JP6859858B2 - Relative reflectance measuring device using an integrating sphere and its calibration method - Google Patents

Relative reflectance measuring device using an integrating sphere and its calibration method Download PDF

Info

Publication number
JP6859858B2
JP6859858B2 JP2017113313A JP2017113313A JP6859858B2 JP 6859858 B2 JP6859858 B2 JP 6859858B2 JP 2017113313 A JP2017113313 A JP 2017113313A JP 2017113313 A JP2017113313 A JP 2017113313A JP 6859858 B2 JP6859858 B2 JP 6859858B2
Authority
JP
Japan
Prior art keywords
window
integrating sphere
light
sample
relative reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017113313A
Other languages
Japanese (ja)
Other versions
JP2018205231A (en
Inventor
達治 大手山
達治 大手山
Original Assignee
一般財団法人雑賀技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人雑賀技術研究所 filed Critical 一般財団法人雑賀技術研究所
Priority to JP2017113313A priority Critical patent/JP6859858B2/en
Publication of JP2018205231A publication Critical patent/JP2018205231A/en
Application granted granted Critical
Publication of JP6859858B2 publication Critical patent/JP6859858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、積分球を用いて基準試料に対する測定試料の相対反射率を求める相対反射率測定装置に関する。 The present invention relates to a relative reflectance measuring device for obtaining the relative reflectance of a measurement sample with respect to a reference sample using an integrating sphere.

積分球は、中空の球であり、その球状の内壁面が、硫酸バリウム又は酸化チタン等の白色塗料を塗布した白色拡散反射面で構成され、球内に設置した光源の全光束や、球外から球内に入射された光束を多重反射させて空間的に積分し均一にして測光する、試料からの透過光又は反射光を全て取り込むための光学部品である。
このような積分球を用いた相対反射率測定装置は、積分球(I)の光源用窓(Wr)に対向する試料用窓(Wb)の外方に基準試料(RS)と測定試料(D)を交互にセットし、測光用窓(Wm)から取り出した測定光から反射光量を測定し、基準試料(RS)の反射光量に対する測定試料(D)の反射光量の比から相対反射率を求めるものである(例えば、特許文献1の第2図、非特許文献1及び2参照)。
The integrating sphere is a hollow sphere, and the inner wall surface of the sphere is composed of a white diffuse reflection surface coated with a white paint such as barium sulfate or titanium oxide. It is an optical component for taking in all the transmitted light or reflected light from a sample, which multi-reflects the light flux incident on the sphere, spatially integrates it, and measures the light uniformly.
A relative reflectance measuring device using such an integrating sphere has a reference sample (RS) and a measurement sample (D) outside the sample window (Wb) facing the light source window (Wr) of the integrating sphere (I). ) Are alternately set, the amount of reflected light is measured from the measured light taken out from the light measuring window (Wm), and the relative reflectance is obtained from the ratio of the amount of reflected light of the measurement sample (D) to the amount of reflected light of the reference sample (RS). (See, for example, FIG. 2 of Patent Document 1, Non-Patent Documents 1 and 2).

特開昭61−225620号公報Japanese Unexamined Patent Publication No. 61-225620

“積分球”、UV TALK LETTER vol.5(2010)、株式会社島津製作所、[online]、[平成29年5月15日検索]、インターネット<URL:http://www.an.shimadzu.co.jp/uv/support/lib/uvtalk/uvtalk5/basic.htm>"Integrating sphere", UV TALK LETTER vol.5 (2010), Shimadzu Corporation, [online], [Search on May 15, 2017], Internet <URL: http://www.an.shimadzu.co .jp / uv / support / lib / uvtalk / uvtalk5 / basic.htm > “固体試料の反射測定”、UV TALK LETTER vol.12(2013)、株式会社島津製作所、[online]、[平成29年5月15日検索]、インターネット<URL:http://www.an.shimadzu.co.jp/uv/support/lib/uvtalk/uvtalk12/basic.htm>"Measurement of reflection of solid samples", UV TALK LETTER vol.12 (2013), Shimadzu Corporation, [online], [Search on May 15, 2017], Internet <URL: http: //www.an. shimadzu.co.jp/uv/support/lib/uvtalk/uvtalk12/basic.htm >

従来の積分球を用いた相対反射率測定装置の構成では、試料用窓の外方にセットする基準試料にごみや汚れが付着すると、参照光の測定精度が低下するので、参照光を基準にして求める相対反射率の測定精度が低下してしまう。特に現場で使用する際には基準試料にごみや汚れが付着しやすいので大きな問題となる。 In the configuration of the relative reflectance measuring device using the conventional integrating sphere, if dust or dirt adheres to the reference sample set on the outside of the sample window, the measurement accuracy of the reference light deteriorates, so the reference light is used as a reference. The measurement accuracy of the relative reflectance obtained is reduced. Especially when it is used in the field, it becomes a big problem because dust and dirt easily adhere to the reference sample.

そこで本発明が前述の状況に鑑み、解決しようとするところは、基準試料にごみや汚れが付着して参照光の測定精度が低下することがなく、長期間にわたって相対反射率の測定精度を高く維持することができ、特に現場での使い勝手が良い、積分球を用いた相対反射率測定装置及びその較正方法を提供する点にある。 Therefore, in view of the above-mentioned situation, the present invention tries to solve the problem by increasing the measurement accuracy of the relative reflectance for a long period of time without deteriorating the measurement accuracy of the reference light due to the adhesion of dust and dirt to the reference sample. The point is to provide a relative reflectance measuring device using an integrating sphere and a calibration method thereof, which can be maintained and is particularly easy to use in the field.

本発明に係る積分球を用いた相対反射率測定装置は、前記課題解決のために、積分球を用いて基準試料に対する測定試料の相対反射率を求める相対反射率測定装置であって、
前記積分球の外方に位置するシールド体を有し、
前記積分球は、
前記積分球の中心を通る一つの平面内に位置する、第1窓、第2窓及び第3窓の三つの窓備え、
前記シールド体は前記中心を通る、前記一つの平面に直交する軸である回動軸まわりに前記積分球を回動可能に支持し、
前記シールド体に対して前記積分球を前記回動軸まわりに所定角度回動させることにより、前記積分球の測定位置及び前記積分球の較正位置の切替えを行うことができ、
前記測定位置では、
前記第1窓が試料用窓、前記第2窓が測光用窓、前記第3窓が光源用窓であり
前記試料用窓の外方に前記測定試料をセットした状態で前記光源用窓から前記積分球内に光を入射させて前記測定試料に照射し、前記測光用窓から前記積分球の外部へ反射光を取り出し、
前記較正位置では、
前記第1窓が前記測光用窓、前記第2窓が光源用窓になるとともに、前記第3窓が前記シールド体により塞がれた状態になり、
前記光源用窓から前記積分球内に光を入射させて前記積分球の内壁面に照射し、前記内壁面を前記基準試料として前記測光用窓から前記積分球の外部へ参照光を取り出し、
前記反射光及び前記参照光から前記測定試料の相対反射率を求めることを特徴とする(請求項1)。
また、本発明に係る積分球を用いた相対反射率測定装置は、前記課題解決のために、積分球を用いて基準試料に対する測定試料の相対反射率を求める相対反射率測定装置であって、
前記積分球の外方に位置するシールド体を有し、
前記積分球は、
前記積分球の中心を通る一つの平面内に位置する、第1窓、第2窓及び第3窓の三つの窓を備え、
前記シールド体は、前記中心を通る、前記第2窓及び前記第3窓が線対称となる前記一つの平面に沿う軸である回動軸まわりに前記積分球を回動可能に支持し、
前記シールド体に対して前記積分球を前記回動軸まわりに180°回動させることにより、前記積分球の測定位置及び前記積分球の較正位置の切替えを行うことができ、
前記測定位置では、
前記第1窓が試料用窓、前記第2窓が測光用窓、前記第3窓が光源用窓であり
前記試料用窓の外方に前記測定試料をセットした状態で前記光源用窓から前記積分球内に光を入射させて前記測定試料に照射し、前記測光用窓から前記積分球の外部へ反射光を取り出し、
前記較正位置では、
前記第3窓が前記測光用窓、前記第2窓が光源用窓になるとともに、前記第1窓が前記シールド体により塞がれた状態になり、
前記光源用窓から前記積分球内に光を入射させて前記積分球の内壁面に照射し、前記内壁面を前記基準試料として前記測光用窓から前記積分球の外部へ参照光を取り出し、
前記反射光及び前記参照光から前記測定試料の相対反射率を求めることを特徴とする(請求項2)。
The relative reflectance measuring device using the integrating sphere according to the present invention is a relative reflectance measuring device for obtaining the relative reflectance of the measurement sample with respect to the reference sample using the integrating sphere in order to solve the above-mentioned problem.
It has a shield body located outside the integrating sphere and has a shield body.
The integrating sphere is
Located in one plane passing through the center of the integrating sphere, a first window, provided with three windows of the second window and the third window,
The shield body, through the center, the integrating sphere is supported rotatably around the rotation axis is an axis perpendicular to the one plane,
By rotating the integrating sphere around the rotation axis by a predetermined angle with respect to the shield body, it is possible to switch between the measurement position of the integrating sphere and the calibration position of the integrating sphere.
At the measurement position
The first window is the sample window, the second window is a window for photometric, the third window is a window for the light source,
With the measurement sample set outside the sample window, light is incident into the integrating sphere from the light source window to irradiate the measurement sample, and the light is reflected from the photometric window to the outside of the integrating sphere. Take out the light,
At the calibration position
The first window becomes the photometric window , the second window becomes the light source window, and the third window is closed by the shield body.
Light is incident into the integrating sphere from the light source window to irradiate the inner wall surface of the integrating sphere, and reference light is taken out from the photometric window to the outside of the integrating sphere using the inner wall surface as the reference sample.
The relative reflectance of the measurement sample is obtained from the reflected light and the reference light (claim 1).
Further, the relative reflectance measuring device using the integrating sphere according to the present invention is a relative reflectance measuring device for obtaining the relative reflectance of the measurement sample with respect to the reference sample using the integrating sphere in order to solve the above-mentioned problem.
It has a shield body located outside the integrating sphere and has a shield body.
The integrating sphere is
It has three windows, a first window, a second window, and a third window, located in one plane passing through the center of the integrating sphere.
The shield body rotatably supports the integrating sphere around a rotation axis that passes through the center and is an axis along the one plane in which the second window and the third window are line-symmetrical.
By rotating the integrating sphere 180 ° around the rotation axis with respect to the shield body, it is possible to switch between the measurement position of the integrating sphere and the calibration position of the integrating sphere.
At the measurement position
The first window is a sample window, the second window is a photometric window, and the third window is a light source window .
With the measurement sample set outside the sample window, light is incident into the integrating sphere from the light source window to irradiate the measurement sample, and the light is reflected from the photometric window to the outside of the integrating sphere. Take out the light,
At the calibration position
The third window becomes the photometric window, the second window becomes the light source window, and the first window is closed by the shield body.
Light is incident into the integrating sphere from the light source window to irradiate the inner wall surface of the integrating sphere, and reference light is taken out from the photometric window to the outside of the integrating sphere using the inner wall surface as the reference sample.
The relative reflectance of the measurement sample is obtained from the reflected light and the reference light (claim 2).

これらのような構成によれば、積分球の中心を通る一つの平面内に位置する、第1窓、第2窓及び第3窓の三つの窓を積分球に備え、積分球の測定位置から積分球を所定角度回動させた積分球の較正位置では、三つの窓の中の二つが測光用窓及び光源用窓になるとともに、残りの一つの窓が、シールド体により塞がれた状態になる。それにより、積分球の較正位置で、積分球の内壁面を基準試料として測光用窓から積分球の外部へ参照光を取り出すことができる。
したがって、試料用窓の外方に基準試料をセットした状態で参照光を得る従来の積分球を用いた相対反射率測定装置の構成のように、基準試料にごみや汚れが付着しないことから、参照光の測定精度が低下しない。
よって、基準試料の清掃等のメンテナンス、並びに基準試料の保管及び管理が不要でありながら、長期間にわたって相対反射率の測定精度を高く維持できるので、特に現場での使い勝手を大幅に向上できる。
According to these configurations, the integrating sphere is provided with three windows, the first window, the second window, and the third window, which are located in one plane passing through the center of the integrating sphere, and from the measurement position of the integrating sphere. At the calibration position of the integrating sphere in which the integrating sphere is rotated by a predetermined angle, two of the three windows become a metering window and a light source window, and the remaining one window is closed by a shield body. become. Thereby, at the calibration position of the integrating sphere, the reference light can be taken out from the photometric window to the outside of the integrating sphere using the inner wall surface of the integrating sphere as a reference sample.
Therefore, unlike the configuration of a conventional relative reflectance measuring device using an integrating sphere that obtains reference light with the reference sample set outside the sample window, dust and dirt do not adhere to the reference sample. The measurement accuracy of the reference light does not decrease.
Therefore, maintenance such as cleaning of the reference sample and storage and management of the reference sample are not required, and the measurement accuracy of the relative reflectance can be maintained high for a long period of time, so that the usability in the field can be significantly improved.

その上、試料用窓の外方に基準試料をセットする手間を省けるので作業性を向上できる。
その上さらに、積分球の較正位置で光源をオフにするだけで暗電流のみのデータを取得できる。
よって、積分球の較正位置で光源をオンにしたデータから光源をオフにしたデータを減算するだけでダーク補正した参照光を求めることができるので、参照光のダーク補正が容易になる。
その上、請求項に係る発明によれば、積分球の較正位置及び測定位置の切替えを、積分球を例えば90°程度回動させるだけで行えるので、相対反射率測定装置がよりコンパクトになる。
In addition, workability can be improved because it is possible to save the trouble of setting the reference sample on the outside of the sample window.
Furthermore, only dark current data can be obtained by simply turning off the light source at the calibration position of the integrating sphere.
Therefore, the dark-corrected reference light can be obtained only by subtracting the data with the light source turned off from the data with the light source turned on at the calibration position of the integrating sphere, so that the dark correction of the reference light becomes easy.
Further , according to the invention of claim 1 , since the calibration position and the measurement position of the integrating sphere can be switched only by rotating the integrating sphere by, for example, about 90 °, the relative reflectance measuring device becomes more compact. ..

さらに、前記積分球の較正位置で前記シールド体により塞がれる、前記三つの窓の中の一つの窓の外方に、較正部品を前記シールド体に埋め込んでなるのがより好ましい実施態様である(請求項)。
Further, it is a more preferable embodiment that the calibration component is embedded in the shield body outside one of the three windows, which is closed by the shield body at the calibration position of the integrating sphere. (Claim 3 ).

このような構成によれば、積分球の較正位置でシールド体により塞がれる窓の外方に、例えば硫酸バリウム又は酸化チタン等の白色塗料を塗布した較正部品を埋め込んでいることから、シールド体により塞がれる窓に入る光が較正部品に反射する。
よって、参照光がシールド体の影響を受けないので、より良い参照光を得ることができる。
According to such a configuration, since a calibration component coated with a white paint such as barium sulfate or titanium oxide is embedded in the outside of the window blocked by the shield body at the calibration position of the integrating sphere, the shield body is formed. Light entering the window blocked by is reflected by the calibration component.
Therefore, since the reference light is not affected by the shield body, a better reference light can be obtained.

さらにまた、前記積分球と一体に回動し、前記シールド体の外部から前記積分球を前記回動軸まわりに回動させる回動操作杆を備えてなるのがより一層好ましい実施態様である(請求項)。
Furthermore, it is an even more preferable embodiment to include a rotation operation stick that rotates integrally with the integrating sphere and rotates the integrating sphere around the rotation axis from the outside of the shield body (a further preferable embodiment). Claim 4 ).

このような構成によれば、回動操作杆を回動させる操作により積分球の較正位置及び測定位置の切替えを容易に行えるので操作性を向上できる。 According to such a configuration, the calibration position and the measurement position of the integrating sphere can be easily switched by the operation of rotating the rotation operation stick, so that the operability can be improved.

本発明に係る積分球を用いた相対反射率測定装置の較正方法は、請求項1〜の何れか1項に記載の積分球を用いた相対反射率測定装置を用い、
前記積分球の較正位置で前記積分球の内壁面を前記基準試料として前記測光用窓から前記積分球の外部へ取り出した参照光により、前記積分球の測定位置で前記測光用窓から前記積分球の外部へ取り出した反射光を較正することを特徴とする(請求項)。
As a method for calibrating the relative reflectance measuring device using the integrating sphere according to the present invention, the relative reflectance measuring device using the integrating sphere according to any one of claims 1 to 4 is used.
With the reference light taken out from the photometric window to the outside of the integrating sphere using the inner wall surface of the integrating sphere as the reference sample at the calibration position of the integrating sphere, the integrating sphere is used from the photometric window at the measurement position of the integrating sphere. It is characterized in that the reflected light taken out of the above is calibrated (claim 5 ).

このような構成によれば、前記相対反射率測定装置を用い、積分球の較正位置で積分球の内壁面を基準試料として測光用窓から前記積分球の外部へ取り出した参照光により、積分球の測定位置で測光用窓から積分球の外部へ取り出した反射光を較正するので、前記相対反射率測定装置と同様の作用効果を奏する。 According to such a configuration, the integrating sphere is used by the reference light taken out from the photometric window from the photometric window using the inner wall surface of the integrating sphere as a reference sample at the calibration position of the integrating sphere using the relative reflectance measuring device. Since the reflected light taken out from the light measuring window to the outside of the integrating sphere is calibrated at the measurement position of, the same effect as that of the relative reflectance measuring device is obtained.

以上のように、本発明に係る積分球を用いた相対反射率測定装置及びその較正方法によれば、主に以下に示す効果を奏する。
(1)積分球の較正位置で、積分球の内壁面を基準試料として測光用窓から積分球の外部へ参照光を取り出すことができるので、試料用窓の外方に基準試料をセットした状態で参照光を得る従来の積分球を用いた相対反射率測定装置の構成のように、基準試料にごみや汚れが付着しないことから、参照光の測定精度が低下しない。
(2)基準試料の清掃等のメンテナンス、並びに基準試料の保管及び管理が不要でありながら、長期間にわたって相対反射率の測定精度を高く維持できるので、特に現場での使い勝手を大幅に向上できる。
(3)試料用窓の外方に基準試料をセットする手間を省けるので作業性を向上できる。
(4)積分球の較正位置で光源をオフにするだけで暗電流のみのデータを取得できることから、積分球の較正位置で光源をオンにしたデータから光源をオフにしたデータを減算するだけでダーク補正した参照光を求めることができるので、参照光のダーク補正が容易になる。
As described above, the relative reflectance measuring device using the integrating sphere and the calibration method thereof according to the present invention mainly exhibit the following effects.
(1) At the calibration position of the integrating sphere, the reference light can be taken out from the photometric window to the outside of the integrating sphere using the inner wall surface of the integrating sphere as the reference sample, so the reference sample is set outside the sample window. Since dust and dirt do not adhere to the reference sample as in the configuration of the relative reflectance measuring device using the conventional integrating sphere that obtains the reference light in the above, the measurement accuracy of the reference light does not deteriorate.
(2) Since maintenance such as cleaning of the reference sample and storage and management of the reference sample are not required, the measurement accuracy of the relative reflectance can be maintained high for a long period of time, so that the usability in the field can be greatly improved.
(3) Workability can be improved because it is possible to save the trouble of setting the reference sample on the outside of the sample window.
(4) Since only dark current data can be obtained by simply turning off the light source at the calibration position of the integrating sphere, simply subtracting the data with the light source turned off from the data with the light source turned on at the calibration position of the integrating sphere. Since the dark-corrected reference light can be obtained, the dark-corrected reference light can be easily dark-corrected.

本発明の実施の形態に係る相対反射率測定装置の斜視図である。It is a perspective view of the relative reflectance measuring apparatus which concerns on embodiment of this invention. 同じく背面図である。It is also a rear view. 下斜め後方から見た部分横断面斜視図である。It is a partial cross-sectional perspective view seen from the lower diagonal rear view. 積分球の測定位置を示す部分縦断面正面図である。It is a partial vertical sectional front view which shows the measurement position of the integrating sphere. 積分球の較正位置を示す部分縦断面正面図である。It is a partial vertical sectional front view which shows the calibration position of the integrating sphere. 積分球の較正位置でシールド体により塞がれる窓の外方に、較正部品をシールド体に埋め込んだ例を示す部分縦断面正面図である。It is a partial vertical sectional front view which shows the example which embeds the calibration component in the shield body outside the window which is closed by the shield body at the calibration position of the integrating sphere. 積分球の中心を通る一つの平面内に位置する、第1窓、第2窓及び第3窓の三つの窓の配置を示す縦断面正面図である。It is a vertical cross-sectional front view which shows the arrangement of three windows of a 1st window, a 2nd window and a 3rd window located in one plane passing through the center of an integrating sphere. 積分球の回動軸の変形例を示す縦断面正面図であり、(a)は積分球の測定位置を、(b)は積分球の較正位置を示している。It is a vertical cross-sectional front view which shows the modification of the rotation axis of the integrating sphere, (a) shows the measurement position of the integrating sphere, and (b) shows the calibration position of the integrating sphere.

次に本発明の実施の形態を添付図面に基づき詳細に説明する。 Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

<積分球を用いた相対反射率測定装置>
図1の斜視図、図2の背面図、図3の部分横断面斜視図、及び図4の部分縦断面正面図に示すように、本発明の実施の形態に係る積分球ISを用いた相対反射率測定装置Aは、積分球ISを用いて基準試料に対する測定試料MSの相対反射率を求めるものである。
相対反射率測定装置Aは、積分球ISの他、光源4、及び光源4からの光を集光する集光レンズ5、並びに分光器6等を備える。
<Relative reflectance measuring device using an integrating sphere>
As shown in the perspective view of FIG. 1, the rear view of FIG. 2, the partial cross-sectional perspective view of FIG. 3, and the partial vertical cross-sectional front view of FIG. 4, the relative using the integrating sphere IS according to the embodiment of the present invention is used. The reflectance measuring device A obtains the relative reflectance of the measured sample MS with respect to the reference sample by using the integrating sphere IS.
In addition to the integrating sphere IS, the relative reflectance measuring device A includes a light source 4, a condensing lens 5 that collects light from the light source 4, a spectroscope 6, and the like.

<積分球>
積分球ISは、球状の内壁面IWが、硫酸バリウム又は酸化チタン等の白色塗料を塗布した白色拡散反射面で構成され、積分球ISの中心を通る一つの平面内に位置する、第1窓W1、第2窓W2及び第3窓W3の三つの窓を備える。すなわち、第1窓W1、第2窓W2及び第3窓W3の中心は、積分球ISの中心を通る一つの平面内に位置する。
ここで、積分球ISの中心と第1窓W1の中心を結ぶ線分及び積分球ISの中心と第2窓W2の中心を結ぶ線分との成す角度は90°、積分球ISの中心と第2窓W2の中心を結ぶ線分及び積分球ISの中心と第3窓W3の中心を結ぶ線分との成す角度は90°である。
積分球ISは、外方のシールド体Sにより、前記一つの平面に直交する、積分球ISの中心を通る回動軸AR1まわりに回動可能に支持される。
<Integrating sphere>
In the integrating sphere IS, the spherical inner wall surface IW is composed of a white diffuse reflecting surface coated with a white paint such as barium sulfate or titanium oxide, and is located in one plane passing through the center of the integrating sphere IS. It is provided with three windows, W1, a second window W2, and a third window W3. That is, the centers of the first window W1, the second window W2, and the third window W3 are located in one plane passing through the center of the integrating sphere IS.
Here, the angle formed by the line segment connecting the center of the integrating sphere IS and the center of the first window W1 and the line segment connecting the center of the integrating sphere IS and the center of the second window W2 is 90 °, and the center of the integrating sphere IS. The angle formed by the line segment connecting the center of the second window W2 and the center of the integrating sphere IS and the line segment connecting the center of the third window W3 is 90 °.
The integrating sphere IS is rotatably supported by the outer shield body S around the rotation axis AR1 passing through the center of the integrating sphere IS, which is orthogonal to the one plane.

<積分球の測定位置>
図4の部分縦断面正面図に示す積分球ISの測定位置MPでは、第1窓W1を試料用窓1、第1窓W2を測光用窓2、第3窓W3を光源用窓3としており、試料用窓1の外方に測定試料MSをセットした状態で光源用窓3から積分球IS内に光を入射させて測定試料MSに照射し、測光用窓2から積分球ISの外部へ反射光を取り出す。
積分球ISの測定位置MPで、集光レンズ5により集光した光を測定試料MSに直接照射する構成は、測定試料MSに反射して積分球IS内に入った光が多くの情報を持っているので、より好ましい実施態様である。
また、試料用窓1の外方には支持部材9にガラスGが装着されているので、積分球ISの測定位置MPであっても、積分球ISの内部は外部から密閉される。
<Measurement position of integrating sphere>
In the measurement position MP of the integrating sphere IS shown in the front view of the partial vertical cross section of FIG. 4, the first window W1 is the sample window 1, the first window W2 is the photometric window 2, and the third window W3 is the light source window 3. With the measurement sample MS set outside the sample window 1, light is incident into the integrating sphere IS from the light source window 3 to irradiate the measurement sample MS, and from the light measuring window 2 to the outside of the integrating sphere IS. Take out the reflected light.
In the configuration in which the light collected by the condenser lens 5 is directly irradiated to the measurement sample MS at the measurement position MP of the integrating sphere IS, the light reflected by the measurement sample MS and entering the integrating sphere IS has a lot of information. Therefore, it is a more preferable embodiment.
Further, since the glass G is mounted on the support member 9 on the outside of the sample window 1, the inside of the integrating sphere IS is sealed from the outside even at the measurement position MP of the integrating sphere IS.

<積分球の較正位置>
積分球ISの測定位置MPから回動軸AR1まわりに積分球ISを90°回動させた、図5の部分縦断面正面図に示す積分球ISの較正位置CPでは、第1窓W1が測光用窓2になり、第2窓W2が光源用窓3になるとともに、第3窓W3がシールド体Sにより塞がれた状態になる。
積分球ISの較正位置CPにおいて、光源用窓3から積分球IS内に光を入射させて積分球ISの内壁面IWに照射し、内壁面IWを基準試料RSとして測光用窓2から積分球ISの外部へ参照光を取り出す。
<Calibration position of integrating sphere>
At the calibration position CP of the integrating sphere IS shown in the front view of the partial vertical cross section of FIG. 5, in which the integrating sphere IS is rotated 90 ° around the rotation axis AR1 from the measurement position MP of the integrating sphere IS, the first window W1 is photometric. The window 2 is formed, the second window W2 becomes the window 3 for the light source, and the third window W3 is closed by the shield body S.
At the calibration position CP of the integrating sphere IS, light is incident into the integrating sphere IS from the light source window 3 to irradiate the inner wall surface IW of the integrating sphere IS, and the inner wall surface IW is used as the reference sample RS to irradiate the integrating sphere from the photometric window 2. Extract the reference light to the outside of the IS.

<積分球を用いた相対反射率測定装置の較正方法>
図5に示す積分球ISの較正位置CPで積分球ISの内壁面IWを基準試料RSとして測光用窓2から積分球ISの外部へ取り出した参照光により、図4に示す積分球ISの測定位置MPで測光用窓2から積分球ISの外部へ取り出した反射光を較正し、測定試料MSの相対反射率を求める。
<Calibration method of relative reflectance measuring device using integrating sphere>
At the calibration position CP of the integrating sphere IS shown in FIG. 5, the inner wall surface IW of the integrating sphere IS is used as the reference sample RS, and the reference light taken out from the photometric window 2 to the outside of the integrating sphere IS is used to measure the integrating sphere IS shown in FIG. At the position MP, the reflected light taken out from the photometric window 2 to the outside of the integrating sphere IS is calibrated, and the relative reflectance of the measurement sample MS is obtained.

<積分球を回動させる操作>
図1〜図3に示すように、積分球ISと一体に回動し、シールド体Sの外部から積分球ISを回動軸AR1まわりに回動させる回動操作杆7を備える。
回動操作杆7には当止片8が連結されており、当止片8が第1リミットスイッチLS1に当止された角度(図2及び図3)から、図2の矢印のように回動操作杆7を回動させて当止片8が第2リミットスイッチLS2に当止された角度との間で、回動操作片7を回動させることができる。
<Operation to rotate the integrating sphere>
As shown in FIGS. 1 to 3, a rotation operation stick 7 that rotates integrally with the integrating sphere IS and rotates the integrating sphere IS around the rotation axis AR1 from the outside of the shield body S is provided.
The stop piece 8 is connected to the rotation operation stick 7, and the stop piece 8 is rotated as shown by the arrow in FIG. 2 from the angle (FIGS. 2 and 3) at which the stop piece 8 is in contact with the first limit switch LS1. The rotation operation piece 7 can be rotated with respect to the angle at which the stop piece 8 is hit by the second limit switch LS2 by rotating the motion operation stick 7.

当止片8が第1リミットスイッチLS1に当止された角度(図2及び図3)では、積分球ISの測定位置MP(図4)になり、当止片8が第2リミットスイッチLS2に当止された角度では、積分球ISの較正位置CP(図5)になる。
このように回動操作杆7を回動させる操作により、積分球ISの較正位置CP及び測定位置MPの切替えを容易に行えるので操作性を向上できる。
当止片8が第1リミットスイッチLS1に当止された状態では第1リミットスイッチLS1がオンになり、当止片8が第2リミットスイッチLS2に当止された状態では第2リミットスイッチLS2がオンになるので、両側のリミットスイッチLS1,LS2の信号を組み合わせることで、積分球ISの測定位置MP、積分球ISの較正位置CP、及びそれらの中間位置の判別ができる。
At the angle (FIGS. 2 and 3) where the stop piece 8 is in contact with the first limit switch LS1, the measurement position MP (FIG. 4) of the integrating sphere IS is set, and the stop piece 8 is set to the second limit switch LS2. At the stopped angle, it becomes the calibration position CP (FIG. 5) of the integrating sphere IS.
By rotating the rotation operation stick 7 in this way, the calibration position CP and the measurement position MP of the integrating sphere IS can be easily switched, so that the operability can be improved.
When the stop piece 8 is hit by the first limit switch LS1, the first limit switch LS1 is turned on, and when the stop piece 8 is hit by the second limit switch LS2, the second limit switch LS2 is turned on. Since it is turned on, by combining the signals of the limit switches LS1 and LS2 on both sides, the measurement position MP of the integrating sphere IS, the calibration position CP of the integrating sphere IS, and their intermediate positions can be discriminated.

<較正部品をシール体に埋め込む例>
図6の部分縦断面正面図に示すように、積分球ISの較正位置CPでシールド体Sにより塞がれる第3窓W3の外方に、較正部品10をシールド体Sに埋め込んでおくのも好ましい実施態様である。較正部品10は、積分球ISの内壁面IWと同様に、例えば硫酸バリウム又は酸化チタン等の白色塗料を塗布したものである。
較正部品10をシールド体Sに埋め込んでおくことにより、積分球ISの較正位置CPでシールド体Sにより塞がれる窓(本実施の形態では第3窓W3)に入る光が較正部品10に反射することから、参照光がシールド体Sの影響を受けないので、より良い参照光を得ることができる。
<Example of embedding a calibration component to shield body>
As shown in the front view of the partial vertical cross section of FIG. 6, the calibration component 10 may be embedded in the shield body S outside the third window W3 which is closed by the shield body S at the calibration position CP of the integrating sphere IS. This is a preferred embodiment. The calibration component 10 is coated with a white paint such as barium sulfate or titanium oxide, similarly to the inner wall surface IW of the integrating sphere IS.
By embedding the calibration component 10 in the shield body S, the light entering the window (third window W3 in the present embodiment) blocked by the shield body S at the calibration position CP of the integrating sphere IS is reflected by the calibration component 10. Therefore, since the reference light is not affected by the shield body S, a better reference light can be obtained.

<三つの窓の配置>
図4〜図6の部分縦断面正面図の積分球ISを取り出して示す図7の縦断面正面図において、積分球ISの中心と第1窓W1の中心を結ぶ線分及び積分球ISの中心と第2窓W2の中心を結ぶ線分との成す角度をαとし、積分球ISの中心と第2窓W2の中心を結ぶ線分及び積分球ISの中心と第3窓W3の中心を結ぶ線分との成す角度をβとする。
図4〜図6の説明では、α=β=90°の場合の例を示した。
<Arrangement of three windows>
In the vertical cross-sectional front view of FIG. 7 showing the integrating sphere IS of the partial vertical cross-sectional front view of FIGS. 4 to 6, the line segment connecting the center of the integrating sphere IS and the center of the first window W1 and the center of the integrating sphere IS. Let α be the angle formed by the line segment connecting the center of the second window W2 and the center of the second window W2, and connect the center of the integrating sphere IS and the center of the third window W3 with the line segment connecting the center of the integrating sphere IS and the center of the second window W2. Let β be the angle formed by the line segment.
In the description of FIGS. 4 to 6, an example in the case of α = β = 90 ° is shown.

本発明では、積分球ISの測定位置MPと積分球ISの較正位置CPとの間で回動軸AR1まわりに積分球ISを回動させることにより、積分球ISの測定位置MPでは、三つの窓W1,W2,W3が試料用窓1、測光用窓2及び光源用窓3になり、積分球ISの較正位置CPでは、二つの窓W1,W2が測光用窓2及び光源用窓3になり、残りの一つの窓W3がシールド体Sに塞がれた状態になればよい。
よって、本発明における三つの窓W1,W2,W3の配置として、α=βである必要はあるが、α=β=90°に限定されない。
In the present invention, by rotating the integrating sphere IS around the rotation axis AR1 between the measurement position MP of the integrating sphere IS and the calibration position CP of the integrating sphere IS, the measurement position MP of the integrating sphere IS has three. The windows W1, W2 and W3 become the sample window 1, the light measuring window 2 and the light source window 3, and at the calibration position CP of the integrating sphere IS, the two windows W1 and W2 become the light measuring window 2 and the light source window 3. Therefore, the remaining one window W3 may be in a state of being blocked by the shield body S.
Therefore, the arrangement of the three windows W1, W2, W3 in the present invention needs to be α = β, but is not limited to α = β = 90 °.

α=β=120°の場合は、積分球ISの測定位置MPから回動軸AR1まわりに積分球ISを120°回動させた際に第3窓W3が元の第1窓W1の位置に来てしまうので、第3窓W3がシールド体Sに塞がれた状態にならない。
よって、α=β=120°の場合は本発明から除外される。
本発明は、α=β<120°で、積分球ISの測定位置MPから回動軸AR1まわりに積分球ISを角度α(β)回動させた際に、第3窓W3がシールド体Sに塞がれた状態になればよい。
When α = β = 120 °, the third window W3 returns to the original position of the first window W1 when the integrating sphere IS is rotated by 120 ° around the rotation axis AR1 from the measurement position MP of the integrating sphere IS. Since it will come, the third window W3 will not be blocked by the shield body S.
Therefore, the case of α = β = 120 ° is excluded from the present invention.
In the present invention, when the integrating sphere IS is rotated by an angle α (β) around the rotation axis AR1 from the measurement position MP of the integrating sphere IS at α = β <120 °, the third window W3 is the shield body S. It should be in a state of being blocked by.

<回動軸の変形例>
図8(a)及び(b)の縦断面正面図は、積分球ISを取り出して示す説明図であり、図1〜図7の積分球ISと異なる回動軸AR2を採用した変形例を示している。
第1窓W1、第2窓W2及び第3窓W3の中心は、積分球ISの中心を通る一つの平面内に位置し、回動軸AR2は、第2窓W2及び第3窓W3が線対称となる前記一つの平面に沿う軸である。
<Modification example of rotating shaft>
The vertical sectional front views of FIGS. 8A and 8B are explanatory views showing the integrating sphere IS taken out, and show a modified example in which the rotation axis AR2 different from the integrating sphere IS of FIGS. 1 to 7 is adopted. ing.
The centers of the first window W1, the second window W2, and the third window W3 are located in one plane passing through the center of the integrating sphere IS, and the rotation axis AR2 is a line of the second window W2 and the third window W3. It is an axis along the one plane that becomes symmetrical.

図8(a)に示す積分球ISの測定位置MPでは、第1窓W1を試料用窓1、第2窓W2を測光用窓2、第3窓W3を光源用窓3とする。
積分球ISの測定位置MPから回動軸AR2まわりに積分球ISを180°回動させた図8(b)に示す積分球ISの較正位置CPでは、第3窓W3が測光用窓2になり、第2窓W2が光源用窓3になるとともに、第1窓W1がシールド体Sにより塞がれた状態になる。
In the measurement position MP of the integrating sphere IS shown in FIG. 8A, the first window W1 is the sample window 1, the second window W2 is the photometric window 2, and the third window W3 is the light source window 3.
In the calibration position CP of the integrating sphere IS shown in FIG. 8B in which the integrating sphere IS is rotated 180 ° around the rotation axis AR2 from the measurement position MP of the integrating sphere IS, the third window W3 becomes the photometric window 2. As a result, the second window W2 becomes the light source window 3, and the first window W1 is closed by the shield body S.

以上のような積分球ISを用いた相対反射率測定装置Aによれば、積分球ISの中心を通る一つの平面内に位置する、第1窓W1、第2窓W2及び第3窓W3の三つの窓を積分球ISに備え、積分球ISの測定位置MPから積分球ISを所定角度回動させた積分球ISの較正位置CPでは、三つの窓W1〜W3の中の二つ(回動軸AR1の場合はW1,W2、回動軸AR2の場合はW3,W2)が測光用窓2及び光源用窓3になるとともに、残りの一つの窓(回動軸AR1の場合はW3、回動軸AR2の場合はW1)が、シールド体Sにより塞がれた状態になる。それにより、積分球ISの較正位置MPで、積分球ISの内壁面IWを基準試料RSとして測光用窓2から積分球ISの外部へ参照光を取り出すことができる。
したがって、試料用窓1の外方に基準試料RSをセットした状態で参照光を得る従来の積分球を用いた相対反射率測定装置の構成のように、基準試料RSにごみや汚れが付着しないことから、参照光の測定精度が低下しない。
よって、基準試料RSの清掃等のメンテナンス、並びに基準試料RSの保管及び管理が不要でありながら、長期間にわたって相対反射率の測定精度を高く維持できるので、特に現場での使い勝手を大幅に向上できる。
According to the relative reflectance measuring device A using the integrating sphere IS as described above, the first window W1, the second window W2, and the third window W3 located in one plane passing through the center of the integrating sphere IS. In the calibration position CP of the integrating sphere IS in which three windows are provided in the integrating sphere IS and the integrating sphere IS is rotated by a predetermined angle from the measurement position MP of the integrating sphere IS, two of the three windows W1 to W3 (times). In the case of the moving axis AR1, W1 and W2, in the case of the rotating axis AR2, W3 and W2) become the metering window 2 and the light source window 3, and the remaining one window (W3 in the case of the rotating axis AR1). In the case of the rotating shaft AR2, W1) is closed by the shield body S. Thereby, at the calibration position MP of the integrating sphere IS, the reference light can be taken out from the photometric window 2 to the outside of the integrating sphere IS using the inner wall surface IW of the integrating sphere IS as the reference sample RS.
Therefore, unlike the configuration of the relative reflectance measuring device using the conventional integrating sphere that obtains the reference light with the reference sample RS set on the outside of the sample window 1, dust and dirt do not adhere to the reference sample RS. Therefore, the measurement accuracy of the reference light does not decrease.
Therefore, maintenance such as cleaning of the reference sample RS and storage and management of the reference sample RS are not required, and the measurement accuracy of the relative reflectance can be maintained high for a long period of time, so that the usability in the field can be greatly improved. ..

その上、試料用窓1の外方に基準試料RSをセットする手間を省けるので作業性を向上できる。
その上さらに、積分球ISの較正位置CPで光源をオフにするだけで暗電流のみのデータを取得できる。
よって、積分球ISの較正位置CPで光源をオンにしたデータから光源をオフにしたデータを減算するだけでダーク補正した参照光を求めることができるので、参照光のダーク補正が容易になる。
その上、回動軸AR1まわりに積分球ISを回動させる構成では、積分球ISの較正位置CP及び測定位置MPの切替えを、積分球ISを例えば90°程度回動させるだけで行えるので、相対反射率測定装置Aがよりコンパクトになる。
In addition, workability can be improved because it is possible to save the trouble of setting the reference sample RS on the outside of the sample window 1.
Furthermore, only dark current data can be obtained by simply turning off the light source at the calibration position CP of the integrating sphere IS.
Therefore, the dark-corrected reference light can be obtained only by subtracting the data with the light source turned off from the data with the light source turned on at the calibration position CP of the integrating sphere IS, so that the dark correction of the reference light becomes easy.
Further, in the configuration in which the integrating sphere IS is rotated around the rotation axis AR1, the calibration position CP and the measurement position MP of the integrating sphere IS can be switched by simply rotating the integrating sphere IS by, for example, about 90 °. The relative reflectance measuring device A becomes more compact.

1 試料用窓
2 測光用窓
3 光源用窓
4 光源
5 集光レンズ
6 分光器
7 回動操作杆
8 当止片
9 支持部材
10 較正部品
A 相対反射率測定装置
AR1,AR2 回動軸
CP 較正位置
G ガラス
IS 積分球
IW 内壁面
LS1 第1リミットスイッチ
LS2 第2リミットスイッチ
MP 測定位置
MS 測定試料
RS 基準試料
S シールド体
W1 第1窓
W2 第2窓
W3 第3窓
1 Sample window 2 Photometric window 3 Light source window 4 Light source 5 Condensing lens 6 Spectrometer 7 Rotation operation rod 8 Stop piece 9 Support member 10 Calibration component A Relative reflectance measuring device AR1, AR2 Rotation axis CP calibration Position G Glass IS Integrating sphere IW Inner wall surface LS1 1st limit switch LS2 2nd limit switch MP Measurement position MS Measurement sample RS Reference sample S Shield body W1 1st window W2 2nd window W3 3rd window

Claims (5)

積分球を用いて基準試料に対する測定試料の相対反射率を求める相対反射率測定装置であって、
前記積分球の外方に位置するシールド体を有し、
前記積分球は、
前記積分球の中心を通る一つの平面内に位置する、第1窓、第2窓及び第3窓の三つの窓備え、
前記シールド体は前記中心を通る、前記一つの平面に直交する軸である回動軸まわりに前記積分球を回動可能に支持し、
前記シールド体に対して前記積分球を前記回動軸まわりに所定角度回動させることにより、前記積分球の測定位置及び前記積分球の較正位置の切替えを行うことができ、
前記測定位置では、
前記第1窓が試料用窓、前記第2窓が測光用窓、前記第3窓が光源用窓であり
前記試料用窓の外方に前記測定試料をセットした状態で前記光源用窓から前記積分球内に光を入射させて前記測定試料に照射し、前記測光用窓から前記積分球の外部へ反射光を取り出し、
前記較正位置では、
前記第1窓が前記測光用窓、前記第2窓が光源用窓になるとともに、前記第3窓が前記シールド体により塞がれた状態になり、
前記光源用窓から前記積分球内に光を入射させて前記積分球の内壁面に照射し、前記内壁面を前記基準試料として前記測光用窓から前記積分球の外部へ参照光を取り出し、
前記反射光及び前記参照光から前記測定試料の相対反射率を求めることを特徴とする、
積分球を用いた相対反射率測定装置。
A relative reflectance measuring device that obtains the relative reflectance of a measurement sample with respect to a reference sample using an integrating sphere.
It has a shield body located outside the integrating sphere and has a shield body.
The integrating sphere is
Located in one plane passing through the center of the integrating sphere, a first window, provided with three windows of the second window and the third window,
The shield body, through the center, the integrating sphere is supported rotatably around the rotation axis is an axis perpendicular to the one plane,
By rotating the integrating sphere around the rotation axis by a predetermined angle with respect to the shield body, it is possible to switch between the measurement position of the integrating sphere and the calibration position of the integrating sphere.
At the measurement position
The first window is the sample window, the second window is a window for photometric, the third window is a window for the light source,
With the measurement sample set outside the sample window, light is incident into the integrating sphere from the light source window to irradiate the measurement sample, and the light is reflected from the photometric window to the outside of the integrating sphere. Take out the light,
At the calibration position
The first window becomes the photometric window , the second window becomes the light source window, and the third window is closed by the shield body.
Light is incident into the integrating sphere from the light source window to irradiate the inner wall surface of the integrating sphere, and reference light is taken out from the photometric window to the outside of the integrating sphere using the inner wall surface as the reference sample.
The relative reflectance of the measurement sample is obtained from the reflected light and the reference light.
Relative reflectance measuring device using an integrating sphere.
積分球を用いて基準試料に対する測定試料の相対反射率を求める相対反射率測定装置であって、
前記積分球の外方に位置するシールド体を有し、
前記積分球は、
前記積分球の中心を通る一つの平面内に位置する、第1窓、第2窓及び第3窓の三つの窓備え、
前記シールド体は、前記中心を通る、前記第2窓及び前記第3窓が線対称となる前記一つの平面に沿う軸である回動軸まわりに前記積分球を回動可能に支持し、
前記シールド体に対して前記積分球を前記回動軸まわりに180°回動させることにより、前記積分球の測定位置及び前記積分球の較正位置の切替えを行うことができ、
前記測定位置では、
前記第1窓が試料用窓、前記第2窓が測光用窓、前記第3窓が光源用窓であり
前記試料用窓の外方に前記測定試料をセットした状態で前記光源用窓から前記積分球内に光を入射させて前記測定試料に照射し、前記測光用窓から前記積分球の外部へ反射光を取り出し、
前記較正位置では、
前記第3窓が前記測光用窓、前記第2窓が光源用窓になるとともに、前記第1窓が前記シールド体により塞がれた状態になり、
前記光源用窓から前記積分球内に光を入射させて前記積分球の内壁面に照射し、前記内壁面を前記基準試料として前記測光用窓から前記積分球の外部へ参照光を取り出し、
前記反射光及び前記参照光から前記測定試料の相対反射率を求めることを特徴とする、
積分球を用いた相対反射率測定装置。
A relative reflectance measuring device that obtains the relative reflectance of a measurement sample with respect to a reference sample using an integrating sphere.
It has a shield body located outside the integrating sphere and has a shield body.
The integrating sphere is
Located in one plane passing through the center of the integrating sphere, a first window, provided with three windows of the second window and the third window,
The shield body rotatably supports the integrating sphere around a rotation axis that passes through the center and is an axis along the one plane in which the second window and the third window are line-symmetrical.
By rotating the integrating sphere 180 ° around the rotation axis with respect to the shield body, it is possible to switch between the measurement position of the integrating sphere and the calibration position of the integrating sphere.
At the measurement position
The first window is the sample window, the second window is a window for photometric, the third window is a window for the light source,
With the measurement sample set outside the sample window, light is incident into the integrating sphere from the light source window to irradiate the measurement sample, and the light is reflected from the photometric window to the outside of the integrating sphere. Take out the light,
At the calibration position
The third window becomes the photometric window , the second window becomes the light source window, and the first window is closed by the shield body.
Light is incident into the integrating sphere from the light source window to irradiate the inner wall surface of the integrating sphere, and reference light is taken out from the photometric window to the outside of the integrating sphere using the inner wall surface as the reference sample.
The relative reflectance of the measurement sample is obtained from the reflected light and the reference light.
Relative reflectance measuring device using an integrating sphere.
前記積分球の較正位置で前記シールド体により塞がれる、前記第3窓又は前記第1窓の外方に、較正部品を前記シールド体に埋め込んでなる、
請求項1又は2に記載の積分球を用いた相対反射率測定装置。
A calibration component is embedded in the shield body outside the third window or the first window, which is closed by the shield body at the calibration position of the integrating sphere.
The relative reflectance measuring device using the integrating sphere according to claim 1 or 2.
前記積分球と一体に回動し、前記シールド体の外部から前記積分球を前記回動軸まわりに回動させる回動操作杆を備えてなる、
請求項1〜の何れか1項に記載の積分球を用いた相対反射率測定装置。
It is provided with a rotation operation stick that rotates integrally with the integrating sphere and rotates the integrating sphere around the rotation axis from the outside of the shield body.
The relative reflectance measuring device using the integrating sphere according to any one of claims 1 to 3.
請求項1〜の何れか1項に記載の積分球を用いた相対反射率測定装置を用い、
前記積分球の較正位置で前記積分球の内壁面を前記基準試料として前記測光用窓から前記積分球の外部へ取り出した参照光により、前記積分球の測定位置で前記測光用窓から前記積分球の外部へ取り出した反射光を較正することを特徴とする、
積分球を用いた相対反射率測定装置の較正方法。
Using the relative reflectance measuring device using the integrating sphere according to any one of claims 1 to 4, the relative reflectance measuring device is used.
With the reference light taken out from the photometric window to the outside of the integrating sphere using the inner wall surface of the integrating sphere as the reference sample at the calibration position of the integrating sphere, the integrating sphere is used from the photometric window at the measurement position of the integrating sphere. It is characterized by calibrating the reflected light taken out of the
A method of calibrating a relative reflectance measuring device using an integrating sphere.
JP2017113313A 2017-06-08 2017-06-08 Relative reflectance measuring device using an integrating sphere and its calibration method Active JP6859858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017113313A JP6859858B2 (en) 2017-06-08 2017-06-08 Relative reflectance measuring device using an integrating sphere and its calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017113313A JP6859858B2 (en) 2017-06-08 2017-06-08 Relative reflectance measuring device using an integrating sphere and its calibration method

Publications (2)

Publication Number Publication Date
JP2018205231A JP2018205231A (en) 2018-12-27
JP6859858B2 true JP6859858B2 (en) 2021-04-14

Family

ID=64956986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017113313A Active JP6859858B2 (en) 2017-06-08 2017-06-08 Relative reflectance measuring device using an integrating sphere and its calibration method

Country Status (1)

Country Link
JP (1) JP6859858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166748B (en) * 2021-12-03 2024-01-02 渤海大学 Hemispherical emissivity measuring device based on integrating sphere reflection method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979841A (en) * 1982-10-29 1984-05-09 Shimadzu Corp Apparatus for measuring absolute reflectivity
JPH0619324B2 (en) * 1984-09-29 1994-03-16 株式会社島津製作所 Spectral transmittance measurement method
JPH0650260B2 (en) * 1985-03-29 1994-06-29 株式会社島津製作所 Spectrophotometer using integrating sphere
JPS6330730A (en) * 1986-07-24 1988-02-09 Matsushita Electric Ind Co Ltd Brightness presentation apparatus
US5258363A (en) * 1989-03-21 1993-11-02 Troy Investments Inc. Superconducting integrating spheres
JPH05113386A (en) * 1990-11-30 1993-05-07 Shimadzu Corp Light loss measuring device
JPH04315938A (en) * 1991-04-16 1992-11-06 Tokyo Tokushu Glass Kk Measuring device for quantity of light of image focused by finite-distance image focusing lens
JPH06221924A (en) * 1993-01-25 1994-08-12 Fujitsu Ltd Image measuring equipment
JP3456007B2 (en) * 1994-05-19 2003-10-14 凸版印刷株式会社 Optical chopping device
JP2002048713A (en) * 2000-07-31 2002-02-15 Toppan Printing Co Ltd Optical measuring device
JP2006013692A (en) * 2004-06-23 2006-01-12 Matsushita Electric Ind Co Ltd Portable information device
EP1793341A4 (en) * 2004-09-17 2009-11-04 Japan Science & Tech Agency Object digitizing device using integrating sphere wave source
JP5751005B2 (en) * 2011-05-18 2015-07-22 コニカミノルタ株式会社 Image stabilization control system and image forming apparatus
CN102692272B (en) * 2012-05-29 2014-06-04 浙江三鑫照明检测设备有限公司 Photometric measurement method and rotatable photometric measurement integrating sphere device
JP2013246161A (en) * 2012-05-30 2013-12-09 Hitachi High-Technologies Corp Spectrophotometer and spectrometry
JP5913143B2 (en) * 2013-02-04 2016-04-27 スガ試験機株式会社 Colorimeter
JP2014196932A (en) * 2013-03-29 2014-10-16 セルコ株式会社 Thermal image generating device
JP3193277U (en) * 2014-07-14 2014-09-25 株式会社島津製作所 Integrating sphere for spectrophotometer

Also Published As

Publication number Publication date
JP2018205231A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP5073114B2 (en) Domed window and surveillance camera device having such a dome window
US8830473B2 (en) Device for referenced measurements of reflected light and a method for calibrating such a device
JPH0643030A (en) Portable spectrophotometer
JP2009536358A5 (en)
EP1782043B1 (en) Self-calibrating optical reflectance probe system
JP6859858B2 (en) Relative reflectance measuring device using an integrating sphere and its calibration method
US11635326B2 (en) Stray-light testing station
JP2012118066A (en) Measurement of position of curvature center of optical plane of multi-lens optical system
CN102589605B (en) Portable type external field equipment for multi-sensor optical axis calibration
US9528932B2 (en) Integrating sphere type device with specular control
JP5263783B2 (en) Optical characteristic measuring apparatus and measuring method
JP4824541B2 (en) Scatterometer and method for surface inspection
JP2012032184A (en) Optical probe and spectrometry device using the same
WO2015001649A1 (en) V-block refractometer
CN205403955U (en) Novel spectrum appearance
JP6330900B2 (en) Spectrometer and integrating sphere
JP2003270091A (en) Method and apparatus for measuring wave front aberration in optical system
JP2013250197A (en) Angle measurement apparatus
JP2011209092A (en) Round rod inspection apparatus and method of inspecting round rod
CN103017899B (en) Convergent mirror
JP3119622U (en) Spectrophotometer
JP7451688B2 (en) Systems, measurement systems and methods for investigating samples
JP2006330721A (en) Device and method for optically detecting object
JP2003014631A (en) Atomic absorption spectrophotometer
JPS5833104A (en) Device for measuring assembling accuracy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R150 Certificate of patent or registration of utility model

Ref document number: 6859858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250