JP6858026B2 - Electrocorrosion protection method, concrete structure and manufacturing method of concrete structure - Google Patents

Electrocorrosion protection method, concrete structure and manufacturing method of concrete structure Download PDF

Info

Publication number
JP6858026B2
JP6858026B2 JP2017014618A JP2017014618A JP6858026B2 JP 6858026 B2 JP6858026 B2 JP 6858026B2 JP 2017014618 A JP2017014618 A JP 2017014618A JP 2017014618 A JP2017014618 A JP 2017014618A JP 6858026 B2 JP6858026 B2 JP 6858026B2
Authority
JP
Japan
Prior art keywords
rod
steel material
concrete structure
materials
shaped anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017014618A
Other languages
Japanese (ja)
Other versions
JP2018123355A (en
Inventor
敬春 谷井
敬春 谷井
貴士 羽渕
貴士 羽渕
貴彦 網野
貴彦 網野
山本 誠
山本  誠
泰子 持田
泰子 持田
孝文 城者
孝文 城者
敏和 峰松
敏和 峰松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Toa Corp
Original Assignee
Sumitomo Osaka Cement Co Ltd
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Toa Corp filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2017014618A priority Critical patent/JP6858026B2/en
Publication of JP2018123355A publication Critical patent/JP2018123355A/en
Application granted granted Critical
Publication of JP6858026B2 publication Critical patent/JP6858026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Building Environments (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、電気防食工法、コンクリート構造物およびコンクリート構造物の製造方法に関する。 The present invention relates to an electrolytic corrosion protection method, a concrete structure, and a method for manufacturing a concrete structure.

コンクリート構造体には、経時的劣化による内部空隙や表面亀裂が生じることがある。コンクリート構造体内に鉄筋、鉄骨やPC鋼材などの鋼材が埋設されている場合、内部空隙や表面亀裂を通じて、外部から水や塩化物が侵入して塩化物イオンによって鋼材に腐食部が発生する、いわゆる塩害が生じることがある。 The concrete structure may have internal voids and surface cracks due to deterioration over time. When steel materials such as reinforcing bars, steel frames, and PC steel materials are buried in the concrete structure, water and chloride enter from the outside through internal voids and surface cracks, and chloride ions generate corroded parts in the steel material. Salt damage may occur.

塩害を抑制する方法として、コンクリート構造体に陽極材を設置し、鋼材を陰極として、外部電源から継続的に防食電流を鋼材に流す外部電源方式の電気防食法が知られている。外部電源方式の電気防食法は、電源から鋼材に防食電流を流入させて、鋼材の腐食部と健全部との表面電位差が小さくなるように鋼材を卑に分極させることにより、鋼材の腐食に関係する陽極反応の進行を遅延させて、鋼材の腐食速度を低下させるものである。 As a method of suppressing salt damage, an external power supply type electrocorrosion protection method is known in which an anode material is installed in a concrete structure, a steel material is used as a cathode, and an anticorrosion current is continuously passed from an external power source to the steel material. The external power supply type electrocorrosion protection method is related to the corrosion of the steel material by injecting an anticorrosion current from the power supply into the steel material and polarizing the steel material so that the surface potential difference between the corroded part and the sound part of the steel material becomes small. It delays the progress of the anodic reaction and reduces the corrosion rate of the steel material.

しかし、コンクリート構造体は、鋼材が内部領域に多段に配置されているものが多く、かつ、構造上陽極材が設置できる部分に制約がある。このため、同一のコンクリート構造体内に埋設された鋼材であっても、陽極材と鋼材との位置関係によって、鋼材の表面に流入する防食電流の電流密度にばらつきが生じ、分極量が防食基準値に達しない鋼材が生じる可能性がある。例えば、コンクリート構造体が橋梁床版である場合、下面にしか陽極材を設置できず、下面近傍の鋼材表面に流入する防食電流の電流密度よりも、下面から離間する路面側の鋼材表面に流入する防食電流の電流密度が小さくなる。この結果、鋼材間において鋼材表面に流入する防食電流の電流密度のばらつきが生じ、分極量が防食基準値に達しない鋼材が発生する可能性がある。 However, in many concrete structures, steel materials are arranged in multiple stages in the internal region, and there are restrictions on the part where the anode material can be installed due to the structure. Therefore, even if the steel material is buried in the same concrete structure, the current density of the anticorrosion current flowing into the surface of the steel material varies depending on the positional relationship between the anode material and the steel material, and the polarization amount is the anticorrosion reference value. There is a possibility that some steel materials will not reach. For example, when the concrete structure is a bridge slab, the anode material can be installed only on the lower surface, and the current density of the anticorrosion current flowing into the steel surface near the lower surface is higher than the current density of the anticorrosion current flowing into the steel surface on the road surface side away from the lower surface. The current density of the anticorrosion current is reduced. As a result, the current density of the anticorrosion current flowing into the surface of the steel material varies among the steel materials, and there is a possibility that the steel material whose polarization amount does not reach the anticorrosion reference value may be generated.

また、コンクリート構造体は内部領域の塩化物イオンの濃度分布が偏っており、鋼材位置によって鋼材の腐食環境が異なる場合がある。例えば、構造物の表面側の領域は、外部からの塩の浸透の影響によって、内側領域よりも塩化物イオン濃度が高くなる傾向がある。このような腐食環境の相違も鋼材間において鋼材表面に供給される防食電流の電流密度のばらつきを生じ、分極量が防食基準値に達していない鋼材が発生する原因となる。 Further, in the concrete structure, the concentration distribution of chloride ions in the internal region is uneven, and the corrosive environment of the steel material may differ depending on the position of the steel material. For example, the region on the surface side of the structure tends to have a higher chloride ion concentration than the inner region due to the influence of salt infiltration from the outside. Such a difference in the corrosive environment also causes a variation in the current density of the anticorrosion current supplied to the surface of the steel material among the steel materials, which causes the steel material whose polarization amount does not reach the anticorrosion standard value.

従って、腐食環境の相違に応じて鋼材に最適な防食電流を供給するために、特許文献1には、表面側領域に配置された表面側鋼材と、表面側鋼材よりも内側に配置される内側鋼材とを有するコンクリート構造物において、表面側鋼材を含む電気防食回路と、内側鋼材を含む電気防食回路とを別々に形成することが提案されている。 Therefore, in order to supply the optimum anticorrosion current to the steel material according to the difference in the corrosive environment, Patent Document 1 describes the surface side steel material arranged in the surface side region and the inner side arranged inside the surface side steel material. In a concrete structure having a steel material, it has been proposed to separately form an electrocorrosion protection circuit including a surface side steel material and an electrocorrosion protection circuit including an inner steel material.

特開2015−145524号公報Japanese Unexamined Patent Publication No. 2015-145524

しかし、表面側鋼材と内側鋼材とは、鉄筋や鉄骨などのコンクリート構造体の骨組みとして、一部を相互に接続させて組み上げられている場合が多いため、コンクリート構造体内で電気的に接続された状態にある場合が多い。このため、上述のように電気防食回路を別々に形成したとしても、電気防食回路として電気的に接続されている鋼材ではなく、陽極材に近接する鋼材側に防食電流が流れ込みやすくなるため、依然として分極量が低い鋼材が発生しやすい。 However, since the surface side steel material and the inner steel material are often assembled by connecting a part of them to each other as a framework of a concrete structure such as a reinforcing bar or a steel frame, they are electrically connected in the concrete structure. Often in a state. Therefore, even if the electrocorrosion circuit is formed separately as described above, the anticorrosion current tends to flow into the steel material close to the anode material instead of the steel material electrically connected as the electrocorrosion protection circuit. Steel materials with a low amount of polarization are likely to occur.

上記の場合、すべての鋼材の分極量が防食基準を満たすように、分極量が低い鋼材に合わせて防食電流の供給量を増加させることも考えられる。しかし、この場合には防食電流が供給されやすい位置にある鋼材に過防食状態が生じるため、陽極材を含む電気防食装置への負荷が増大し、電気防食装置の耐久性が低下するおそれがある。 In the above case, it is conceivable to increase the supply amount of the anticorrosion current according to the steel material having a low polarization amount so that the polarization amount of all the steel materials satisfies the anticorrosion standard. However, in this case, since the steel material at a position where the anticorrosion current is easily supplied is in an overcorrosion state, the load on the electrocorrosion device including the anode material may increase and the durability of the electrocorrosion device may decrease. ..

一方、上述のようにコンクリート構造体内の塩化物イオン濃度分布には偏りがあるが、この偏りは、コンクリート構造体内の位置だけでなく、コンクリート構造体の設置環境や用途などによっても変動する。例えば、コンクリート構造体が橋梁床版である場合、凍結防止剤として塩化カルシウムをコンクリート構造体の路面に散布することがある。このため、コンクリート構造体が橋梁床版である場合、路面側の部分のほうが路面に対向する下面側の部分よりも塩化物イオン濃度が高く、腐食速度が速い。そして、上述のように、橋梁床版には下面にしか陽極材を設置できないことが多く、このような塩化物イオン濃度分布の偏りは、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達していない鋼材が発生する可能性を増加させる要因となる。 On the other hand, as described above, there is a bias in the chloride ion concentration distribution in the concrete structure, but this bias varies not only with the position in the concrete structure but also with the installation environment and application of the concrete structure. For example, when the concrete structure is a bridge slab, calcium chloride may be sprayed on the road surface of the concrete structure as an antifreeze agent. Therefore, when the concrete structure is a bridge slab, the road surface side portion has a higher chloride ion concentration and a faster corrosion rate than the lower surface side portion facing the road surface. As described above, in many cases, the anode material can be installed only on the lower surface of the bridge slab, and such a bias in the chloride ion concentration distribution is caused by the variation in the current density of the anticorrosion current between the steel materials and the amount of polarization. This is a factor that increases the possibility that steel materials that do not reach the anticorrosion standard value will be generated.

そこで、本発明は、陽極材を含む電気防食装置の耐久性を低下させることなく、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材の発生可能性を低減することができる電気防食工法、コンクリート構造物およびコンクリート構造物の製造方法を提供することを目的とする。 Therefore, the present invention reduces the variation in the current density of the anticorrosion current between the steel materials and the possibility of occurrence of the steel material whose polarization amount does not reach the anticorrosion reference value without lowering the durability of the electrocorrosion protection device including the anode material. It is an object of the present invention to provide an electrocorrosion protection method, a concrete structure and a method for manufacturing a concrete structure, which can be used.

(1)本発明の実施形態に係る電気防食工法は、鋼材が埋設されたコンクリート構造体であって、対象面を含む外表面と、前記外表面に囲まれた内部領域と、前記内部領域に埋設された第1の鋼材と、前記内部領域に埋設された第2の鋼材であって、前記第2の鋼材と前記対象面との距離が前記第1の鋼材と前記対象面との距離よりも長くなるように配置される第2の鋼材と、を備えるコンクリート構造体に、前記対象面に沿って長手方向が延びるように複数の線状陽極材を設置する線状陽極材設置工程と、前記コンクリート構造体に、長手方向が前記外表面から前記内部領域に向かって延びるように複数の棒状陽極材を設置する棒状陽極材設置工程と、を備える電気防食工法であって、前記第1の鋼材と前記複数の線状陽極材とは、第1の外部電源に電気的に接続されており、前記第2の鋼材と前記複数の棒状陽極材とは、第2の外部電源に電気的に接続されており、前記複数の棒状陽極材の表面積の和が前記複数の線状陽極材の表面積の和以上になるように、前記線状陽極材および前記棒状陽極材を設置するものである。
(2)本発明の実施形態に係る電気防食工法は、上記(1)記載の電気防食工法であって、前記棒状陽極材設置工程は、前記複数の線状陽極材に挟まれた領域において、前記対象面に前記複数の挿入孔を形成する工程と、前記挿入孔に前記棒状陽極材を挿し入れる工程と、を含むものであってもよい。
(3)本発明の実施形態に係る電気防食工法は、上記(1)または(2)に記載の電気防食工法であって、前記棒状陽極材設置工程において、前記内部領域側の端部と前記外表面側の端部とを含み、前記内部領域側の端部と前記第2の鋼材の距離が前記内部領域側の端部と前記第1の鋼材の距離よりも短くなるように、前記棒状陽極材を設置するものであってもよい。
(4)本発明の実施形態に係る電気防食工法は、上記(1)から(3)のいずれか一つに記載の電気防食工法であって、前記棒状陽極材設置工程において、前記複数の棒状陽極材を横切る断面において前記複数の棒状陽極材が千鳥状に配列するように、前記棒状陽極材を設置するものであってもよい。
(5)本発明の実施形態に係るコンクリート構造物は、鋼材が埋設されたコンクリート構造物であって、対象面を含む外表面と、前記外表面に囲まれた内部領域と、前記内部領域に埋設された第1の鋼材と、前記内部領域に埋設された第2の鋼材であって、前記第2の鋼材と前記対象面との距離が前記第1の鋼材と前記対象面との距離よりも長くなるように配置される第2の鋼材と、長手方向が前記対象面に沿って延びる複数の線状陽極材と、長手方向が前記外表面から前記内部領域に向かって延びる複数の棒状陽極材と、前記第1の鋼材と前記複数の線状陽極材とに電気的に接続される第1の外部電源と、前記第2の鋼材と前記複数の棒状陽極材とに電気的に接続される第2の外部電源と、を備え、前記線状陽極材と前記棒状陽極材は、前記複数の棒状陽極材の表面積の和は前記複数の線状陽極材の表面積の和以上となるように設けられている。
(6)本発明の実施形態に係るコンクリート構造物の製造方法は、鋼材が埋設されたコンクリート構造体であって、対象面を含む外表面と、前記外表面に囲まれた内部領域と、前記内部領域に埋設された第1の鋼材と、前記内部領域に埋設された第2の鋼材であって、前記第2の鋼材と前記対象面との距離が前記第1の鋼材と前記対象面との距離よりも長くなるように配置される第2の鋼材と、を備えるコンクリート構造体に、前記対象面に沿って長手方向が延びるように複数の線状陽極材を設置する線状陽極材設置工程と、前記コンクリート構造体に、長手方向が前記外表面から前記内部領域に向かって延びるように複数の棒状陽極材を設置する棒状陽極材設置工程と、を備えるコンクリート構造物の製造方法であって、前記第1の鋼材と前記複数の線状陽極材とは、第1の外部電源に電気的に接続され、前記第2の鋼材と前記複数の棒状陽極材とは、第2の外部電源に電気的に接続され、前記複数の棒状陽極材の表面積の和が前記複数の線状陽極材の表面積の和以上になるように、前記線状陽極材および前記棒状陽極材を設置するものである。
(1) The electrocorrosion protection method according to the embodiment of the present invention is a concrete structure in which a steel material is embedded, in an outer surface including a target surface, an inner region surrounded by the outer surface, and the inner region. The distance between the first steel material buried and the second steel material buried in the internal region, and the distance between the second steel material and the target surface is greater than the distance between the first steel material and the target surface. A linear anode material installation step of installing a plurality of linear anode materials so as to extend in the longitudinal direction along the target surface in a concrete structure including a second steel material arranged so as to be long. The first anticorrosion method comprises a rod-shaped anode material installation step of installing a plurality of rod-shaped anode materials on the concrete structure so that the longitudinal direction extends from the outer surface toward the inner region. The steel material and the plurality of linear anode materials are electrically connected to the first external power source, and the second steel material and the plurality of rod-shaped anode materials are electrically connected to the second external power source. The linear anode material and the rod-shaped anode material are installed so that the sum of the surface surfaces of the plurality of rod-shaped anode materials is equal to or greater than the sum of the surface surfaces of the plurality of linear anode materials.
(2) The electrocorrosion protection method according to the embodiment of the present invention is the electrocorrosion protection method described in (1) above, and the rod-shaped anode material installation step is performed in a region sandwiched between the plurality of linear anode materials. It may include a step of forming the plurality of insertion holes in the target surface and a step of inserting the rod-shaped anode material into the insertion holes.
(3) The electrocorrosion protection method according to the embodiment of the present invention is the electrocorrosion protection method according to (1) or (2) above, and in the rod-shaped anode material installation step, the end portion on the internal region side and the said. The rod shape including the end on the outer surface side so that the distance between the end on the inner region side and the second steel material is shorter than the distance between the end on the inner region side and the first steel material. An anode material may be installed.
(4) The electrocorrosion protection method according to the embodiment of the present invention is the electrocorrosion protection method according to any one of (1) to (3) above, and the plurality of rods are formed in the rod-shaped anode material installation step. The rod-shaped anode material may be installed so that the plurality of rod-shaped anode materials are arranged in a staggered manner in a cross section across the anode material.
(5) The concrete structure according to the embodiment of the present invention is a concrete structure in which a steel material is embedded, and is located in an outer surface including a target surface, an inner region surrounded by the outer surface, and the inner region. The first steel material buried and the second steel material buried in the internal region, the distance between the second steel material and the target surface is greater than the distance between the first steel material and the target surface. A second steel material arranged so as to be long, a plurality of linear anode materials whose longitudinal direction extends along the target surface, and a plurality of rod-shaped anodes whose longitudinal direction extends from the outer surface toward the inner region. The material, the first external power source electrically connected to the first steel material and the plurality of linear anode materials, and the second steel material and the plurality of rod-shaped anode materials are electrically connected to each other. The linear anode material and the rod-shaped anode material are provided with a second external power source so that the sum of the surface areas of the plurality of rod-shaped anode materials is equal to or greater than the sum of the surface areas of the plurality of linear anode materials. It is provided.
(6) The method for manufacturing a concrete structure according to an embodiment of the present invention is a concrete structure in which a steel material is embedded, the outer surface including the target surface, the inner region surrounded by the outer surface, and the above. The first steel material buried in the internal region and the second steel material buried in the internal region, the distance between the second steel material and the target surface is the distance between the first steel material and the target surface. Installation of a plurality of linear anode materials so as to extend in the longitudinal direction along the target surface in a concrete structure including a second steel material arranged so as to be longer than the distance of A method for manufacturing a concrete structure, comprising a step and a rod-shaped anode material installation step of installing a plurality of rod-shaped anode materials on the concrete structure so that the longitudinal direction extends from the outer surface toward the inner region. The first steel material and the plurality of linear anode materials are electrically connected to the first external power source, and the second steel material and the plurality of rod-shaped anode materials are connected to the second external power source. The linear anode material and the rod-shaped anode material are installed so that the sum of the surface areas of the plurality of rod-shaped anode materials is equal to or greater than the sum of the surface areas of the plurality of linear anode materials. is there.

本発明は、各陽極材を含む電気防食装置の耐久性を著しく低下させることなく、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材が発生する可能性を低減することができる。 The present invention reduces the variation in the current density of the anticorrosion current between the steel materials and the possibility that the steel material whose polarization amount does not reach the anticorrosion reference value is generated without significantly reducing the durability of the electrocorrosion protection device including each anode material. can do.

本発明の実施形態に係る電気防食工法を模式的に示す工程説明図である。It is a process explanatory drawing which shows typically the electric corrosion protection method which concerns on embodiment of this invention. (a)は本発明の実施形態に係る電気防食工法に使用する棒状陽極材を説明する模式図であり、(b)は本発明の実施形態に係る電気防食工法に使用する線状陽極材を説明する模式図である。(A) is a schematic view explaining the rod-shaped anode material used in the electro-corrosion protection method according to the embodiment of the present invention, and (b) is the linear anode material used in the electro-corrosion protection method according to the embodiment of the present invention. It is a schematic diagram to explain. 本発明の実施形態に係る電気防食工法コンクリート構造物の底面図である。It is a bottom view of the concrete structure of the electrolytic corrosion protection method which concerns on embodiment of this invention. 図3のA−A’断面における断面図である。FIG. 3 is a cross-sectional view taken along the line AA'in FIG. 図3のB−B’断面における断面図である。It is sectional drawing in the BB' cross section of FIG. 本発明の実施例2に係るコンクリート構造物の底面図である。It is a bottom view of the concrete structure which concerns on Example 2 of this invention. 図6のC−C’断面における断面図である。It is sectional drawing in the CC'cross section of FIG. 図6のD−D’断面における断面図である。It is sectional drawing in the DD'cross section of FIG. 本発明の実施例1に係るコンクリート構造体の各鉄筋表面に流入する防食電流の電流密度のばらつきを示すグラフである。It is a graph which shows the variation of the current density of the anticorrosion current flowing into each reinforcing bar surface of the concrete structure which concerns on Example 1 of this invention. 本発明の実施例2に係るコンクリート構造体の各鉄筋表面に流入する防食電流の電流密度のばらつきを示すグラフである。It is a graph which shows the variation of the current density of the anticorrosion current flowing into each reinforcing bar surface of the concrete structure which concerns on Example 2 of this invention. 本発明の比較例1に係るコンクリート構造体の各鉄筋表面に流入する防食電流の電流密度のばらつきを示すグラフである。It is a graph which shows the variation of the current density of the anticorrosion current flowing into each reinforcing bar surface of the concrete structure which concerns on Comparative Example 1 of this invention. 本発明の比較例2に係るコンクリート構造体の各鉄筋表面に流入する防食電流の電流密度のばらつきを示すグラフである。It is a graph which shows the variation of the current density of the anticorrosion current flowing into each reinforcing bar surface of the concrete structure which concerns on Comparative Example 2 of this invention. 本発明の比較例3に係るコンクリート構造体の各鉄筋表面に流入する防食電流の電流密度のばらつきを示すグラフである。It is a graph which shows the variation of the current density of the anticorrosion current flowing into each reinforcing bar surface of the concrete structure which concerns on Comparative Example 3 of this invention. 本発明の実施形態に係る電気防食工法が適用されるコンクリート構造体の底面図である。It is a bottom view of the concrete structure to which the electrocorrosion protection method which concerns on embodiment of this invention is applied. 図14の断面Eにおける断面図である。It is sectional drawing in sectional view E of FIG. 図14の断面Fにおける断面図である。It is sectional drawing in the cross section F of FIG.

本発明は、コンクリート構造体100の塩害を抑制するための電気防食工法に関するものである。本発明の電気防食工法はコンクリート構造体100に電気防食装置を設置する工法であり、本発明の電気防食工法を実施すると、コンクリート構造体100とコンクリート構造体100に設置された電気防食装置とを含むコンクリート構造物300が製造される。なお、本発明の電気防食工法が適用されるコンクリート構造体100は、塩害による劣化進行前のコンクリート構造体および劣化進行後のコンクリート構造体のいずれをも含むものとする。また、本発明においてコンクリートとは、コンクリートのみならず、セメントおよびモルタルをも含む概念として用いる。鋼材は、鉄筋、鉄骨およびPC鋼材を含む公知のコンクリート構造用鋼材であり、コンクリート補強鋼材やプレストレストコンクリート用の緊張材を含む概念として用いる。コンクリート構造体100としては、橋梁床版、橋桁、柱、梁などの鉄筋コンクリート構造体が例示される。 The present invention relates to an electrocorrosion protection method for suppressing salt damage of the concrete structure 100. The electric corrosion protection method of the present invention is a method of installing an electric corrosion protection device on the concrete structure 100, and when the electric corrosion protection method of the present invention is carried out, the concrete structure 100 and the electric corrosion protection device installed on the concrete structure 100 are combined. A concrete structure 300 including the concrete structure 300 is manufactured. The concrete structure 100 to which the electrocorrosion protection method of the present invention is applied includes both a concrete structure before the progress of deterioration due to salt damage and a concrete structure after the progress of deterioration. Further, in the present invention, concrete is used as a concept including not only concrete but also cement and mortar. The steel material is a known concrete structural steel material including reinforcing bars, steel frames and PC steel materials, and is used as a concept including a concrete reinforcing steel material and a tension material for prestressed concrete. Examples of the concrete structure 100 include reinforced concrete structures such as bridge slabs, bridge girders, columns, and beams.

図1、図3から図5および図14から図16を参照して、本発明の実施形態に係る電気防食工法について説明する。図1は本実施形態の電気防食工法を模式的に示す工程説明図であり、図3から図5は本実施形態の電気防食工法をコンクリート構造体100に施工して得られるコンクリート構造物300を模式的に示す図であり、図3はコンクリート構造物300の底面図、図4は図3のA−A’断面における断面図、図5は図3のB−B’断面における断面図である。なお、図3から図5において、第1の外部電源Xと第2の外部電源Yとは図示を省略している。図14から図16は本発明の実施形態に係る電気防食工法が適用されるコンクリート構造体100を示す図であり、図14は斜視図、図15は図14の断面Eにおける断面図、図16は図14の断面Fにおける断面図である。 The electrocorrosion protection method according to the embodiment of the present invention will be described with reference to FIGS. 1, 3 to 5, and 14 to 16. FIG. 1 is a process explanatory view schematically showing the electrocorrosion protection method of the present embodiment, and FIGS. 3 to 5 show a concrete structure 300 obtained by applying the electrocorrosion protection method of the present embodiment to the concrete structure 100. FIG. 3 is a schematic view, FIG. 3 is a bottom view of the concrete structure 300, FIG. 4 is a cross-sectional view taken along the line AA'of FIG. 3, and FIG. 5 is a cross-sectional view taken along the line BB' of FIG. .. In FIGS. 3 to 5, the first external power supply X and the second external power supply Y are not shown. 14 to 16 are views showing a concrete structure 100 to which the anticorrosion method according to the embodiment of the present invention is applied, FIG. 14 is a perspective view, FIG. 15 is a sectional view in cross section E of FIG. 14, and FIG. Is a cross-sectional view of the cross section F of FIG.

本発明の実施形態に係る電気防食工法は、このようなコンクリート構造体100に点状陽極方式と線状陽極方式を併用した電気防食を行う工法である。なお、点状陽極方式は、長手方向が前記外表面から前記内部領域に向かって延びるように、棒状陽極材をコンクリート構造体100に設置するものである。また、線状陽極方式は、長手方向がコンクリート構造体100の外表面100Sに沿って延びるように、細長帯状の線状陽極材をコンクリート構造体100に設置するものである。 The electrocorrosion protection method according to the embodiment of the present invention is a method of performing electrocorrosion protection on such a concrete structure 100 by using both the point-shaped anode method and the linear anode method. In the point-shaped anode method, the rod-shaped anode material is installed in the concrete structure 100 so that the longitudinal direction extends from the outer surface toward the inner region. Further, in the linear anode method, an elongated strip-shaped linear anode material is installed in the concrete structure 100 so that the longitudinal direction extends along the outer surface 100S of the concrete structure 100.

図1(a)および図14から図16に示すように、コンクリート構造体100は、対象面を含む外表面100Sと、外表面100Sに囲まれた内部領域100iとを含み、内部領域100iに複数の鋼材1〜19が埋設されたものである。コンクリート構造体100は、外表面100Sが上面100U、底面100Bおよび側面100Lを含む。本実施形態においては、対象面を底面100Bとして説明する。なお、本発明において、上面100Uと上面100Uに対向する底面100Bとを貫通する方向を厚み方向という。本発明において、側面視とは、対象面を基準として側面側から見ることをいう。 As shown in FIGS. 1A and 14 to 16, the concrete structure 100 includes an outer surface 100S including a target surface and an inner region 100i surrounded by the outer surface 100S, and a plurality of concrete structures 100 in the inner region 100i. Steel materials 1 to 19 of the above are buried. In the concrete structure 100, the outer surface 100S includes an upper surface 100U, a bottom surface 100B, and a side surface 100L. In the present embodiment, the target surface will be described as the bottom surface 100B. In the present invention, the direction of penetrating the upper surface 100U and the bottom surface 100B facing the upper surface 100U is referred to as a thickness direction. In the present invention, the side view means viewing from the side with respect to the target surface.

本実施形態では、図3から図5に示すように、コンクリート構造体100の底面100Bに3本の線状陽極材211a〜211cと16本の棒状陽極材231a〜231iとを設置して、鋼材1から19の電気防食を行う。鋼材1〜19は、第1の鋼材1,2,3,7,8,9,10,11、第2の鋼材4,5,6,12,13,14,15,16および横締め鋼材17,18,19を含んでいる。図示のように、鋼材1〜19は、第2の鋼材4,5,6,12,13,14,15,16と底面100Bとの距離が、第1の鋼材1,2,3,7,8,9,10,11と底面100Bとの距離よりも長くなるように配置されている。すなわち、第1の鋼材1,2,3,7,8,9,10,11と第2の鋼材4,5,6,12,13,14,15,16とは、上面100Uから底面100Bに向かう厚み方向において多段に配置され、図においては二段に配置されている。 In the present embodiment, as shown in FIGS. 3 to 5, three linear anode materials 211a to 211c and 16 rod-shaped anode materials 231a to 231i are installed on the bottom surface 100B of the concrete structure 100 to form a steel material. Performs 1 to 19 electroprotection. The steel materials 1 to 19 include the first steel material 1,2,3,7,8,9,10,11, the second steel material 4,5,6,12,13,14,15,16 and the laterally tightened steel material17. , 18, 19 are included. As shown in the figure, in the steel materials 1 to 19, the distance between the second steel materials 4, 5, 6, 12, 13, 14, 15, 16 and the bottom surface 100B is the first steel material 1, 2, 3, 7, It is arranged so as to be longer than the distance between 8, 9, 10, and 11 and the bottom surface 100B. That is, the first steel materials 1, 2, 3, 7, 8, 9, 10, 11 and the second steel materials 4, 5, 6, 12, 13, 14, 15, 16 are from the top surface 100U to the bottom surface 100B. It is arranged in multiple stages in the direction of thickness toward which it faces, and is arranged in two stages in the figure.

本実施形態では、コンクリート構造体100は、第1の鋼材1,2,3,7,8,9,10,11と、第2の鋼材4,5,6,12,13,14,15,16とを連結する連結鋼材をさらに含んでもよい。この場合、第1の鋼材1,2,3,7,8,9,10,11と、第2の鋼材4,5,6,12,13,14,15,16とはコンクリート構造体100の内部領域100iで電気的に接続されていることになる。 In the present embodiment, the concrete structure 100 includes a first steel material 1,2,3,7,8,9,10,11 and a second steel material 4,5,6,12,13,14,15, A connecting steel material connecting with 16 may be further included. In this case, the first steel materials 1, 2, 3, 7, 8, 9, 10, 11 and the second steel materials 4, 5, 6, 12, 13, 14, 15, 16 are the concrete structure 100. It is electrically connected in the internal area 100i.

例えば、第1の鋼材1,2,3,7,8,9,10,11は、コンクリート構造体100の底面100Bから3cm以上10cm以下、好ましくは7cm以上10cm以下の領域に埋設されている。また、例えば、第2の鋼材4,5,6,12,13,14,15,16は、コンクリート構造体100の上面100Uから3cm以上10cm以下、好ましくは7cm以上10cm以下の領域に埋設されている。 For example, the first steel materials 1, 2, 3, 7, 8, 9, 10, and 11 are buried in a region of 3 cm or more and 10 cm or less, preferably 7 cm or more and 10 cm or less from the bottom surface 100B of the concrete structure 100. Further, for example, the second steel materials 4, 5, 6, 12, 13, 14, 15, 16 are buried in a region of 3 cm or more and 10 cm or less, preferably 7 cm or more and 10 cm or less from the upper surface 100U of the concrete structure 100. There is.

コンクリート構造体100には、設置環境や用途などにより内部領域100iに塩化物イオンが含まれ、または、含まれる可能性があり、その濃度分布には偏りが生じる。本実施形態のコンクリート構造体100は、コンクリート構造体100における第2の鋼材4,5,6,12,13,14,15,16が埋設された領域の塩化物イオン濃度のほうが、第1の鋼材1,2,3,7,8,9,10,11が埋設された領域の塩化物イオン濃度よりも大きい、または、大きくなる可能性があるものである。すなわち、コンクリート構造体100における第2の鋼材4,5,6,12,13,14,15,16が埋設された領域と、第1の鋼材1,2,3,7,8,9,10,11が埋設された領域とは腐食環境が異なる、または、異なるように経時的に変化する可能性がある。 The concrete structure 100 may or may contain chloride ions in the internal region 100i depending on the installation environment, application, and the like, and the concentration distribution thereof is biased. In the concrete structure 100 of the present embodiment, the chloride ion concentration in the region where the second steel materials 4, 5, 6, 12, 13, 14, 15, and 16 are embedded in the concrete structure 100 is the first. The steel materials 1, 2, 3, 7, 8, 9, 10, 11 are higher or may be higher than the chloride ion concentration in the embedded region. That is, the area in which the second steel material 4,5,6,12,13,14,15,16 is buried in the concrete structure 100 and the first steel material 1,2,3,7,8,9,10 The corrosive environment is different from the area where, 11 is buried, or may change over time.

本実施形態の電気防食工法は、図1(b)に示すように、図1(a)に示すコンクリート構造体100の底面100Bに沿って、長手方向が延びるように複数の線状陽極材211a,211b,211cを設置する線状陽極材設置工程を備える。なお、複数の線状陽極材211a,211b,211cは、図示のように帯幅方向がコンクリート構造体100の底面100Bに沿って設置されてもよいし、帯幅方向がコンクリート構造体100の上面100Uから底面100Bに向かう厚み方向に沿って設置されてもよい。線状陽極材211a,211b,211cの設置は、カッター等で切削して底面100Bに複数の長溝を形成し、各長溝のそれぞれの内側に線状陽極材211a,211b,211cのそれぞれを挿入し、上記長溝内にセメント系固化材を含む充填材を充填固化させることで行うことができる。この場合、コンクリート構造体100からの線状陽極材211a,211b,211cの落下や位置ずれを抑制するために、線状陽極材211a,211b,211cを各長溝内に固定具を用いて仮止めした後に充填材を充填してもよい。また、線状陽極材211a,211b,211cの設置は、固定具によって線状陽極材211a,211b,211cをコンクリート構造体100の底面100Bに直接固着することで行ってもよい。 In the electrolytic corrosion protection method of the present embodiment, as shown in FIG. 1 (b), a plurality of linear anode materials 211a so as to extend in the longitudinal direction along the bottom surface 100B of the concrete structure 100 shown in FIG. 1 (a). , 211b, 211c are provided with a linear anode material installation step. The plurality of linear anode materials 211a, 211b, 211c may be installed along the bottom surface 100B of the concrete structure 100 in the band width direction as shown in the drawing, or the band width direction may be installed along the bottom surface 100B of the concrete structure 100. It may be installed along the thickness direction from 100U to the bottom surface 100B. To install the linear anode materials 211a, 211b, 211c, cut with a cutter or the like to form a plurality of elongated grooves on the bottom surface 100B, and insert each of the linear anode materials 211a, 211b, 211c inside each of the elongated grooves. , It can be carried out by filling and solidifying a filler containing a cement-based solidifying material in the long groove. In this case, in order to prevent the linear anode materials 211a, 211b, 211c from falling or misaligning from the concrete structure 100, the linear anode materials 211a, 211b, 211c are temporarily fixed in each elongated groove using a fixture. After that, the filler may be filled. Further, the linear anode materials 211a, 211b, 211c may be installed by directly fixing the linear anode materials 211a, 211b, 211c to the bottom surface 100B of the concrete structure 100 with a fixture.

なお、複数の線状陽極材211a,211b,211cは、長手方向がコンクリート構造体100の第1の鋼材1,2,3の長手方向に沿うように設置する。前記長溝の深さは、コンクリート構造体100の底面100Bから長溝の底部までの距離が、線状陽極材211a〜211cの厚みよりも深くになるように形成される。例えば、通常鉄筋に対するコンクリートのかぶり厚さは30mm程度であるから、コンクリート構造体100の底面100Bからの長溝の底部までの深さは15mm以上25mm以下程度である。 The plurality of linear anode materials 211a, 211b, 211c are installed so that the longitudinal direction is along the longitudinal direction of the first steel materials 1, 2, and 3 of the concrete structure 100. The depth of the long groove is formed so that the distance from the bottom surface 100B of the concrete structure 100 to the bottom of the long groove is deeper than the thickness of the linear anode materials 211a to 211c. For example, since the concrete cover thickness with respect to the reinforcing bar is usually about 30 mm, the depth from the bottom surface 100B of the concrete structure 100 to the bottom of the long groove is about 15 mm or more and 25 mm or less.

図2(b)に示すように、線状陽極材211a,211b,211cは少なくとも表面が金属または金属化合物で形成される細長帯状体である。線状陽極材211a,211b,211cとしては、チタン等の不溶性金属で形成された金属リボンメッシュ陽極材、金属グリット式陽極材、金属トレイ式陽極材、ニッケル被覆炭素繊維式陽極材などの公知の細長帯状陽極材を用いることができる。 As shown in FIG. 2B, the linear anode materials 211a, 211b, 211c are elongated strips whose surface is at least formed of a metal or a metal compound. Known examples of the linear anode materials 211a, 211b, 211c include a metal ribbon mesh anode material formed of an insoluble metal such as titanium, a metal grit type anode material, a metal tray type anode material, and a nickel-coated carbon fiber type anode material. An elongated strip-shaped anode material can be used.

本実施形態の電気防食工法は、図1(c)に示すように、コンクリート構造体100に、外表面100Sから内部領域100iに向かって長手方向が延びるように棒状陽極材231a〜231pを複数設置する棒状陽極材設置工程を備える。棒状陽極材231a〜231pの設置は、コンクリート構造体100の外表面100Sに穿孔して挿入孔を形成し、挿入孔のそれぞれに棒状陽極材231a〜231pを挿し入れることで行ってもよい。図3〜5に示す例では、コンクリート構造体100への穿孔は底面100Bから行い、挿入孔が貫通しない程度に、底面100Bから上面100U近傍に至る深さで形成する。なお、棒状陽極材231a〜231pは、棒状陽極材231a〜231pを挿入する前後の少なくとも一方において、セメント系固化材を含む充填材を挿入孔内に充填し、棒状陽極材231a〜231pが挿入された状態で充填材を固化させることで挿入孔内に固着することができる。 In the electrolytic corrosion protection method of the present embodiment, as shown in FIG. 1 (c), a plurality of rod-shaped anode materials 231a to 231p are installed on the concrete structure 100 so as to extend in the longitudinal direction from the outer surface 100S toward the inner region 100i. It is provided with a rod-shaped anode material installation process. The rod-shaped anode materials 231a to 231p may be installed by drilling holes in the outer surface 100S of the concrete structure 100 to form insertion holes, and inserting the rod-shaped anode materials 231a to 231p into each of the insertion holes. In the examples shown in FIGS. 3 to 5, the concrete structure 100 is perforated from the bottom surface 100B, and is formed at a depth from the bottom surface 100B to the vicinity of the top surface 100U so that the insertion hole does not penetrate. The rod-shaped anode materials 231a to 231p are filled with a filler containing a cement-based solidifying material in the insertion hole at least before and after the rod-shaped anode materials 231a to 231p are inserted, and the rod-shaped anode materials 231a to 231p are inserted. By solidifying the filler in the state of being in the state, it can be fixed in the insertion hole.

ここで、線状陽極材211a,211b,211cおよび棒状陽極材231a〜231pは、コンクリート構造体100中の複数の棒状陽極材231a〜231pの表面積の和が複数の線状陽極材211a,211b,211cの表面積の和以上になるように設置する。これにより、対象面から遠い第2の鋼材4,5,6,12,13,14,15,16にも防食電流を供給しやすくなる。従って、本実施形態の電気防食工法は、鋼材間の電気防食効果のばらつきが少なくなるように電気防食を行うことができる。また、実施形態に係るコンクリート構造物300は、コンクリート構造物300内における塩化物イオン濃度分布の偏りなどの腐食環境の相違にも対応して鋼材間の電気防食効果のばらつきが一層少なくなるように電気防食を行うことができる。また、本実施形態の電気防食工法は、分極量が防食基準値に達しない鋼材の発生可能性を低減することができる。分極量が防食基準値に達していれば、鉄筋は防食状態にあると判定される。分極量(ΔE)とは、コンクリート構造体100中の各鋼材1〜19の近傍に設置した照合電極により、防食電流を流さないときの自然電位(Ecor)と、防食電流を流し、防食電流の通電を停止した直後のインスタントオフ電位(Eins)との電位変化量として求められるものであり、分極量が防食基準値(100mV)以上であれば各鋼材1〜19が防食状態にあると判定される。 Here, in the linear anode materials 211a, 211b, 211c and the rod-shaped anode materials 231a to 231p, the sum of the surface areas of the plurality of rod-shaped anode materials 231a to 231p in the concrete structure 100 is the sum of the surface areas of the plurality of linear anode materials 211a, 211b, Install so that it is equal to or greater than the sum of the surface areas of 211c. This makes it easier to supply the anticorrosion current to the second steel materials 4, 5, 6, 12, 13, 14, 15, and 16 far from the target surface. Therefore, in the electrocorrosion protection method of the present embodiment, the electrocorrosion protection can be performed so that the variation in the electrocorrosion protection effect between the steel materials is reduced. Further, in the concrete structure 300 according to the embodiment, the variation in the electric corrosion protection effect between the steel materials is further reduced in response to the difference in the corrosive environment such as the bias of the chloride ion concentration distribution in the concrete structure 300. Electrocorrosion protection can be performed. Further, the electrocorrosion protection method of the present embodiment can reduce the possibility of occurrence of a steel material whose polarization amount does not reach the anticorrosion reference value. If the amount of polarization reaches the anticorrosion reference value, it is determined that the reinforcing bar is in the anticorrosion state. The amount of polarization (ΔE) is the natural potential (Ecor ) when the anticorrosion current is not passed and the anticorrosion current when the anticorrosion current is passed by the reference electrode installed near each of the steel materials 1 to 19 in the concrete structure 100. It is obtained as the amount of potential change from the instant off potential (Eins ) immediately after the energization of the concrete is stopped, and if the polarization amount is equal to or more than the anticorrosion reference value (100 mV), each steel material 1 to 19 is in an anticorrosion state. It is judged.

なお、本発明において、線状陽極材211a,211b,211cの表面積とは、図2(b)の斜線を施した線状陽極材211a,211b,211cの一主面212の表面積をいう。そして、棒状陽極材231a〜231pの表面積とは、図2(a)の斜線を施した棒状陽極材231a〜231pの外表面232の面積をいう。但し、線状陽極材211a,211b,211cの表面積および棒状陽極材231a〜231pの表面積は、陽極材として機能する部分の表面積であり、陽極材として機能しない部分が外表面に存在する場合には、上記陽極材として機能しない部分の表面積は除かれる。例えば、陽極材として機能しない部分とは陽極材表面に設けられた開口部や空隙である。 In the present invention, the surface area of the linear anode materials 211a, 211b, 211c means the surface area of one main surface 212 of the linear anode materials 211a, 211b, 211c shaded in FIG. 2 (b). The surface area of the rod-shaped anode materials 231a to 231p refers to the area of the outer surface 232 of the rod-shaped anode materials 231a to 231p shaded in FIG. 2 (a). However, the surface areas of the linear anode materials 211a, 211b, 211c and the surface areas of the rod-shaped anode materials 231a to 231p are the surface areas of the portion that functions as the anode material, and when the portion that does not function as the anode material exists on the outer surface. , The surface area of the portion that does not function as the anode material is excluded. For example, the portion that does not function as the anode material is an opening or a void provided on the surface of the anode material.

なお、図2に示すように、棒状陽極材231a〜231pには、線状陽極材211a,211b,211cと同一の陽極材料からなる細長帯状体を棒状体の周囲に巻回させて固着したものを用いてもよい。これによれば、線状陽極材211a,211b,211cおよび棒状陽極材231a〜231pの表面積の面積比を正確に計測することができ、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材の発生可能性をより一層低減することができる。 As shown in FIG. 2, the rod-shaped anode materials 231a to 231p are fixed by winding an elongated strip-shaped body made of the same anode material as the linear anode materials 211a, 211b, 211c around the rod-shaped body. May be used. According to this, the area ratio of the surface areas of the linear anode materials 211a, 211b, 211c and the rod-shaped anode materials 231a to 231p can be accurately measured, and the variation in the current density of the anticorrosion current between the steel materials and the amount of polarization are anticorrosion. It is possible to further reduce the possibility of occurrence of steel materials that do not reach the standard value.

複数の棒状陽極材231a〜231pは、コンクリート構造体100に任意の配列で設置することができる。例えば、図3に示すように、複数の棒状陽極材231a〜231pは、複数の棒状陽極材231a〜231pを横切るコンクリート構造体100の断面において千鳥状に配列されてもよい。この場合、図4および図5に示すコンクリート構造体100の側面視において、隣り合った棒状陽極材231a〜231pが重複しないようにずれて配列される。これにより、複数の棒状陽極材231a〜231pから第2の鋼材4,5,6,12,13,14,15,16に、より均一に防食電流を供給することができる。したがって、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材が発生する可能性をより一層低減することができる。 The plurality of rod-shaped anode materials 231a to 231p can be installed in the concrete structure 100 in an arbitrary arrangement. For example, as shown in FIG. 3, the plurality of rod-shaped anode materials 231a to 231p may be arranged in a staggered manner in the cross section of the concrete structure 100 that crosses the plurality of rod-shaped anode materials 231a to 231p. In this case, in the side view of the concrete structure 100 shown in FIGS. 4 and 5, the adjacent rod-shaped anode materials 231a to 231p are arranged so as not to overlap each other. As a result, the anticorrosion current can be more uniformly supplied from the plurality of rod-shaped anode materials 231a to 231p to the second steel materials 4, 5, 6, 12, 13, 14, 15, and 16. Therefore, it is possible to further reduce the possibility that the variation in the current density of the anticorrosion current between the steel materials and the amount of polarization of the anticorrosion current do not reach the anticorrosion reference value.

また、図6から図8に示すように、複数の棒状陽極材231a〜231pは、複数の棒状陽極材231a〜231pを横切るコンクリート構造体100の断面において、隣接する各棒状陽極材231a〜231pの端部同士を結ぶ仮想線が格子状になるように配列されてもよい。この場合、図7および図8に示すコンクリート構造体100の側面視において、隣り合った棒状陽極材231a〜231pが重複して配列される。なお、図6から図8において、第1の外部電源Xと第2の外部電源Yとは図示を省略している。 Further, as shown in FIGS. 6 to 8, the plurality of rod-shaped anode materials 231a to 231p are the adjacent rod-shaped anode materials 231a to 231p in the cross section of the concrete structure 100 that crosses the plurality of rod-shaped anode materials 231a to 231p. The virtual lines connecting the ends may be arranged in a grid pattern. In this case, in the side view of the concrete structure 100 shown in FIGS. 7 and 8, adjacent rod-shaped anode materials 231a to 231p are arranged in an overlapping manner. In FIGS. 6 to 8, the first external power supply X and the second external power supply Y are not shown.

棒状陽極材設置工程において、挿入孔はコンクリート構造体100を貫通しないように対象面に穿孔されたものであってもよい。この場合、複数の挿入孔は、対象面において複数の線状陽極材211a,211b,211cに挟まれた領域に形成することができる。したがって、図3〜図8に示すように、棒状陽極材231a〜231pは底面100Bから上面100Uに向かって挿入され、棒状陽極材231a〜231pの底面100B側の端部が底面100Bにおいて複数の線状陽極材211a,211b,211cに挟まれた領域に位置するように、棒状陽極材231a〜231pを設置する。すなわち、棒状陽極材231a〜231pの対象面側の端部が対象面において複数の線状陽極材211a,211b,211cに挟まれた領域に位置するように、棒状陽極材231a〜231pを設置する。これによれば、陽極材を設置できる対象面が制限され、陽極材を設置できる対象面から遠いために防食電流が供給されにくく、または腐食環境が悪いおそれがある第2の鋼材側への防食電流の供給量を増加させることができる。 In the rod-shaped anode material installation step, the insertion hole may be perforated in the target surface so as not to penetrate the concrete structure 100. In this case, the plurality of insertion holes can be formed in a region sandwiched between the plurality of linear anode materials 211a, 211b, 211c on the target surface. Therefore, as shown in FIGS. 3 to 8, the rod-shaped anode materials 231a to 231p are inserted from the bottom surface 100B toward the top surface 100U, and the ends of the rod-shaped anode materials 231a to 231p on the bottom surface 100B side are a plurality of lines on the bottom surface 100B. The rod-shaped anode materials 231a to 231p are installed so as to be located in the region sandwiched between the shape anode materials 211a, 211b, 211c. That is, the rod-shaped anode materials 231a to 231p are installed so that the ends of the rod-shaped anode materials 231a to 231p on the target surface side are located in the region sandwiched between the plurality of linear anode materials 211a, 211b, 211c on the target surface. .. According to this, the target surface on which the anode material can be installed is limited, and since it is far from the target surface on which the anode material can be installed, it is difficult to supply an anticorrosive current, or anticorrosion to the second steel material side where the corrosive environment may be bad. The amount of current supplied can be increased.

図示はしないが、挿入孔は、上面100Uから底面100Bに向かって、コンクリート構造体100を貫通しないように穿孔されてもよい。この場合は、棒状陽極材231a〜231pは上面100Uから底面100Bに向かって挿入されることになる。また、図示はしないが、挿入孔はコンクリート構造体100を貫通しないように側面100Lに穿孔されてもよい。この場合は、棒状陽極材231a〜231pは一方の側面から他方の側面に向かって挿入されることになる。 Although not shown, the insertion hole may be drilled from the upper surface 100U toward the bottom surface 100B so as not to penetrate the concrete structure 100. In this case, the rod-shaped anode materials 231a to 231p are inserted from the upper surface 100U toward the bottom surface 100B. Further, although not shown, the insertion hole may be drilled in the side surface 100L so as not to penetrate the concrete structure 100. In this case, the rod-shaped anode materials 231a to 231p are inserted from one side surface toward the other side surface.

棒状陽極材設置工程において、長手方向において内部領域100i側の端部と外表面100S側の端部とを含み、内部領域100i側の端部と第2の鋼材12の距離が内部領域側の端部と第1の鋼材7の距離よりも短くなるように、棒状陽極材231aを設置するものであってもよい。棒状陽極材231b〜231pに関しても図示するように同様である。これによれば、第2の鋼材4,5,6,12,13,14,15,16への防食電流の供給量を増加させることができる。 In the rod-shaped anode material installation step, the distance between the end portion on the inner region 100i side and the end portion on the outer surface 100S side in the longitudinal direction and the distance between the end portion on the inner region 100i side and the second steel material 12 is the end on the inner region side. The rod-shaped anode material 231a may be installed so as to be shorter than the distance between the portion and the first steel material 7. The same applies to the rod-shaped anode materials 231b to 231p as shown in the figure. According to this, it is possible to increase the supply amount of the anticorrosion current to the second steel materials 4, 5, 6, 12, 13, 14, 15, and 16.

図2(a)に示すように、棒状陽極材231a〜231pは、少なくとも外表面232が金属または金属化合物で形成された棒状体である。棒状陽極材231a〜231pとしては、チタン等の不溶性金属で形成された金属リボンメッシュ線状陽極材や金属メッシュ面状陽極材を棒状体に巻回して固着させた金属メッシュ棒状陽極材や、金属ロッド状陽極材などを用いることができる。内部領域100iにおいて、棒状陽極材231a〜231pは、線状陽極材211a〜211cに対して短絡しない程度の間隔を置いて、電気的に分離された状態となるように埋設される。 As shown in FIG. 2A, the rod-shaped anode materials 231a to 231p are rod-shaped bodies having at least an outer surface 232 formed of a metal or a metal compound. The rod-shaped anode materials 231a to 231p include a metal ribbon mesh linear anode material formed of an insoluble metal such as titanium, a metal mesh rod-shaped anode material obtained by winding a metal mesh planar anode material around a rod-shaped body and fixing the rod-shaped anode material, or a metal. A rod-shaped anode material or the like can be used. In the internal region 100i, the rod-shaped anode materials 231a to 231p are embedded so as to be electrically separated from the linear anode materials 211a to 211c at intervals that do not cause a short circuit.

本実施形態の電気防食工法は、図1(d)に示すように、第1の鋼材1,2,3,7,8,9,10,11と複数の線状陽極材211a,211b,211cとを第1の外部電源Xに電気的に接続し、第2の鋼材4,5,6,12,13,14,15,16と複数の棒状陽極材231a〜231pとを第2の外部電源Yに電気的に接続する接続工程を備える。具体的には、電気的な接続は導線を用いて接続することによって行うことができる。なお、図示を簡略化するために、図1(d)においては、一部の電気的接続に関してのみ模式的に図示し、他部の電気的接続に関しては図示を省略している。第1の外部電源Xと第2の外部電源Yとは各鋼材1〜19に直流電流を供給するものである。第1の外部電源Xと第2の外部電源Yとは、第1の鋼材1,2,3,7,8,9,10,11と第2の鋼材4,5,6,12,13,14,15,16とに別々の防食電流の電流量で電流を供給できるものであれば、別体で形成されたものでも一体形成されたものでも構わない。これにより、コンクリート構造体100のコンクリートを介して、第1の外部電源Xによって、複数の線状陽極材211a,211b,211cから第1の鋼材1,2,3,7,8,9,10,11の表面へ防食電流が流入する。同様に、第2の外部電源Yによって、複数の棒状陽極材231a〜231pから第2の鋼材4,5,6,12,13,14,15,16の表面へ防食電流が流入する。本実施形態の電気防食工法は、この後、第1の外部電源Xから第1の鋼材1,2,3,7,8,9,10,11と複数の線状陽極材211a,211b,211cに第1の防食電流値の防食電流を流し、第2の外部電源Yから第2の鋼材4,5,6,12,13,14,15,16と複数の棒状陽極材231a〜231pに第2の防食電流値の防食電流を流す工程を含む。第2の防食電流値は第1の防食電流値よりも大きくてもよいし、第1の防食電流値と第2の防食電流値は同じ値を示すものであってもよい。第2の防食電流値が第1の防食電流値よりも大きいものである場合、奥まって配置された第2の鋼材4,5,6,12,13,14,15,16に防食電流を供給しにくい場合であっても、第2の鋼材4,5,6,12,13,14,15,16の表面に第1の鋼材1,2,3,7,8,9,10,11の表面と同程度の電流密度で防食電流を流入させることができ、陽極材を含む電気防食装置の耐久性の低下を一層抑制し、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材の発生可能性を一層低減することができる。 As shown in FIG. 1D, the electrocorrosion protection method of the present embodiment includes the first steel materials 1, 2, 3, 7, 8, 9, 10, 11 and a plurality of linear anode materials 211a, 211b, 211c. Is electrically connected to the first external power source X, and the second steel materials 4, 5, 6, 12, 13, 14, 15, 16 and the plurality of rod-shaped anode materials 231a to 231p are connected to the second external power source. A connection step of electrically connecting to Y is provided. Specifically, the electrical connection can be made by connecting using a conducting wire. In order to simplify the illustration, in FIG. 1D, only a part of the electrical connections are schematically shown, and the electrical connections of the other parts are omitted. The first external power source X and the second external power source Y supply a direct current to the steel materials 1 to 19. The first external power source X and the second external power source Y are the first steel materials 1, 2, 3, 7, 8, 9, 10, 11 and the second steel materials 4, 5, 6, 12, 13, As long as the currents can be supplied to 14, 15 and 16 with different amounts of anticorrosion currents, they may be formed separately or integrally formed. As a result, a plurality of linear anode materials 211a, 211b, 211c to the first steel materials 1, 2, 3, 7, 8, 9, 10 are provided by the first external power source X through the concrete of the concrete structure 100. , An anticorrosion current flows into the surface of 11. Similarly, the anticorrosion current flows from the plurality of rod-shaped anode materials 231a to 231p to the surfaces of the second steel materials 4, 5, 6, 12, 13, 14, 15, and 16 by the second external power source Y. In the electrolytic corrosion protection method of the present embodiment, after that, the first external power source X to the first steel materials 1, 2, 3, 7, 8, 9, 10, 11 and a plurality of linear anode materials 211a, 211b, 211c The anticorrosion current of the first anticorrosion current value is passed through the second external power source Y to the second steel materials 4, 5, 6, 12, 13, 14, 15, 16 and a plurality of rod-shaped anode materials 231a to 231p. The step of passing the anticorrosion current of the anticorrosion current value of 2 is included. The second anticorrosion current value may be larger than the first anticorrosion current value, and the first anticorrosion current value and the second anticorrosion current value may show the same value. When the second anticorrosion current value is larger than the first anticorrosion current value, the anticorrosion current is supplied to the second steel materials 4, 5, 6, 12, 13, 14, 15, 16 arranged in the back. Even if it is difficult, the surface of the second steel material 4,5,6,12,13,14,15,16 is covered with the first steel material 1,2,3,7,8,9,10,11. The anticorrosion current can flow in at the same current density as the surface, further suppresses the deterioration of the durability of the electrocorrosion protection device including the anode material, and the variation in the current density of the anticorrosion current between the steel materials and the amount of polarization are the anticorrosion standards. It is possible to further reduce the possibility of occurrence of steel materials that do not reach the value.

(コンクリート構造物)
次に、図3から図8を参照して、本発明の実施形態に係るコンクリート構造物300について説明する。コンクリート構造物300は、上述の実施形態に係る電気防食工法を実施すると製造されるものであり、コンクリート構造体100と電気防食装置とを含んでなる。コンクリート構造体100は、対象面である底面100Bを含む外表面100Sと、外表面100Sに囲まれた内部領域100iとを備え、内部領域100iに鋼材1〜19が埋設されている。鋼材1〜19は、第1の鋼材1,2,3,7,8,9,10,11と、第2の鋼材4,5,6,12,13,14,15,16であって、第2の鋼材4,5,6,12,13,14,15,16と対象面である底面100Bとの距離が第1の鋼材1,2,3,7,8,9,10,11と対象面である底面100Bとの距離よりも長くなるように配置される第2の鋼材4,5,6,12,13,14,15,16と、を含んで多段で配置されている。
(Concrete structure)
Next, the concrete structure 300 according to the embodiment of the present invention will be described with reference to FIGS. 3 to 8. The concrete structure 300 is manufactured by carrying out the electrocorrosion protection method according to the above-described embodiment, and includes the concrete structure 100 and the electrocorrosion protection device. The concrete structure 100 includes an outer surface 100S including a bottom surface 100B, which is a target surface, and an inner region 100i surrounded by the outer surface 100S, and steel materials 1 to 19 are embedded in the inner region 100i. The steel materials 1 to 19 are the first steel material 1,2,3,7,8,9,10,11 and the second steel material 4,5,6,12,13,14,15,16. The distance between the second steel material 4,5,6,12,13,14,15,16 and the bottom surface 100B, which is the target surface, is the first steel material 1,2,3,7,8,9,10,11. The second steel materials 4, 5, 6, 12, 13, 14, 15, 16 which are arranged so as to be longer than the distance from the bottom surface 100B, which is the target surface, are arranged in multiple stages.

そして、本実施形態に係るコンクリート構造物300は、コンクリート構造体100に設置された電気防食装置をさらに備える。電気防食装置は、長手方向が対象面に沿って延びる複数の線状陽極材211a〜211cと、長手方向が外表面100Sから内部領域100iに向かって延びる複数の棒状陽極材231a〜231pと、第1の鋼材1,2,3,7,8,9,10,11と前記複数の線状陽極材211a〜211cとに電気的に接続される第1の外部電源Xと、第2の鋼材4,5,6,12,13,14,15,16と複数の棒状陽極材231a〜231pとに電気的に接続される第2の外部電源Yと、を含んでなる。なお、図示しないが、電気防食装置は、さらに防食電流の電流量を制御するための照合電極を備えてもよい。 The concrete structure 300 according to the present embodiment further includes an electrocorrosion protection device installed in the concrete structure 100. The electrocorrosion device includes a plurality of linear anode materials 211a to 211c whose longitudinal direction extends along the target surface, and a plurality of rod-shaped anode materials 231a to 231p whose longitudinal direction extends from the outer surface 100S toward the inner region 100i. A first external power source X electrically connected to the steel materials 1, 2, 3, 7, 8, 9, 10, 11 and the plurality of linear anode materials 211a to 211c, and a second steel material 4 , 5, 6, 12, 13, 14, 15, 16 and a second external power supply Y electrically connected to the plurality of rod-shaped anode materials 231a to 231p. Although not shown, the electrocorrosion protection device may further include a reference electrode for controlling the amount of the corrosion protection current.

コンクリート構造物300は、上述の電気防食工法の実施形態で説明したとおり、線状陽極材211a〜211cと棒状陽極材231a〜231pとは、複数の棒状陽極材231a〜231pの表面積の和が複数の線状陽極材の表面積の和以上となるように設けられている。 In the concrete structure 300, as described in the embodiment of the electrocorrosion protection method described above, the linear anode materials 211a to 211c and the rod-shaped anode materials 231a to 231p have a plurality of sums of the surface areas of the plurality of rod-shaped anode materials 231a to 231p. It is provided so as to be equal to or greater than the sum of the surface areas of the linear anode materials of.

上記構成によって、本実施形態に係るコンクリート構造物300は、対象面から遠い第2の鋼材4,5,6,12,13,14,15,16にも防食電流を供給しやすくなる。このため、鋼材間の電気防食効果のばらつきが一層少なくなるように電気防食を行うことができる。また、実施形態に係るコンクリート構造物300は、コンクリート構造物300内における塩化物イオン濃度分布の偏りなどの腐食環境の相違にも対応して鋼材間の電気防食効果のばらつきが一層少なくなるように電気防食を行うことができる。また、コンクリート構造物300は、防食基準値に達しない鋼材が発生する可能性が低くなるように制御できる。したがって、本実施形態のコンクリート構造物300は、鋼材の腐食耐性が高く、コンクリート構造物300自体の耐久性が高いものである。 With the above configuration, the concrete structure 300 according to the present embodiment can easily supply the anticorrosion current to the second steel materials 4, 5, 6, 12, 13, 14, 15, and 16 far from the target surface. Therefore, the electric corrosion protection can be performed so that the variation in the electric corrosion protection effect between the steel materials is further reduced. Further, in the concrete structure 300 according to the embodiment, the variation in the electric corrosion protection effect between the steel materials is further reduced in response to the difference in the corrosive environment such as the bias of the chloride ion concentration distribution in the concrete structure 300. Electrocorrosion protection can be performed. Further, the concrete structure 300 can be controlled so that the possibility that a steel material that does not reach the anticorrosion standard value is generated is low. Therefore, the concrete structure 300 of the present embodiment has high corrosion resistance of the steel material, and the concrete structure 300 itself has high durability.

図3に示すように、複数の棒状陽極材231a〜231pは、複数の棒状陽極材231a〜231pを横切る断面において千鳥状に配列されてもよい。これにより、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材の発生可能性をより一層低減することができ、コンクリート構造物300の耐久性をより高くすることができる。また、図6に示すように、複数の棒状陽極材231a〜231pは、複数の棒状陽極材231a〜231pを横切る断面において、コンクリート構造体100を側面視した際に、隣り合った棒状陽極材231a〜231pが重複するように配列されてもよい。 As shown in FIG. 3, the plurality of rod-shaped anode materials 231a to 231p may be arranged in a staggered manner in a cross section crossing the plurality of rod-shaped anode materials 231a to 231p. As a result, the variation in the current density of the anticorrosion current between the steel materials and the possibility of occurrence of the steel material whose polarization amount does not reach the anticorrosion standard value can be further reduced, and the durability of the concrete structure 300 can be further improved. it can. Further, as shown in FIG. 6, the plurality of rod-shaped anode materials 231a to 231p are adjacent to each other when the concrete structure 100 is viewed from the side in a cross section crossing the plurality of rod-shaped anode materials 231a to 231p. ~ 231p may be arranged so as to overlap.

(コンクリート構造物の製造方法)
本実施形態に係るコンクリート構造物300の製造方法は、上述の実施形態に係る電気防食工法を実施することにより、コンクリート構造体100に電気防食装置を設置してコンクリート構造物300を製造する方法である。詳細には、鋼材1〜19が埋設されたコンクリート構造体100に電気防食装置を設置する工程を備える。コンクリート構造体100は、対象面である底面100Bを含む外表面100Sと、外表面100Sに囲まれた内部領域100iとを含み、内部領域100iに第1の鋼材1,2,3,7,8,9,10,11が埋設され、内部領域100iに第2の鋼材4,5,6,12,13,14,15,16が埋設されている。
(Manufacturing method of concrete structure)
The method for manufacturing the concrete structure 300 according to the present embodiment is a method for manufacturing the concrete structure 300 by installing an electric corrosion protection device on the concrete structure 100 by implementing the electric corrosion protection method according to the above-described embodiment. is there. Specifically, a step of installing an electric corrosion protection device in the concrete structure 100 in which the steel materials 1 to 19 are embedded is provided. The concrete structure 100 includes an outer surface 100S including a bottom surface 100B which is a target surface and an inner region 100i surrounded by the outer surface 100S, and the first steel material 1, 2, 3, 7, 8 is included in the inner region 100i. , 9, 10 and 11 are buried, and the second steel materials 4, 5, 6, 12, 13, 14, 15 and 16 are buried in the internal area 100i.

第2の鋼材4,5,6,12,13,14,15,16は、第2の鋼材4,5,6,12,13,14,15,16と対象面である底面100Bとの距離が第1の鋼材1,2,3,7,8,9,10,11と対象面である底面100Bとの距離よりも長くなるように配置される。すなわち、第2の鋼材4,5,6,12,13,14,15,16は対象面である底面100Bから離れており、防食電流が供給されにくい位置にある。 The second steel material 4,5,6,12,13,14,15,16 is the distance between the second steel material 4,5,6,12,13,14,15,16 and the bottom surface 100B which is the target surface. Is arranged so as to be longer than the distance between the first steel materials 1, 2, 3, 7, 8, 9, 10, 11 and the bottom surface 100B, which is the target surface. That is, the second steel materials 4, 5, 6, 12, 13, 14, 15, and 16 are separated from the bottom surface 100B, which is the target surface, and are in positions where it is difficult to supply the anticorrosion current.

次に、コンクリート構造体100に電気防食装置を設置する工程について説明する。電気防食装置を設置する工程は、対象面である底面100Bに沿って長手方向が延びるように複数の線状陽極材211a〜211cを設置する工程と、コンクリート構造体100に、長手方向が外表面100Sから内部領域100iに向かって延びるように複数の棒状陽極材231a〜231pを設置する工程と、を備える。 Next, a step of installing the anticorrosion device on the concrete structure 100 will be described. The steps of installing the anticorrosion device include the steps of installing a plurality of linear anode materials 211a to 211c so as to extend in the longitudinal direction along the bottom surface 100B, which is the target surface, and the outer surface of the concrete structure 100 in the longitudinal direction. A step of installing a plurality of rod-shaped anode materials 231a to 231p so as to extend from 100S toward the internal region 100i is provided.

線状陽極材211a〜211cおよび棒状陽極材231a〜231pは、複数の棒状陽極材231a〜231pの表面積の和が複数の線状陽極材211a〜211cの表面積の和以上になるように設置する。さらに、コンクリート構造体100に電気防食装置を設置する工程は、第1の鋼材1,2,3,7,8,9,10,11と複数の線状陽極材211a〜211cとを、導線などによって第1の外部電源Xに電気的に接続し、第2の鋼材4,5,6,12,13,14,15,16と複数の棒状陽極材231a〜231pとを、導線などによって第2の外部電源Yに電気的に接続する工程を含む。 The linear anode materials 211a to 211c and the rod-shaped anode materials 231a to 231p are installed so that the sum of the surface areas of the plurality of rod-shaped anode materials 231a to 231p is equal to or greater than the sum of the surface areas of the plurality of linear anode materials 211a to 211c. Further, in the step of installing the anticorrosion device on the concrete structure 100, the first steel materials 1, 2, 3, 7, 8, 9, 10, 11 and the plurality of linear anode materials 211a to 211c are connected to each other by conducting wires or the like. The second steel materials 4, 5, 6, 12, 13, 14, 15, 16 and the plurality of rod-shaped anode materials 231a to 231p are electrically connected to the first external power source X by means of a lead wire or the like. Includes the step of electrically connecting to the external power supply Y of the above.

上記構成によって、本実施形態に係るコンクリート構造物300の製造方法は、耐久性が高いコンクリート構造物300を製造することができる。 With the above configuration, the method for manufacturing the concrete structure 300 according to the present embodiment can manufacture the concrete structure 300 having high durability.

図3に示すように、複数の棒状陽極材231a〜231pは、複数の棒状陽極材231a〜231pを横切る断面において千鳥状に配列されてもよい。これにより、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材の発生可能性をより一層低減することができ、コンクリート構造物300の耐久性をより高くすることができる。また、図6に示すように、複数の棒状陽極材231a〜231pは、複数の棒状陽極材231a〜231pを横切る断面において、コンクリート構造体100を側面視した際に、隣り合った棒状陽極材231a〜231pが重複するように配列されてもよい。 As shown in FIG. 3, the plurality of rod-shaped anode materials 231a to 231p may be arranged in a staggered manner in a cross section crossing the plurality of rod-shaped anode materials 231a to 231p. As a result, the variation in the current density of the anticorrosion current between the steel materials and the possibility of occurrence of the steel material whose polarization amount does not reach the anticorrosion standard value can be further reduced, and the durability of the concrete structure 300 can be further improved. it can. Further, as shown in FIG. 6, the plurality of rod-shaped anode materials 231a to 231p are adjacent to each other when the concrete structure 100 is viewed from the side in a cross section crossing the plurality of rod-shaped anode materials 231a to 231p. ~ 231p may be arranged so as to overlap.

以下、実施例を用いて、上記実施形態に係る電気防食工法をより詳細に説明する。 Hereinafter, the electrocorrosion protection method according to the above embodiment will be described in more detail with reference to Examples.

(実施例1)
実施例1の電気防食工法は、千鳥状に配列される点状陽極方式と線状陽極方式を併用するものであり、図3から図5に記載の実施形態に係る電気防食工法を具体化したものでる。実施例1は、コンクリート構造体100として鉄筋コンクリート床版を用い、鋼材として鉄筋を用いている。また、実施例1においては、各鉄筋の位置を示すために、図3から図5に記載の鋼材の符号を引用して説明する。
(Example 1)
The electrocorrosion protection method of Example 1 is a combination of a dotted anode method and a linear anode method arranged in a staggered pattern, and embodies the electrocorrosion protection method according to the embodiment shown in FIGS. 3 to 5. It's a thing. In Example 1, a reinforced concrete floor slab is used as the concrete structure 100, and a reinforcing bar is used as the steel material. Further, in the first embodiment, in order to indicate the position of each reinforcing bar, the reference numerals of the steel materials shown in FIGS. 3 to 5 will be cited and described.

コンクリート床版は、上面から底面までの厚みTが200mm、底面が1230mm×600mmとなるように形成したものを使用する。コンクリート床版には、第1の鋼材となる下側鉄筋1,2,3,7,8,9,10,11および第2の鋼材となる上側鉄筋4,5,6,12,13,14,15,16とが埋設されている。上側鉄筋4,5,6,12,13,14,15,16は、250mm間隔で配置された鉄筋12,13,14,15,16と130mm間隔で配置された鉄筋4,5,6とが格子状に交差してなるものである。同様に、下側鉄筋1,2,3,7,8,9,10,11は、250mm間隔で配置された鉄筋7,8,9,10,11と130mm間隔で配置された鉄筋1,2,3とが格子状に交差してなるものである。上側鉄筋4,5,6,12,13,14,15,16は、コンクリート床版の上面との距離が35mm、下側鉄筋1,2,3,7,8,9,10,11は、コンクリート床版の底面との距離が35mmとなるように配置されている。 The concrete floor slab is formed so that the thickness T from the top surface to the bottom surface is 200 mm and the bottom surface is 1230 mm × 600 mm. For concrete floor slabs, the lower reinforcing bars 1,2,3,7,8,9,10,11, which are the first steel materials, and the upper reinforcing bars 4,5,6,12,13,14, which are the second steel materials, are used. , 15 and 16 are buried. The upper reinforcing bars 4, 5, 6, 12, 13, 14, 15, 16 are composed of reinforcing bars 12, 13, 14, 15, 16 arranged at 250 mm intervals and reinforcing bars 4, 5, 6 arranged at 130 mm intervals. It is formed by intersecting in a grid pattern. Similarly, the lower reinforcing bars 1, 2, 3, 7, 8, 9, 10, 11 are the reinforcing bars 7, 8, 9, 10, 11 arranged at 250 mm intervals, and the reinforcing bars 1, 2 arranged at 130 mm intervals. , 3 intersect in a grid pattern. The upper reinforcing bars 4,5,6,12,13,14,15,16 have a distance of 35 mm from the upper surface of the concrete floor slab, and the lower reinforcing bars 1,2,3,7,8,9,10,11 have. It is arranged so that the distance from the bottom surface of the concrete floor slab is 35 mm.

下側鉄筋1,2,3,7,8,9,10,11および上側鉄筋4,5,6,12,13,14,15,16としては、シース管φ40(公称長径19.1mm、公称周長60mm)に挿通された鉄筋(D13(JIS G 3112-1964))を用いた。コンクリート床板は、実際に設置されている橋梁床版における測定値に基づいて、上側鉄筋4,5,6,12,13,14,15,16が埋設された領域のコンクリート中の塩化物イオン濃度が、下側鉄筋1,2,3,7,8,9,10,11が埋設された領域のコンクリート中の塩化物イオン濃度よりも高くなるように形成した。具体的には、コンクリート床板は、上側鉄筋4,5,6,12,13,14,15,16の配置領域にコンクリート1m(塩化カルシウムを除く)に対して塩化カルシウムが5kg/mとなるように混練して形成されたコンクリートを流し込み、下側鉄筋1,2,3,7,8,9,10,11の配置領域にコンクリート1m(塩化カルシウムを除く)に対して塩化カルシウムが3kg/mとなるように混練して形成されたコンクリートを流し込んだ後に硬化させたものを用いた。 As the lower reinforcing bars 1,2,3,7,8,9,10,11 and the upper reinforcing bars 4,5,6,12,13,14,15,16, the sheath tube φ40 (nominal major axis 19.1 mm, nominal) A reinforcing bar (D13 (JIS G 3112-1964)) inserted through a circumference of 60 mm) was used. The concrete floor board has the chloride ion concentration in the concrete in the area where the upper reinforcing bars 4, 5, 6, 12, 13, 14, 15, 16 are buried, based on the measured values in the bridge slab actually installed. However, the lower reinforcing bars 1, 2, 3, 7, 8, 9, 10, and 11 were formed so as to be higher than the chloride ion concentration in the concrete in the buried area. Specifically, in the concrete floor board, calcium chloride is 5 kg / m 3 with respect to concrete 1 m 3 (excluding calcium chloride) in the arrangement area of the upper reinforcing bars 4, 5, 6, 12, 13, 14, 15, 16. Concrete formed by kneading so as to be poured is poured, and calcium chloride is added to 1 m 3 of concrete (excluding calcium chloride) in the arrangement area of the lower reinforcing bars 1, 2, 3, 7, 8, 9, 10, 11. The concrete formed by kneading to 3 kg / m 3 was poured and then hardened.

次に、長手方向がコンクリート床版の底面に沿うように3本のチタンリボンメッシュ線状陽極材をコンクリート床版に設置した。詳細に説明すると、コンクリート床版の底面を切削して、コンクリート床版の側縁から100mmの間隔をおいて鉄筋1の長手方向に沿った長溝と、該長溝から200mmの間隔をおいて鉄筋2,3の長手方向に沿った2本の長溝と、の計3本の長溝を形成した。この長溝内に細長帯状の線状陽極材を挿入して長溝の底部に仮固定した後、充填材としてセメントモルタルを溝内に充填することによりコンクリート床版内に電気防食用の陽極を埋設するとともに溝を修復した。これにより、コンクリート床版の底面に本実施形態の線状陽極材としてチタンリボンメッシュ線状陽極材が200mm間隔で3本設置された。 Next, three titanium ribbon mesh linear anode materials were installed on the concrete slab so that the longitudinal direction was along the bottom surface of the concrete slab. More specifically, the bottom surface of the concrete slab is cut, and a long groove along the longitudinal direction of the reinforcing bar 1 at a distance of 100 mm from the side edge of the concrete slab and a long groove 2 at a distance of 200 mm from the long groove. , 3 long grooves along the longitudinal direction, and a total of 3 long grooves were formed. An elongated strip-shaped linear anode material is inserted into the elongated groove and temporarily fixed to the bottom of the elongated groove, and then cement mortar is filled in the groove as a filler to embed the anode for electrolytic corrosion protection in the concrete floor slab. And repaired the groove. As a result, three titanium ribbon mesh linear anode materials were installed on the bottom surface of the concrete floor slab at intervals of 200 mm as the linear anode materials of the present embodiment.

次に、長手方向が底面から内部領域に向かって延びるように、チタンリボンメッシュ棒状陽極材をコンクリート床版に設置した。詳細に説明すると、まず、コンクリート床版の底面に穿孔して、コンクリート床版に複数の挿入孔を設けた。コンクリート床版への穿孔は、コンクリート床版の底面に、複数の挿入孔が図3に示すように千鳥状に配列されるように行った。この挿入孔に棒状陽極材を挿入した後、充填材によって挿入孔を埋め込んだ。棒状陽極材としては、上述の線状陽極材と同じチタンリボンメッシュ陽極材を柱状体に巻回させたチタンリボンメッシュ棒状陽極材を形成して用いた。 Next, the titanium ribbon mesh rod-shaped anode material was installed on the concrete slab so that the longitudinal direction extended from the bottom surface toward the internal region. More specifically, first, a hole was made in the bottom surface of the concrete slab to provide a plurality of insertion holes in the concrete slab. The perforations in the concrete slab were made so that a plurality of insertion holes were arranged in a staggered pattern on the bottom surface of the concrete slab as shown in FIG. After inserting the rod-shaped anode material into the insertion hole, the insertion hole was embedded with the filler. As the rod-shaped anode material, a titanium ribbon mesh rod-shaped anode material in which the same titanium ribbon mesh anode material as the above-mentioned linear anode material was wound around a columnar body was formed and used.

これにより、チタンリボンメッシュ棒状陽極材は、チタンリボンメッシュ棒状陽極材を通る断面において、隣接するチタンリボンメッシュ棒状陽極材231a〜231pの間隔が100mm以上130mm以下となるように千鳥状に配列した。これにより、各チタンリボンメッシュ棒状陽極材は、チタンリボンメッシュ棒状陽極材の内部領域側の端部と該端部から最も近接する上側鉄筋4,5,6,12,13,14,15,16のいずれかとの距離が、チタンリボンメッシュ棒状陽極材の内部領域側の端部と該端部と最も近接する下側鉄筋1,2,3,7,8,9,10,11のいずれかとの距離よりも短くなるように設置された。 As a result, the titanium ribbon mesh rod-shaped anode materials were arranged in a staggered manner so that the distance between the adjacent titanium ribbon mesh rod-shaped anode materials 231a to 231p was 100 mm or more and 130 mm or less in the cross section passing through the titanium ribbon mesh rod-shaped anode material. As a result, each titanium ribbon mesh rod-shaped anode material has an end portion on the inner region side of the titanium ribbon mesh rod-shaped anode material and the upper reinforcing bar 4,5,6,12,13,14,15,16 closest to the end portion. The distance from any of the titanium ribbon mesh rod-shaped anode materials is between the end of the titanium ribbon mesh rod-shaped anode material on the inner region side and one of the lower reinforcing bars 1, 2, 3, 7, 8, 9, 10, and 11 closest to the end. It was installed so that it was shorter than the distance.

チタンリボンメッシュ線状陽極材とチタンリボンメッシュ棒状陽極材とは、複数のチタンリボンメッシュ棒状陽極材の表面積の和が複数のチタンリボンメッシュ線状陽極材の表面積の和以上になるように設置された。本実施例では、3本のチタンリボンメッシュ線状陽極材の表面積の和と16本のチタンリボンメッシュ棒状陽極材の表面積の和とが1.00:1.08となるように設置した。 The titanium ribbon mesh linear anode material and the titanium ribbon mesh rod-shaped anode material are installed so that the sum of the surface areas of the plurality of titanium ribbon mesh rod-shaped anode materials is equal to or greater than the sum of the surface areas of the plurality of titanium ribbon mesh linear anode materials. It was. In this example, the sum of the surface areas of the three titanium ribbon mesh linear anode materials and the sum of the surface areas of the 16 titanium ribbon mesh rod-shaped anode materials were set to be 1.00: 1.08.

そして、下側鉄筋1,2,3,7,8,9,10,11と、チタンリボンメッシュ線状陽極材とをリード線によって第1の外部電源Xに電気的に接続し、上側鉄筋4,5,6,12,13,14,15,16とチタンリボンメッシュ棒状陽極材231a〜231pとをリード線によって第1の外部電源Xとは別の第2の外部電源Yに電気的に接続した。これにより、実施例1にかかる電気防食工法による電気防食装置付きコンクリート床版を形成した。この電気防食装置付きコンクリート床版に、第1の外部電源および第2の外部電源から各々3.7mAの電流量の防食電流を流して電気防食を行った。 Then, the lower reinforcing bars 1, 2, 3, 7, 8, 9, 10, 11 and the titanium ribbon mesh linear anode material are electrically connected to the first external power source X by lead wires, and the upper reinforcing bars 4 are connected. , 5, 6, 12, 13, 14, 15, 16 and titanium ribbon mesh rod-shaped anode materials 231a to 231p are electrically connected to a second external power supply Y different from the first external power supply X by a lead wire. did. As a result, a concrete floor slab with an electric anticorrosion device according to the electrocorrosion protection method according to Example 1 was formed. An anticorrosion current of 3.7 mA was passed from a first external power source and a second external power source to the concrete floor slab with an electrocorrosion device to perform electrocorrosion protection.

(実施例2)
実施例2の電気防食工法は、コンクリート構造体の側面視において、隣り合った複数の棒状陽極材が重複するように配列する点状陽極方式と線状陽極方式とを併用するものであり、図4から図6に記載の実施形態に係る電気防食工法を具体化したものである。実施例2の電気防食工法は、棒状陽極材および挿入孔の配置パターンのみが実施例1の電気防食工法と異なるため、これらの配置パターンのみについて説明し、この他は実施例1の記載を引用する。なお、実施例2において、各鉄筋には位置を示すために、図6から図8に記載の鋼材の符号を引用して説明している。
(Example 2)
The electrolytic corrosion protection method of the second embodiment uses both a point-shaped anode method and a linear anode method in which a plurality of adjacent rod-shaped anode materials are arranged so as to overlap each other in a side view of the concrete structure. It embodies the electrocorrosion protection method according to the embodiment shown in FIGS. 4 to 6. Since the electrocorrosion protection method of Example 2 differs from the electrocorrosion protection method of Example 1 only in the arrangement pattern of the rod-shaped anode material and the insertion hole, only these arrangement patterns will be described, and the description of Example 1 is quoted for others. To do. In Example 2, in order to indicate the position of each reinforcing bar, the reference numerals of the steel materials shown in FIGS. 6 to 8 are cited and described.

実施例2の電気防食工法は、コンクリート床版の底面に複数の挿入孔を図6に示すように列状に配列させたものである。そして、この挿入孔にチタンリボンメッシュ棒状陽極材を挿入した後、充填材によって挿入孔を埋め込んだ。これにより、チタンリボンメッシュ棒状陽極材は、チタンリボンメッシュ棒状陽極材を通る断面において、隣接するチタンリボンメッシュ棒状陽極材の間隔が100mm以上130mm以下となるように、隣接する各棒状陽極材231a〜231pの端部同士を結ぶ仮想線が格子状になるように、かつ、コンクリート構造体の側面視において、隣り合った複数の棒状陽極材が重複するように配列して設置された。これ以外は、実施例1と同様にして電気防食工法を実施し、実施例2に係る電気防食工法による電気防食装置付きコンクリート床版を形成した。この電気防食装置付きコンクリート床版に、第1の外部電源および第2の外部電源から各々3.7mAの電流量の防食電流を流して電気防食を行った。 In the anticorrosion method of Example 2, a plurality of insertion holes are arranged in a row on the bottom surface of the concrete floor slab as shown in FIG. Then, after inserting the titanium ribbon mesh rod-shaped anode material into the insertion hole, the insertion hole was embedded with the filler. As a result, the titanium ribbon mesh rod-shaped anode material has the adjacent rod-shaped anode materials 231a to 130 mm or less so that the distance between the adjacent titanium ribbon mesh rod-shaped anode materials is 100 mm or more and 130 mm or less in the cross section passing through the titanium ribbon mesh rod-shaped anode material. The virtual lines connecting the ends of 231p were arranged in a grid pattern, and a plurality of adjacent rod-shaped anode materials were arranged so as to overlap each other in the side view of the concrete structure. Except for this, the electrocorrosion protection method was carried out in the same manner as in Example 1, and a concrete floor slab with an electrocorrosion protection device was formed by the electrocorrosion protection method according to Example 2. An anticorrosion current of 3.7 mA was passed from a first external power source and a second external power source to the concrete floor slab with an electrocorrosion device to perform electrocorrosion protection.

(比較例1)
比較例1の電気防食工法は、実施例1および2の電気防食工法が複数の外部電源を備えて複数の電気防食回路が形成されるものであるのに対して、一つの外部電源(第1の外部電源X)のみを備えて一の電気防食回路を構成している点で異なる。具体的には、比較例1の電気防食工法は、下側鉄筋1,2,3,7,8,9,10,11と、チタンリボンメッシュ線状陽極材と、上側鉄筋4,5,6,12,13,14,15,16と、チタンリボンメッシュ棒状陽極材231a〜231pとをリード線によって、同一の第1の外部電源Xに電気的に接続した。これ以外は、実施例1と同様にして電気防食工法を実施し、比較例1に係る電気防食工法による電気防食装置付きコンクリート床版を形成した。この電気防食装置付きコンクリート床版に、第1の外部電源から3.7mAの電流量の防食電流を流して電気防食を行った。
(Comparative Example 1)
In the electrocorrosion protection method of Comparative Example 1, one external power source (first) is used, whereas the electrocorrosion protection methods of Examples 1 and 2 are provided with a plurality of external power sources to form a plurality of electrocorrosion circuits. It differs in that it is provided with only the external power supply X) to form one electric corrosion protection circuit. Specifically, in the electrolytic corrosion protection method of Comparative Example 1, the lower reinforcing bars 1, 2, 3, 7, 8, 9, 10, 11 and the titanium ribbon mesh linear anode material and the upper reinforcing bars 4, 5, 6 are used. , 12, 13, 14, 15, 16 and titanium ribbon mesh rod-shaped anode materials 231a to 231p were electrically connected to the same first external power source X by lead wires. Except for this, the electrocorrosion protection method was carried out in the same manner as in Example 1, and a concrete floor slab with an electrocorrosion protection device was formed by the electrocorrosion protection method according to Comparative Example 1. An anticorrosion current of 3.7 mA was passed through the concrete floor slab with an electrocorrosion device from the first external power source to perform electrocorrosion protection.

(比較例2)
比較例2の電気防食工法は、実施例1および2の電気防食工法が複数のチタンリボンメッシュ棒状陽極材の表面積の和が複数のチタンリボンメッシュ線状陽極材の表面積の和以上になるように設置したものであるのに対して、複数のチタンリボンメッシュ棒状陽極材の表面積の和が複数のチタンリボンメッシュ線状陽極材の表面積の和未満になるように設置したものである。
(Comparative Example 2)
In the electrocorrosion protection method of Comparative Example 2, the sum of the surface areas of the plurality of titanium ribbon mesh rod-shaped anode materials is equal to or greater than the sum of the surface areas of the plurality of titanium ribbon mesh linear anode materials in the electrocorrosion protection methods of Examples 1 and 2. Whereas it was installed, it was installed so that the sum of the surface areas of the plurality of titanium ribbon mesh rod-shaped anode materials was less than the sum of the surface areas of the plurality of titanium ribbon mesh linear anode materials.

比較例2の電気防食工法は、下側鉄筋1,2,3,7,8,9,10,11と、全てのチタンリボンメッシュ線状陽極材と、をリード線によって第1の外部電源Xに電気的に接続し、上側鉄筋4,5,6,12,13,14,15,16と、設置された16本のチタンリボンメッシュ棒状陽極材のうち8本のチタンリボンメッシュ棒状陽極材と、をリード線によって第1の外部電源Xとは別体の第2の外部電源Yに電気的に接続した。すなわち、試験的に残りの8本のチタンリボンメッシュ棒状陽極材には通電せず、電気的に接続されない状態とした。これにより、3本のチタンリボンメッシュ線状陽極材の表面積の和と8本のチタンリボンメッシュ棒状陽極材の表面積の和は、面積比が1.00:0.54となる。上記以外は、実施例1と同様にして電気防食工法を実施し、比較例2に係る電気防食工法による電気防食装置付きコンクリート床版を形成した。この電気防食装置付きコンクリート床版に、第1の外部電源および第2の外部電源から各々3.7mAの電流量の防食電流を流して電気防食を行った。 In the electrolytic corrosion protection method of Comparative Example 2, the lower reinforcing bars 1, 2, 3, 7, 8, 9, 10, 11 and all the titanium ribbon mesh linear anode materials are connected to the first external power supply X by lead wires. Electrically connected to the upper reinforcing bars 4, 5, 6, 12, 13, 14, 15, 16 and 8 titanium ribbon mesh rod-shaped anode materials out of the 16 installed titanium ribbon mesh rod-shaped anode materials. Was electrically connected to a second external power supply Y separate from the first external power supply X by a lead wire. That is, the remaining eight titanium ribbon mesh rod-shaped anode materials were not energized on a trial basis and were not electrically connected. As a result, the sum of the surface areas of the three titanium ribbon mesh linear anode materials and the sum of the surface areas of the eight titanium ribbon mesh rod-shaped anode materials has an area ratio of 1.00: 0.54. Except for the above, the electrocorrosion protection method was carried out in the same manner as in Example 1 to form a concrete floor slab with an electrocorrosion protection device by the electrocorrosion protection method according to Comparative Example 2. An anticorrosion current of 3.7 mA was passed from a first external power source and a second external power source to the concrete floor slab with an electrocorrosion device to perform electrocorrosion protection.

(比較例3)
比較例3の電気防食工法は、比較例2の電気防食工法において、第2の外部電源から流す電流量を第1の外部電源から流す電流量よりも大きくしたものである。比較例2に示す電気防食装置付きコンクリート床版に、第1の外部電源から流す防食電流の電流量を3.7mA、第2の外部電源から流す防食電流の電流量を5.55mAにして防食電流を供給したものである。これにより、第1の外部電源から流す防食電流の電流量に対して第2の外部電源から流す防食電流の電流量は1.5倍となるものである。
(Comparative Example 3)
In the electrocorrosion protection method of Comparative Example 3, the amount of current flowing from the second external power source is larger than the amount of current flowing from the first external power source in the electrocorrosion protection method of Comparative Example 2. Corrosion protection is applied to the concrete floor slab with an electric corrosion protection device shown in Comparative Example 2 by setting the current amount of the corrosion protection current flowing from the first external power source to 3.7 mA and the current amount of the corrosion protection current flowing from the second external power source to 5.55 mA. It is the one that supplied the electric current. As a result, the amount of the anticorrosion current flowing from the second external power source is 1.5 times the amount of the anticorrosion current flowing from the first external power source.

(鉄筋表面積当たりの電流密度)
実施例1〜2および比較例1〜3に係る電気防食工法によって形成された電気防食装置付きコンクリート床版について、鉄筋1〜19の鉄筋表面積当りの電流密度を測定した。実施例1〜2および比較例1〜3では、鉄筋1〜19の鉄筋表面積当りの電流密度を測定するために、上側鉄筋4,5,6,12,13,14,15,16、下側鉄筋1,2,3,7,8,9,10,11および横締め鋼材17,18,19は、コンクリート構造体内部で電気的に導通しないようにさせた。鉄筋1〜19の鉄筋表面積当りの電流密度は、各鉄筋1〜19と電源装置との間に1Ωの抵抗を挿入し、電圧計を用いて抵抗における電圧を計測した値を用いて導出した。導出は、電流(A)=電圧(V)/抵抗(Ω)の式を用いて電流量を求めた後、求めた電流量を各鉄筋の表面積で除することで行った。結果を図9〜13に示す。図9〜13において、横軸は各鉄筋1〜19を示し、縦軸は鉄筋表面積当たりの電流密度(mA/m)を示す。
(Current density per reinforcing bar surface area)
The current densities per reinforcing bar surface area of the reinforcing bars 1 to 19 were measured for the concrete slab with the electric corrosion protection device formed by the electric corrosion protection method according to Examples 1 and 2 and Comparative Examples 1 to 3. In Examples 1 and 2 and Comparative Examples 1 to 3, in order to measure the current density per the surface area of the reinforcing bars 1 to 19, the upper reinforcing bars 4, 5, 6, 12, 13, 14, 15, 16 and the lower reinforcing bars are used. Reinforcing bars 1, 2, 3, 7, 8, 9, 10, 11 and laterally tightened steel materials 17, 18, 19 were prevented from electrically conducting inside the concrete structure. The current density per reinforcing bar surface area of the reinforcing bars 1 to 19 was derived by inserting a 1Ω resistor between each reinforcing bar 1 to 19 and the power supply device and measuring the voltage in the resistor using a voltmeter. The derivation was performed by calculating the amount of current using the formula of current (A) = voltage (V) / resistance (Ω) and then dividing the calculated amount of current by the surface area of each reinforcing bar. The results are shown in FIGS. 9 to 13. In FIGS. 9 to 13, the horizontal axis represents each reinforcing bar 1 to 19, and the vertical axis represents the current density (mA / m 2 ) per reinforcing bar surface area.

(分極量)
実施例1〜2および比較例1〜3にかかる電気防食工法によって形成された電気防食装置付きコンクリート床版について、鉛照合電極を用いて下側鉄筋7および上側鉄筋12の分極量を測定した。測定した分極量を表1に示す。
(Amount of polarization)
With respect to the concrete floor slab with the electric corrosion protection device formed by the electric corrosion protection method according to Examples 1 and 2 and Comparative Examples 1 to 3, the polarization amounts of the lower reinforcing bar 7 and the upper reinforcing bar 12 were measured using a lead reference electrode. The measured amount of polarization is shown in Table 1.

Figure 0006858026
Figure 0006858026

(結果)
図9は、実施例1に係る電気防食工法によって形成された電気防食装置付きコンクリート床版について、鉄筋1〜19の鉄筋表面積当たりの電流密度を示すグラフである。また、図10は、実施例2に係る電気防食工法によって形成された電気防食装置付きコンクリート床版について、鉄筋1〜19の鉄筋表面積当たりの電流密度を示すグラフである。同様に、図11は比較例1、図12は比較例2、図13は比較例3に係る電気防食工法によって形成された電気防食装置付きコンクリート床版について、鉄筋1〜19の鉄筋表面積当たりの電流密度を示すグラフである。
(result)
FIG. 9 is a graph showing the current density per the surface area of the reinforcing bars 1 to 19 for the concrete floor slab with the electric corrosion protection device formed by the electric corrosion protection method according to the first embodiment. Further, FIG. 10 is a graph showing the current densities per the surface area of the reinforcing bars 1 to 19 for the concrete floor slab with the electric corrosion protection device formed by the electric corrosion protection method according to the second embodiment. Similarly, FIG. 11 shows Comparative Example 1, FIG. 12 shows Comparative Example 2, and FIG. 13 shows the concrete slab with an electric corrosion protection device formed by the electric corrosion protection method according to Comparative Example 3 per the surface area of the reinforcing bars 1 to 19. It is a graph which shows the current density.

図9および図10に示すように、比較例1とくらべて、実施例1〜2に係る電気防食工法によって形成された電気防食装置付きコンクリート床版は、鉄筋1〜19の防食電流の電流密度のばらつきが小さい。なお、実施例1に係る電気防食工法によって形成された電気防食装置付きコンクリート床版は、上側鉄筋の分極量が75mVと防食基準値100mVを満たしていないが、第2の外部電源から流す防食電流の電流量を若干多く流すことで対処可能な程度であり、各陽極材を含む電気防食装置の耐久性をさほど低下させることなく電気防食工法を実施できることが認められる。従って、実施例1〜2に係る電気防食工法は、各陽極材を含む電気防食装置の耐久性を著しく低下させることなく、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材の発生可能性を低減することができるものであった。 As shown in FIGS. 9 and 10, as compared with Comparative Example 1, the concrete floor slab with the electric corrosion protection device formed by the electric corrosion protection method according to Examples 1 and 2 has the current density of the corrosion protection current of the reinforcing bars 1 to 19. The variation is small. The concrete floor slab with an electric anticorrosion device formed by the electrocorrosion protection method according to the first embodiment has a polarization amount of 75 mV for the upper reinforcing bar and does not satisfy the anticorrosion standard value of 100 mV, but the anticorrosion current flowing from the second external power source. It is recognized that the electric corrosion protection method can be carried out without significantly reducing the durability of the electric corrosion protection device including each anode material, which can be dealt with by passing a slightly large amount of current. Therefore, in the electrocorrosion protection method according to Examples 1 and 2, the variation in the current density of the anticorrosion current between the steel materials and the amount of polarization become the anticorrosion reference values without significantly reducing the durability of the electrocorrosion protection device including each anode material. It was possible to reduce the possibility of occurrence of steel materials that did not reach.

また、実施例1および実施例2を比較すると、実施例1のように複数の棒状陽極材を千鳥状に配列させたもののほうが、実施例2のように、コンクリート構造体の側面視において、隣り合った複数の棒状陽極材が重複するように配列させたものよりも、鉄筋1〜19の電流密度のばらつきをより小さくできた。 Further, when comparing Example 1 and Example 2, the one in which a plurality of rod-shaped anode materials are arranged in a staggered pattern as in Example 1 is adjacent to each other in the side view of the concrete structure as in Example 2. The variation in the current densities of the reinforcing bars 1 to 19 could be made smaller than that in which a plurality of combined rod-shaped anode materials were arranged so as to overlap each other.

一方、図11に示すように、比較例1に係る電気防食工法によって形成された電気防食装置付きコンクリート床版は、下側鉄筋1,2,3,7,8,9,10に防食電流が集中し、上側鉄筋4,5,6,12,13,14,15,16は下側鉄筋1等の30〜50%程度の電流密度になり、大きなばらつきを生じた。また、表1に示すように、上側鉄筋の分極量は25mVであり、防食性に著しく欠ける結果となり、金属防食を良好に行うことはできなかった。 On the other hand, as shown in FIG. 11, in the concrete floor slab with an electric corrosion protection device formed by the electric corrosion protection method according to Comparative Example 1, the corrosion protection currents are applied to the lower reinforcing bars 1, 2, 3, 7, 8, 9, and 10. Concentrated, the upper reinforcing bars 4, 5, 6, 12, 13, 14, 15, and 16 had a current density of about 30 to 50% of that of the lower reinforcing bar 1, etc., and caused a large variation. Further, as shown in Table 1, the amount of polarization of the upper reinforcing bar was 25 mV, which resulted in a significant lack of corrosion protection, and metal corrosion protection could not be performed satisfactorily.

図12に示すように、比較例2に係る電気防食工法によって形成された電気防食装置付きコンクリート床版も、鉄筋1〜19の電流密度のばらつきが大きく、上側鉄筋の分極量が低すぎるため、金属防食を良好に行うことができなかった。このため、比較例3のように、第2の外部電源から供給される防食電流の電流値を増加させることが考えられるが、表1に示すように防食電流基準値は満足するものの、図13に示すように鉄筋4〜6および鉄筋13〜16は過防食状態が大きくなり、陽極材を含む電気防食装置に負担を与え、陽極材の耐久性が75%程度まで低下することが予想された。 As shown in FIG. 12, the concrete floor slab with an electrocorrosion device formed by the electrocorrosion protection method according to Comparative Example 2 also has a large variation in the current densities of the reinforcing bars 1 to 19, and the polarization amount of the upper reinforcing bar is too low. Metal corrosion protection could not be performed well. Therefore, as in Comparative Example 3, it is conceivable to increase the current value of the anticorrosion current supplied from the second external power source. Although the anticorrosion current reference value is satisfied as shown in Table 1, FIG. 13 As shown in the above, it was expected that the overcorrosion state of the reinforcing bars 4 to 6 and the reinforcing bars 13 to 16 would become large, which would impose a burden on the electric corrosion protection device including the anode material, and the durability of the anode material would be reduced to about 75%. ..

以上より、本実施例に係る電気防食工法は、陽極材を含む電気防食装置の耐久性を著しく低下させることなく、鋼材間の防食電流の電流密度のばらつきおよび分極量が防食基準値に達しない鋼材の発生可能性をさらに低減することができるものであった。 From the above, in the electrocorrosion protection method according to the present embodiment, the variation in the current density of the anticorrosion current between the steel materials and the amount of polarization do not reach the anticorrosion standard value without significantly reducing the durability of the electrocorrosion protection device including the anode material. It was possible to further reduce the possibility of steel material generation.

なお、本発明に係る電気防食工法は、上記実施形態および上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよく、さらに、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。 The electrolytic corrosion protection method according to the present invention is not limited to the above-described embodiment and the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined, and further, the configurations and methods and the like according to the various modified examples described below may be arbitrarily selected to form the above-described embodiments. Of course, it may be adopted for such a configuration or method.

例えば、上記実施形態および上記実施例では、対象面として、コンクリート構造体100の底面100Bを用いて説明したが、コンクリート構造体100の上面100Uや側面100L、またはこれらの複数の組み合わせを対象面としてもよい。いずれの面を対象面とするかは、コンクリート構造体100の種類やコンクリート構造体100内の腐食環境などに合わせて選択される。例えば、コンクリート構造体100が柱状構造物や梁状構造物の場合には、柱状構造物や梁状構造物の側面を対象面とすることができ、コンクリート構造体100が鉄筋コンクリート住宅の場合は、屋根材の上面や壁面を対象面とすることができる。 For example, in the above-described embodiment and the above-described embodiment, the bottom surface 100B of the concrete structure 100 has been used as the target surface, but the top surface 100U and the side surface 100L of the concrete structure 100, or a plurality of combinations thereof are used as the target surface. May be good. Which surface is to be the target surface is selected according to the type of the concrete structure 100, the corrosive environment in the concrete structure 100, and the like. For example, when the concrete structure 100 is a columnar structure or a beam-shaped structure, the side surface of the columnar structure or the beam-shaped structure can be the target surface, and when the concrete structure 100 is a reinforced concrete house, the side surface can be the target surface. The upper surface and wall surface of the roofing material can be the target surface.

また、上記実施形態および上記実施例では、線状陽極材を設置する工程の後に、棒状陽極材を設置する工程を含むように説明しているが、本発明において各工程は順不同で含めることができ、または、複数の工程を同時に行うことができるものである。例えば、棒状陽極材設置工程の後に、線状陽極材設置工程を配置することや、予め棒状陽極材と線状陽極材に第1,第2の外部電源を接続した後に、棒状陽極材設置工程や線状陽極材設置工程を含んでもよいことは言うまでもない。 Further, in the above-described embodiment and the above-described embodiment, it is described that the step of installing the rod-shaped anode material is included after the step of installing the linear anode material, but in the present invention, each step may be included in no particular order. It can be done, or a plurality of steps can be performed at the same time. For example, the linear anode material installation step is arranged after the rod-shaped anode material installation process, or the rod-shaped anode material installation step is performed after the first and second external power supplies are connected to the rod-shaped anode material and the linear anode material in advance. Needless to say, the step of installing the linear anode material may be included.

1〜19…鋼材
100…コンクリート構造体
100B…底面
100i…内部領域
100S…外表面
100U…上面
211a〜211c…線状陽極材
231a〜231p…棒状陽極材
212…線状陽極材の一主面
232…棒状陽極材の外表面
300…コンクリート構造物
X…第1の外部電源
Y…第2の外部電源
1 to 19 ... Steel material 100 ... Concrete structure 100B ... Bottom surface 100i ... Internal area 100S ... Outer surface 100U ... Top surfaces 211a to 211c ... Linear anode material 231a to 231p ... Rod-shaped anode material 212 ... One main surface of linear anode material 232 ... Outer surface 300 of rod-shaped anode material ... Concrete structure X ... First external power supply Y ... Second external power supply

Claims (6)

鋼材が埋設されたコンクリート構造体であって、対象面を含む外表面と、前記外表面に囲まれた内部領域と、前記内部領域に埋設された第1の鋼材と、前記内部領域に埋設された第2の鋼材であって、前記第2の鋼材と前記対象面との距離が前記第1の鋼材と前記対象面との距離よりも長くなるように配置される第2の鋼材と、を備えるコンクリート構造体に、前記対象面に沿って長手方向が延びるように複数の線状陽極材を設置する線状陽極材設置工程と、
前記コンクリート構造体に、長手方向が前記外表面から前記内部領域に向かって延びるように複数の棒状陽極材を設置する棒状陽極材設置工程と、
を備える電気防食工法であって、
前記第1の鋼材と前記複数の線状陽極材とは、第1の外部電源に電気的に接続されており、前記第2の鋼材と前記複数の棒状陽極材とは、第2の外部電源に電気的に接続されており、前記複数の棒状陽極材の表面積の和が前記複数の線状陽極材の表面積の和以上になるように、前記線状陽極材および前記棒状陽極材を設置する電気防食工法。
A concrete structure in which a steel material is embedded, the outer surface including the target surface, the inner region surrounded by the outer surface, the first steel material buried in the inner region, and the first steel material buried in the inner region. A second steel material, which is arranged so that the distance between the second steel material and the target surface is longer than the distance between the first steel material and the target surface. A linear anode material installation step of installing a plurality of linear anode materials so as to extend in the longitudinal direction along the target surface on the concrete structure to be provided.
A rod-shaped anode material installation step of installing a plurality of rod-shaped anode materials on the concrete structure so that the longitudinal direction extends from the outer surface toward the inner region.
It is an electric anticorrosion method equipped with
The first steel material and the plurality of linear anode materials are electrically connected to a first external power source, and the second steel material and the plurality of rod-shaped anode materials are connected to a second external power source. The linear anode material and the rod-shaped anode material are installed so that the sum of the surface areas of the plurality of rod-shaped anode materials is equal to or greater than the sum of the surface areas of the plurality of linear anode materials. Electrocorrosion protection method.
前記棒状陽極材設置工程は、前記複数の線状陽極材に挟まれた領域において、前記対象面に前記複数の挿入孔を形成する工程と、前記挿入孔に前記棒状陽極材を挿し入れる工程と、を含む請求項1に記載の電気防食工法。 The rod-shaped anode material installation step includes a step of forming the plurality of insertion holes in the target surface in a region sandwiched between the plurality of linear anode materials, and a step of inserting the rod-shaped anode material into the insertion holes. The electrocorrosion protection method according to claim 1, which comprises. 前記棒状陽極材設置工程において、前記内部領域側の端部と前記外表面側の端部とを含み、前記内部領域側の端部と前記第2の鋼材の距離が前記内部領域側の端部と前記第1の鋼材の距離よりも短くなるように、前記棒状陽極材を設置する請求項1または請求項2に記載の電気防食工法。 In the rod-shaped anode material installation step, the distance between the end portion on the inner region side and the end portion on the outer surface side and the distance between the end portion on the inner region side and the second steel material is the end portion on the inner region side. The electrocorrosion protection method according to claim 1 or 2, wherein the rod-shaped anode material is installed so as to be shorter than the distance between the first steel material and the first steel material. 前記棒状陽極材設置工程において、前記複数の棒状陽極材を横切る断面において前記複数の棒状陽極材が千鳥状に配列するように、前記棒状陽極材を設置する請求項1から3のいずれか一項に記載の電気防食工法。 Any one of claims 1 to 3 in which the rod-shaped anode material is installed so that the plurality of rod-shaped anode materials are arranged in a staggered manner in a cross section crossing the plurality of rod-shaped anode materials in the rod-shaped anode material installation step. The electrocorrosion protection method described in. 鋼材が埋設されたコンクリート構造物であって、
対象面を含む外表面と、
前記外表面に囲まれた内部領域と、
前記内部領域に埋設された第1の鋼材と、
前記内部領域に埋設された第2の鋼材であって、前記第2の鋼材と前記対象面との距離が前記第1の鋼材と前記対象面との距離よりも長くなるように配置される第2の鋼材と、
長手方向が前記対象面に沿って延びる複数の線状陽極材と、
長手方向が前記外表面から前記内部領域に向かって延びる複数の棒状陽極材と、
前記第1の鋼材と前記複数の線状陽極材とに電気的に接続される第1の外部電源と、
前記第2の鋼材と前記複数の棒状陽極材とに電気的に接続される第2の外部電源と、を備え、
前記線状陽極材と前記棒状陽極材とは、前記複数の棒状陽極材の表面積の和が前記複数の線状陽極材の表面積の和以上となるように設けられているコンクリート構造物。
It is a concrete structure in which steel materials are buried.
The outer surface including the target surface and
The internal area surrounded by the outer surface and
The first steel material buried in the internal region and
A second steel material embedded in the internal region, which is arranged so that the distance between the second steel material and the target surface is longer than the distance between the first steel material and the target surface. 2 steel materials and
A plurality of linear anode materials whose longitudinal directions extend along the target surface,
A plurality of rod-shaped anode materials whose longitudinal direction extends from the outer surface toward the inner region,
A first external power source that is electrically connected to the first steel material and the plurality of linear anode materials,
A second external power source that is electrically connected to the second steel material and the plurality of rod-shaped anode materials is provided.
The linear anode material and the rod-shaped anode material are concrete structures provided so that the sum of the surface areas of the plurality of rod-shaped anode materials is equal to or greater than the sum of the surface areas of the plurality of linear anode materials.
鋼材が埋設されたコンクリート構造体であって、対象面を含む外表面と、前記外表面に囲まれた内部領域と、前記内部領域に埋設された第1の鋼材と、前記内部領域に埋設された第2の鋼材であって、前記第2の鋼材と前記対象面との距離が前記第1の鋼材と前記対象面との距離よりも長くなるように配置される第2の鋼材と、を備えるコンクリート構造体に、前記対象面に沿って長手方向が延びるように複数の線状陽極材を設置する線状陽極材設置工程と、
前記コンクリート構造体に、長手方向が前記外表面から前記内部領域に向かって延びるように複数の棒状陽極材を設置する棒状陽極材設置工程と、
を備えるコンクリート構造物の製造方法であって、
前記第1の鋼材と前記複数の線状陽極材とは、第1の外部電源に電気的に接続され、
前記第2の鋼材と前記複数の棒状陽極材とは、第2の外部電源に電気的に接続され、
前記複数の棒状陽極材の表面積の和が前記複数の線状陽極材の表面積の和以上になるように、前記線状陽極材および前記棒状陽極材を設置するコンクリート構造物の製造方法。
A concrete structure in which a steel material is embedded, the outer surface including the target surface, the inner region surrounded by the outer surface, the first steel material buried in the inner region, and the first steel material buried in the inner region. A second steel material, which is arranged so that the distance between the second steel material and the target surface is longer than the distance between the first steel material and the target surface. A linear anode material installation step of installing a plurality of linear anode materials so as to extend in the longitudinal direction along the target surface on the concrete structure to be provided.
A rod-shaped anode material installation step of installing a plurality of rod-shaped anode materials on the concrete structure so that the longitudinal direction extends from the outer surface toward the inner region.
It is a manufacturing method of a concrete structure provided with
The first steel material and the plurality of linear anode materials are electrically connected to a first external power source.
The second steel material and the plurality of rod-shaped anode materials are electrically connected to a second external power source.
A method for manufacturing a concrete structure in which the linear anode material and the rod-shaped anode material are installed so that the sum of the surface areas of the plurality of rod-shaped anode materials is equal to or greater than the sum of the surface areas of the plurality of linear anode materials.
JP2017014618A 2017-01-30 2017-01-30 Electrocorrosion protection method, concrete structure and manufacturing method of concrete structure Active JP6858026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014618A JP6858026B2 (en) 2017-01-30 2017-01-30 Electrocorrosion protection method, concrete structure and manufacturing method of concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014618A JP6858026B2 (en) 2017-01-30 2017-01-30 Electrocorrosion protection method, concrete structure and manufacturing method of concrete structure

Publications (2)

Publication Number Publication Date
JP2018123355A JP2018123355A (en) 2018-08-09
JP6858026B2 true JP6858026B2 (en) 2021-04-14

Family

ID=63110007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014618A Active JP6858026B2 (en) 2017-01-30 2017-01-30 Electrocorrosion protection method, concrete structure and manufacturing method of concrete structure

Country Status (1)

Country Link
JP (1) JP6858026B2 (en)

Also Published As

Publication number Publication date
JP2018123355A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US7935236B2 (en) Electro-osmotic pulse (EOP) treatment method
JP6858026B2 (en) Electrocorrosion protection method, concrete structure and manufacturing method of concrete structure
AU2005258887B2 (en) Protection of reinforcing steel
JP2019085752A (en) Foundation structure
US20190119819A1 (en) Method for laying an anode system for cathodic corrosion protection
JP6563343B2 (en) Frozen soil impermeable walls
US6919005B2 (en) Configuration and electro-osmotic pulse (EOP) treatment for degrading porous material
JPH07331467A (en) Electrolytic protection method of reinforcing bar in concrete
JP4978861B2 (en) Electrocorrosion protection method for existing PC girder ends
JP7050101B2 (en) Installation method of sacrificial anode and anticorrosion structure
JP3403152B2 (en) Apparatus and method for cathodic protection of concrete structures
JP6155108B2 (en) Concrete structure
JP5424132B2 (en) Electrical protection method
JP6575908B2 (en) PC steel corrosion inhibition structure of prestressed concrete structure
JP6150202B2 (en) Installation method of cathodic protection anode material for cross-linked structure
JP6734589B2 (en) Electrocorrosion method
JP6875467B2 (en) How to install galvanic anode material
JP2005256132A (en) Method for installing electrode for cathodic protection to concrete structure
JP7492676B2 (en) Method for estimating corrosion current density, method for estimating deterioration of steel material, and method for controlling anticorrosive current
EP2431496A1 (en) Composite anode for a cathodic protection system
JP4151254B2 (en) Reinforced concrete anticorrosion system
JP7007674B2 (en) Reinforced structure and reinforcement method for reinforced concrete decks
JP5740851B2 (en) Steel sheet pile electrodeposition protection system
JP3594295B2 (en) Corrosion protection device for concrete structure and concrete structure
US20200123666A1 (en) Nest with primary anode

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6858026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250