JP6711729B2 - Catalytic metal carrier - Google Patents

Catalytic metal carrier Download PDF

Info

Publication number
JP6711729B2
JP6711729B2 JP2016186337A JP2016186337A JP6711729B2 JP 6711729 B2 JP6711729 B2 JP 6711729B2 JP 2016186337 A JP2016186337 A JP 2016186337A JP 2016186337 A JP2016186337 A JP 2016186337A JP 6711729 B2 JP6711729 B2 JP 6711729B2
Authority
JP
Japan
Prior art keywords
fin
forming body
fin forming
exhaust
tubular case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016186337A
Other languages
Japanese (ja)
Other versions
JP2018047441A (en
Inventor
和也 篠宮
和也 篠宮
Original Assignee
株式会社エッチ・ケー・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エッチ・ケー・エス filed Critical 株式会社エッチ・ケー・エス
Priority to JP2016186337A priority Critical patent/JP6711729B2/en
Publication of JP2018047441A publication Critical patent/JP2018047441A/en
Application granted granted Critical
Publication of JP6711729B2 publication Critical patent/JP6711729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は触媒メタル担体に関する。 The present invention relates to catalytic metal supports.

従来、自動車エンジン等の内燃機関から排出される排ガスを浄化する触媒メタル担体として、特許文献1、2に記載のものがある。 BACKGROUND ART Conventionally, there are catalyst metal carriers described in Patent Documents 1 and 2 as a catalyst metal carrier for purifying exhaust gas discharged from an internal combustion engine such as an automobile engine.

特許文献1に記載の自動車エンジン用触媒メタル担体は、ステンレス鋼製筒状ケースの内周面に、複数の凹部が円周方向に連続して形成された円筒形状のステンレス鋼製金属箔(箔厚約200μm)がロー付けされて構成される。これにより、筒状ケースが形成する排気通路の内部に、円筒形状の金属箔によって仕切られる多数の小排気流路を区画する。そして、筒状ケースの内周面、並びに上記小排気流路を画成している金属箔の表面には、触媒が塗布、焼付けされて担持される。 The catalyst metal carrier for an automobile engine described in Patent Document 1 is a cylindrical stainless steel metal foil (foil) in which a plurality of concave portions are continuously formed in the circumferential direction on the inner peripheral surface of a stainless steel cylindrical case. The thickness is about 200 μm) and is brazed. As a result, a large number of small exhaust passages partitioned by the cylindrical metal foil are defined inside the exhaust passage formed by the tubular case. Then, the catalyst is applied and baked and carried on the inner peripheral surface of the cylindrical case and the surface of the metal foil that defines the small exhaust passage.

特許文献2に記載の自動車エンジン用触媒メタル担体は、ステンレス鋼製筒状ケースの内部に、複数個のメタルハニカム体を離隔配置するとともに、メタルハニカム体の間にチューブ形状体及び/又はプレート形状体を配置し、当該筒状ケースの内周面にそれらのメタルハニカム体、チューブ形状体及び/又はプレート形状体がロー付けされて構成される。メタルハニカム体はステンレス鋼等の金属製の平箔及び波箔を用いて構成される。これにより、筒状ケースが形成する排気通路の内部に、メタルハニカム体の小孔からなる多数の小排気流路を形成するとともに、チューブ形状体及び/又はプレート形状体によって仕切られる小排気流路を区画する。そして、筒状ケースの内周面、並びに上記小排気流路を画成しているメタルハニカム体の小孔内面、チューブ形状体及び/又はプレート形状体の表面には、触媒がコーティングされて担持される。 The catalyst metal carrier for an automobile engine described in Patent Document 2 has a plurality of metal honeycomb bodies spaced apart from each other inside a tubular case made of stainless steel, and a tube-shaped body and/or a plate-shaped body between the metal honeycomb bodies. The body is arranged, and the metal honeycomb body, the tube-shaped body and/or the plate-shaped body are brazed to the inner peripheral surface of the tubular case. The metal honeycomb body is composed of a flat foil and a corrugated foil made of metal such as stainless steel. As a result, a large number of small exhaust passages formed of small holes of the metal honeycomb body are formed inside the exhaust passage formed by the tubular case, and the small exhaust passages are partitioned by the tube-shaped body and/or the plate-shaped body. Partition. The catalyst is coated on the inner peripheral surface of the cylindrical case, the inner surface of the small holes of the metal honeycomb body that defines the small exhaust passage, and the surface of the tube-shaped body and/or plate-shaped body. To be done.

特開2001-129407号公報JP 2001-129407 A 特開2008-142682号公報JP 2008-142682 A

特許文献1に記載の触媒メタル担体には以下の問題点がある。
(1)筒状ケースの内周面に円筒形状の金属箔をロー付けしている。
自動車エンジンの高負荷運転時に排ガス温度がロー付け材の融点(例えば1050℃程度)を超える高温になると、ロー付け材が溶けて、円筒形状の金属箔を筒状ケースに固定できなくなる。
The catalyst metal carrier described in Patent Document 1 has the following problems.
(1) A cylindrical metal foil is brazed to the inner peripheral surface of the cylindrical case.
When the temperature of the exhaust gas reaches a temperature higher than the melting point of the brazing material (for example, about 1050° C.) during high-load operation of the automobile engine, the brazing material melts and the cylindrical metal foil cannot be fixed to the tubular case.

また、自動車エンジンの高負荷運転で高温になった排ガスにより歪んだ金属箔と空冷下の筒状ケース間に大きな熱応力を発生させ、或いは自動車の車体及びエンジンの振動が激しくなると、これらの熱応力や激しい振動が金属箔を破壊し、円筒形状の金属箔を筒状ケースに固定できなくなる。 Also, when a large thermal stress is generated between the metal foil distorted by the exhaust gas heated to a high temperature due to the high load operation of the automobile engine and the cylindrical case under air cooling, or when the vibration of the automobile body and engine becomes severe, these heat Stress and severe vibration destroy the metal foil, making it impossible to fix the cylindrical metal foil to the cylindrical case.

特許文献2に記載の触媒メタル担体には以下の問題点がある。
(2)筒状ケースの内周面にメタルハニカム体や、チューブ形状体及び/又はプレート形状体をロー付けしている。
The catalyst metal carrier described in Patent Document 2 has the following problems.
(2) A metal honeycomb body, a tube-shaped body and/or a plate-shaped body are brazed to the inner peripheral surface of the tubular case.

自動車エンジンの高負荷運転時に排ガス温度がロー付け材の融点(例えば1050℃程度)を超える高温になると、ロー付け材が溶けて、メタルハニカム体や、チューブ形状体及び/又はプレート形状体を筒状ケースに固定できなくなる。 When the exhaust gas temperature becomes higher than the melting point of the brazing material (for example, about 1050°C) during high-load operation of the automobile engine, the brazing material melts and the metal honeycomb body, the tube-shaped body and/or the plate-shaped body is formed into a cylinder. Cannot be fixed to the case.

また、自動車エンジンの高負荷運転で高温になった排ガスにより歪んだメタルハニカム体と空冷下の筒状ケース間に大きな熱応力を発生させ、或いは自動車の車体及びエンジンの振動が激しくなると、これらの熱応力や激しい振動がメタルハニカム体を破壊し、メタルハニカム体を筒状ケースに固定できなくなる。 Further, when a large thermal stress is generated between the metal honeycomb body distorted by the exhaust gas heated to a high temperature due to the high load operation of the automobile engine and the tubular case under air cooling, or when the vibration of the vehicle body and the engine of the automobile becomes severe, these Thermal stress and severe vibration destroy the metal honeycomb body, and the metal honeycomb body cannot be fixed to the tubular case.

特許文献1、2に記載の触媒メタル担体が、例えば自動車レース競技等の自動車の過酷な走行環境下で使用されると、排ガス温度の高温化、車体及びエンジンの振動の増大化がとりわけ激しく、上述(1)、(2)の問題点は一層顕著になる。 When the catalyst metal carrier described in Patent Documents 1 and 2 is used in a harsh driving environment of an automobile, such as an automobile race competition, the exhaust gas temperature rises and the vibration of the vehicle body and the engine increase significantly, The problems (1) and (2) above become more prominent.

尚、特許文献1、2に記載の触媒メタル担体に採用されているロー付け部が仮に、スポット溶接等による溶接部に置き換えられたとしても、自動車の過酷な走行環境下では、高温の排ガスに起因する熱応力や激しい車体及びエンジンの振動による金属箔やメタルハニカム体の破壊を回避するに至らない。 Even if the brazing part used in the catalyst metal carrier described in Patent Documents 1 and 2 is replaced with a welded part such as spot welding, under the severe driving environment of an automobile, high temperature exhaust gas is generated. It is not possible to avoid destruction of the metal foil or the metal honeycomb body due to the resulting thermal stress or severe vibration of the vehicle body and engine.

特に、自動車レース競技等の過酷な走行条件においては、未燃ガスが触媒メタル担体における筒状ケースの内周面、円筒形状の金属箔、或いはメタルハニカム体や、チューブ形状体及び/又はプレート形状体に付着してアフターファイヤを生じ、円筒形状の金属箔、或いはメタルハニカム体や、チューブ形状体及び/又はプレート形状体は一層高温、高圧の排ガスに曝されるものになる。 In particular, under harsh driving conditions such as car racing competition, unburned gas has an inner peripheral surface of a cylindrical case in a catalyst metal carrier, a cylindrical metal foil, a metal honeycomb body, a tube-shaped body and/or a plate-shaped body. After attaching to the body to cause afterfire, the cylindrical metal foil, the metal honeycomb body, the tube-shaped body and/or the plate-shaped body is exposed to exhaust gas of higher temperature and pressure.

そして、特許文献1、2に記載の触媒メタル担体において、円筒形状の金属箔、或いはメタルハニカム体や、チューブ形状体及び/又はプレート形状体が筒状ケースに固定できなくなると、それらの円筒形状の金属箔、或いはメタルハニカム体や、チューブ形状体及び/又はプレート形状体が筒状ケースから脱落して浄化性能を喪失するだけでなく、走路上に散乱し、後続車両の安全な走行を妨害するものになり、レース中断等を招くおそれもある。 Then, in the catalyst metal carrier described in Patent Documents 1 and 2, when the cylindrical metal foil, the metal honeycomb body, the tube-shaped body and/or the plate-shaped body cannot be fixed to the cylindrical case, those cylindrical shapes The metal foil or metal honeycomb body, tube-shaped body and/or plate-shaped body of the above not only falls off the cylindrical case and loses the purification performance, but also scatters on the road and interferes with the safe running of the following vehicle. However, there is a risk that the race will be interrupted.

本発明の課題は、過酷な使用環境下で高い耐久性を確保できる触媒メタル担体を提供することにある。 An object of the present invention is to provide a catalyst metal carrier capable of ensuring high durability under a severe environment of use.

請求項1に係る発明は、筒状ケースが形成する排気通路の内部に金属製のフィン形成体が配置されてなる触媒メタル担体であって、フィン形成体が多数個の板状のフィンを有し、各フィンがその板長手方向で筒状ケースの内周面に交差するように排気通路内に延在され、相隣るフィンによって該排気通路内に多数の小排気流路を区画し、フィン形成体の筒状ケースからの脱落を防止する抜け止め手段が、該フィン形成体のフィンに接合されることなく、該フィン形成体を該筒状ケースの筒軸方向に保持する状態で、該筒状ケースに支持され、フィン形成体の中心部で、該フィン形成体と該フィン形成体の周方向で回り止め状態にて結合された回り止め軸を有し、この回り止め軸が、筒状ケースに支持された抜け止め手段に回り止め状態で固定されてなるようにしたものである。 The invention according to claim 1 is a catalyst metal carrier in which a metal fin forming body is arranged inside an exhaust passage formed by a cylindrical case, and the fin forming body has a large number of plate-shaped fins. Then, each fin extends in the exhaust passage so as to intersect the inner peripheral surface of the tubular case in the plate longitudinal direction, and a large number of small exhaust passages are defined in the exhaust passage by the adjacent fins, In a state in which the retaining means for preventing the fin forming body from falling out of the cylindrical case holds the fin forming body in the cylinder axis direction of the cylindrical case without being joined to the fins of the fin forming body, The fin forming body has a detent shaft coupled to the fin forming body in a detent state in the circumferential direction of the fin forming body at the center of the fin forming body, and the detent shaft includes: The retaining means is fixed to the retaining means supported by the cylindrical case in a rotation-preventing state.

請求項2に係る発明は、請求項1に係る発明において更に、前記筒状ケースの内部に、該筒状ケースの排気通路に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体が配置されるようにしたものである。 The invention according to claim 2 is the invention according to claim 1, further comprising a plurality of fins formed inside the tubular case, the fins being sequentially arranged from one end side along the exhaust passage of the tubular case toward the other end side. The body is arranged.

請求項3に係る発明は、請求項1又は2に係る発明において更に、前記フィン形成体が多数個の板状のフィンが一体をなすように削り出された一体物からなるようにしたものである。請求項1又は2に記載の触媒メタル担体。 The invention according to claim 3 is the invention according to claim 1 or 2, wherein the fin-forming body is formed of an integral body in which a large number of plate-shaped fins are machined to form one body. is there. The catalyst metal carrier according to claim 1 or 2.

請求項4に係る発明は、請求項1又は2に係る発明において更に、前記フィン形成体が複数枚の金属製の板を組合せた板組体からなるようにしたものである。 According to a fourth aspect of the present invention, in addition to the first or second aspect of the present invention, the fin forming body is a plate assembly in which a plurality of metal plates are combined.

(請求項1)
(a)フィン形成体の筒状ケースからの脱落を防止する抜け止め手段が、該筒状ケースに支持されて、該フィン形成体を該筒状ケースの筒軸方向に保持する。更に、フィン形成体の中心部に結合された回り止め軸が、筒状ケースに支持された上述の抜け止め手段に回り止め状態で固定される。従って、フィン形成体は、筒状ケースの内部に回り止めされ、かつ筒状ケースの筒軸方向に保持されて該筒状ケースから外方への脱落を防止される。
(Claim 1)
(a) A retaining means for preventing the fin forming body from falling out of the cylindrical case is supported by the cylindrical case and holds the fin forming body in the cylinder axis direction of the cylindrical case. Further, the whirl-stop shaft coupled to the central portion of the fin-forming body is fixed in the whirl-stop state to the above-mentioned retaining means supported by the tubular case. Therefore, the fin forming body is prevented from rotating inside the tubular case and is held in the tubular axis direction of the tubular case to prevent the fin forming body from falling out of the tubular case.

(b)自動車エンジンの過酷な使用環境下で、排ガス温度が高負荷運転によって例えば1000℃乃至1200℃程度の高温になる長時間連続使用環境下でも、フィン形成体は上記高温の排ガスに曝されて溶損するロー付け部を用いて筒状ケースに固定されるものでない。即ち、フィン形成体は、高温の排ガスに曝されても破壊に至るおそれがない上述の回り止め構造及び抜け止め構造によって筒状ケースに安定的に保持され、フィン形成体を筒状ケースに安定的に保持できる。 (b) The fin-forming body is exposed to the above-mentioned high-temperature exhaust gas even under a severe use environment of an automobile engine, even under a long-term continuous use environment where the exhaust gas temperature becomes a high temperature of, for example, about 1000°C to 1200°C due to high load operation. It is not fixed to the cylindrical case by using a brazing part that melts and melts. That is, the fin forming body is stably held in the cylindrical case by the above-described rotation prevention structure and retaining structure, which does not cause destruction even when exposed to high temperature exhaust gas, and the fin formation body is stably held in the cylindrical case. Can be retained.

(c)自動車の車体及びエンジンの振動が激しくなるときにも、フィン形成体は、上述の回り止め構造及び抜け止め構造によって筒状ケースに安定的に保持され、フィン形成体を筒状ケースに安定的に保持できる。 (c) Even when the vibration of the vehicle body and engine of the automobile becomes severe, the fin forming body is stably held in the tubular case by the above-described rotation preventing structure and retaining structure, and the fin forming body is kept in the cylindrical case. Can be held stably.

(d)抜け止め手段は、フィン形成体のフィンに接合されず、該フィン形成体を抜け止めし、フィン形成体の外方への脱落を確実に防止する。ここで、抜け止め手段は、フィン形成体の各フィンに溶接等されて固定されるものに比して、各フィンにおける板長手方向の変形を該抜け止め手段との係わりによって拘束されることがない。これにより、フィン形成体は、高温の排ガスに曝されることによる各フィンの板長手方向の熱歪を抜け止め手段の存在によって阻止されることなく、この熱歪に起因する大きな熱応力を抜け止め手段との間に発生させることがなく、該抜け止め手段によって安定的に保持される。 (d) The retaining means is not joined to the fins of the fin-forming body and retains the fin-forming body so as to reliably prevent the fin-forming body from falling out. Here, the retaining means can restrain the deformation of each fin in the plate longitudinal direction by the engagement with the retaining means, as compared with the case where the retaining means is fixed to each fin of the fin forming body by welding or the like. Absent. As a result, the fin-forming body removes large thermal stress due to this thermal strain without being prevented by the presence of the retaining means for preventing thermal strain in the plate longitudinal direction of each fin due to exposure to high-temperature exhaust gas. It does not occur between the retaining means and is stably held by the retaining means.

(e)フィン形成体は、中心部に有する回り止め軸と抜け止め手段に設けた回り止め孔との係合構造を介して、筒状ケースの内部に回り止めされる。これにより、フィン形成体の外周部の側には、筒状ケースの内周面との間に回り止め等のための溶接部、係合部、加締め部等の固定構造を設ける必要がないものになる。従って、筒状ケースにおける排気通路の内部で高温の排ガスに曝されるフィン形成体の各フィンが板長手方向に沿う外方端に向けて熱膨張しても、各フィンの外方端であるフィン形成体の外周部に及ぶ上述の熱膨張や振動によって、それらの固定構造の破壊、変形等を招くおそれがないものになる。フィン形成体においてそれらの固定構造を具備していない外周部は上述の熱膨張によって筒状ケースの内周面との間で単にそれらの圧接状態を高めることがあってとしても、該筒状ケースの内周面との間にそれらの熱歪に起因する破壊に至るほどの大きな熱応力を生ずることがない。即ち、フィン形成体は、筒状ケースに安定的に保持される。 (e) The fin forming body is prevented from rotating inside the cylindrical case through the engagement structure of the rotation preventing shaft provided in the central portion and the rotation preventing hole provided in the retaining means. As a result, it is not necessary to provide a fixing structure such as a welded portion, an engaging portion, a caulking portion, etc. for preventing rotation from being provided between the inner peripheral surface of the tubular case and the outer peripheral side of the fin forming body. It becomes a thing. Therefore, even if each fin of the fin forming body exposed to high-temperature exhaust gas inside the exhaust passage in the tubular case thermally expands toward the outer end along the plate longitudinal direction, it is the outer end of each fin. Due to the above-mentioned thermal expansion and vibration extending to the outer peripheral portion of the fin forming body, there is no possibility of causing damage or deformation of the fixing structure thereof. Even if the outer peripheral portion of the fin forming body that does not have the fixing structure may simply increase the pressure contact state between the outer peripheral portion and the inner peripheral surface of the cylindrical case due to the above-mentioned thermal expansion, It does not generate a large thermal stress between the inner peripheral surface and the inner peripheral surface of the steel sheet, which may cause destruction due to the thermal strain. That is, the fin forming body is stably held in the cylindrical case.

仮にフィン形成体の外周部の側に回り止め部を設け、この回り止め部を回り止めするための係合部、加締め部等の回り止め構造が筒状ケースの内周面との間に存在する場合には、排気通路の内部で高温の排ガスに曝されるフィン形成体と、外部空間に臨んで空冷される筒状ケースとの間に生ずる大きな温度差により、フィン形成体の熱膨張が筒状ケースのそれよりも大きくなるため、フィン形成体のフィンは筒状ケースに拘束されて大きな熱歪を生じる。この熱歪は、フィン形成体の外周部と筒状ケースの内周面との間に存在する係合部、加締め部等の回り止め構造を熱変形させて損傷させ、フィン形成体の回り止め部を筒状ケースとの間の回り止め構造から脱落させるおそれがある。 Temporarily, a detent portion is provided on the outer peripheral side of the fin forming body, and an anti-rotation structure such as an engaging portion and a caulking portion for detenting the detent portion is provided between the inner peripheral surface of the cylindrical case. When present, the thermal expansion of the fin-forming body is caused by the large temperature difference between the fin-forming body exposed to the high-temperature exhaust gas inside the exhaust passage and the cylindrical case that is air-cooled facing the external space. Is larger than that of the tubular case, the fins of the fin-forming body are constrained by the tubular case and a large thermal strain occurs. This thermal strain thermally deforms and damages the anti-rotation structure such as the engagement part and the caulking part existing between the outer peripheral part of the fin forming body and the inner peripheral surface of the tubular case, and the fin forming body There is a risk that the stopper will fall out of the rotation preventing structure between the stopper and the cylindrical case.

本発明では、フィン形成体の中心部に回り止め軸を有するものとし、この回り止め軸を抜け止め手段に設けた回り止め孔に回り止め状態で固定するものとしたから、回り止めのためのいずれの部材も外気によって冷却されることなく、排気通路の内部で高温の排ガスにのみ接して加熱され、いずれの部材も互いに均等に近い状態で熱膨張するものとなって、それらの部材に生ずる熱歪は小さい。また、フィン形成体における各フィンの長手方向に沿う外方端への熱膨張が筒状ケースの存在によって拘束されたとしても、その熱膨張は各フィンの長手方向に沿う内方(フィン形成体の中心部)に向かうのみであり、フィン形成体の中心部の回り止め軸をその中心に向けて圧縮するものになって該回り止め軸をより強く拘束する。よって、フィン形成体を筒状ケースの内部に安定的に保持できる。 In the present invention, the fin forming body has the rotation preventing shaft at the center thereof, and the rotation preventing shaft is fixed in the rotation preventing hole provided in the retaining means in the rotation preventing state. None of the members are heated by contacting only the high-temperature exhaust gas inside the exhaust passage without being cooled by the outside air, and all the members thermally expand in a state of being evenly equal to each other. Thermal distortion is small. Further, even if the thermal expansion toward the outer end along the longitudinal direction of each fin in the fin forming body is restrained by the presence of the cylindrical case, the thermal expansion does not occur inside the fin forming body (the fin forming body). Only toward the center) of the fin forming body, and the detent shaft at the center of the fin forming body is compressed toward the center of the fin forming body to further restrain the detent shaft. Therefore, the fin forming body can be stably held inside the cylindrical case.

(f)尚、フィン形成体は、各フィンの板長手方向の中間部に、熱歪吸収用の曲がり部を備えることもできる。 (f) In addition, the fin-formed body may be provided with a bent portion for absorbing thermal strain at an intermediate portion of each fin in the plate longitudinal direction.

この場合には、高温の排ガスに曝されるフィン形成体における各フィンの熱歪が、当該フィンの中間部に備えた曲がり部の熱的変形によって吸収され、筒状ケースに及びにくくし、筒状ケースに大きな熱応力を発生させず、筒状ケースを破壊させることがないから、フィン形成体を筒状ケースに安定的に保持できる。 In this case, the thermal strain of each fin in the fin forming body that is exposed to the high-temperature exhaust gas is absorbed by the thermal deformation of the bent portion provided in the intermediate portion of the fin, making it difficult to reach the cylindrical case. Since a large thermal stress is not generated in the tubular case and the tubular case is not destroyed, the fin forming body can be stably held in the tubular case.

また、車体の激しい振動に起因してフィン形成体の各フィンに生ずる振動による破壊は、当該フィンの板厚を厚肉の例えば0.8乃至3mmとし、フィン形成体20の強度を向上させることによって回避できるから、フィン形成体を筒状ケースに安定的に保持できる。 Further, the destruction of the fin-formation body caused by the vibration caused by the violent vibration of the vehicle body is avoided by increasing the strength of the fin-formation body 20 by setting the plate thickness of the fin to a large thickness, for example, 0.8 to 3 mm. Therefore, the fin forming body can be stably held in the cylindrical case.

抜け止め手段が前述(d)の如くに、フィン形成体の各フィンの板長手方向の変形を拘束しない構造は、上述(f)の各フィンに備えた曲がり部による各フィンの熱歪の吸収効果を阻害しないという効果を奏する。 As described in (d) above, the structure that does not restrain the deformation of each fin of the fin forming body in the plate longitudinal direction is the absorption of the thermal strain of each fin by the bent portion provided in each fin of (f) above. It has the effect of not inhibiting the effect.

(請求項2)
(g)前記筒状ケースの内部に、該筒状ケースの排気通路に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体が配置される。触媒を担持する、筒状ケースの全長に渡る内周面積、及び全フィン形成体の合計表面積を増大化し、触媒メタル担体の浄化性能を向上できる。
(Claim 2)
(g) Inside the tubular case, a plurality of fin forming bodies arranged in order from one end side to the other end side along the exhaust passage of the tubular case are arranged. The inner peripheral area over the entire length of the tubular case supporting the catalyst and the total surface area of all fin-forming bodies can be increased, and the purification performance of the catalyst metal carrier can be improved.

(請求項3)
(h)前記フィン形成体が、多数個の板状のフィンが一体をなすように削り出された一体物からなるものとすることにより、各フィンを例えば板厚0.8乃至3mm、より好適には1乃至2mmの板状とし、フィン形成体の耐熱強度、耐振動強度等を確保し、触媒メタル担体の耐久性を容易に確保できる。
(Claim 3)
(h) The fin-forming body is made of an integrated body in which a large number of plate-shaped fins are machined so as to form an integral body, so that each fin has, for example, a plate thickness of 0.8 to 3 mm, and more preferably With a plate shape of 1 to 2 mm, the heat resistance strength and vibration resistance strength of the fin-formed body can be secured, and the durability of the catalyst metal carrier can be easily secured.

(請求項4)
(i)前記フィン形成体が複数枚の金属製の板を組合せた板組体からなるものとすることにより、各フィンを例えば板厚0.8乃至3mm、より好適には1乃至2mmに板状とし、フィン形成体の耐熱強度、耐振動強度等を確保し、触媒メタル担体の耐久性を容易に確保できる。
(Claim 4)
(i) By forming the fin-formed body from a plate assembly in which a plurality of metal plates are combined, each fin has a plate shape with a plate thickness of 0.8 to 3 mm, and more preferably 1 to 2 mm. The heat resistance strength and vibration resistance strength of the fin-formed body can be secured, and the durability of the catalyst metal carrier can be easily secured.

図1は第1実施形態の触媒メタル担体を示す正面図である。FIG. 1 is a front view showing a catalyst metal carrier according to the first embodiment. 図2は触媒メタル担体を示し、(A)は図1のII−II線に沿う断面図、(B)はその変形例を示す断面図である。FIG. 2 shows a catalyst metal carrier, (A) is a sectional view taken along the line II-II of FIG. 1, and (B) is a sectional view showing a modification thereof. 図3は筒状ケースを示し、(A)は正面図、(B)は側面図である。FIG. 3 shows a cylindrical case, (A) is a front view and (B) is a side view. 図4はフィン形成体を示し、(A)は相並ぶ一方のフィン形成体の正面図、(B)は相並ぶ他方のフィン形成体の正面図、(C)は両方のフィン形成体を積層した状態を示す正面図、(D)はフィンの変形例を示す模式図である。FIG. 4 shows a fin-formed body, (A) is a front view of one fin-formed body that is aligned, (B) is a front view of the other fin-formed body that is aligned, and (C) is a stack of both fin-formed bodies. The front view which shows the state which carried out, (D) is a schematic diagram which shows the modification of a fin. 図5は抜け止め部材を示す正面図である。FIG. 5 is a front view showing the retaining member. 図6は回り止め軸を示し、(A)は側面図、(B)は端面図である。FIG. 6 shows a detent shaft, (A) is a side view and (B) is an end view. 図7は中心キャップを示し、(A)は正面図、(B)は側面図、(C)は断面図である。FIG. 7 shows a center cap, (A) is a front view, (B) is a side view, and (C) is a sectional view. 図8は触媒メタル担体の変形例を示す正面図である。FIG. 8 is a front view showing a modified example of the catalyst metal carrier. 図9はフィン形成体の変形例を示す正面図である。FIG. 9 is a front view showing a modified example of the fin body.

図1、図2に示す触媒メタル担体1は、自動車エンジンの排気ポートに連通する排気管の出口端部(中間部でも可)に接続されて用いられる。触媒メタル担体1は、円筒状等の筒状ケース10が形成する排気通路11の内部に金属製のフィン形成体20が配置され、フィン形成体20が有する多数個の板状のフィン21の表面に触媒を担持して構成される。 The catalytic metal carrier 1 shown in FIG. 1 and FIG. 2 is used by being connected to the outlet end portion (which may be the intermediate portion) of an exhaust pipe communicating with an exhaust port of an automobile engine. In the catalyst metal carrier 1, a metal fin forming body 20 is arranged inside an exhaust passage 11 formed by a cylindrical case 10 such as a cylinder, and the surface of a large number of plate-like fins 21 included in the fin forming body 20. It is constituted by supporting a catalyst on.

触媒メタル担体1は、エンジン回転の上昇、下降の度に加熱冷却がくり返され、空冷下の筒状ケース10と排ガスに曝されるフィン形成体20の各フィン21は厳しい熱的環境にある。触媒メタル担体1が自動車エンジンの過酷な長時間連続使用環境下で使用されるときには、フィン形成体20を構成する各フィン21は、高負荷運転による高温排ガスの高熱に曝され、或いは触媒の反応による発熱を受けて熱せられ、更には付着した未燃ガスが爆発して生ずるアフターファイヤによって過熱され、一層大きな熱歪を生ずる。 The catalyst metal carrier 1 is repeatedly heated and cooled each time the engine speed increases and decreases, and the cylindrical case 10 under air cooling and each fin 21 of the fin forming body 20 exposed to exhaust gas are in a severe thermal environment. .. When the catalyst metal carrier 1 is used in a severe long-term continuous use environment of an automobile engine, each fin 21 forming the fin forming body 20 is exposed to high heat of high temperature exhaust gas due to high load operation, or reaction of a catalyst. Is heated by the heat generated by the above, and further, it is overheated by the afterfire generated by the explosion of the unburned gas adhering thereto, and a larger thermal strain is generated.

また、触媒メタル担体1は、激しい車体振動に起因する激しい振動が繰り返し付与され、筒状ケース10とフィン形成体20の各フィン21は厳しい振動環境にある。 Further, the catalyst metal carrier 1 is repeatedly subjected to violent vibration caused by violent vehicle body vibration, and the cylindrical case 10 and each fin 21 of the fin forming body 20 are in a severe vibration environment.

触媒メタル担体1は、以上のような過酷な熱的環境及び振動環境で使用されても、高い耐久性を確保するため、筒状ケース10、フィン形成体20、及び本発明の抜け止め手段としての抜け止め部材40を以下の如くに組立てて構成される。 The catalyst metal carrier 1 is used as the tubular case 10, the fin forming body 20 and the retaining means of the present invention in order to ensure high durability even when used in the severe thermal environment and vibration environment as described above. The retaining member 40 is assembled as follows.

(筒状ケース10)
筒状ケース10は、図1、図2、図3に示す如く、例えばステンレス鋼板の帯状材(例えばSUS430材、板厚1.5mm)を円筒状に曲げ成形し、その両端部が突き合せ状態でTIG溶接等で溶接されて形成される(溶接部W1)。
(Cylindrical case 10)
As shown in FIGS. 1, 2, and 3, the tubular case 10 is formed by bending a strip-shaped material (for example, SUS430 material, plate thickness 1.5 mm) of stainless steel plate into a cylindrical shape, with both ends thereof abutting each other. It is formed by welding by TIG welding or the like (weld portion W1).

(フィン形成体20)
フィン形成体20は、図1、図2、図4に示す如く、多数個の例えばステンレス鋼板の板状フィン21を有し、各フィン21がその板長手方向で筒状ケース10の内周面に交差し、かつその板幅方向で筒状ケース10の筒軸方向に沿うように排気通路11内に延在され、相隣るフィン21によって該排気通路11内に多数の小排気流路12を区画する。
(Fin forming body 20)
As shown in FIGS. 1, 2, and 4, the fin forming body 20 has a large number of plate-shaped fins 21 made of, for example, a stainless steel plate, and each fin 21 extends in the plate longitudinal direction on the inner peripheral surface of the cylindrical case 10. And a plurality of small exhaust passages 12 extending in the exhaust passage 11 by adjacent fins 21 extending in the exhaust passage 11 along the cylinder axis direction of the cylindrical case 10 in the plate width direction. Partition.

本実施形態のフィン形成体20は、多数個の板状のフィン21が一体をなすように削り出された一体物から構成される。フィン形成体20は、本実施形態ではステンレス鋼の板材或いはブロック体からレーザー加工によって削り出されて形成される。 The fin forming body 20 of the present embodiment is composed of an integrated body in which a large number of plate-shaped fins 21 are machined so as to be integrated. In the present embodiment, the fin forming body 20 is formed by cutting out a stainless steel plate material or block body by laser processing.

ここで、本実施形態のフィン形成体20は、図4に示す如く、多数個(本実施形態では12個)の板状のフィン21を中心部22から周方向に一定の間隔(本実施形態では30度間隔)を介して半径方向に延在され、各フィン21の先端部につながって該フィン21を囲む外環部23を有する。フィン21と中心部22と外環部23が一体物をなす。 Here, in the fin forming body 20 of the present embodiment, as shown in FIG. 4, a large number (12 in the present embodiment) of plate-shaped fins 21 are circumferentially spaced from the central portion 22 at a constant interval (the present embodiment). Has an outer ring portion 23 extending in the radial direction at intervals of 30 degrees) and connected to the tip end portion of each fin 21 and surrounding the fin 21. The fin 21, the center portion 22, and the outer ring portion 23 are integrated.

本実施形態のフィン形成体20は、各フィン21を中心部22から外環部23に向けて渦巻き線状等の如くの湾曲線(二次曲線又は三次曲線等)状に延在される。但し、各フィン21は中心部22から外環部23に向けて半径方向に沿う直線状に延在されても良い。本実施形態において、外環部23は周方向に連続する無端周回状をなす。 In the fin forming body 20 of the present embodiment, each fin 21 extends from the central portion 22 toward the outer ring portion 23 in a curved line (a quadratic curve or a cubic curve) such as a spiral line. However, each fin 21 may extend linearly from the central portion 22 toward the outer ring portion 23 along the radial direction. In this embodiment, the outer ring portion 23 has an endless circumferential shape that is continuous in the circumferential direction.

但し、フィン形成体20は、各フィン21の先端部につながる外環部23を備えることを必ずしも要しない。 However, the fin forming body 20 does not necessarily need to include the outer ring portion 23 connected to the tip end portion of each fin 21.

フィン形成体20にあっては、各フィン21の板長手方向の中間部に熱歪吸収用の曲がり部(例えばU字状曲がり部)21Rを設けても良い(図4(D))。 In the fin forming body 20, a bent portion (for example, a U-shaped bent portion) 21R for absorbing thermal strain may be provided at an intermediate portion of each fin 21 in the plate longitudinal direction (FIG. 4D).

更に、本実施形態の触媒メタル担体1は、筒状ケース10の内部に、該筒状ケース10の排気通路11に沿う一端側から他端側に向けて順に並ぶ複数個(本実施形態では4個)のフィン形成体20が配置される。このとき、相並ぶフィン形成体20は、図4(A)のフィン形成体20と図4(B)のフィン形成体20に示す如くにそれらの表裏を交互に反転されて積層され、それらの相隣るフィン形成体20の間で隣接し合う各フィン21の湾曲方向(渦巻き方向)を図4(C)に示す如くに逆方向にして配置される。 Further, a plurality of catalyst metal carriers 1 of the present embodiment are arranged inside the tubular case 10 in order from one end side along the exhaust passage 11 of the tubular case 10 to the other end side (in the present embodiment, 4 Fin forming bodies 20 are arranged. At this time, the fin forming bodies 20 aligned with each other are laminated by inverting the front and back sides thereof alternately as shown in the fin forming body 20 of FIG. 4A and the fin forming body 20 of FIG. 4B. As shown in FIG. 4C, the fins 21 that are adjacent to each other are arranged such that the fins 21 adjacent to each other have the curved directions (spiral directions) opposite to each other.

ここで、フィン形成体20を複数個使用し、筒状ケース10の排気通路11に沿う一端側から他端側に向けて相並ぶフィン形成体20を表裏交互に反転して配置した場合、相並ぶフィン形成体20におけるそれらのフィン21端面の重なり合わない部分が排気通路11に露出し、触媒と排気ガスの接する表面積が増加することで、排気ガスの浄化性能が向上する。また互いのフィン21が重なり合わない部分を設けることで、上流側に配置されたフィン形成体20におけるフィン21の排気下流側に排気が流入可能な空間ができる。この空間ひとつひとつが排気の流れを細かく分割する排気の経路となり、排気通路11内では異なる経路を通る排気の流れ同士が干渉し合うことで流れが乱れて抵抗となり、排気ガスがメタル担体1を通過する時間が長くなる。つまり触媒と排気ガスの接する時間が増加することにより、排気ガスの浄化性能がより一層向上する。 Here, when a plurality of fin forming bodies 20 are used and the fin forming bodies 20 arranged side by side from the one end side along the exhaust passage 11 of the tubular case 10 toward the other end side are alternately inverted and arranged, The non-overlapping portions of the end faces of the fins 21 of the aligned fin formations 20 are exposed to the exhaust passage 11 and the surface area of contact between the catalyst and the exhaust gas is increased, so that the exhaust gas purification performance is improved. Further, by providing a portion where the fins 21 do not overlap each other, a space where exhaust gas can flow into the exhaust gas downstream side of the fins 21 in the fin forming body 20 arranged on the upstream side is formed. Each of these spaces serves as an exhaust path that divides the exhaust flow into fine parts, and the exhaust flows that pass through different paths in the exhaust passage 11 interfere with each other to create resistance and the exhaust gas passes through the metal carrier 1. The time to do becomes longer. That is, the exhaust gas purification performance is further improved by increasing the contact time between the catalyst and the exhaust gas.

尚、複数個の相並ぶフィン形成体20は、互いに反転するものに限らず、周方向で互いにずらして配置し、互いに反転し、かつ周方向にずらして配置し、或いは互いに反転させず、かつ周方向でずらさずに配置しても良い。 The plurality of fin-forming bodies 20 arranged side by side are not limited to being mutually inverted, but may be arranged so as to be offset from each other in the circumferential direction, be inverted with respect to each other and be displaced with respect to the circumferential direction, or are not inverted to each other, and You may arrange|position without shifting in the circumferential direction.

フィン形成体20を複数個使用し、筒状ケース10の排気通路11に沿う一端側から他端側に向けて相並ぶフィン形成体20を周方向で互いにθ度ずらして配置した場合、相並ぶフィン形成体20におけるそれらのフィン21端面の重なり合わない部分が排気通路11に露出し、触媒と排気ガスの接する表面積が増加することで、排気ガスの浄化性能が向上する。また互いのフィン21が重なり合わない部分を設けることで、上流側に配置されたフィン形成体20におけるフィン21の排気下流側に排気が流入可能な空間ができる。この空間ひとつひとつが排気の流れを細かく分割する排気の経路となり、排気通路11内では異なる経路を通る排気の流れ同士が干渉し合うことで流れが乱れて排気の抵抗となり、排気ガスがメタル担体1を通過する時間が長くなる。つまり触媒と排気ガスの接する時間が増加することにより、排気ガスの浄化性能がより一層向上する。 When a plurality of fin forming bodies 20 are used and arranged side by side from the one end side along the exhaust passage 11 of the tubular case 10 toward the other end side, the fin forming bodies 20 are arranged so as to be offset from each other by θ degrees in the circumferential direction, the fin forming bodies 20 are arranged side by side. The non-overlapping portions of the end faces of the fins 21 in the fin forming body 20 are exposed to the exhaust passage 11 and the surface area of contact between the catalyst and the exhaust gas is increased, so that the exhaust gas purification performance is improved. Further, by providing a portion where the fins 21 do not overlap each other, a space where exhaust gas can flow into the exhaust gas downstream side of the fins 21 in the fin forming body 20 arranged on the upstream side is formed. Each of the spaces serves as an exhaust path that divides the exhaust flow into fine parts, and the exhaust paths 11 and 12 interfere with each other to interfere with each other to cause resistance to the exhaust gas. The time to pass through becomes longer. That is, the exhaust gas purification performance is further improved by increasing the contact time between the catalyst and the exhaust gas.

フィン形成体20を複数個使用し、筒状ケース10の排気通路11に沿う一端側から他端側に向けて相並ぶフィン形成体20を表裏交互に反転し、かつ相並ぶフィン形成体20を周方向で互いにθ度ずらして配置した場合、相並ぶフィン形成体20におけるそれらのフィン21端面の重なり合わない部分が排気通路11に露出し、触媒と排気ガスの接する表面積が増加することで、排気ガスの浄化性能が向上する。また互いのフィン21が重なり合わない部分を設けることで、上流側に配置されたフィン形成体20におけるフィン21の排気下流側に排気が流入可能な空間ができる。この空間ひとつひとつが排気の流れを細かく分割する排気の経路となり、排気通路11内では異なる経路を通る排気の流れ同士が干渉し合うことで流れが乱れて排気の抵抗となり、排気ガスがメタル担体1を通過する時間が長くなる。つまり触媒と排気ガスの接する時間が増加することにより、排気ガスの浄化性能がより一層向上する。 By using a plurality of fin forming bodies 20, the fin forming bodies 20 arranged side by side from the one end side along the exhaust passage 11 of the tubular case 10 toward the other end side are alternately inverted, and the fin forming bodies 20 arranged side by side are reversed. When the fin-formed bodies 20 are arranged so as to be offset from each other by θ degrees in the circumferential direction, the non-overlapping portions of the end faces of the fins 21 of the fin-formed bodies 20 aligned with each other are exposed to the exhaust passage 11, and the surface area of contact between the catalyst and the exhaust gas increases. Exhaust gas purification performance is improved. Further, by providing a portion where the fins 21 do not overlap each other, a space where exhaust gas can flow into the exhaust gas downstream side of the fins 21 in the fin forming body 20 arranged on the upstream side is formed. Each of the spaces serves as an exhaust path that divides the exhaust flow into fine parts, and the exhaust paths 11 and 12 interfere with each other to interfere with each other to cause resistance to the exhaust gas. The time to pass through becomes longer. That is, the exhaust gas purification performance is further improved by increasing the contact time between the catalyst and the exhaust gas.

フィン形成体20を複数個使用し、筒状ケース10の排気通路11に沿う一端側から他端側に向けて相並ぶフィン形成体20を互いに反転させず、かつ周方向でずらさず(同一向き、かつそれらのフィン21が互いに重なり合うようにして)配置した場合、メタル担体1におけるフィン21とその相並ぶフィン21によって区画される小排気流路12の小排気流路断面積は、フィン形成体20単体における小排気流路12の小排気流路断面積と等しく、相並ぶフィン形成体20を表裏交互に反転した場合や、相並ぶフィン形成体20においてそれらのフィン21を周方向で互いにθ度ずらして配置した場合、あるいはそれら両方を組み合わせた場合に比べて小排気流路断面積を広く確保できるため、排気抵抗を低減でき、エンジン出力を向上できる。またメタル担体1の排気上流側から排気下流側にかけて、相並ぶフィン形成体20におけるそれらのフィン21が互いに同一位置で重なり合う状態は、フィン21の板幅方向長さを増加させることと同義であり、メタル担体1の内部において排気を整流する効果も得られるため、排気抵抗の低減はより顕著となる。 A plurality of fin forming bodies 20 are used, and the fin forming bodies 20 aligned from one end side to the other end side along the exhaust passage 11 of the tubular case 10 are not inverted and are not displaced in the circumferential direction (in the same direction). , And the fins 21 are arranged so as to overlap each other), the cross-sectional area of the small exhaust passage 12 defined by the fins 21 and the fins 21 aligned with each other in the metal carrier 1 is equal to the fin forming body. 20 is the same as the small exhaust flow passage cross-sectional area of the small exhaust flow passage 12 and the fin forming bodies 20 aligned side by side are alternately inverted, or the fins 21 of the fin forming bodies 20 aligned side by side are mutually θ in the circumferential direction. Compared with the case where they are arranged in a staggered manner or a case where they are combined, a small exhaust passage cross-sectional area can be secured widely, so exhaust resistance can be reduced and engine output can be improved. In addition, the state in which the fins 21 of the fin forming bodies 20 aligned with each other overlap at the same position from the exhaust upstream side to the exhaust downstream side of the metal carrier 1 is synonymous with increasing the plate width direction length of the fins 21. Since the effect of rectifying the exhaust gas is obtained inside the metal carrier 1, the reduction of the exhaust resistance becomes more remarkable.

(抜け止め部材40)
抜け止め部材40は、フィン形成体20の筒状ケース10からの脱落を防止する。抜け止め部材40は、フィン形成体20に溶接等されて接合されることなく、該フィン形成体20における各フィン21の板幅方向の端面に添設される状態で、該筒状ケース10の排気上流側と排気下流側の両方の端部の内周面に固定されて支持され、フィン形成体20の筒状ケース10の筒軸方向への脱落を防止する。
(Prevention member 40)
The retaining member 40 prevents the fin forming body 20 from falling off the tubular case 10. The retaining member 40 is attached to the end face of the fin forming body 20 in the plate width direction of the fin forming body 20 without being joined to the fin forming body 20 by welding or the like. The fin forming body 20 is fixed and supported on the inner peripheral surfaces of both the exhaust upstream side and the exhaust downstream side, and prevents the fin forming body 20 from falling off in the cylinder axis direction.

フィン形成体20が配置される筒状ケース10の排気上流側で、図2(B)に示す如く、該筒状ケース10が接続される排気管60の接続端に該筒状ケース10の内径部に挿入される小径部61が設けられているときには、この排気管60の小径部61が排気上流側の抜け止め部材となり、本実施形態における抜け止め部材40を筒状ケース10の排気上流側の端部に設けることは必ずしも要しない。即ち、排気管60の小径部61は、筒状ケース10の内径部に挿入され、該小径部61の端面がフィン形成体20における外環部23の端面に突き合わされて配置され、フィン形成体20の筒状ケース10からの脱落を防止する。このとき、後述する中心キャップ70は、排気上流側に臨むフィン形成体20における中心部22の中心孔24まわりの端面に固定される。 At the exhaust upstream side of the tubular case 10 in which the fin forming body 20 is arranged, as shown in FIG. 2B, the inner diameter of the tubular case 10 is connected to the connection end of the exhaust pipe 60 to which the tubular case 10 is connected. When the small diameter portion 61 to be inserted into the portion is provided, the small diameter portion 61 of the exhaust pipe 60 serves as a retaining member on the exhaust upstream side, and the retaining member 40 in the present embodiment is used on the exhaust upstream side of the tubular case 10. It is not always necessary to provide it at the end of the. That is, the small diameter portion 61 of the exhaust pipe 60 is inserted into the inner diameter portion of the tubular case 10, and the end surface of the small diameter portion 61 is arranged so as to abut against the end surface of the outer ring portion 23 of the fin forming body 20. 20 is prevented from falling off the tubular case 10. At this time, a center cap 70, which will be described later, is fixed to an end surface around the center hole 24 of the central portion 22 of the fin forming body 20 facing the exhaust gas upstream side.

本実施形態の抜け止め部材40は、例えばステンレス鋼からなり、図5に示す如く、中心部41から周方向において例えば120度間隔を介して半径方向に延在される例えば3本の棒状部42を有するとともに、各棒状部42の先端部で周方向の両側に張り出て、該棒状部42とともにT字状をなす取付部43を有する。抜け止め部材40は、筒状ケース10の内周面に該筒状ケース10の排気下流側と排気上流側の両外側から嵌合するように挿入され、各取付部43が筒状ケース10の内周面に添設され、該取付部43の周辺部(本実施形態では筒状ケース10の外方に臨む3か所)が筒状ケース10の内周面にTIG溶接等で溶接される(溶接部W2)。このとき、抜け止め部材40の棒状部42は、フィン形成体20における各フィン21の前面に配置されるものの、それらのフィン21に接合されることなく、それらのフィン21に添設される。 The retaining member 40 of the present embodiment is made of, for example, stainless steel, and as shown in FIG. 5, for example, three rod-shaped portions 42 extending from the central portion 41 in the circumferential direction at intervals of, for example, 120 degrees in the radial direction. In addition, each of the rod-shaped portions 42 has a mounting portion 43 that extends in the circumferential direction at both ends of the rod-shaped portion 42 and has a T-shape with the rod-shaped portions 42. The retaining member 40 is inserted into the inner peripheral surface of the tubular case 10 so as to be fitted from both the exhaust downstream side and the exhaust upstream side of the tubular case 10, and each mounting portion 43 is attached to the tubular case 10. The peripheral portion of the mounting portion 43 (three locations facing the outside of the cylindrical case 10 in this embodiment) is attached to the inner peripheral surface and is welded to the inner peripheral surface of the cylindrical case 10 by TIG welding or the like. (Welding part W2). At this time, although the rod-shaped portion 42 of the retaining member 40 is arranged on the front surface of each fin 21 in the fin forming body 20, it is attached to the fins 21 without being joined to the fins 21.

(回り止め軸50)
回り止め軸50は、フィン形成体20の中心部22に挿入され、フィン形成体20と該フィン形成体20の周方向に回り止め状態で係合される。
(Non-rotating shaft 50)
The rotation preventing shaft 50 is inserted into the central portion 22 of the fin forming body 20, and is engaged with the fin forming body 20 in a rotation preventing state in the circumferential direction of the fin forming body 20.

本実施形態の回り止め軸50は、例えばステンレス鋼からなる丸棒材の外周面の周方向に一定の間隔を介する複数位置(本実施形態では3位置)に突設され、その軸方向に延在されているキー状の凸部51を有する。他方、フィン形成体20の中心部22は、回り止め軸50の凸部51に対応する回り止め溝24Aを備えた回り止め中心孔24を有する。回り止め軸50と回り止め中心孔24は、それらが嵌合されるように互いに挿入されるときに、回り止め軸50の凸部51がフィン形成体20の回り止め中心孔24に備えた回り止め溝24Aに軸方向で係入され、それらの周方向で係合される。フィン形成体20の回り止め中心孔24に係合された回り止め軸50は、フィン形成体20の中心部22において抜け止め部材40に臨むこととなる端面から外方(筒状ケース10の排気上流側又は排気下流側)に一定長(本実施形態では抜け止め部材40の厚み分)突出するものとされる。 The anti-rotation shaft 50 of the present embodiment is provided at a plurality of positions (three positions in the present embodiment) projecting at regular intervals in the circumferential direction of the outer peripheral surface of a round bar made of stainless steel, and extends in the axial direction. It has an existing key-shaped convex portion 51. On the other hand, the central portion 22 of the fin forming body 20 has a detent center hole 24 having a detent groove 24A corresponding to the protrusion 51 of the detent shaft 50. The detent shaft 50 and the detent center hole 24 are provided with the protrusion 51 of the detent shaft 50 in the detent center hole 24 of the fin forming body 20 when they are inserted into each other so that they are fitted to each other. It is engaged in the stop groove 24A in the axial direction and is engaged in the circumferential direction thereof. The detent shaft 50 engaged with the detent center hole 24 of the fin forming body 20 is outward from the end face that faces the retaining member 40 in the central portion 22 of the fin forming body 20 (exhaust of the tubular case 10). A certain length (in the present embodiment, the thickness of the retaining member 40) is projected to the upstream side or the exhaust downstream side).

尚、回り止め軸50はフィン形成体20の中心部22に一体的に成形されても良い。 The detent shaft 50 may be integrally formed with the central portion 22 of the fin body 20.

抜け止め部材40の中心部41は、フィン形成体20における中心部22の端面から突出している回り止め軸50の凸部51に対応する凹部44Aを備えた回り止め孔44を備える。そして、フィン形成体20における中心部22の端面から突出している回り止め軸50が、筒状ケース10の端部に固定されて支持された抜け止め部材40に設けた回り止め孔44に挿入されるときに、回り止め軸50の凸部51が抜け止め部材40における回り止め孔44の凹部44Aに軸方向で係入し、回り止め軸50が回り止め孔44に回り止め状態で係合し、TIG溶接等で溶接されるものになる(溶接部W3)。 The central portion 41 of the retaining member 40 includes a rotation preventing hole 44 having a recess 44A corresponding to the protrusion 51 of the rotation preventing shaft 50 protruding from the end face of the center portion 22 of the fin forming body 20. Then, the whirl-stop shaft 50 projecting from the end surface of the center portion 22 of the fin forming body 20 is inserted into the whirl-stop hole 44 provided in the retaining member 40 that is fixed to and supported by the end portion of the tubular case 10. When the rotation preventing shaft 50 is engaged, the protrusion 51 of the rotation preventing shaft 50 is axially engaged with the recess 44A of the rotation preventing hole 44 of the retaining member 40, and the rotation preventing shaft 50 engages with the rotation preventing hole 44 in the rotation preventing state. , TIG welding or the like (welding portion W3).

ここで、筒状ケース10の排気上流側に臨む側では、回り止め軸50が係合している抜け止め部材40の回り止め孔44を含む中心部41の排気上流側に臨む端面に中心キャップ70が固定される。中心キャップ70は、図7に示す如く、円錐傘状体71をなし、円錐傘状体71の円錐状基部を抜け止め部材40における中心部41の周縁部に溶接部、加締め部等を介して固定され、円錐傘状体71の尖端凸部を排気上流側に向け、排気上流側から筒状ケース10の排気通路11(小排気流路12)への排ガスのスムースな流入を図っている。 Here, on the side of the tubular case 10 facing the exhaust gas upstream side, the central cap is provided on the end face of the central portion 41 including the whirl-stop hole 44 of the retaining member 40 with which the whirl-stop shaft 50 is engaged and facing the exhaust gas upstream side. 70 is fixed. As shown in FIG. 7, the center cap 70 forms a conical umbrella-shaped body 71, and the conical base portion of the conical umbrella-shaped body 71 is attached to the peripheral edge portion of the central portion 41 of the retaining member 40 via a welding portion, a caulking portion, and the like. The conical umbrella-shaped body 71 is directed toward the exhaust upstream side so that the exhaust gas smoothly flows from the exhaust upstream side into the exhaust passage 11 (small exhaust passage 12) of the tubular case 10. ..

ここで、触媒メタル担体1の組立手順は、例えば以下の通りになされる。
(1)複数個のフィン形成体20を並べ、相並ぶフィン形成体20の中心部22に設けてある回り止め中心孔24に回り止め軸50を挿入する。これにより、各フィン形成体20は、それらのフィン21がそれらの中心部22まわりで互いに一定の位相をなすように積層された積層体となる。
Here, the procedure for assembling the catalyst metal carrier 1 is as follows, for example.
(1) A plurality of fin forming bodies 20 are arranged side by side, and the detent shaft 50 is inserted into the detent center hole 24 provided in the central portion 22 of the fin forming bodies 20 arranged side by side. As a result, each fin forming body 20 is a laminated body in which the fins 21 are laminated so as to form a constant phase around their central portions 22.

(2)上述(1)の各フィン形成体20の積層体を筒状ケース10の内周面に嵌合するように挿入する。このとき、上述(1)の回り止め軸50は、筒状ケース10の排気通路11内で排気上流側と排気下流側に位置する各フィン形成体20における中心部22の端面からそれらの排気上流側と排気下流側に向けて突出する。 (2) The laminated body of the fin forming bodies 20 of the above (1) is inserted so as to fit to the inner peripheral surface of the cylindrical case 10. At this time, the detent shaft 50 described in (1) above is installed in the exhaust passage 11 of the tubular case 10 from the end face of the center portion 22 of each fin forming body 20 located on the exhaust upstream side and the exhaust downstream side of the exhaust upstream side. Side and the exhaust downstream side.

(3)各抜け止め部材40が、筒状ケース10の排気上流側と排気下流側の両外側からその内周面に嵌合するように挿入される。このとき、抜け止め部材40の回り止め孔44が上述(2)の回り止め軸50に係合するものになる。 (3) The retaining members 40 are inserted from both outsides of the tubular case 10 on the exhaust upstream side and the exhaust downstream side so as to fit into the inner peripheral surfaces thereof. At this time, the detent hole 44 of the retaining member 40 engages with the detent shaft 50 described in (2) above.

(4)上述(3)により筒状ケース10の内周面に挿入された抜け止め部材40の取付部43が筒状ケース10の内周面にTIG溶接等で溶接されて固定される。また、抜け止め部材40の回り止め孔44と、回り止め軸50の外周面とがTIG溶接等で溶接されて固定され、中心キャップ70が抜け止め部材40の中心部の排気上流側を臨む端面に固定される。 (4) The attachment portion 43 of the retaining member 40 inserted into the inner peripheral surface of the tubular case 10 by the above (3) is welded and fixed to the inner peripheral surface of the tubular case 10 by TIG welding or the like. Further, the rotation preventing hole 44 of the retaining member 40 and the outer peripheral surface of the retaining shaft 50 are welded and fixed by TIG welding or the like, and the center cap 70 faces the exhaust gas upstream side of the center portion of the retaining member 40. Fixed to.

以上のようにして組立てられた触媒メタル担体1は、筒状ケース10の内周面、フィン形成体20、抜け止め部材40、回り止め軸50、及び中心キャップ70の表面に、触媒(酸化触媒、還元触媒、又は三元触媒等)を塗布、焼付けられて担持するものになる。 The catalyst metal carrier 1 assembled as described above has a catalyst (oxidation catalyst) on the inner peripheral surface of the cylindrical case 10, the fin forming body 20, the retaining member 40, the rotation preventing shaft 50, and the surface of the center cap 70. , Reduction catalyst, or three-way catalyst, etc.) is applied and baked to be carried.

従って、本実施形態の触媒メタル担体1によれば、以下の作用効果を奏する。
(a)フィン形成体20の筒状ケース10からの脱落を防止する抜け止め部材40が、該筒状ケース10の排気上流側及び排気下流側の端部に固定されて支持され、該フィン形成体20を筒状ケース10の筒軸方向に保持する。更に、フィン形成体20の中心部22が有する回り止め中心孔24に回り止め状態で係合された回り止め軸50が、筒状ケース10の端部に固定されて支持された上述の抜け止め部材40に設けた回り止め孔44に回り止め状態で係合され、TIG溶接等で溶接されて固定される。従って、フィン形成体20は、筒状ケース10の内部に回り止めされ、かつ筒状ケース10の筒軸方向に保持されて該筒状ケース10から外方への脱落を防止される。
Therefore, according to the catalyst metal carrier 1 of the present embodiment, the following operational effects are exhibited.
(a) A retaining member 40 for preventing the fin forming body 20 from falling off the tubular case 10 is fixed and supported at the exhaust upstream side and exhaust downstream side ends of the tubular case 10 to form the fin forming body. The body 20 is held in the tubular axis direction of the tubular case 10. Further, the above-mentioned retaining member in which the rotation preventing shaft 50 engaged in the rotation preventing central hole 24 of the central portion 22 of the fin forming body 20 in the rotation preventing state is fixed and supported by the end portion of the tubular case 10. The member 40 is engaged with the rotation preventing hole 44 provided in the member 40 in a rotation preventing state, and is welded and fixed by TIG welding or the like. Therefore, the fin forming body 20 is prevented from rotating inside the tubular case 10 and is held in the tubular axis direction of the tubular case 10 to prevent the fin forming body 20 from falling out of the tubular case 10.

(b)自動車エンジンの過酷な使用環境下で、排ガス温度が高負荷運転によって、例えば1000℃乃至1200℃程度の高温になる長時間連続使用環境下でも、フィン形成体20は上記高温の排ガスに曝されて溶損するロー付け部を用いて筒状ケース10に固定されるものでない。即ち、フィン形成体20は、高温の排ガスに曝されても破壊に至るおそれがない上述の回り止め構造及び抜け止め構造によって筒状ケース10に安定的に保持され、フィン形成体20を筒状ケース10に安定的に保持できる。 (b) The fin-forming body 20 is exposed to the above-mentioned high temperature exhaust gas even under a harsh use environment of an automobile engine, even under a long-time continuous use environment where the exhaust gas temperature is high at about 1000° C. to 1200° C. due to high load operation. It is not fixed to the cylindrical case 10 by using a brazing part that is exposed and melts. That is, the fin forming body 20 is stably held in the cylindrical case 10 by the above-described rotation preventing structure and retaining structure, which does not cause destruction even when exposed to high temperature exhaust gas, and the fin forming body 20 is formed into a cylindrical shape. It can be stably held in the case 10.

(c)自動車の車体及びエンジンの振動が激しくなるときにも、フィン形成体20は、上述の回り止め構造及び抜け止め構造によって筒状ケース10に安定的に保持され、フィン形成体20を筒状ケース10に安定的に保持できる。 (c) The fin forming body 20 is stably held in the tubular case 10 by the above-described rotation preventing structure and retaining structure even when the vibration of the vehicle body and the engine of the automobile becomes severe, and the fin forming body 20 is kept in a tubular shape. It can be stably held in the case 10.

(d)抜け止め部材40は、フィン形成体20のフィン21に接合されず、該フィン形成体20を筒状ケース10の筒軸方向に保持して該フィン形成体20を抜け止めし、フィン形成体20の外方への脱落を確実に防止する。ここで、抜け止め部材40は、フィン形成体20の各フィン21に溶接等されて固定されるものに比して、各フィン21における板長手方向の変形を該抜け止め部材40との係わりによって拘束されることがない。これにより、フィン形成体20は、高温の排ガスに曝されることによる各フィン21の板長手方向の熱歪を抜け止め部材40の存在によって阻止されることなく、この熱歪に起因する大きな熱応力を抜け止め部材40との間に発生させることがなく、該抜け止め部材40によって安定的に保持される。 (d) The retaining member 40 is not joined to the fins 21 of the fin forming body 20, and holds the fin forming body 20 in the cylinder axis direction of the cylindrical case 10 to prevent the fin forming body 20 from coming off. The formation body 20 is reliably prevented from falling out. Here, the retainer member 40 is deformed in the plate longitudinal direction of each fin 21 by the relationship with the retainer member 40 as compared with a member that is fixed to each fin 21 of the fin forming body 20 by welding or the like. You will not be bound. As a result, the fin forming body 20 does not prevent thermal strain in the plate longitudinal direction of each fin 21 due to exposure to high-temperature exhaust gas due to the presence of the retaining member 40, and a large amount of heat due to this thermal strain. The stress is not generated between the retaining member 40 and the retaining member 40, and the retaining member 40 stably holds the stress.

(e)フィン形成体20は、中心部22が有する回り止め中心孔24に回り止め状態で係合する回り止め軸50と抜け止め部材40に設けた回り止め孔44との係合構造を介して、筒状ケース10の内部に回り止めされる。これにより、フィン形成体20の外周部の側には、筒状ケース10の内周面との間に回り止め等のための溶接部、係合部、加締め部等の固定構造を設ける必要がないものになる。従って、筒状ケース10における排気通路11の内部で高温の排ガスに曝されるフィン形成体20の各フィン21が板長手方向に沿う外方端に向けて熱膨張しても、各フィン21の外方端であるフィン形成体20の外周部に及ぶ上述の熱膨張によって、それらの固定構造の破壊、変形等を招くおそれがないものになる。フィン形成体20においてそれらの固定構造を具備していない外周部は上述の熱膨張によって筒状ケース10の内周面との間で単にそれらの圧接状態を高めることがあったとしても、該筒状ケース10の内周面との間にそれらの熱歪に起因する破壊に至るほどの大きな熱応力を生ずることがない。即ち、フィン形成体20は、筒状ケース10に安定的に保持される。 (e) The fin forming body 20 has an engagement structure of a detent shaft 50 that engages with a detent center hole 24 of the center portion 22 in a detent state and an anti-rotation hole 44 provided in the retaining member 40. Then, it is prevented from rotating inside the tubular case 10. Accordingly, it is necessary to provide a fixing structure such as a welded portion, an engaging portion, a crimped portion, etc. for preventing rotation from the inner peripheral surface of the tubular case 10 on the outer peripheral side of the fin forming body 20. There will be no. Therefore, even if each fin 21 of the fin forming body 20 exposed to high temperature exhaust gas inside the exhaust passage 11 in the tubular case 10 thermally expands toward the outer end along the plate longitudinal direction, Due to the above-mentioned thermal expansion that extends to the outer peripheral portion of the fin forming body 20 that is the outer end, there is no risk of causing destruction or deformation of those fixing structures. Even if the outer peripheral portion of the fin forming body 20 that does not have such a fixing structure may simply increase the pressure contact state between the outer peripheral portion and the inner peripheral surface of the cylindrical case 10 due to the above-mentioned thermal expansion, There is no occurrence of a large thermal stress between the inner peripheral surface of the cylindrical case 10 and the inner peripheral surface of the cylindrical case 10 due to the thermal strain thereof. That is, the fin forming body 20 is stably held by the tubular case 10.

即ち、フィン形成体20の中心部22が有する回り止め中心孔24に回り止め状態で係合する回り止め軸50を有するものとし、この回り止め軸50を抜け止め部材40に設けた回り止め孔44に回り止め状態で固定するものとしたから、回り止めのためのいずれの部材も外気によって冷却されることなく、排気通路11の内部で高温の排ガスにのみ接して加熱され、いずれの部材も互いに均等に近い状態で熱膨張するものとなって、それらの部材に生ずる熱歪は小さい。また、フィン形成体20における各フィン21の長手方向に沿う外方端への熱膨張が筒状ケース10の存在によって拘束されたとしても、その熱膨張は各フィン21の長手方向に沿う内方(フィン形成体20の中心部22)に向かうのみであり、フィン形成体20の中心部22が有する回り止め中心孔24に係合された回り止め軸50をその中心に向けて圧縮するものになって該回り止め軸50をより強く拘束する。よって、フィン形成体20を筒状ケース10の内部に安定的に保持できる。 That is, the detent shaft 50 that engages in a detent state with the detent center hole 24 of the central portion 22 of the fin forming body 20 is provided, and this detent shaft 50 is provided in the retaining member 40. Since it is fixed to 44 in a non-rotating state, none of the members for the anti-rotation are heated by contacting only high-temperature exhaust gas inside the exhaust passage 11 without being cooled by the outside air. Thermal expansion occurs in a state where they are almost equal to each other, and the thermal strain generated in those members is small. Further, even if the thermal expansion toward the outer end along the longitudinal direction of each fin 21 in the fin forming body 20 is restrained by the presence of the tubular case 10, the thermal expansion is inward along the longitudinal direction of each fin 21. The one that only goes toward (the central portion 22 of the fin forming body 20) and compresses the detent shaft 50 engaged with the detent center hole 24 of the central portion 22 of the fin forming body 20 toward the center thereof. As a result, the detent shaft 50 is restrained more strongly. Therefore, the fin forming body 20 can be stably held inside the cylindrical case 10.

(f)尚、フィン形成体20は、各フィン21の板長手方向の中間部に、熱歪吸収用の曲がり部21Rを備えることもできる。 (f) The fin forming body 20 may be provided with a bent portion 21R for absorbing thermal strain at an intermediate portion of each fin 21 in the plate longitudinal direction.

この場合には、高温の排ガスに曝されるフィン形成体20における各フィン21の熱歪が、当該フィン21の中間部に備えた曲がり部21Rの熱的変形によって吸収され、筒状ケース10に及びにくくし、筒状ケース10に大きな熱応力を発生させず、筒状ケースを破壊させることがないから、フィン形成体20を筒状ケース10に安定的に保持できる。 In this case, the thermal strain of each fin 21 in the fin forming body 20 exposed to the high-temperature exhaust gas is absorbed by the thermal deformation of the bent portion 21R provided in the intermediate portion of the fin 21, and the tubular case 10 is accommodated. The fin-shaped body 20 can be stably held in the tubular case 10 because it does not cause a large thermal stress in the tubular case 10 and the tubular case is not destroyed.

また、車体及びエンジンの激しい振動に起因してフィン形成体20の各フィン21に生ずる振動による破壊は、当該フィン21の板厚を厚肉の例えば0.8乃至3mmとし、フィン形成体20の強度を向上させることによって回避できるから、フィン形成体20を筒状ケース10に安定的に保持できる。 Further, when the fins 21 of the fin forming body 20 are broken due to vibrations caused by violent vibrations of the vehicle body and the engine, the plate thickness of the fins 21 is increased to 0.8 to 3 mm, and the strength of the fin forming body 20 is reduced. Since it can be avoided by improving it, the fin forming body 20 can be stably held in the tubular case 10.

抜け止め部材40が前述(d)の如くに、フィン形成体20の各フィン21の板長手方向の変形を拘束しない構造は、上述(f)の各フィン21に備えた曲がり部21Rによる各フィン21の熱歪の吸収効果を阻害しないという効果を奏する。 The structure in which the retaining member 40 does not restrain the deformation of each fin 21 of the fin forming body 20 in the plate longitudinal direction as described in (d) above has a structure in which the fins formed by the bent portions 21R provided in each fin 21 in (f) above are provided. The effect of not disturbing the thermal strain absorption effect of 21 is exerted.

(g)前記筒状ケース10の内部に、該筒状ケース10の排気通路11に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体20が配置される。触媒を担持する、筒状ケース10の全長に渡る内周面積、及び全フィン形成体20の合計表面積を増大化し、触媒メタル担体1の浄化性能を向上できる。 (g) Inside the tubular case 10, a plurality of fin forming bodies 20 are arranged in order from one end side along the exhaust passage 11 of the tubular case 10 toward the other end side. The inner peripheral area over the entire length of the cylindrical case 10 supporting the catalyst and the total surface area of all the fin forming bodies 20 can be increased, and the purification performance of the catalyst metal carrier 1 can be improved.

(h)前記フィン形成体20が、多数個の板状のフィン21が一体をなすように削り出された一体物からなるものとすることにより、各フィン21を例えば厚肉の板厚0.8乃至3mm、より好適には1乃至2mmの板状とし、フィン形成体20の耐熱強度、耐振動強度等を確保し、触媒メタル担体の耐久性を容易に確保できる。 (h) Since the fin forming body 20 is formed of an integrated body in which a large number of plate-shaped fins 21 are machined so as to be integrated, each fin 21 is, for example, a thick plate thickness 0.8 to The plate-like member having a thickness of 3 mm, more preferably 1 to 2 mm is used, and the heat resistance and vibration resistance of the fin forming body 20 can be secured, and the durability of the catalyst metal carrier can be easily secured.

尚、触媒メタル担体1にあっては、排気下流側の抜け止め部材40に設けた回り止め孔44に固定される回り止め軸50の排気上流側に臨む端部に設けた中心キャップ70を、排気上流側の抜け止め手段として機能させることもできる。このとき、中心キャップ70は、回り止め軸50の排気上流側に臨む端部に一体形成され、又は溶接止め等されて設けられ、フィン形成体20における中心部22の中心孔24よりも大外径の傘状体71を備える。この中心キャップ70付きの回り止め軸50が相並ぶフィン形成体20における中心部22の中心孔24に排気上流側から挿入され、該中心キャップ70が排気上流側のフィン形成体20に添設されるとき、排気下流側のフィン形成体20から外方に突出した該回り止め軸50の端部が抜け止め部材40の回り止め孔44に係合し、この抜け止め部材40に回り止め孔44と回り止め軸50の外周面とがTIG溶接等で溶接されて固定される。これにより、排気上流側に位置する中心キャップ70は、回り止め軸50、ひいては排気下流側に位置する抜け止め部材40の取付部43を介して筒状ケース10の内周面に支持され、排気上流側の抜け止め手段になる。 In the catalyst metal carrier 1, a center cap 70 provided at an end portion of the detent shaft 50 fixed to a detent hole 44 provided in the exhaust prevention member 40 on the exhaust downstream side facing the exhaust upstream side, It can also function as a retaining means on the upstream side of the exhaust gas. At this time, the center cap 70 is integrally formed at the end of the rotation stopper shaft 50 facing the exhaust gas upstream side, or is provided by welding or the like, and is larger than the center hole 24 of the center portion 22 of the fin forming body 20. An umbrella-shaped body 71 having a diameter is provided. The detent shafts 50 with the central cap 70 are inserted into the central hole 24 of the central portion 22 of the fin forming body 20 arranged side by side from the exhaust upstream side, and the central cap 70 is attached to the fin forming body 20 on the exhaust upstream side. At this time, the end portion of the detent shaft 50 protruding outward from the fin forming body 20 on the exhaust downstream side engages with the detent hole 44 of the retaining member 40, and the retaining hole 44 is attached to the retaining member 40. The outer peripheral surface of the rotation preventing shaft 50 is welded and fixed by TIG welding or the like. As a result, the center cap 70 located on the upstream side of the exhaust gas is supported on the inner peripheral surface of the tubular case 10 via the whirl-stop shaft 50 and, by extension, the mounting portion 43 of the retaining member 40 located on the downstream side of the exhaust gas. It serves as a retaining means on the upstream side.

しかるに、触媒メタル担体1にあっては、排気下流側(又は排気上流側)の抜け止め部材40に設けた回り止め孔44に固定される回り止め軸50の排気上流側(又は排気下流側)に臨む端部と、最も排気上流側(又は排気下流側)に位置するフィン形成体20における中心部22の中心孔24とをTIG溶接等により固定し、この回り止め軸50とフィン形成体20の中心孔24との固定部を、排気上流側(又は排気下流側)の抜け止め手段として機能させることもできる。これにより、最も排気上流側(又は排気下流側)に位置するフィン形成体20の中心孔24と、回り止め軸50との固定部は、回り止め軸50、ひいては排気下流側(又は排気上流側)に位置する抜け止め部材40の取付部43を介して筒状ケース10の内周面に支持され、排気上流側(又は排気下流側)の抜け止め手段になる。 However, in the catalyst metal carrier 1, the exhaust upstream side (or exhaust downstream side) of the detent shaft 50 fixed to the detent hole 44 provided in the retaining member 40 on the exhaust downstream side (or exhaust upstream side). And the center hole 24 of the central portion 22 of the fin forming body 20 located on the most upstream side (or exhaust downstream side) of the exhaust gas are fixed by TIG welding or the like, and the detent shaft 50 and the fin forming body 20 are fixed. It is also possible to make the fixed portion of the central hole 24 of the above-mentioned fixed portion function as a retaining means on the exhaust upstream side (or the exhaust downstream side). As a result, the fixing portion of the rotation stop shaft 50 with the center hole 24 of the fin forming body 20 located on the most upstream side (or exhaust downstream side) of the exhaust gas is fixed to the rotation stop shaft 50, and thus to the exhaust downstream side (or exhaust upstream side). ) Is supported by the inner peripheral surface of the cylindrical case 10 via the attachment portion 43 of the retaining member 40 located at (), and serves as retaining means on the exhaust upstream side (or exhaust downstream side).

図8に示した触媒メタル担体2が、図1に示した触媒メタル担体1と異なる点は、図9に示したフィン形成体20が用いられ、このフィン形成体20の各フィン21に、1個以上の突片25を備えたことにある。各フィン21の突片25は、各該フィン21の板幅方向の全域に渡って設けられ、フィン形成体20において触媒を担持する合計表面積を増大化し、触媒メタル担体2の浄化性能を向上するものになる。 The catalytic metal carrier 2 shown in FIG. 8 is different from the catalytic metal carrier 1 shown in FIG. 1 in that the fin forming body 20 shown in FIG. 9 is used. This is because it has more than one projecting piece 25. The protrusions 25 of each fin 21 are provided over the entire area of each fin 21 in the plate width direction, and increase the total surface area of the fin forming body 20 that supports the catalyst, and improve the purification performance of the catalyst metal carrier 2. It becomes a thing.

尚、本発明の触媒メタル担体にあっては、フィン形成体が複数枚の金属製の板を組合せた板組体からなるものであっても良く、板組体を構成する各板はプレス成形体からなるものとすることができる。これによれば、各フィンを例えば板厚0.8乃至3mm、より好適には1乃至2mmに板状とし、フィン形成体の耐熱強度、耐振動強度等を確保し、触媒メタル担体の耐久性を容易に確保できる。 In the catalyst metal carrier of the present invention, the fin forming body may be composed of a plate assembly in which a plurality of metal plates are combined, and each plate constituting the plate assembly is press-molded. It can consist of a body. According to this, each fin is formed into a plate shape with a plate thickness of 0.8 to 3 mm, and more preferably 1 to 2 mm, and the heat resistance strength, vibration resistance strength, etc. of the fin-formed body are secured, and the durability of the catalyst metal carrier is facilitated. Can be secured.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、フィン形成体において、各フィンの板長手方向の中間部に設けられる曲がり部は、当該フィンの板長手方向の中間一か所に限らず、中間複数か所のそれぞれに設けられても良い。 Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like within the scope not departing from the gist of the present invention. Included in the present invention. For example, in the fin forming body, the bent portion provided at the intermediate portion in the plate longitudinal direction of each fin is not limited to one intermediate portion in the plate longitudinal direction of the fin, but may be provided at each of a plurality of intermediate portions. ..

また、フィン形成体において、各フィンに設けられる曲がり部は、当該曲がり部が板長手方向の局部位置で他の位置に比して異なる曲率部分として形成されるものに限らず、当該フィンを板長手方向の概ね全長に渡って例えばC字状又はS字状等に湾曲して形成されるものでも良い。 Further, in the fin forming body, the bent portion provided in each fin is not limited to one in which the bent portion is formed as a different curvature portion at a local position in the plate longitudinal direction compared to other positions, and It may be formed by being curved in a C-shape or an S-shape over substantially the entire length in the longitudinal direction.

また、フィン形成体の中心部に有する回り止め軸は、フィン形成体と抜け止め部材の両方と周方向で結合される状態で、フィン形成体と抜け止め部材の少なくとも一方に軸方向で抜け止め可能に結合されるものであれば良い。 In addition, the whirl-stop shaft provided at the center of the fin forming body is axially attached to at least one of the fin forming body and the retaining member while being axially coupled to both the fin forming body and the retaining member. Anything that can be combined is possible.

回り止め軸とフィン形成体の周方向における結合構造は、回り止め軸をフィン形成体の中心部に一体的に成形する構造、回り止め軸をフィン形成体の中心部に設けた回り止め中心孔に加締め止めする構造、回り止め軸をフィン形成体の中心部に設けた異形状回り止め中心孔に係入する構造等を採用できる。 The structure in which the whirl-stop shaft and the fin-formed body are circumferentially coupled is a structure in which the whirl-stop shaft is integrally molded in the central portion of the fin-formed body, and the whirl-stop central hole provided in the central portion of the fin-formed body It is also possible to adopt a structure in which the caulking is stopped, a structure in which the anti-rotation shaft is engaged with a different-shaped anti-rotation central hole provided in the central portion of the fin forming body, and the like.

回り止め軸と抜け止め部材の周方向における一体結合構造は、回り止め軸を抜け止め部材の中心部に設けた回り止め孔に溶接止め又は加締め止めする構造、回り止め軸を抜け止め部材の中心部に設けた異形状回り止め孔に係入する構造等を採用できる。 The structure in which the detent shaft and the retaining member are integrally coupled in the circumferential direction includes a structure in which the detent shaft is welded or caulked in a detent hole provided in the center of the retaining member, It is possible to adopt a structure or the like that engages with the non-rotating hole having a different shape provided at the center.

回り止め軸とフィン形成体の軸方向における結合構造は、回り止め軸をフィン形成体の中心部に一体的に成形する構造、回り止め軸をフィン形成体の中心部に設けた回り止め中心孔に加締め止めする構造等を採用できる。 The coupling structure in the axial direction of the whirl-stop shaft and the fin forming body is a structure in which the whirl-stop shaft is integrally formed in the center of the fin forming body, and the whirl-stop center hole provided in the center of the fin forming body. It is possible to adopt a structure such as crimping.

回り止め軸と抜け止め部材の軸方向における一体結合構造は、回り止め軸を抜け止め部材の中心部に設けた回り止め孔に溶接止め又は加締め止めする構造、回り止め軸を抜け止め部材の中心部に設けた一端開口、他端閉塞(又は他端窄まり状)の異形状回り止め孔に抜け止め状態で係入する構造等を採用できる。 The structure in which the whirl-stop shaft and the retaining member are integrally coupled in the axial direction includes a structure in which the whirl-stop shaft is welded or caulked to a retainer hole provided at the center of the retainer member, It is possible to employ a structure or the like that is engaged in a non-rotating hole having an opening of one end and a closed end of the other end (or a closed end of the other end) provided in the central portion in a retaining state.

また、触媒メタル担体を構成する筒状ケース、フィン形成体、及び抜け止め部材等の構成材料は、耐熱性に優れるものであれば特に限定されない。 In addition, constituent materials such as the cylindrical case, the fin forming body, and the retaining member that constitute the catalyst metal carrier are not particularly limited as long as they have excellent heat resistance.

本発明によれば、過酷な使用環境下で高い耐久性を確保できる触媒メタル担体を提供することができる。 According to the present invention, it is possible to provide a catalyst metal carrier capable of ensuring high durability under a severe use environment.

1、2 触媒メタル担体
10 筒状ケース
11 排気通路
12 小排気流路
20 フィン形成体
21 フィン
21R 曲がり部
22 中心部
24 回り止め中心孔
40 抜け止め部材(抜け止め手段)
44 回り止め孔
50 回り止め軸
1, 2 Catalyst Metal Carrier 10 Cylindrical Case 11 Exhaust Passage 12 Small Exhaust Passage 20 Fin Forming Body 21 Fin 21R Bent Part 22 Central Part 24 Rotation Stop Central Hole 40 Detachment Member (Detachment Means)
44 Non-rotating hole 50 Non-rotating shaft

Claims (4)

筒状ケースが形成する排気通路の内部に金属製のフィン形成体が配置されてなる触媒メタル担体であって、
フィン形成体が多数個の板状のフィンを有し、各フィンがその板長手方向で筒状ケースの内周面に交差するように排気通路内に延在され、相隣るフィンによって該排気通路内に多数の小排気流路を区画し、
フィン形成体の筒状ケースからの脱落を防止する抜け止め手段が、該フィン形成体のフィンに接合されることなく、該フィン形成体を該筒状ケースの筒軸方向に保持する状態で、該筒状ケースに支持され、
フィン形成体の中心部で、該フィン形成体と該フィン形成体の周方向に回り止め状態で結合された回り止め軸を有し、この回り止め軸が、筒状ケースに支持された抜け止め手段に回り止め状態で固定されてなる触媒メタル担体。
A catalyst metal carrier in which a metal fin forming body is arranged inside an exhaust passage formed by a cylindrical case,
The fin forming body has a large number of plate-shaped fins, and each fin extends in the exhaust passage so as to intersect the inner peripheral surface of the cylindrical case in the plate longitudinal direction, and the fins adjacent to each other exhaust the exhaust gas. Dividing a number of small exhaust passages into the passage,
In a state where the retaining means for preventing the fin forming body from falling out of the tubular case holds the fin forming body in the tubular axis direction of the tubular case without being joined to the fins of the fin forming body, Supported by the tubular case,
The fin forming body has a detent shaft coupled to the fin forming body in a detent state in the circumferential direction of the fin forming body at a central portion of the fin forming body, and the detent shaft is supported by the tubular case to prevent the disengagement. A catalyst metal carrier fixed to the means in a non-rotating state.
前記筒状ケースの内部に、該筒状ケースの排気通路に沿う一端側から他端側に向けて順に並ぶ複数個のフィン形成体が配置される請求項1に記載の触媒メタル担体。 The catalyst metal carrier according to claim 1, wherein a plurality of fin forming bodies arranged in order from one end side to the other end side along the exhaust passage of the tubular case are arranged inside the tubular case. 前記フィン形成体が多数個の板状のフィンが一体をなすように削り出された一体物からなる請求項1又は2に記載の触媒メタル担体。 The catalyst metal carrier according to claim 1 or 2, wherein the fin-formed body is an integrally formed body in which a large number of plate-shaped fins are machined so as to be integrated. 前記フィン形成体が複数枚の金属製の板を組合せた板組体からなる請求項1又は2に記載の触媒メタル担体。 The catalyst metal carrier according to claim 1 or 2, wherein the fin forming body is a plate assembly formed by combining a plurality of metal plates.
JP2016186337A 2016-09-23 2016-09-23 Catalytic metal carrier Active JP6711729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186337A JP6711729B2 (en) 2016-09-23 2016-09-23 Catalytic metal carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186337A JP6711729B2 (en) 2016-09-23 2016-09-23 Catalytic metal carrier

Publications (2)

Publication Number Publication Date
JP2018047441A JP2018047441A (en) 2018-03-29
JP6711729B2 true JP6711729B2 (en) 2020-06-17

Family

ID=61765744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186337A Active JP6711729B2 (en) 2016-09-23 2016-09-23 Catalytic metal carrier

Country Status (1)

Country Link
JP (1) JP6711729B2 (en)

Also Published As

Publication number Publication date
JP2018047441A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
CN107429610B (en) Turbine shell
JPH04180838A (en) Metal carrier for exhaust gas catalyst of racetrack type car excellent in heat-resistant stress and heat-resistant fatigue characteristics
US7258842B2 (en) Catalyst assembly with a fixed catalyst carrier body
JP6087679B2 (en) Engine muffler
BRPI0616386A2 (en) beehive shaped body with a strong weld zone on the end side
JP2004509264A (en) Honeycomb body with a jacket tube with slits
JP3845873B2 (en) Ceramic catalytic converter
JP6711729B2 (en) Catalytic metal carrier
US9115627B2 (en) Multiple skewed channel bricks mounted in opposing clocking directions
RU2266412C2 (en) Catalyst converter carrier and catalyst converter with such carrier
JP6832106B2 (en) Catalytic metal carrier
ES2279961T3 (en) CATALYZER SUPPORT BODY WITH WAVE ENVELOPE AND PROCEDURE FOR MANUFACTURING.
JP4999715B2 (en) Metal catalyst carrier with slit holes
JP6862135B2 (en) Catalytic metal carrier
JP4767236B2 (en) Exhaust gas purification device for internal combustion engine
US20040156761A1 (en) Honeycomb assembly having a honeycomb body with an expansion-compensating mounting, especially for an exhaust-gas catalytic converter
JP2013213491A (en) Double pipe exhaust manifold
JP6813467B2 (en) Catalytic converter
JP6397737B2 (en) Catalytic converter
JP3271716B2 (en) Metal carrier for exhaust gas purification catalyst
JP2005313084A (en) Catalyst carrier made of metal
JP2019199851A (en) Exhaust emission control device
JP7381406B2 (en) catalytic converter
JP6170858B2 (en) Turbine housing
JP7274872B2 (en) Bracket and mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200528

R150 Certificate of patent or registration of utility model

Ref document number: 6711729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250