 12 partitioned by the fins 21 and the fins 21 arranged side by side in the metal carrier 1 is a fin forming body. It is equal to the cross-sectional area of the small exhaust flow path 12 of the small exhaust flow path 12 in a single unit, and when the fin forming bodies 20 arranged side by side are alternately inverted on the front and back sides, or in the fin forming bodies 20 arranged side by side, the fins 21 are θ Since a wider cross-sectional area of the small exhaust flow path can be secured as compared with the case where the arrangement is staggered or a combination of both, the exhaust resistance can be reduced and the engine output can be improved. Further, the state in which the fins 21 of the fin forming bodies 20 arranged side by side overlap each other at the same position from the exhaust upstream side to the exhaust downstream side of the metal carrier 1 is synonymous with increasing the length of the fins 21 in the plate width direction. Since the effect of rectifying the exhaust gas inside the metal carrier 1 can also be obtained, the reduction of the exhaust gas becomes more remarkable.

(抜け止め部材40、50)
抜け止め部材40、50は、フィン形成体20の筒状ケース10からの脱落を防止する。抜け止め部材40、50は、フィン形成体20に溶接等されて接合されることなく、該フィン形成体20における各フィン21の板幅方向の端面に添設される状態で、該筒状ケース10の排気上流側と排気下流側の両方の端部の内周面に固定され、フィン形成体20を筒状ケース10の筒軸方向に保持し、排気上流側と排気下流側への脱落を防止する。
(Retaining members 40, 50)
The retaining members 40 and 50 prevent the fin forming body 20 from falling off from the tubular case 10. The retaining members 40 and 50 are attached to the end faces of the fins 21 in the fin forming body 20 in the plate width direction without being welded or joined to the fin forming body 20, and the tubular case is provided. Fixed to the inner peripheral surfaces of both the exhaust upstream side and the exhaust downstream side of the exhaust 10, the fin forming body 20 is held in the tubular axial direction of the tubular case 10 to prevent the fin forming body 20 from falling off to the exhaust upstream side and the exhaust downstream side. To prevent.

尚、本実施形態では、図2(A)に示す如く、2個の抜け止め部材40を筒状ケース10の排気下流側と排気上流側の両方の端部の内周面に固定し、1個の抜け止め部材50を排気下流側に設けた抜け止め部材40の内周面に固定した。 In the present embodiment, as shown in FIG. 2A, the two retaining members 40 are fixed to the inner peripheral surfaces of both the exhaust downstream side and the exhaust upstream side of the tubular case 10 and 1 The retaining members 50 were fixed to the inner peripheral surface of the retaining member 40 provided on the downstream side of the exhaust.

本実施形態の抜け止め部材40は、図6に示す如く、例えばステンレス鋼板製のリング状体からなる。抜け止め部材40は、フィン形成体20が挿入済の筒状ケース10の内周面に該筒状ケース10の排気上流側と排気下流側の両外側から嵌合するように挿入され、該筒状ケース10の内周面に溶接止めされる。具体的には、筒状ケース10の周方向に一定間隔をなす複数位置(本実施形態では3位置)に設けられたスリット部14において、それらの筒状ケース10と抜け止め部材40の外周面とがTIG溶接等で溶接される(溶接部W3)。このとき、抜け止め部材40の端面が、フィン形成体20における外環部23の端面に相対して配置されるものの、該外環部23に接合されることなく、該外環部23に添設される。 As shown in FIG. 6, the retaining member 40 of the present embodiment is made of, for example, a ring-shaped body made of a stainless steel plate. The retaining member 40 is inserted into the inner peripheral surface of the tubular case 10 into which the fin forming body 20 has been inserted so as to be fitted from both the outer sides of the exhaust upstream side and the exhaust downstream side of the tubular case 10. It is welded to the inner peripheral surface of the case 10. Specifically, in the slit portions 14 provided at a plurality of positions (three positions in the present embodiment) at regular intervals in the circumferential direction of the tubular case 10, the outer peripheral surfaces of the tubular case 10 and the retaining member 40 are provided. Is welded by TIG welding or the like (welded portion W3). At this time, although the end face of the retaining member 40 is arranged relative to the end face of the outer ring portion 23 of the fin forming body 20, it is attached to the outer ring portion 23 without being joined to the outer ring portion 23. Will be set up.

尚、抜け止め部材40は、筒状ケース10の内周面において、フィン形成体20の回り止め溝部25から外方へ突出している回り止め部13の突出部を受容する切欠凹部41を、該抜け止め部材40の一方の端面の周方向の3位置に備える。 The retaining member 40 has a notch recess 41 on the inner peripheral surface of the tubular case 10 that receives the protruding portion of the detent portion 13 projecting outward from the detent groove portion 25 of the fin forming body 20. It is provided at three positions in the circumferential direction of one end face of the retaining member 40.

本実施形態の抜け止め部材50は、例えばステンレス鋼からなり、図7に示す如く、中心部51から周方向において例えば120度間隔を介して半径方向に延在される例えば3本の棒状部52を有するとともに、各棒状部52の先端部で周方向の両側に張り出て、該棒状部52とともにT字状をなす取付部53を有する。抜け止め部材50は、抜け止め部材40の内周面に嵌合するように挿入され、各取付部53が抜け止め部材40の内周面に添設され、該取付部53の周辺部(本実施形態では筒状ケース10の外方に臨む3か所)が抜け止め部材40の内周面にTIG溶接等で溶接される(溶接部W4)。このとき、抜け止め部材50の棒状部52は、フィン形成体20における各フィン21の前面に配置されるものの、それらのフィン21に接合されることなく、それらのフィン21に添設される。 The retaining member 50 of the present embodiment is made of, for example, stainless steel, and as shown in FIG. 7, for example, three rod-shaped portions 52 extending radially from the central portion 51 in the circumferential direction at intervals of, for example, 120 degrees. The tip portion of each rod-shaped portion 52 projects on both sides in the circumferential direction, and the rod-shaped portion 52 and the rod-shaped portion 52 form a T-shaped mounting portion 53. The retaining member 50 is inserted so as to fit on the inner peripheral surface of the retaining member 40, and each mounting portion 53 is attached to the inner peripheral surface of the retaining member 40, and the peripheral portion (this) of the mounting portion 53 is attached. In the embodiment, three places facing the outside of the tubular case 10) are welded to the inner peripheral surface of the retaining member 40 by TIG welding or the like (welded portion W4). At this time, the rod-shaped portion 52 of the retaining member 50 is arranged on the front surface of each fin 21 in the fin forming body 20, but is attached to the fins 21 without being joined to the fins 21.

尚、触媒メタル担体1にあっては、フィン形成体20のための抜け止め部材として、抜け止め部材40のみを用い、又は抜け止め部材50のみを用いるものとすることができる。抜け止め部材50のみを用いるとき、抜け止め部材50の取付部53が筒状ケース110の内周面に直接的にTIG溶接等で溶接されて固定されるものになる。 In the catalyst metal carrier 1, only the retaining member 40 or only the retaining member 50 can be used as the retaining member for the fin forming body 20. When only the retaining member 50 is used, the mounting portion 53 of the retaining member 50 is directly welded and fixed to the inner peripheral surface of the tubular case 110 by TIG welding or the like.

フィン形成体20が配置される筒状ケース10の排気上流側で、図2(B)に示す如く、該筒状ケース10が接続される排気管60の接続端に該筒状ケース10の内径部に挿入される小径部61が設けられているときには、この排気管60の小径部61が排気上流側の抜け止め部材となり、本実施形態における抜け止め部材40、50を筒状ケース10の排気上流側の端部に設けることは必ずしも要しない。即ち、排気管60の小径部61は、筒状ケース10の内径部に挿入され、該小径部61の端面がフィン形成体20における外環部23の端面に突き合わされて配置され、フィン形成体20の筒状ケース10からの脱落を防止する。 On the exhaust upstream side of the tubular case 10 where the fin forming body 20 is arranged, as shown in FIG. 2B, the inner diameter of the tubular case 10 is connected to the connection end of the exhaust pipe 60 to which the tubular case 10 is connected. When the small-diameter portion 61 to be inserted into the portion is provided, the small-diameter portion 61 of the exhaust pipe 60 serves as a retaining member on the upstream side of the exhaust, and the retaining members 40 and 50 in the present embodiment are exhausted from the tubular case 10. It is not always necessary to provide it at the upstream end. That is, the small diameter portion 61 of the exhaust pipe 60 is inserted into the inner diameter portion of the tubular case 10, and the end surface of the small diameter portion 61 is abutted against the end surface of the outer ring portion 23 of the fin forming body 20 to be arranged so that the fin forming body is formed. Prevents the 20 from falling out of the tubular case 10.

ここで、触媒メタル担体1は、例えば以下の通りに組立てられる。
(1)複数個のフィン形成体20を相並ぶようにして、筒状ケース10の内周面に嵌合するように挿入する。このとき、フィン形成体20の外環部23が備える回り止め溝部25が筒状ケース10の内周面に設けた回り止め部13に係入し、フィン形成体20が筒状ケース10の周方向で係合するように設けられて回り止めされる。
Here, the catalyst metal carrier 1 is assembled as follows, for example.
(1) A plurality of fin forming bodies 20 are arranged side by side and inserted so as to fit on the inner peripheral surface of the tubular case 10. At this time, the detent groove portion 25 provided in the outer ring portion 23 of the fin forming body 20 is engaged with the detent portion 13 provided on the inner peripheral surface of the tubular case 10, and the fin forming body 20 is the circumference of the tubular case 10. It is provided so as to engage in the direction and is detented.

(2)2個の抜け止め部材40のそれぞれを筒状ケース10の排気上流側と排気下流側の両外側から該筒状ケース10の内周面に嵌合するように挿入し、筒状ケース10に設けてあるスリット部14において、筒状ケース10と抜け止め部材40の外周面とがTIG溶接等で溶接されて固定される。 (2) Each of the two retaining members 40 is inserted from both the outside of the exhaust upstream side and the exhaust downstream side of the tubular case 10 so as to fit into the inner peripheral surface of the tubular case 10, and the tubular case 10 is inserted. In the slit portion 14 provided in 10, the tubular case 10 and the outer peripheral surface of the retaining member 40 are welded and fixed by TIG welding or the like.

(3)筒状ケース10における上述(2)の排気下流側に設けた抜け止め部材40の内周面に、抜け止め部材50を嵌合するように挿入し、抜け止め部材50の取付部53の周辺部が抜け止め部材40の内周面にTIG溶接等で溶接されて固定される。 (3) The retaining member 50 is inserted into the inner peripheral surface of the retaining member 40 provided on the exhaust downstream side of the above-mentioned (2) in the tubular case 10 so as to be fitted, and the attachment portion 53 of the retaining member 50 is inserted. The peripheral portion of is welded to the inner peripheral surface of the retaining member 40 by TIG welding or the like to be fixed.

以上のようにして組立てられた触媒メタル担体1は、筒状ケース10の内周面、フィン形成体20及び抜け止め部材40、50の表面に、触媒(酸化触媒、還元触媒、又は三元触媒等)を塗布、焼付けられて担持するものになる。 The catalyst metal carrier 1 assembled as described above has a catalyst (oxidation catalyst, reduction catalyst, or three-way catalyst) on the inner peripheral surface of the tubular case 10, the fin forming body 20, and the surfaces of the retaining members 40 and 50. Etc.) are applied, baked and supported.

従って、本実施形態の触媒メタル担体1によれば、以下の作用効果を奏する。
(a)フィン形成体20の板状の各フィン21における筒状ケース10の内周面に交差する端部が、該筒状ケース10の内周面にロー付け、溶接止めされることなく、該内周面に設けた回り止め部13に該筒状ケース10の周方向で係合するように設けられて回り止めされる。更に、フィン形成体20の筒状ケース10からの脱落を防止する抜け止め部材40が、筒状ケース10の排気上流側と排気下流側の両方の端部に固定されて支持され、抜け止め部材50が筒状ケース10の排気下流側の端部に固定されて支持され、該フィン形成体20を筒状ケース10の筒軸方向に保持する。従って、フィン形成体20は、筒状ケース10の内部に回り止めされ、かつ軸方向でも保持され、筒状ケース10に安定的に保持されて筒状ケース10から外方への脱落を防止される。
Therefore, according to the catalyst metal carrier 1 of the present embodiment, the following effects are exhibited.
(a) The ends of the plate-shaped fins 21 of the fin forming body 20 that intersect the inner peripheral surface of the tubular case 10 are brazed to the inner peripheral surface of the tubular case 10 without being welded. The detent portion 13 provided on the inner peripheral surface is provided so as to engage with the detent portion 13 in the circumferential direction of the tubular case 10 to prevent detent. Further, a retaining member 40 for preventing the fin forming body 20 from falling off from the tubular case 10 is fixedly supported by both ends of the exhaust upstream side and the exhaust downstream side of the tubular case 10, and is supported by the retaining member. 50 is fixedly supported by the end of the tubular case 10 on the downstream side of the exhaust gas, and holds the fin forming body 20 in the tubular axial direction of the tubular case 10. Therefore, the fin forming body 20 is prevented from rotating inside the tubular case 10 and is also held in the axial direction, is stably held by the tubular case 10, and is prevented from falling out from the tubular case 10. To.

(b)自動車エンジンの過酷な使用環境下で、排ガス温度が高負荷運転によって例えば1000℃乃至1200℃程度の高温になる長時間連続使用環境下でも、フィン形成体20は上記高温の排ガスに曝されて溶損するロー付け部を用いて筒状ケース10に固定されるものでない。即ち、フィン形成体20は、高温の排ガスに曝されても破壊に至るおそれがない上述の回り止め構造及び抜け止め構造によって筒状ケース10に安定的に保持され、フィン形成体20を筒状ケース10に安定的に保持できる。 (b) The fin forming body 20 is exposed to the high temperature exhaust gas even in a long-term continuous use environment in which the exhaust gas temperature becomes high, for example, about 1000 ° C. to 1200 ° C. due to high load operation under the harsh usage environment of the automobile engine. It is not fixed to the tubular case 10 by using a brazing portion that is melted and damaged. That is, the fin forming body 20 is stably held in the tubular case 10 by the above-mentioned detent structure and retaining structure that are not likely to be destroyed even when exposed to high temperature exhaust gas, and the fin forming body 20 is tubular. It can be stably held in the case 10.

(c)自動車の車体及びエンジンの振動が激しくなるときにも、フィン形成体20は、上述の回り止め構造及び抜け止め構造によって筒状ケース10に安定的に保持され、フィン形成体20を筒状ケース10に安定的に保持できる。 (c) The fin forming body 20 is stably held in the tubular case 10 by the above-mentioned anti-rotation structure and the retaining structure even when the vehicle body and the engine of the automobile violently vibrate, and the fin forming body 20 is held in a cylinder. It can be stably held in the shape case 10.

(d)抜け止め部材40、50は、フィン形成体20のフィン21に接合されず、該フィン形成体20を筒状ケース10の筒軸方向に保持するのみで該フィン形成体20を抜け止めし、フィン形成体20の外方への脱落を確実に防止する。ここで、抜け止め部材40、50は、フィン形成体20の各フィン21に溶接等されて固定されるものに比して、各フィン21における板長手方向の変形を該抜け止め部材40、50との係わりによって拘束することがない。これにより、フィン形成体20は、高温の排ガスに曝されることによる各フィン21の板長手方向の熱歪を抜け止め部材40、50の存在によって阻止されることなく、この熱歪に起因する大きな熱応力を抜け止め部材40、50との間に発生させることがなく、該抜け止め部材40、50によって安定的に保持される。 (d) The retaining members 40 and 50 are not joined to the fins 21 of the fin forming body 20, and the fin forming body 20 is prevented from coming off only by holding the fin forming body 20 in the tubular axial direction of the tubular case 10. However, the fin forming body 20 is surely prevented from falling off to the outside. Here, the retaining members 40 and 50 are deformed in the plate longitudinal direction in each fin 21 as compared with those fixed to the fins 21 of the fin forming body 20 by welding or the like. There is no restraint due to the relationship with. As a result, the fin forming body 20 is caused by this thermal strain without being blocked by the presence of the retaining members 40 and 50 from the thermal strain of each fin 21 in the plate longitudinal direction due to exposure to the high temperature exhaust gas. A large thermal stress is not generated between the retaining members 40 and 50, and the retaining members 40 and 50 stably hold the stress.

抜け止め部材40、50が上述(d)の如くに、フィン形成体20の各フィン21の板長手方向の変形を拘束しない構造は、後述(e)の各フィン21に備えた曲がり部21Rによる各フィン21の熱歪の吸収効果を阻害しないという効果を奏する。 As described in (d) above, the retaining members 40 and 50 do not restrain the deformation of each fin 21 of the fin forming body 20 in the plate longitudinal direction due to the bent portion 21R provided in each fin 21 described later (e). It has the effect of not inhibiting the effect of absorbing thermal strain of each fin 21.

(e)尚、フィン形成体20は、各フィン21の板長手方向の中間部に、熱歪吸収用の曲がり部21Rを備えることもできる。 (e) The fin forming body 20 may be provided with a bent portion 21R for absorbing thermal strain at an intermediate portion of each fin 21 in the plate longitudinal direction.

この場合には、高温の排ガスに曝されるフィン形成体20における各フィン21の熱歪が、当該フィン21の中間部に備えた曲がり部21Rの熱的変形によって吸収され、各フィン21の端部の回り止め溝部25に係入されている筒状ケース10の回り止め部13に及びにくくし、回り止め部13の周辺に大きな熱応力を発生させず、回り止め部13を破壊させることがないから、フィン形成体20を筒状ケース10に安定的に保持できる。 In this case, the thermal strain of each fin 21 in the fin forming body 20 exposed to the high temperature exhaust gas is absorbed by the thermal deformation of the bent portion 21R provided in the middle portion of the fin 21, and the end of each fin 21 is absorbed. It is possible to make it difficult to reach the detent portion 13 of the tubular case 10 engaged in the detent groove portion 25 of the portion, to prevent a large thermal stress from being generated around the detent portion 13, and to destroy the detent portion 13. Therefore, the fin forming body 20 can be stably held in the tubular case 10.

また、車体及びエンジンの激しい振動に起因してフィン形成体20に生ずる振動による破壊は、当該フィン21の板厚を厚肉の例えば0.8乃至3mmとし、フィン形成体20の強度を向上させることによって回避できるから、フィン形成体20を筒状ケース10に安定的に保持できる。 Further, the destruction due to the vibration caused by the violent vibration of the vehicle body and the engine is caused by making the plate thickness of the fin 21 thick, for example 0.8 to 3 mm, and improving the strength of the fin forming body 20. Since it can be avoided, the fin forming body 20 can be stably held in the tubular case 10.

(f)前記筒状ケース10の内部に、該筒状ケース10の排気通路11に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体20が配置される。触媒を担持する、筒状ケース10の全長に渡る内周面積、及び全フィン形成体20の合計表面積を増大化し、触媒メタル担体の浄化性能を向上できる。 (f) Inside the tubular case 10, a plurality of fin forming bodies 20 arranged in order from one end side to the other end side along the exhaust passage 11 of the tubular case 10 are arranged. The inner peripheral area over the entire length of the tubular case 10 carrying the catalyst and the total surface area of all the fin forming bodies 20 can be increased, and the purification performance of the catalyst metal carrier can be improved.

(g)前記フィン形成体20が多数個の板状のフィン21が一体をなすように削り出された一体物からなるものとすることにより、各フィン21を例えば板厚0.8乃至3mm、より好適には1乃至2mmの板状とし、フィン形成体20の耐熱強度、耐振動強度等を確保し、触媒メタル担体の耐久性を容易に確保できる。 (g) By assuming that the fin forming body 20 is an integral body obtained by carving out a large number of plate-shaped fins 21 so as to be integrated, each fin 21 is more preferably having a plate thickness of, for example, 0.8 to 3 mm. The fin forming body 20 has a plate shape of 1 to 2 mm, and the heat resistance and vibration resistance of the fin forming body 20 can be ensured, and the durability of the catalyst metal carrier can be easily ensured.

(h)前記フィン形成体20が、多数個の板状のフィン21とともに一体をなしてそれらのフィン21につながって該フィン21を囲む外環部23を有し、この外環部23が筒状ケース10の内周面に設けた回り止め部13に係合するように設けられる。一体物をなすフィン形成体20の各フィン21における筒状ケース10の内周面に交差する端部を、該端部につながる外環部23を介して、筒状ケース10の内周面に設けた回り止め部13に係合するように単純かつ確実に設けることができる。 (h) The fin forming body 20 has an outer ring portion 23 that is integrally connected with a large number of plate-shaped fins 21 and is connected to the fins 21 and surrounds the fins 21, and the outer ring portion 23 is a cylinder. It is provided so as to engage with the detent portion 13 provided on the inner peripheral surface of the case 10. An end portion of each fin 21 of the fin forming body 20 forming an integral body that intersects the inner peripheral surface of the tubular case 10 is attached to the inner peripheral surface of the tubular case 10 via an outer ring portion 23 connected to the end portion. It can be simply and surely provided so as to engage with the provided detent portion 13.

参考例)(図8乃至図14)
図8、図9に示す触媒メタル担体2が、前記触媒メタル担体1と実質的に異なる点は、フィン形成体120が複数枚の金属製の板を組合せた板組体130からなるものとしたことにある。
( Reference example ) (FIGS. 8 to 14)
The catalyst metal carrier 2 shown in FIGS. 8 and 9 is substantially different from the catalyst metal carrier 1, in that the fin forming body 120 is composed of a plate assembly 130 in which a plurality of metal plates are combined. There is.

即ち、触媒メタル担体2は、自動車エンジンの排気ポートに連通する排気管の出口端部(中間部でも可)に接続されて用いられる。触媒メタル担体2は、円筒状等の筒状ケース110が形成する排気通路111の内部に金属製のフィン形成体120が配置され、フィン形成体120が有する多数個の板状のフィン121の表面に触媒を担持して構成される。 That is, the catalyst metal carrier 2 is used by being connected to an outlet end portion (or an intermediate portion) of an exhaust pipe communicating with an exhaust port of an automobile engine. In the catalyst metal carrier 2, metal fin forming bodies 120 are arranged inside an exhaust passage 111 formed by a cylindrical case 110 such as a cylindrical case 110, and the surfaces of a large number of plate-shaped fins 121 included in the fin forming bodies 120 are arranged. It is constructed by supporting a catalyst on the surface.

触媒メタル担体2は、エンジン回転の上昇、下降の度に加熱冷却がくり返され、空冷下の筒状ケース110に拘束されるフィン形成体120の各フィン121と該筒状ケース110との接合部には大きな熱歪に基づく大きな熱応力ひいては熱疲労を発生させ易く、厳しい熱的環境にある。触媒メタル担体2が自動車エンジンの過酷な長時間連続使用環境下で使用されるときには、フィン形成体120を構成する各フィン121は、高負荷運転による高温排ガスの高熱に曝され、或いは触媒の反応による発熱を受けて熱せられ、更には付着した未燃ガスが爆発して生ずるアフターファイヤによって過熱され、一層大きな熱歪を生ずる。 The catalyst metal carrier 2 is repeatedly heated and cooled each time the engine speed rises and falls, and the fins 121 of the fin forming body 120 restrained by the tubular case 110 under air cooling are joined to the tubular case 110. The part is in a harsh thermal environment because it is prone to generate large thermal stress and thus thermal fatigue due to large thermal strain. When the catalytic metal carrier 2 is used in a harsh long-term continuous use environment of an automobile engine, each fin 121 constituting the fin forming body 120 is exposed to the high heat of high-temperature exhaust gas due to high load operation, or the reaction of the catalyst. It is heated by receiving the heat generated by the engine, and further, the attached unburned gas is overheated by the afterfire generated by the explosion, which causes a larger thermal strain.

また、触媒メタル担体2は、激しい車体及びエンジンの振動に起因する激しい振動が繰り返し付与され、フィン形成体120の各フィン121と筒状ケース110との接合部には大きな繰り返し応力を発生させ易く、厳しい振動環境にある。 Further, the catalyst metal carrier 2 is repeatedly subjected to violent vibration due to violent vibration of the vehicle body and the engine, and a large repetitive stress is likely to be generated at the joint portion between each fin 121 of the fin forming body 120 and the tubular case 110. , In a harsh vibration environment.

触媒メタル担体2は、以上のような過酷な熱的環境及び振動環境で使用されても、高い耐久性を確保するため、筒状ケース110、フィン形成体120、及び抜け止め部材140を以下の如くに組立てて構成される。 The catalyst metal carrier 2 has the following tubular case 110, fin forming body 120, and retaining member 140 in order to ensure high durability even when used in the above-mentioned harsh thermal environment and vibration environment. It is assembled and constructed as follows.

(筒状ケース110)
筒状ケース110は、図8、図9、図13に示す如く、例えばステンレス鋼板の帯状材(例えばSUS430材、板厚1.5mm)を円筒状に曲げ成形し、その両端部が突き合せ状態でTIG溶接等で溶接されて形成される(溶接部W1)。
(Cylindrical case 110)
As shown in FIGS. 8, 9, and 13, the tubular case 110 is formed by bending, for example, a strip of stainless steel plate (for example, SUS430 material, plate thickness 1.5 mm) into a cylindrical shape, and both ends thereof are in a butt state. It is formed by welding by TIG welding or the like (welded portion W1).

(フィン形成体120)
フィン形成体120は、図8、図9、図12、図13に示す如く、多数個の例えばステンレス鋼板からなる板状フィン121を有し、各フィン121がその板長手方向で筒状ケース110の内周面に交差し、かつその板幅方向で筒状ケース110の筒軸方向に沿うように排気通路111内に延在され、相隣るフィン121によって該排気通路111内に多数の小排気流路112を区画する。
(Fin forming body 120)
As shown in FIGS. 8, 9, 12, and 13, the fin forming body 120 has a plate-shaped fin 121 made of a large number of, for example, stainless steel plates, and each fin 121 has a tubular case 110 in the longitudinal direction of the plate. It extends in the exhaust passage 111 so as to intersect the inner peripheral surface of the stainless steel and along the tubular axis direction of the tubular case 110 in the plate width direction, and a large number of small pieces are formed in the exhaust passage 111 by adjacent fins 121. The exhaust flow path 112 is partitioned.

参考例のフィン形成体120は、複数枚のステンレス鋼板の板131(第1と第2の板131A、131B)を組合せた板組体130から構成され、それらの板131によって各フィン121を形成するものとしている。板組体130を構成する各板131(第1と第2の板131A、131B)は、本参考例では、図11に示す如くのプレス成形体により形成される。 The fin forming body 120 of this reference example is composed of a plate assembly 130 in which a plurality of stainless steel plate plates 131 (first and second plates 131A and 131B) are combined, and each fin 121 is formed by these plates 131. It is supposed to be formed. In this reference example , each plate 131 (first and second plates 131A, 131B) constituting the plate assembly 130 is formed by a press-molded body as shown in FIG.

ここで、フィン形成体120を構成する本参考例の板組体130は、第1と第2の小組体130A、130Bからなる。第1の小組体130Aは第1の板131Aを有して構成され、第2の小組体130Bは第2の板131Bを有して構成される。各小組体130A、130Bのそれぞれは、図12に示す如く、3枚の板131A、131Bのそれぞれが互いに三角形をなすように突き合され、当該三角形の各頂部で、相突き合される2枚の板131Aと板131A、又は板131Bと板131Bが板長手方向の両端部においてそれらの板幅方向の両端部に図11に示す如くに設けた折れ曲がり状先端部131Fで一定の取付間隔部Gを形成する小組体となる。 Here, the plate structure 130 of this reference example constituting the fin forming body 120 is composed of the first and second small sets 130A and 130B. The first small assembly 130A is configured to have a first plate 131A, and the second small assembly 130B is configured to have a second plate 131B. As shown in FIG. 12, each of the substructures 130A and 130B is abutted so that each of the three plates 131A and 131B forms a triangle with each other, and two plates abutting each other at each apex of the triangle. The plate 131A and the plate 131A, or the plate 131B and the plate 131B are provided at both ends in the plate longitudinal direction at both ends in the plate width direction as shown in FIG. It becomes a small assembly that forms.

このとき、第1と第2の板131A、131Bは、図11に示す如く、それらの板幅方向に沿う一端部から中間部に渡るスリット131Sを備える。そして、板組体130を構成する小組体130A、130Bは、図12に示す如く、一方の小組体130Aにおける板131Aの中実部が他方の小組体130Bにおける板131Bのスリット131Sに嵌合され、他方の小組体130Bにおける板131Bの中実部が一方の小組体130Aにおける板131Aのスリット131Sに嵌合され、それらの各嵌合部でそれらの板131A、131BがTIG溶接等で溶接されて板組体130を構成するものになる(溶接部W2)。 At this time, as shown in FIG. 11, the first and second plates 131A and 131B are provided with slits 131S extending from one end portion along the plate width direction to the intermediate portion. Then, as shown in FIG. 12, in the small assembly 130A and 130B constituting the plate assembly 130, the solid portion of the plate 131A in one small assembly 130A is fitted into the slit 131S of the plate 131B in the other small assembly 130B. The solid portion of the plate 131B in the other small assembly 130B is fitted into the slit 131S of the plate 131A in the one small assembly 130A, and the plates 131A and 131B are welded by TIG welding or the like at each of the fitting portions. The plate assembly 130 is formed (welded portion W2).

更に、フィン形成体120にあっては、各フィン121における筒状ケース110の内周面に交差する端部(本参考例では、板組体130における板131(第1と第2の板131A、131B)の先端部131F)が、該筒状ケース110の内周面に設けた回り止め部113に該筒状ケース110の周方向で係合するように設けられて回り止めされる。 Further, in the fin forming body 120, the end portion of each fin 121 intersecting the inner peripheral surface of the tubular case 110 (in this reference example , the plate 131 (first and second plates 131A) in the plate assembly 130. , 131B), the tip portion 131F) is provided so as to engage with the detent portion 113 provided on the inner peripheral surface of the tubular case 110 in the circumferential direction of the tubular case 110 to prevent rotation.

参考例において、筒状ケース110の内周面の周方向に一定の間隔をなす複数位置(本参考例では6位置)には図10に示したキー状の回り止め部材113Aが設けられる。回り止め部材113Aは、その一部が筒状ケース110の周方向の6位置に設けられた切欠孔113Bに埋め込まれて該筒状ケース110の外周面の側からTIG溶接等で溶接されて固定される(溶接部W3)。回り止め部材113Aの上記溶接された一部を除く残部が筒状ケース110の内方に突出して回り止め部113となる。 In this reference example , the key-shaped detent member 113A shown in FIG. 10 is provided at a plurality of positions (6 positions in this reference example ) forming a constant interval in the circumferential direction of the inner peripheral surface of the tubular case 110. A part of the detent member 113A is embedded in notches 113B provided at six positions in the circumferential direction of the tubular case 110, and is fixed by being welded from the outer peripheral surface side of the tubular case 110 by TIG welding or the like. (Welded portion W3). The remaining portion of the detent member 113A except for the welded part projects inward of the tubular case 110 to form the detent portion 113.

これにより、フィン形成体120が筒状ケース110の内周面に嵌合するように挿入されたとき、フィン形成体120を構成する板組体130の各小組体130A、130Bにおいて、各板131A、131Bの折れ曲がり状先端部131Fによって形成されている各取付間隔部Gが、筒状ケース110の内周面に設けた上述の回り止め部113に係入し、結果として、フィン形成体120が筒状ケース110の周方向で係合するように設けられて回り止めされるものになる。 As a result, when the fin forming body 120 is inserted so as to be fitted to the inner peripheral surface of the tubular case 110, the plates 131A are formed in the small braiding bodies 130A and 130B of the plate braiding body 130 constituting the fin forming body 120. , Each mounting interval portion G formed by the bent tip portion 131F of 131B engages with the above-mentioned detent portion 113 provided on the inner peripheral surface of the tubular case 110, and as a result, the fin forming body 120 The tubular case 110 is provided so as to engage in the circumferential direction and is prevented from rotating.

フィン形成体120にあっては、図8、図11、図12に示す如く、各フィン121の
板長手方向の中間部に熱歪吸収用の曲がり部121R(本参考例では板131(131A、131B)の板長手方向の中間部に設けられたU字状曲がり部131R)が設けられる。
In the fin forming body 120, as shown in FIGS. 8, 11 and 12, a bent portion 121R for absorbing thermal strain (in this reference example , the plate 131 (131A, 131A,) is formed in the middle portion of each fin 121 in the plate longitudinal direction. A U-shaped bent portion 131R) provided in the middle portion in the longitudinal direction of the plate of 131B) is provided.

尚、本参考例の触媒メタル担体2は、筒状ケース110の内部に、1個のフィン形成体120(第1と第2の小組体130A、130Bからなる板組体130)が配置された。但し、触媒メタル担体2にあっては、筒状ケース110の内部に、該筒状ケース110の排気通路111に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体120が配置されるものとしても良い。 In the catalyst metal carrier 2 of this reference example , one fin forming body 120 (a plate structure 130 composed of the first and second small sets 130A and 130B) is arranged inside the tubular case 110. .. However, in the catalyst metal carrier 2, a plurality of fin forming bodies 120 arranged in order from one end side to the other end side along the exhaust passage 111 of the tubular case 110 are arranged inside the tubular case 110. It may be done.

フィン形成体120を複数個使用し、筒状ケース110の排気通路111に沿う一端側から他端側に向けて相並ぶフィン形成体120を周方向で互いにθ度ずらして配置した場合、相並ぶフィン形成体120におけるそれらのフィン121端面の重なり合わない部分が排気通路111に露出し、触媒と排気ガスの接する表面積が増加することで、排気ガスの浄化性能が向上する。また互いのフィン121が重なり合わない部分を設けることで、上流側に配置されたフィン形成体120におけるフィン121の排気下流側に排気が流入可能な空間ができる。この空間ひとつひとつが排気の流れを細かく分割する排気の経路となり、排気通路111内では異なる経路を通る排気の流れ同士が干渉し合うことで流れが乱れて排気の抵抗となり、排気ガスがメタル担体2を通過する時間が長くなる。つまり触媒と排気ガスの接する時間が増加することにより、排気ガスの浄化性能がより一層向上する。 When a plurality of fin forming bodies 120 are used and the fin forming bodies 120 arranged side by side from one end side to the other end side along the exhaust passage 111 of the tubular case 110 are arranged so as to be offset by θ degrees from each other in the circumferential direction. The non-overlapping portions of the end faces of the fins 121 in the fin forming body 120 are exposed in the exhaust passage 111, and the surface area in contact between the catalyst and the exhaust gas is increased, so that the purification performance of the exhaust gas is improved. Further, by providing a portion in which the fins 121 do not overlap each other, a space where exhaust gas can flow in is created on the exhaust downstream side of the fins 121 in the fin forming body 120 arranged on the upstream side. Each of these spaces becomes an exhaust path that divides the exhaust flow into small pieces, and in the exhaust passage 111, the exhaust flows that pass through different paths interfere with each other, so that the flow is disturbed and becomes an exhaust resistance, and the exhaust gas becomes the metal carrier 2 It takes longer to pass through. That is, the purification performance of the exhaust gas is further improved by increasing the contact time between the catalyst and the exhaust gas.

フィン形成体120を複数個使用し、筒状ケース110の排気通路111に沿う一端側から他端側に向けて相並ぶフィン形成体120を互いに周方向でずらさず(同一向き、かつそれらのフィン121が互いに重なり合うようにして)配置した場合、メタル担体2におけるフィン121とその相並ぶフィン121によって区画される小排気流路112の小排気流路断面積は、フィン形成体120単体における小排気流路112の小排気流路断面積と等しく、相並ぶフィン形成体120においてそれらのフィン121を周方向で互いにθ度ずらして配置した場合に比べて小排気流路断面積を広く確保できるため、排気抵抗を低減でき、エンジン出力を向上できる。またメタル担体2の排気上流側から排気下流側にかけて、相並ぶフィン形成体120におけるそれらのフィン121が互いに同一位置で重なり合う状態は、フィン121の板幅方向長さを増加させることと同義であり、メタル担体2の内部において排気を整流する効果も得られるため、排気抵抗の低減はより顕著となる。 A plurality of fin forming bodies 120 are used, and the fin forming bodies 120 arranged side by side from one end side to the other end side along the exhaust passage 111 of the tubular case 110 are not displaced from each other in the circumferential direction (the same direction and their fins). When arranged so that the 121s overlap each other), the cross-sectional area of the small exhaust flow path 112 defined by the fins 121 in the metal carrier 2 and the fins 121 aligned with the fins 121 is the small exhaust gas in the fin forming body 120 alone. This is because it is equal to the cross-sectional area of the small exhaust flow path of the flow path 112, and a wider cross-sectional area of the small exhaust flow path can be secured as compared with the case where the fins 121 are arranged so as to be offset by θ degrees from each other in the circumferential direction in the fin forming bodies 120 arranged side by side. , Exhaust resistance can be reduced and engine output can be improved. Further, the state in which the fins 121 of the fin forming bodies 120 arranged side by side overlap each other at the same position from the exhaust upstream side to the exhaust downstream side of the metal carrier 2 is synonymous with increasing the length of the fins 121 in the plate width direction. Since the effect of rectifying the exhaust gas inside the metal carrier 2 can also be obtained, the reduction of the exhaust gas becomes more remarkable.

(抜け止め部材140)
抜け止め部材140は、フィン形成体120の筒状ケース110からの脱落を防止する。抜け止め部材140は、フィン形成体120に溶接等されて接合されることなく、該フィン形成体120における各フィン121の板幅方向の端面に添設される状態で、該筒状ケース110の排気上流側と排気下流側の両方の端部の内周面に固定され、フィン形成体120を筒状ケース110の筒軸方向に保持し、排気上流側と排気下流側への脱落を防止する。
(Retaining member 140)
The retaining member 140 prevents the fin forming body 120 from falling off from the tubular case 110. The retaining member 140 of the tubular case 110 is attached to the end face of each fin 121 in the fin forming body 120 in the plate width direction without being welded or joined to the fin forming body 120. It is fixed to the inner peripheral surfaces of both the exhaust upstream side and the exhaust downstream side, and holds the fin forming body 120 in the tubular axial direction of the tubular case 110 to prevent the fin forming body 120 from falling off to the exhaust upstream side and the exhaust downstream side. ..

フィン形成体120が配置される筒状ケース110の排気上流側で、図9(B)に示す如く、該筒状ケース110が接続される排気管160の接続端に該筒状ケース110の内径部に挿入される小径部161が設けられているときには、この排気管160の小径部161が排気上流側の抜け止め部材となり、本参考例における抜け止め部材140を筒状ケース110の排気上流側の端部に設けることは必ずしも要しない。即ち、排気管160の小径部161は、筒状ケース110の内径部に挿入され、該小径部161の端面がフィン形成体120における板131の先端部131Fの端面に突き合わされて配置され、フ
ィン形成体120の筒状ケース110からの脱落を防止する。
On the exhaust upstream side of the tubular case 110 where the fin forming body 120 is arranged, as shown in FIG. 9B, the inner diameter of the tubular case 110 is connected to the connection end of the exhaust pipe 160 to which the tubular case 110 is connected. When the small diameter portion 161 to be inserted into the portion is provided, the small diameter portion 161 of the exhaust pipe 160 serves as a retaining member on the exhaust upstream side, and the retaining member 140 in this reference example is used on the exhaust upstream side of the tubular case 110. It is not always necessary to provide it at the end of the. That is, the small diameter portion 161 of the exhaust pipe 160 is inserted into the inner diameter portion of the tubular case 110, and the end surface of the small diameter portion 161 is arranged so as to abut against the end surface of the tip portion 131F of the plate 131 in the fin forming body 120. The forming body 120 is prevented from falling off from the tubular case 110.

参考例の抜け止め部材140は、例えばステンレス鋼からなり、図14に示す如く、中心部141から周方向において例えば60度間隔を介して半径方向に延在される例えば6本の棒状部142を有するとともに、各棒状部142の先端部で周方向の両側に張り出て、該棒状部142とともにT字状をなす取付部143を有する。抜け止め部材140は、筒状ケース110の内周面に嵌合するように挿入され、各取付部143が筒状ケース110の内周面に添設され、該取付部143の周辺部(本参考例では筒状ケース110の外方に臨む3箇所)が筒状ケース110の内周面にTIG溶接等で溶接される(溶接部W4)。このとき、抜け止め部材140の棒状部142は、フィン形成体120における各フィン121の前面に配置されるものの、それらのフィン121に接合されることなく、それらのフィン121に添設される。 The retaining member 140 of this reference example is made of, for example, stainless steel, and as shown in FIG. 14, for example, six rod-shaped portions 142 extending radially from the central portion 141 in the circumferential direction at intervals of, for example, 60 degrees. It also has a mounting portion 143 that projects on both sides in the circumferential direction at the tip of each rod-shaped portion 142 and forms a T-shape together with the rod-shaped portion 142. The retaining member 140 is inserted so as to fit on the inner peripheral surface of the tubular case 110, and each mounting portion 143 is attached to the inner peripheral surface of the tubular case 110, and the peripheral portion (this) of the mounting portion 143 is attached. In the reference example , (three locations facing the outside of the tubular case 110) are welded to the inner peripheral surface of the tubular case 110 by TIG welding or the like (welded portion W4). At this time, the rod-shaped portion 142 of the retaining member 140 is arranged on the front surface of each fin 121 in the fin forming body 120, but is attached to the fins 121 without being joined to the fins 121.

ここで、触媒メタル担体2は、例えば以下の通りに組立てられる。
(1)板組体130からなるフィン形成体120を筒状ケース110の内周面に嵌合するように挿入する。このとき、フィン形成体120を構成している板組体130における折れ曲がり状先端部131Fに形成されている取付間隔部Gが、筒状ケース110の内周面に設けた回り止め部113に係入し、フィン形成体120が筒状ケース110の周方向で係合するように設けられて回り止めされる。
Here, the catalyst metal carrier 2 is assembled as follows, for example.
(1) The fin forming body 120 made of the plate assembly 130 is inserted so as to fit on the inner peripheral surface of the tubular case 110. At this time, the mounting interval portion G formed on the bent tip portion 131F of the plate assembly 130 constituting the fin forming body 120 is engaged with the detent portion 113 provided on the inner peripheral surface of the tubular case 110. The fin forming body 120 is provided so as to engage with the tubular case 110 in the circumferential direction and is prevented from rotating.

(2)2個の抜け止め部材140のそれぞれを筒状ケース110の排気上流側と排気下流側のそれぞれから該筒状ケース110の内周面に嵌合するように挿入し、抜け止め部材140における取付部143の周辺部が筒状ケース110の内周面にTIG溶接等で溶接されて固定される。 (2) Each of the two retaining members 140 is inserted from each of the exhaust upstream side and the exhaust downstream side of the tubular case 110 so as to fit into the inner peripheral surface of the tubular case 110, and the retaining member 140 The peripheral portion of the mounting portion 143 is welded to the inner peripheral surface of the tubular case 110 by TIG welding or the like to be fixed.

以上のようにして組立てられた触媒メタル担体2は、筒状ケース110の内周面、フィン形成体120及び抜け止め部材140の表面に、触媒(酸化触媒、還元触媒、又は三元触媒等)を塗布、焼付けられて担持するものになる。 The catalyst metal carrier 2 assembled as described above has a catalyst (oxidation catalyst, reduction catalyst, ternary catalyst, etc.) on the inner peripheral surface of the tubular case 110, the fin forming body 120, and the surface of the retaining member 140. Is applied, baked and supported.

従って、本参考例の触媒メタル担体2によれば、以下の作用効果を奏する。
(a)フィン形成体120の板状の各フィン121における筒状ケース110の内周面に交差する端部が、該筒状ケース110の内周面にロー付け、溶接止めされることなく、該内周面に設けた回り止め部113に該筒状ケース110の周方向で係合するように設けられて回り止めされる。更に、フィン形成体120の筒状ケース110からの脱落を防止する抜け止め部材140が、該筒状ケース110の排気上流側及び排気下流側の端部に固定されて支持され、該フィン形成体120を該筒状ケース110の筒軸方向に保持する。従って、フィン形成体120は、筒状ケース110の内部に回り止めされ、かつ軸方向からも保持され、筒状ケース110に安定的に保持されて該筒状ケース110から外方への脱落を防止される。
Therefore, according to the catalyst metal carrier 2 of this reference example, the following effects are exhibited.
(a) The ends of the plate-shaped fins 121 of the fin forming body 120 that intersect the inner peripheral surface of the tubular case 110 are brazed to the inner peripheral surface of the tubular case 110 without being welded. The detent portion 113 provided on the inner peripheral surface is provided so as to engage with the detent portion 113 in the circumferential direction of the tubular case 110 to detent the detent. Further, a retaining member 140 for preventing the fin forming body 120 from falling off from the tubular case 110 is fixedly supported by the ends of the tubular case 110 on the exhaust upstream side and the exhaust downstream side, and the fin forming body 120 is supported. The 120 is held in the tubular axial direction of the tubular case 110. Therefore, the fin forming body 120 is prevented from rotating inside the tubular case 110 and is also held in the axial direction, is stably held by the tubular case 110, and is prevented from falling out from the tubular case 110. Be prevented.

(b)自動車エンジンの過酷な使用環境下で、排ガス温度が高負荷運転によって例えば1000℃乃至1200℃程度の高温になる長時間連続使用環境下でも、フィン形成体120は上記高温の排ガスに曝されて溶損するロー付け部を用いて筒状ケース110に固定されるものでない。即ち、フィン形成体120は、高温の排ガスに曝されても破壊に至るおそれがない上述の回り止め構造及び抜け止め構造によって筒状ケース110に安定的に保持され、フィン形成体120を筒状ケース110に安定的に保持できる。 (b) The fin forming body 120 is exposed to the high temperature exhaust gas even in a long-term continuous use environment in which the exhaust gas temperature becomes high, for example, about 1000 ° C. to 1200 ° C. due to high load operation under the harsh usage environment of the automobile engine. It is not fixed to the tubular case 110 by using a brazing portion that is melted and damaged. That is, the fin forming body 120 is stably held in the tubular case 110 by the above-mentioned anti-rotation structure and the retaining structure that does not cause destruction even when exposed to high-temperature exhaust gas, and the fin forming body 120 is tubular. It can be stably held in the case 110.

(c)自動車の車体及びエンジンの振動が激しくなるときにも、フィン形成体120は、上述の回り止め構造及び抜け止め構造によって筒状ケース110に安定的に保持され、フィン形成体120を筒状ケース110に安定的に保持できる。 (c) The fin forming body 120 is stably held in the tubular case 110 by the above-mentioned anti-rotation structure and the retaining structure even when the vehicle body and the engine of the automobile violently vibrate, and the fin forming body 120 is held in a cylinder. It can be stably held in the shape case 110.

(d)抜け止め部材140は、フィン形成体120のフィン121に接合されず、該フィン形成体120を筒状ケース110の筒軸方向に保持するのみで該フィン形成体120を抜け止めし、フィン形成体120の外方への脱落を確実に防止する。ここで、抜け止め部材140はフィン形成体120の各フィン121に溶接等されて固定されるものに比して、各フィン121における板長手方向の変形を該抜け止め部材140との係わりによって拘束することがない。これにより、フィン形成体120は、高温の排ガスに曝されることによる各フィン121の板長手方向の熱歪を抜け止め部材140の存在によって阻止されることなく、この熱歪に起因する大きな熱応力を抜け止め部材140との間に発生させることがなく、該抜け止め部材140によって安定的に保持される。 (d) The retaining member 140 is not joined to the fins 121 of the fin forming body 120, and the fin forming body 120 is prevented from coming off only by holding the fin forming body 120 in the tubular axial direction of the tubular case 110. The fin forming body 120 is surely prevented from falling off to the outside. Here, the retaining member 140 restrains the deformation of each fin 121 in the plate longitudinal direction by the engagement with the retaining member 140, as compared with the one fixed by welding or the like to each fin 121 of the fin forming body 120. There is nothing to do. As a result, the fin forming body 120 is not prevented from the thermal strain in the plate longitudinal direction of each fin 121 due to exposure to the high temperature exhaust gas by the presence of the retaining member 140, and the large heat caused by this thermal strain is not blocked. No stress is generated between the retaining member 140 and the retaining member 140, and the stress is stably held by the retaining member 140.

抜け止め部材140が上述(d)の如くに、フィン形成体120の各フィン121の板長手方向の変形を拘束しない構造は、後述(e)の各フィン121に備えた曲がり部121Rによる各フィン121の熱歪の吸収効果を阻害しないという効果を奏する。 As described in (d) above, the retaining member 140 does not restrain the deformation of each fin 121 of the fin forming body 120 in the plate longitudinal direction. It has the effect of not inhibiting the effect of absorbing the thermal strain of 121.

(e)尚、フィン形成体120は、各フィン121の板長手方向の中間部に、熱歪吸収用の曲がり部121Rを備えることもできる。 (e) The fin forming body 120 may be provided with a bent portion 121R for absorbing thermal strain at an intermediate portion of each fin 121 in the plate longitudinal direction.

この場合には、高温の排ガスに曝されるフィン形成体120における各フィン121の熱歪が、当該フィン121の中間部に備えた曲がり部121Rの熱的変形によって吸収され、各フィン121の先端部131Fが係入する筒状ケース110の回り止め部113に及びにくくし、回り止め部113の周辺に大きな熱応力を発生させず、回り止め部113を破壊させることがないから、フィン形成体120を筒状ケース110に安定的に保持できる。 In this case, the thermal strain of each fin 121 in the fin forming body 120 exposed to the high temperature exhaust gas is absorbed by the thermal deformation of the bent portion 121R provided in the intermediate portion of the fin 121, and the tip of each fin 121 is absorbed. Since it is difficult to reach the detent portion 113 of the tubular case 110 in which the portion 131F is engaged, a large thermal stress is not generated around the detent portion 113, and the detent portion 113 is not destroyed, the fin forming body is formed. The 120 can be stably held in the tubular case 110.

また、車体及びエンジンの激しい振動に起因してフィン形成体120に生ずる振動は、当該フィン121の板厚を厚肉の例えば0.8乃至3mmとし、フィン形成体120の強度を向上させることによって回避できるから、フィン形成体120を筒状ケース110に安定的に保持できる。 Further, the vibration generated in the fin forming body 120 due to the violent vibration of the vehicle body and the engine can be avoided by making the plate thickness of the fin 121 thick, for example 0.8 to 3 mm, and improving the strength of the fin forming body 120. Therefore, the fin forming body 120 can be stably held in the tubular case 110.

(f)前記筒状ケース110の内部に、該筒状ケース110の排気通路111に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体120が配置される。触媒を担持する、筒状ケース110の全長に渡る内周面積、及び全フィン形成体120の合計表面積を増大化し、触媒メタル担体の浄化性能を向上できる。 (f) Inside the tubular case 110, a plurality of fin forming bodies 120 arranged in order from one end side to the other end side along the exhaust passage 111 of the tubular case 110 are arranged. The inner peripheral area of the tubular case 110 that supports the catalyst over the entire length and the total surface area of all the fin forming bodies 120 can be increased, and the purification performance of the catalyst metal carrier can be improved.

(g)前記フィン形成体120が複数枚の金属製の板を組合せた板組体130からなるものとすることにより、各フィン121を例えば板厚0.8乃至3mm、より好適には1乃至2mmの板状とし、フィン形成体120の耐熱強度、耐振動強度等を確保し、触媒メタル担体の耐久性を容易に確保できる。 (g) By assuming that the fin forming body 120 is made of a plate assembly 130 in which a plurality of metal plates are combined, each fin 121 has a plate thickness of, for example, 0.8 to 3 mm, more preferably 1 to 2 mm. It has a plate shape, and the heat resistance strength, vibration resistance, etc. of the fin forming body 120 can be ensured, and the durability of the catalyst metal carrier can be easily ensured.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、フィン形成体において、各フィンの板長手方向の中間部に設けられる曲がり部は、当該フィンの板長手方向の中間一か所に限らず、中間複数か所のそれぞれに設けられても良い。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like within a range that does not deviate from the gist of the present invention. Included in the present invention. For example, in the fin forming body, the bending portion provided in the intermediate portion in the plate longitudinal direction of each fin is not limited to one intermediate portion in the plate longitudinal direction of the fin, and may be provided in each of a plurality of intermediate locations. ..

また、フィン形成体において、各フィンに設けられる曲がり部は、当該曲がり部が板長手方向の局部位置で他の位置に比して異なる曲率部分として形成されるものに限らず、当該フィンを板長手方向の概ね全長に渡って例えばC字状又はS字状等に湾曲して形成されるものでも良い。 Further, in the fin forming body, the bent portion provided in each fin is not limited to the one in which the bent portion is formed as a curved portion different from other positions at a local position in the plate longitudinal direction, and the fin is used as a plate. It may be formed by being curved in a C-shape or an S-shape over a substantially total length in the longitudinal direction.

また、触媒メタル担体を構成する筒状ケース、フィン形成体、及び抜け止め部材等の構成材料は、耐熱性に優れるものであれば特に限定されない。 Further, the constituent materials such as the tubular case, the fin forming body, and the retaining member constituting the catalyst metal carrier are not particularly limited as long as they have excellent heat resistance.

本発明によれば、過酷な使用環境下で高い耐久性を確保できる触媒メタル担体を提供することができる。 According to the present invention, it is possible to provide a catalytic metal carrier capable of ensuring high durability under a harsh usage environment.

触媒メタル担体
10 筒状ケース
11 排気通路
12 小排気流路
13 回り止め部
20 フィン形成体
21 フィン
21R 曲がり部
23 外環部
40、50 抜け止め部材
1 Catalytic metal carrier
10 tubular case
11 Exhaust passage
12 small exhaust flow path
13 Anti-rotation part
20 fin forming body
21 fins
21R Bent part 23 Outer ring part
40, 50 retaining member

Claims (3)

筒状ケースが形成する排気通路の内部に金属製のフィン形成体が配置されてなる触媒メタル担体であって、
フィン形成体が多数個の板厚を0.8乃至3mmとし、表面に触媒を担持して構成される板状のフィンを有し、各フィンの板長手方向の中間部に熱歪吸収用の曲がり部を備え、各フィンがその板長手方向で筒状ケースの内周面に交差するように排気通路内に延在され、相隣るフィンによって該排気通路内に多数の小排気流路を区画し、
フィン形成体の各フィンにおける筒状ケースの内周面に交差する端部が、該筒状ケースの内周面に設けた回り止め部に該筒状ケースの周方向で係合するように設けられて回り止めされるとともに、
フィン形成体が多数個の板状のフィンが一体をなすように削り出された一体物からなるものであり、
フィン形成体が、多数個の板状のフィンとともに一体をなしてそれらのフィンの先端部につながって該フィンを囲む外環部を有し、この外環部が筒状ケースの内周面に設けた回り止め部に該筒状ケースの周方向で係合するように設けられて回り止めされるように構成され、
フィン形成体の筒状ケースからの脱落を防止する抜け止め部材が、該フィン形成体のフィンに接合されることなく、該フィン形成体を該筒状ケースの筒軸方向に保持する状態で、該筒状ケースに支持される触媒メタル担体。
A catalytic metal carrier in which a metal fin-forming body is arranged inside an exhaust passage formed by a tubular case.
A large number of fin-forming bodies have a plate thickness of 0.8 to 3 mm, have plate-shaped fins formed by supporting a catalyst on the surface, and have a bent portion for absorbing heat strain in the middle portion in the plate longitudinal direction of each fin. Each fin extends in the exhaust passage so as to intersect the inner peripheral surface of the tubular case in the longitudinal direction of the plate, and a large number of small exhaust passages are partitioned in the exhaust passage by adjacent fins. ,
The end of each fin of the fin forming body that intersects the inner peripheral surface of the tubular case is provided so as to engage with the detent portion provided on the inner peripheral surface of the tubular case in the circumferential direction of the tubular case. As well as being stopped
The fin forming body is an integral body carved so that a large number of plate-shaped fins are integrated.
The fin forming body has an outer ring portion that is integrally connected with a large number of plate-shaped fins and is connected to the tip portions of the fins and surrounds the fins, and the outer ring portion is formed on the inner peripheral surface of the tubular case. It is configured to be provided so as to engage with the provided detent portion in the circumferential direction of the tubular case to prevent detent.
A retaining member for preventing the fin forming body from falling off from the tubular case holds the fin forming body in the tubular axial direction of the tubular case without being joined to the fins of the fin forming body. A catalytic metal carrier supported by the tubular case.
前記筒状ケースの内部に、該筒状ケースの排気通路に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体が配置される請求項1に記載の触媒メタル担体。 The catalyst metal carrier according to claim 1, wherein a plurality of fin forming bodies arranged in order from one end side to the other end side along the exhaust passage of the tubular case are arranged inside the tubular case. 前記フィン形成体の各フィンが、板長手方向の中間部で、各小排気流路を区画する部分毎に熱歪吸収用の曲がり部を備えてなる請求項1又は2に記載の触媒メタル担体。 The catalyst metal carrier according to claim 1 or 2 , wherein each fin of the fin forming body is provided with a bent portion for absorbing heat strain at an intermediate portion in the longitudinal direction of the plate for each portion that partitions each small exhaust flow path. ..
JP2016186336A 2016-09-23 2016-09-23 Catalytic metal carrier Active JP6862135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186336A JP6862135B2 (en) 2016-09-23 2016-09-23 Catalytic metal carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186336A JP6862135B2 (en) 2016-09-23 2016-09-23 Catalytic metal carrier

Publications (2)

Publication Number Publication Date
JP2018047440A JP2018047440A (en) 2018-03-29
JP6862135B2 true JP6862135B2 (en) 2021-04-21

Family

ID=61765759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186336A Active JP6862135B2 (en) 2016-09-23 2016-09-23 Catalytic metal carrier

Country Status (1)

Country Link
JP (1) JP6862135B2 (en)

Also Published As

Publication number Publication date
JP2018047440A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2004059140A1 (en) Flexible tube
US20150017073A1 (en) Exhaust gas cleaning device
JP6862135B2 (en) Catalytic metal carrier
JP6832106B2 (en) Catalytic metal carrier
JP3845873B2 (en) Ceramic catalytic converter
JP4948976B2 (en) Connection structure of exhaust system member and insertion member
US9115627B2 (en) Multiple skewed channel bricks mounted in opposing clocking directions
JP2015029928A (en) Catalytic converter
ES2279961T3 (en) CATALYZER SUPPORT BODY WITH WAVE ENVELOPE AND PROCEDURE FOR MANUFACTURING.
JP6711729B2 (en) Catalytic metal carrier
JP4999715B2 (en) Metal catalyst carrier with slit holes
JP7014759B2 (en) Heat exchanger and its manufacturing method
JP6813467B2 (en) Catalytic converter
JP5334637B2 (en) Metal carrier for exhaust gas purification catalyst
EP1136669B1 (en) Catalyst carrier
JP2016109106A (en) Exhaust emission control system
JP2015148204A (en) Exhaust emission control catalyst converter device
JP2005313084A (en) Catalyst carrier made of metal
JP6397737B2 (en) Catalytic converter
WO2022138273A1 (en) Metal catalytic device
JP4920341B2 (en) Catalyst carrier for exhaust gas purification
JP2004509263A (en) Honeycomb body with segment-split structure jacket tube
JP2024011135A (en) Exhaust passage structure for internal combustion engine
JPH1133410A (en) Hybrid carrier for catalytic device
JP2023055541A (en) Manufacturing method for exhaust system component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250