JP6856399B2 - Power control device and power control method - Google Patents

Power control device and power control method Download PDF

Info

Publication number
JP6856399B2
JP6856399B2 JP2017028211A JP2017028211A JP6856399B2 JP 6856399 B2 JP6856399 B2 JP 6856399B2 JP 2017028211 A JP2017028211 A JP 2017028211A JP 2017028211 A JP2017028211 A JP 2017028211A JP 6856399 B2 JP6856399 B2 JP 6856399B2
Authority
JP
Japan
Prior art keywords
power
equipment
supply
demand
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017028211A
Other languages
Japanese (ja)
Other versions
JP2018133967A (en
Inventor
美喜 植嶋
美喜 植嶋
一史 湯淺
一史 湯淺
豊成 島陰
豊成 島陰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2017028211A priority Critical patent/JP6856399B2/en
Publication of JP2018133967A publication Critical patent/JP2018133967A/en
Application granted granted Critical
Publication of JP6856399B2 publication Critical patent/JP6856399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、電力関連設備が配置される電力管理領域と外部領域との間における電力伝送状態を制御する電力制御装置および電力制御方法に関する。 The present invention relates to a power control device and a power control method for controlling a power transmission state between a power management area in which power-related equipment is arranged and an external area.

電力関連設備が配置される電力管理領域と外部領域との間における電力伝送状態を制御する電力制御装置および電力制御方法が知られている。なお、電力関連設備としては、例えば、電力を消費する電力負荷設備と、発電を行う発電設備と、電力の蓄電および放電を行う蓄電設備と、が挙げられる。 A power control device and a power control method for controlling a power transmission state between a power management area in which power-related equipment is arranged and an external area are known. Examples of electric power-related equipment include electric power load equipment that consumes electric power, power generation equipment that generates electric power, and electric power storage equipment that stores and discharges electric power.

電力制御装置は、電力管理領域と外部領域との間における電力伝送状態の制御に加えて、電力関連設備における電力需要および電力供給を制御する。
電力制御装置は、電力管理領域での消費電力の削減要請を外部領域から受信すると、その削減要請に対応するために、電力管理領域での消費電力を低減するように、電力関連設備における電力需要および電力供給を制御する(特許文献1)。例えば、発電設備での発電電力に余裕がある場合には、その発電電力の余裕分を外部領域に供給(逆潮流電力、外部供給電力)することで、削減要請に対応することができる。
The power control device controls the power demand and power supply in the power-related equipment, in addition to controlling the power transmission state between the power management area and the external area.
When the power control device receives a power consumption reduction request in the power management area from an external area, the power demand in the power-related equipment is reduced so as to reduce the power consumption in the power management area in order to respond to the reduction request. And control the power supply (Patent Document 1). For example, when there is a margin in the power generated by the power generation facility, it is possible to respond to the reduction request by supplying the surplus power of the generated power to the external region (reverse power flow power, external power supply).

特開2012−249476号公報Japanese Unexamined Patent Publication No. 2012-249476

しかし、上記従来の構成においては、外部領域からの削減要請を受信した際に、発電電力に余裕がない場合には、外部領域に供給する逆潮流電力や外部供給電力を確保できないという問題がある。 However, in the above-mentioned conventional configuration, there is a problem that the reverse power flow power or the external power supply to be supplied to the external region cannot be secured if the generated power is insufficient when the reduction request from the external region is received. ..

つまり、発電設備での発電電力の供給先としては、まず、電力負荷設備が設定され、次に蓄電設備が設定され、最後に外部領域(逆潮流電力、外部供給電力)が設定される。このように、発電電力が電力負荷設備での消費電力や蓄電設備での充電電力に利用される構成においては、発電電力のうち逆潮流電力や外部供給電力として利用可能な電力が少なくなり、外部領域からの削減要請に対応できない可能性がある。 That is, as the supply destination of the generated power in the power generation equipment, the power load equipment is first set, then the power storage equipment is set, and finally the external region (reverse power flow power, external power supply power) is set. In this way, in a configuration in which the generated power is used for power consumption in the power load facility and charging power in the power storage facility, the power that can be used as reverse power flow power or external power supply among the generated power is reduced, and the power is external. It may not be possible to respond to reduction requests from the area.

そこで、本発明は、外部領域からの削減要請に対応できる可能性を高めることができる電力制御装置および電力制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a power control device and a power control method capable of increasing the possibility of responding to a reduction request from an external region.

本発明の一態様は、電力関連設備が配置される電力管理領域と外部領域との間における電力伝送状態を制御する電力制御装置であって、電力需給制御部を備える。電力関連設備は、電力を消費する電力負荷設備と、発電を行う発電設備と、電力の蓄電および放電を行う蓄電設備と、を備えている。 One aspect of the present invention is a power control device that controls a power transmission state between a power management area in which power-related equipment is arranged and an external area, and includes a power supply / demand control unit. The electric power-related equipment includes a power load equipment that consumes electric power, a power generation equipment that generates electric power, and a power storage equipment that stores and discharges electric power.

電力需給制御部は、電力関連設備における電力需要および電力供給を制御するにあたり、電力管理領域での電力需要の削減要請を外部領域から受信すると、発電設備での発電電力の供給先として外部領域への供給電力である外部供給電力を最優先供給先に設定する。 When the power supply and demand control unit controls the power demand and power supply in the power-related equipment, when it receives a request for reduction of the power demand in the power management area from the external area, it goes to the external area as the supply destination of the generated power in the power generation facility. The external power supply, which is the power supply of, is set as the highest priority supply destination.

このように構成された電力制御装置は、外部領域からの削減要請を受信した場合には発電電力の最優先供給先に外部供給電力を設定することで、発電電力のうち外部領域に伝送可能な電力量をより多く確保できる。これにより、電力制御装置は、削減要請に対応できる可能性を高めることができる。 When the power control device configured in this way receives a reduction request from the external area, it can transmit the generated power to the external area by setting the external power supply as the highest priority supply destination of the generated power. More power can be secured. As a result, the power control device can increase the possibility of responding to the reduction request.

次に、上述の電力制御装置においては、電力需給制御部は、削減要請で要請された削減要請電力が発電電力よりも小さい場合には、発電電力のうち削減要請電力を差し引いた余裕電力の供給先として少なくとも電力負荷設備を設定してもよい。 Next, in the above-mentioned power control device, when the reduction request power requested by the reduction request is smaller than the generated power, the power supply and demand control unit supplies the surplus power obtained by subtracting the reduction request power from the generated power. At least the power load equipment may be set as a destination.

これにより、発電電力のうち余裕電力を電力負荷設備に供給することができ、外部領域から電力負荷設備に供給する電力を低減できるとともに、電力負荷設備に供給する電力の少なくとも一部を余裕電力で補うことができる。 As a result, the surplus power of the generated power can be supplied to the power load facility, the power supplied to the power load facility from the external region can be reduced, and at least a part of the power supplied to the power load facility can be supplied by the surplus power. Can be supplemented.

次に、上述の電力制御装置においては、電力需給制御部は、電力負荷設備での消費電力が余裕電力以上である場合には、蓄電設備の充電を停止してもよい。
これにより、蓄電設備の充電に要する電力を確保する必要が無くなり、電力管理領域における電力需要を低減できるため、電力管理領域での電力需給の安定化を図り易くなる。
Next, in the above-mentioned power control device, the power supply / demand control unit may stop charging the power storage equipment when the power consumption in the power load equipment is equal to or more than the marginal power.
As a result, it is not necessary to secure the electric power required for charging the power storage equipment, and the electric power demand in the electric power management area can be reduced, so that it becomes easy to stabilize the electric power supply and demand in the electric power management area.

次に、上述の電力制御装置においては、電力需給制御部は、電力負荷設備での消費電力が余裕電力よりも大きい場合には、蓄電設備からの放電を行い、蓄電設備からの放電電力の供給先として少なくとも電力負荷設備を設定してもよい。 Next, in the above-mentioned power control device, when the power consumption in the power load equipment is larger than the marginal power, the power supply / demand control unit discharges the power storage equipment and supplies the discharged power from the power storage equipment. At least the power load equipment may be set as a destination.

これにより、発電電力(詳細には余裕電力)に加えて蓄電設備からの放電電力を電力負荷設備に供給することができ、電力負荷設備の稼働に必要な消費電力を確保し易くなる。
次に、上述の電力制御装置においては、電力需給制御部は、電力負荷設備での消費電力が余裕電力よりも小さい場合には、余裕電力の供給先として少なくとも蓄電設備の充電電力を設定してもよい。
As a result, in addition to the generated power (specifically, the surplus power), the discharge power from the power storage equipment can be supplied to the power load equipment, and it becomes easy to secure the power consumption required for the operation of the power load equipment.
Next, in the above-mentioned power control device, when the power consumption of the power load equipment is smaller than the margin power, the power supply / demand control unit sets at least the charging power of the power storage equipment as the supply destination of the margin power. May be good.

これにより、余裕電力を蓄電設備に蓄えることができ、電力不足時には蓄電設備から放電することで、電力不足を解消できる。
次に、上述の電力制御装置においては、電力需給制御部は、削減要請で要請された削減要請電力が発電電力以上である場合には、蓄電設備の充電を停止するとともに蓄電設備からの放電を行い、蓄電設備からの放電電力の供給先として、電力負荷設備での消費電力および外部供給電力のうち少なくとも一方を設定してもよい。
As a result, the surplus power can be stored in the power storage equipment, and when the power is insufficient, the power storage equipment is discharged to solve the power shortage.
Next, in the above-mentioned power control device, when the reduction request power requested by the reduction request is equal to or more than the generated power, the power supply / demand control unit stops charging the power storage equipment and discharges from the power storage equipment. Then, at least one of the power consumption in the power load facility and the external power supply may be set as the supply destination of the discharge power from the power storage facility.

これにより、発電電力では削減要請電力を確保できない場合であっても、削減要請電力から発電電力を差し引いた不足分の少なくとも一部を蓄電設備の放電電力で補うことができるため、削減要請に対応できる可能性を高めることができる。 As a result, even if the reduced power cannot be secured with the generated power, at least a part of the shortage obtained by subtracting the generated power from the reduced requested power can be supplemented by the discharge power of the power storage facility, so that the reduction request can be met. You can increase the possibility of being able to do it.

本発明の他の態様は、電力関連設備が配置される電力管理領域と外部領域との間における電力伝送状態を制御する電力制御方法であって、電力関連設備における電力需要および電力供給を制御するにあたり、電力管理領域での電力需要の削減要請を外部領域から受信すると、発電設備での発電電力の供給先として外部領域への供給電力である外部供給電力を最優先供給先に設定する。電力関連設備は、電力を消費する電力負荷設備と、発電を行う発電設備と、電力の蓄電および放電を行う蓄電設備と、を備えている。 Another aspect of the present invention is a power control method for controlling a power transmission state between a power management area in which power-related equipment is arranged and an external area, and controls power demand and power supply in the power-related equipment. When a request for reduction of power demand in the power management area is received from the external area, the external power supply, which is the power supplied to the external area, is set as the highest priority supply destination as the power generation destination in the power generation facility. The electric power-related equipment includes a power load equipment that consumes electric power, a power generation equipment that generates electric power, and a power storage equipment that stores and discharges electric power.

この電力制御方法は、上述の電力制御装置と同様に、発電電力のうち外部領域に伝送可能な電力量をより多く確保できるため、削減要請に対応できる可能性を高めることができる。 Similar to the above-mentioned power control device, this power control method can secure a larger amount of generated power that can be transmitted to the external region, and thus can increase the possibility of responding to a reduction request.

電力制御装置を備える電力管理システムの概略構成を示す説明図である。It is explanatory drawing which shows the schematic structure of the power management system including the power control device. DR指令を受信していない場合の電力管理領域における電力関連設備(負荷設備、蓄電設備、発電設備)の電力需給状態の一例を表す説明図である。It is explanatory drawing which shows an example of the electric power supply and demand state of the electric power related equipment (load equipment, power storage equipment, power generation equipment) in the electric power management area when the DR command is not received. DR対応制御処理の処理内容を表したフローチャートである。It is a flowchart which showed the processing content of the DR correspondence control processing. DR指令を受信した場合の電力管理領域における電力関連設備(負荷設備、蓄電設備、発電設備)の電力需給状態の一例を表す説明図である。It is explanatory drawing which shows an example of the electric power supply and demand state of the electric power related equipment (load equipment, power storage equipment, power generation equipment) in the electric power management area when a DR command is received.

以下、本発明が適用された実施形態について、図面を用いて説明する。
尚、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
Hereinafter, embodiments to which the present invention has been applied will be described with reference to the drawings.
It should be noted that the present invention is not limited to the following embodiments, and it goes without saying that various forms can be adopted as long as it belongs to the technical scope of the present invention.

[1.第1実施形態]
[1−1.全体構成]
図1は、第1実施形態である電力制御装置20を備える電力管理システム1の概略構成を示す説明図である。
[1. First Embodiment]
[1-1. overall structure]
FIG. 1 is an explanatory diagram showing a schematic configuration of a power management system 1 including the power control device 20 according to the first embodiment.

電力管理システム1は、1つの管理装置10(以下、「CEMS(Community Energy Management System)10」とも表記する。)と、所定の管理領域9に備えられる複数の電力制御装置20(以下、「BEMS(Building Energy Management System)20」とも表記する。)を備える。 The power management system 1 includes one management device 10 (hereinafter, also referred to as “CEMS (Community Energy Management System) 10”) and a plurality of power control devices 20 (hereinafter, “BEMS”) provided in a predetermined management area 9. (Building Energy Management System) 20 ”).

CEMS10は、無線若しくは有線の通信経路11(インターネット回線など)を介して、複数の電力会社側装置(図示省略)や管理領域9に備えられる各種装置(電力制御装置20など)との間で各種情報の送受信を行うとともに、電力線17を介した商用電源16と管理領域9との間の電力需給を管理する上位の管理装置である。 The CEMS 10 is variously connected to a plurality of electric power company side devices (not shown) and various devices (power control device 20 and the like) provided in the management area 9 via a wireless or wired communication path 11 (Internet line or the like). It is a high-level management device that transmits and receives information and manages the power supply and demand between the commercial power source 16 and the management area 9 via the power line 17.

CEMS10は、CPU(中央演算処理ユニット)、ROM、RAM、ハードディスク、入出力インタフェース等を有するコンピュータシステムである。ROM等に記憶されている制御プログラムは、CPUを各種情報の演算を行うための指示部として少なくとも機能させるものであり、入出力インタフェース等を取得部および出力部として機能させるものであり、ハードディスク等を電力制御装置20などから入力された各種情報が記憶される記憶部として機能させるものである。 The CEMS 10 is a computer system having a CPU (central processing unit), a ROM, a RAM, a hard disk, an input / output interface, and the like. The control program stored in the ROM or the like at least functions as an instruction unit for calculating various information in the CPU, functions as an input / output interface or the like as an acquisition unit and an output unit, and is a hard disk or the like. Functions as a storage unit for storing various information input from the power control device 20 and the like.

CEMS10は、各種情報の1つとして、複数の電力制御装置20のそれぞれに対してデマンドレスポンス指令(以下、「DR指令」とも表記する。)を出力する。DR指令は、対象の電力管理領域30における制限指令期間および電力削減量に関する情報を含む電力需要制限指令である。 The CEMS 10 outputs a demand response command (hereinafter, also referred to as “DR command”) to each of the plurality of power control devices 20 as one of various information. The DR command is a power demand limit command that includes information on the limit command period and the amount of power reduction in the target power management area 30.

管理領域9には、少なくとも1つの電力管理領域30(例えば、ビルなど)と、少なくとも1つの個別負荷34と、が備えられている。電力管理領域30および個別負荷34は、電力を伝送するための電力線17に接続されている。図1では、3つの電力管理領域30A,30B,30Cと、1つの個別負荷34と、を図示しており、その他の電力管理領域30や個別負荷34については図示を省略している。 The management area 9 includes at least one power management area 30 (for example, a building) and at least one individual load 34. The power management area 30 and the individual load 34 are connected to a power line 17 for transmitting electric power. In FIG. 1, three power management areas 30A, 30B, 30C and one individual load 34 are illustrated, and the other power management areas 30 and individual load 34 are not shown.

電力管理領域30には、電力制御装置20と、電力関連設備(負荷設備31、蓄電設備32、発電設備33)と、が備えられる。
電力制御装置20は、電力関連設備(負荷設備31、蓄電設備32、発電設備33)が配置される電力管理領域30と外部領域(商用電源16、他の電力管理領域30、個別負荷34)との間における電力伝送状態や、自己の電力管理領域30における電力関連設備の電力需給状態など、を制御する電力制御装置である。
The power management area 30 is provided with a power control device 20 and power-related equipment (load equipment 31, power storage equipment 32, power generation equipment 33).
The power control device 20 includes a power management area 30 in which power-related equipment (load equipment 31, power storage equipment 32, power generation equipment 33) is arranged and an external area (commercial power supply 16, other power management area 30, individual load 34). It is a power control device that controls the power transmission state between the two, the power supply / demand state of the power-related equipment in the own power management area 30, and the like.

[1−2.電力制御装置]
電力制御装置20(BEMS20)は、CEMS10に対する下位の管理装置であり、電力管理領域30における電力関連設備(負荷設備31、蓄電設備32、発電設備33のそれぞれ)の電力消費・発電状態を制御・監視することにより、電力管理領域30における電力需要および電力供給の管理(電力需給管理ともいう)を行う。また、電力制御装置20は、CEMS10からの指令に基づいて、電力管理領域30から商用電源16への外部供給電力(逆潮流電力)を管理する。さらに、電力制御装置20は、他の電力管理領域30の電力制御装置20からの要請に基づいて、自己の電力管理領域30から他の電力管理領域30への供給する外部供給電力(救援電力)を管理する。
[1-2. Power controller]
The power control device 20 (BEMS 20) is a lower management device for the CEMS 10 and controls the power consumption and power generation state of the power-related equipment (load equipment 31, power storage equipment 32, and power generation equipment 33, respectively) in the power management area 30. By monitoring, the power demand and the power supply in the power management area 30 are managed (also referred to as power supply and demand management). Further, the power control device 20 manages the external power supply (reverse power flow power) from the power management area 30 to the commercial power source 16 based on the command from the CEMS 10. Further, the power control device 20 supplies external power (rescue power) supplied from its own power management area 30 to the other power management area 30 based on a request from the power control device 20 of the other power management area 30. To manage.

電力制御装置20は、CPU(中央演算処理ユニット)、ROM、RAM、ハードディスク、入出力インタフェース等を有するコンピュータシステムである。ROM等に記憶されている制御プログラムは、CPUを各種情報の演算を行うための指示部として少なくとも機能させるものであり、入出力インタフェース等を取得部および出力部として機能させるものであり、ハードディスク等を外部機器(CEMS10、他の電力制御装置20など)から入力された各種情報が記憶される記憶部として機能させるものである。 The power control device 20 is a computer system having a CPU (central processing unit), a ROM, a RAM, a hard disk, an input / output interface, and the like. The control program stored in the ROM or the like causes the CPU to function at least as an instruction unit for performing calculations of various information, and causes the input / output interface or the like to function as an acquisition unit and an output unit. Functions as a storage unit for storing various information input from an external device (CEMS 10, another power control device 20, etc.).

負荷設備31は、電力管理領域30に設置された照明器具、空調設備、噴水、EV充電器(電気自動車用充電器)、映像設備、パソコン、ネットワークサーバ、複写機、FAX機などの電力を消費する機器の総称である。 The load equipment 31 consumes electric power of lighting equipment, air conditioning equipment, fountain, EV charger (charger for electric vehicle), video equipment, personal computer, network server, copier, FAX machine, etc. installed in the power management area 30. It is a general term for equipment that is used.

蓄電設備32は、電力を蓄電する充電動作および蓄電した電力を放電する放電動作を行う装置(例えば、二次電池など)を用いて構成されている。蓄電設備32は、充電動作および放電動作が可能なものであればよく、その形式を特に限定するものではない。例えば、蓄電設備32は、据え置き型に限られることはなく、可搬型であってもよい。また、電気自動車(EV車)に積載された二次電池を、蓄電設備32として利用することも可能である。 The power storage equipment 32 is configured by using a device (for example, a secondary battery) that performs a charging operation for storing electric power and a discharging operation for discharging the stored electric power. The power storage equipment 32 may be any as long as it can perform charging and discharging operations, and its type is not particularly limited. For example, the power storage equipment 32 is not limited to the stationary type, and may be a portable type. It is also possible to use the secondary battery loaded in the electric vehicle (EV vehicle) as the power storage equipment 32.

発電設備33は、電力管理領域30に設置された発電設備であり、例えば、太陽光発電設備、風力発電設備などの再生可能な自然エネルギーを利用した発電設備であってもよいし、バイオマス、地熱などを用いた発電設備であってもよいし、小型の発動機(ディーゼルエンジンなど)を動力源とした発電設備であってもよい。 The power generation facility 33 is a power generation facility installed in the power management area 30, and may be, for example, a power generation facility using renewable natural energy such as a solar power generation facility or a wind power generation facility, or biomass or geothermal power. It may be a power generation facility using or the like, or it may be a power generation facility using a small engine (diesel engine or the like) as a power source.

なお、発電設備33による電力供給は、自身が設置された電力管理領域30への電力供給に限られることはなく、他の電力管理領域30や個別負荷34への電力供給であってもよい。また、発電設備33は、その発電形態によっては発電量を調整することが可能に構成されており(例えば、バイオマス、地熱を用いた発電設備、小型の発電機を動力源とした発電設備など)、電力制御装置20などからの指令に基づいて発電量を調整できる。 The power supply by the power generation facility 33 is not limited to the power supply to the power management area 30 in which the power generation facility 33 is installed, and may be the power supply to another power management area 30 or the individual load 34. Further, the power generation facility 33 is configured so that the amount of power generation can be adjusted depending on the power generation form thereof (for example, a power generation facility using biomass or geothermal heat, a power generation facility using a small generator as a power source, etc.). , The amount of power generation can be adjusted based on a command from the power control device 20 or the like.

DR指令を受信した電力制御装置20は、未来の需給管理期間のうちDR指令により定められた制限指令期間に対して、DR制御を行うためのDR設定を行う。DR設定した期間(制限指令期間)が到来すると、電力制御装置20は、DR指令により定められた電力削減量に応じた電力需要を削減するように、電力関連設備(負荷設備31、蓄電設備32、発電設備33のそれぞれ)の動作状態を制御する。 The power control device 20 that has received the DR command sets the DR for performing the DR control for the limit command period specified by the DR command in the future supply and demand management period. When the DR set period (limit command period) arrives, the power control device 20 reduces the power demand according to the power reduction amount specified by the DR command, and the power-related equipment (load equipment 31, power storage equipment 32). , Each of the power generation equipment 33) is controlled.

また、電力制御装置20は、CEMS10や電力会社側装置との間で各種情報の送受信を行う。例えば、電力制御装置20は、上述のように、CEMS10からDR指令などを受信している。また、電力制御装置20は、発電所に関する各種情報(発電量など)を、電力会社側装置から受信している。 Further, the power control device 20 transmits and receives various information to and from the CEMS 10 and the device on the power company side. For example, the power control device 20 receives a DR command or the like from the CEMS 10 as described above. Further, the electric power control device 20 receives various information (such as the amount of power generation) about the power plant from the electric power company side device.

なお、電力制御装置20は、発電所に関する各種情報(発電量など)を、CEMS10を介して受信してもよい。つまり、CEMS10が、発電所に関する各種情報(発電量など)を、電力会社側装置から受信して記憶している場合には、電力制御装置20は、発電所に関する各種情報(発電量など)を、CEMS10を介して受信することが可能である。 The power control device 20 may receive various information (such as the amount of power generation) about the power plant via the CEMS 10. That is, when the CEMS 10 receives and stores various information about the power plant (power generation amount, etc.) from the electric power company side device, the power control device 20 receives various information about the power plant (power generation amount, etc.). , Can be received via CEMS 10.

さらに、電力制御装置20は、図示しない通信経路を介して、他の電力管理領域30における電力制御装置20との間で各種情報の送受信を行う。例えば、電力制御装置20は、他の電力管理領域30に備えられる電力関連設備(負荷設備31、蓄電設備32、発電設備33のそれぞれ)に関する各種情報(発電量など)を、他の電力管理領域30における電力制御装置20から受信している。 Further, the power control device 20 transmits and receives various information to and from the power control device 20 in another power management area 30 via a communication path (not shown). For example, the power control device 20 provides various information (power generation amount, etc.) regarding power-related equipment (load equipment 31, power storage equipment 32, and power generation equipment 33) provided in the other power management area 30 to the other power management area. It is received from the power control device 20 in 30.

電力制御装置20は、上述のとおり、電力管理領域30における電力関連設備(負荷設備31、蓄電設備32、発電設備33のそれぞれ)の電力需給管理を実行しており、例えば、DR指令を受信していない場合には、図2に示すような電力需給状態となるように電力関連設備を制御する。図2では、発電設備33での発電電力PGを、負荷設備31に供給するための負荷用電力Pg1と、蓄電設備32に供給するための蓄電用電力Pg2と、電力線17を介して外部(商用電源16、他の電力管理領域30、個別負荷34など、)に供給するための外部供給電力Pg3と、に分配する電力供給状態を表している(PG=Pg1+Pg2+Pg3)。 As described above, the power control device 20 executes power supply and demand management of power-related equipment (load equipment 31, power storage equipment 32, and power generation equipment 33, respectively) in the power management area 30, and receives, for example, a DR command. If not, the power-related equipment is controlled so as to be in the power supply / demand state as shown in FIG. In FIG. 2, the load power Pg1 for supplying the power generation power PG of the power generation facility 33 to the load facility 31, the power storage power Pg2 for supplying the power storage facility 32, and the external power (commercial) via the power line 17. It represents the power supply state to be distributed to the external power supply Pg3 for supplying to the power source 16, another power management area 30, the individual load 34, etc. (PG = Pg1 + Pg2 + Pg3).

このとき、電力制御装置20は、発電電力PGの分配先を決定する際の優先順位としては、負荷用電力Pg1を第1優先とし、蓄電用電力Pg2を第2優先とし、外部供給電力Pg3を第3優先としている。このような優先順位に基づいて自己の電力管理領域30における電力需給状態を制御することで、まずは負荷設備31の稼働を確保し、次に蓄電設備32への蓄電を行い、その上での余裕電力を外部供給電力Pg3として外部に送電している。 At this time, the power control device 20 prioritizes the load power Pg1 as the first priority, the storage power Pg2 as the second priority, and the external power supply Pg3 as the priority when determining the distribution destination of the generated power PG. The third priority is given. By controlling the power supply and demand state in the own power management area 30 based on such a priority, the operation of the load equipment 31 is first secured, and then the power storage equipment 32 is charged with power, and the margin on that is obtained. The electric power is transmitted to the outside as the externally supplied electric power Pg3.

なお、外部供給電力Pg3は、例えば、電力管理領域30から商用電源16への逆潮流電力や、自己の電力管理領域30から他の電力管理領域30への供給する救援電力などとして利用できる。 The externally supplied power Pg3 can be used, for example, as reverse power flow power from the power management area 30 to the commercial power source 16, rescue power supplied from the own power management area 30 to another power management area 30, and the like.

[1−3.DR対応制御処理]
電力制御装置20(BEMS20)は、コンピュータシステムにより実現される機能の1つとして、各種処理を実行する制御部21を備えている。制御部21が実行する各種制御処理のうちDR対応制御処理について説明する。
[1-3. DR compatible control processing]
The power control device 20 (BEMS 20) includes a control unit 21 that executes various processes as one of the functions realized by the computer system. Among the various control processes executed by the control unit 21, the DR-compatible control process will be described.

DR対応制御処理は、電力制御装置20(制御部21)が管理装置10(CEMS10)からDR指令を受信した際に電力管理領域30における電力関連設備(負荷設備31、蓄電設備32、発電設備33のそれぞれ)の電力需給状況を制御するための処理である。DR対応制御処理は、電力制御装置20が起動されると、予め定められた実行周期(本実施形態では、1分毎)で制御部21での処理として実行される。 In the DR-compatible control process, when the power control device 20 (control unit 21) receives a DR command from the management device 10 (CEMS10), the power-related equipment (load equipment 31, power storage equipment 32, power generation equipment 33) in the power management area 30 It is a process for controlling the power supply and demand situation of each of). When the power control device 20 is activated, the DR-compatible control process is executed as a process in the control unit 21 at a predetermined execution cycle (every minute in this embodiment).

図3は、DR対応制御処理の処理内容を表したフローチャートである。
DR対応制御処理が起動されると、まず、S110(Sはステップを表す)では、CEMS10からDR指令を受信したか否かを判断し、肯定判定するとS120に移行し、否定判定すると本処理を終了する。
FIG. 3 is a flowchart showing the processing contents of the DR-compatible control process.
When the DR correspondence control process is activated, first, in S110 (S represents a step), it is determined whether or not a DR command has been received from CEMS10, and if affirmative determination is made, the process proceeds to S120, and if a negative determination is made, this process is performed. finish.

S110で肯定判定されてS120に移行すると、S120では、発電電力PGの分配先を決定する際の優先順位として、外部供給電力Pg3を第1優先として設定する。つまり、発電電力PGの最優先供給先として外部供給電力Pg3を設定する。 When the affirmative determination is made in S110 and the process shifts to S120, in S120, the external power supply Pg3 is set as the first priority as the priority when determining the distribution destination of the generated power PG. That is, the external power supply Pg3 is set as the highest priority supply destination of the power generation power PG.

次のS130では、発電電力PGとDR指令に基づく削減要請電力PDRとを比較するにあたり、発電電力PGが削減要請電力PDRよりも大きいか否かを判断し、発電電力PGが削減要請電力PDRよりも大きい場合には肯定判定してS150に移行し、発電電力PGが削減要請電力PDR以下である場合には否定判定してS140に移行する。 In the next S130, when comparing the generated power PG and the reduction request power PDR based on the DR command, it is determined whether or not the generated power PG is larger than the reduction request power PDR, and the generated power PG is from the reduction request power PDR. If it is large, a positive judgment is made and the transition to S150 is performed, and if the generated power PG is equal to or less than the reduction request power PDR, a negative judgment is made and the transition to S140 is performed.

S130で否定判定されてS140に移行すると、S140では、蓄電設備32の充電を停止し、蓄電設備32の放電を実行する。これにより、蓄電設備32からの放電電力の供給先として、負荷設備31での消費電力Lおよび外部供給電力Pg3(削減要請電力PDR)のうち少なくとも一方を設定する。このとき、蓄電設備32が放電する放電電力Boutは、負荷設備31の消費電力Lと削減要請電力PDRとの合計値から発電電力PGを差し引いた値となる(Bout=L+PDR−PG)。 When a negative determination is made in S130 and the process shifts to S140, charging of the power storage equipment 32 is stopped and discharge of the power storage equipment 32 is executed in S140. As a result, at least one of the power consumption L of the load equipment 31 and the external power supply Pg3 (reduction request power PDR) is set as the supply destination of the discharge power from the power storage equipment 32. At this time, the discharge power Bout discharged by the power storage facility 32 is a value obtained by subtracting the generated power PG from the total value of the power consumption L of the load facility 31 and the reduction request power PDR (Bout = L + PDR-PG).

S130で肯定判定されてS150に移行すると、S150では、発電電力PGの分配先を決定する際の優先順位として、負荷用電力Pg1を第2優先として設定する。つまり、発電電力PGの供給先として、外部供給電力Pg3を第1優先として設定し、負荷用電力Pg1を第2優先として設定する。換言すれば、発電電力PGから削減要請電力PDR(外部供給電力Pg3)を差し引いた余裕電力Pa1(=PG−PDR)の最優先供給先として負荷用電力Pg1を設定する。 When the affirmative determination is made in S130 and the process shifts to S150, in S150, the load power Pg1 is set as the second priority as the priority when determining the distribution destination of the generated power PG. That is, as the supply destination of the generated power PG, the external power supply Pg3 is set as the first priority, and the load power Pg1 is set as the second priority. In other words, the load power Pg1 is set as the highest priority supply destination of the surplus power Pa1 (= PG-PDR) obtained by subtracting the reduction request power PDR (external power supply Pg3) from the generated power PG.

次のS160では、負荷設備31の消費電力Lが発電電力PGから削減要請電力PDR(外部供給電力Pg3)を差し引いた余裕電力Pa1(=PG−PDR)以上であるか否かを判断し、肯定判定するとS170に移行し、否定判定するとS210に移行する。 In the next S160, it is determined whether or not the power consumption L of the load equipment 31 is equal to or more than the margin power Pa1 (= PG-PDR) obtained by subtracting the reduction request power PDR (external power supply Pg3) from the generated power PG, and affirms it. If it is determined, it shifts to S170, and if it is negative, it shifts to S210.

S160で肯定判定されてS170に移行すると、S170では、蓄電設備32の充電を停止する。
次のS180では、負荷設備31の消費電力Lが発電電力PGから削減要請電力PDR(外部供給電力Pg3)を差し引いた余裕電力Pa1(=PG−PDR)と等しいか否かを判断し、肯定判定するとS190に移行し、否定判定するとS200に移行する。
When the affirmative determination is made in S160 and the process shifts to S170, charging of the power storage equipment 32 is stopped in S170.
In the next S180, it is determined whether or not the power consumption L of the load equipment 31 is equal to the margin power Pa1 (= PG-PDR) obtained by subtracting the reduction request power PDR (external power supply Pg3) from the generated power PG, and affirmative judgment is made. Then, it shifts to S190, and if it is determined to be negative, it shifts to S200.

S180で肯定判定されてS190に移行すると、S190では、蓄電設備32の状態を放電しない状態に設定する。これにより、蓄電設備32は、充電をせず、かつ放電をしない状態となる。 When an affirmative determination is made in S180 and the transition to S190 occurs, the state of the power storage equipment 32 is set to a non-discharging state in S190. As a result, the power storage equipment 32 is in a state of not being charged and not being discharged.

S180で否定判定されてS200に移行すると、S200では、蓄電設備32の状態を放電状態に設定する。これにより、蓄電設備32からの放電電力Boutの供給先として負荷設備31が設定される。 When a negative determination is made in S180 and the process shifts to S200, the state of the power storage equipment 32 is set to the discharge state in S200. As a result, the load equipment 31 is set as the supply destination of the discharge power Bout from the power storage equipment 32.

このとき、蓄電設備32が放電する放電電力Boutは、負荷設備31の消費電力Lと削減要請電力PDRとの合計値から発電電力PGを差し引いた値となる(Bout=L+PDR−PG)。このときの電力需給状態を図4に示す。図4では、発電設備33での発電電力PGを、負荷用電力Pg1と外部供給電力Pg3とに分配するように設定する(PG=Pg1+Pg3)とともに、放電電力Boutを負荷設備31に供給する負荷用放電電力Pb1として設定(Bout=Pb1)した電力供給状態を表している。 At this time, the discharge power Bout discharged by the power storage facility 32 is a value obtained by subtracting the generated power PG from the total value of the power consumption L of the load facility 31 and the reduction request power PDR (Bout = L + PDR-PG). The power supply and demand state at this time is shown in FIG. In FIG. 4, the generated power PG in the power generation facility 33 is set to be distributed to the load power Pg1 and the external power supply Pg3 (PG = Pg1 + Pg3), and the discharge power Bout is supplied to the load facility 31 for the load. It represents the power supply state set as the discharge power Pb1 (Bout = Pb1).

なお、図4では、負荷用電力Pg1と負荷用放電電力Pb1との合計値が消費電力Lと等しい場合の電力需給状態を表している(L=Pg1+Pb1)。また、図4では、蓄電設備32が放電可能な電力量が負荷設備31の消費電力L以上である場合を表している。 Note that FIG. 4 shows a power supply / demand state when the total value of the load power Pg1 and the load discharge power Pb1 is equal to the power consumption L (L = Pg1 + Pb1). Further, FIG. 4 shows a case where the amount of electric power that can be discharged by the power storage equipment 32 is equal to or more than the power consumption L of the load equipment 31.

S160で否定判定されてS210に移行すると、S210では、発電電力PGのうち余裕電力Pa1(=PG−PDR)による蓄電設備32の充電を継続する。つまり、余裕電力Pa1の供給先として蓄電設備32の充電電力Binを設定する。このとき、蓄電設備32に充電される充電電力Binは、発電電力PGから負荷設備31の消費電力Lおよび削減要請電力PDRを差し引いた値となる(Bin=PG−PDL−L)。 When a negative determination is made in S160 and the transition to S210 occurs, in S210, charging of the power storage facility 32 by the surplus power Pa1 (= PG-PDR) of the generated power PG is continued. That is, the charging power Bin of the power storage equipment 32 is set as the supply destination of the spare power Pa1. At this time, the charging power Bin charged in the power storage equipment 32 is a value obtained by subtracting the power consumption L of the load equipment 31 and the reduction request power PDR from the generated power PG (Bin = PG-PDL-L).

S110で否定判定されるか、S140、S190、S200、S210のいずれかのステップが終了すると、本処理が終了する。
このようなDR対応制御処理を実行する電力制御装置20(制御部21)は、DR指令を受信したか否かを判定し、DR指令を受信した場合には(S110で肯定判定)、発電電力PGの分配先として、外部供給電力Pg3を第1優先として設定する(S120)。そして、制御部21は、発電電力PGと削減要請電力PDRとの比較結果や、消費電力Lと余裕電力Pa1(=PG−PDR)との比較結果などに基づいて、蓄電設備32の充電状態・放電状態を制御する。
This process ends when a negative determination is made in S110 or when any of the steps S140, S190, S200, and S210 is completed.
The power control device 20 (control unit 21) that executes such a DR-compatible control process determines whether or not a DR command has been received, and if the DR command is received (affirmative determination in S110), the generated power. The external power supply Pg3 is set as the first priority as the distribution destination of the PG (S120). Then, the control unit 21 determines the charging state of the power storage equipment 32 based on the comparison result between the generated power PG and the reduction request power PDR, the comparison result between the power consumption L and the surplus power Pa1 (= PG-PDR), and the like. Control the discharge state.

[1−4.効果]
以上説明したように、本実施形態の電力制御装置20(BEMS20)は、DR対応制御処理を実行する制御部21を備えている。
[1-4. effect]
As described above, the power control device 20 (BEMS20) of the present embodiment includes a control unit 21 that executes DR-compatible control processing.

制御部21は、電力関連設備(負荷設備31、蓄電設備32、発電設備33)における電力需要および電力供給を制御するにあたり、DR指令をCEMS10から受信すると(S110で肯定判定)、発電設備33での発電電力PGの供給先として削減要請電力PDR(外部供給電力Pg3)を最優先供給先に設定する(S120)。 When the control unit 21 receives a DR command from the CEMS 10 (affirmative judgment in S110) in controlling the power demand and power supply in the power-related equipment (load equipment 31, power storage equipment 32, power generation equipment 33), the power generation equipment 33 As the supply destination of the generated power PG of the above, the reduction request power PDR (external power supply Pg3) is set as the highest priority supply destination (S120).

この電力制御装置20は、SEMS10からのDR指令を受信した場合には発電電力PGの最優先供給先に削減要請電力PDR(外部供給電力Pg3)を設定することで、発電電力PGのうち外部領域(商用電源16、他の電力管理領域30、個別負荷34)に伝送可能な電力量をより多く確保できる。 When the power control device 20 receives the DR command from the SEMS 10, the power control device 20 sets the reduction request power PDR (external power supply Pg3) as the highest priority supply destination of the power generation power PG, thereby setting the external region of the power generation power PG. A larger amount of power that can be transmitted to (commercial power source 16, other power management area 30, individual load 34) can be secured.

よって、電力制御装置20は、CEMS10からのDR指令に対応できる可能性を高めることができる。
次に、電力制御装置20の制御部21は、DR指令で要請された削減要請電力PDRが発電電力PGよりも小さい場合には(S130で肯定判定)、発電電力PGのうち削減要請電力PDRを差し引いた余裕電力Pa1(=PG−PDR)の供給先として少なくとも負荷設備31を設定する(S150)。
Therefore, the power control device 20 can increase the possibility of responding to the DR command from the CEMS 10.
Next, when the reduction request power PDR requested by the DR command is smaller than the generated power PG (affirmative judgment in S130), the control unit 21 of the power control device 20 determines the reduction request power PDR among the generated power PG. At least the load facility 31 is set as the supply destination of the deducted surplus power Pa1 (= PG-PDR) (S150).

これにより、発電電力PGのうち余裕電力Pa1を負荷設備31に供給することができ、商用電源16などから負荷設備31に供給する電力を低減できるとともに、負荷設備31に供給する電力の少なくとも一部を余裕電力Pa1で補うことができる。 As a result, the surplus power Pa1 of the generated power PG can be supplied to the load equipment 31, the power supplied from the commercial power source 16 or the like to the load equipment 31 can be reduced, and at least a part of the power supplied to the load equipment 31. Can be supplemented with the surplus power Pa1.

次に、電力制御装置20の制御部21は、負荷設備31での消費電力Lが余裕電力Pa1(=PG−PDR)以上である場合には(S160で肯定判定)、蓄電設備32の充電を停止する(S170)。これにより、蓄電設備32の充電に要する電力を確保する必要が無くなり、電力管理領域30における電力需要を低減できるため、電力管理領域30での電力需給の安定化を図り易くなる。 Next, when the power consumption L of the load equipment 31 is equal to or greater than the marginal power Pa1 (= PG-PDR) (positive determination in S160), the control unit 21 of the power control device 20 charges the power storage equipment 32. Stop (S170). As a result, it is not necessary to secure the electric power required for charging the power storage equipment 32, and the electric power demand in the electric power management area 30 can be reduced, so that it becomes easy to stabilize the electric power supply and demand in the electric power management area 30.

次に、電力制御装置20の制御部21は、負荷設備31での消費電力Lが余裕電力Pa1(=PG−PDR)よりも大きい場合には(S160で肯定判定、かつS180で否定判定)、蓄電設備32からの放電を行い、蓄電設備32からの放電電力Boutの供給先として負荷設備31を設定する(S200)。 Next, when the power consumption L of the load equipment 31 is larger than the marginal power Pa1 (= PG-PDR), the control unit 21 of the power control device 20 determines that the power consumption is positive in S160 and negative in S180). Discharging from the power storage equipment 32 is performed, and the load equipment 31 is set as a supply destination of the discharge power Bout from the power storage equipment 32 (S200).

これにより、発電電力PG(詳細には余裕電力Pa1(=負荷用電力Pg1))に加えて、蓄電設備32からの放電電力Bout(負荷用放電電力Pb1)を、負荷設備31に供給することができ、負荷設備31の稼働に必要な消費電力Lを確保し易くなる。 As a result, in addition to the generated power PG (specifically, the margin power Pa1 (= load power Pg1)), the discharge power Bout (load discharge power Pb1) from the power storage facility 32 can be supplied to the load facility 31. This makes it easier to secure the power consumption L required for the operation of the load facility 31.

次に、電力制御装置20の制御部21は、負荷設備31での消費電力Lが余裕電力Pa1よりも小さい場合には(S160で否定判定)、余裕電力Pa1の供給先として蓄電設備32の充電電力Binを設定している(S210)。 Next, when the power consumption L of the load equipment 31 is smaller than the margin power Pa1 (negative determination in S160), the control unit 21 of the power control device 20 charges the power storage equipment 32 as a supply destination of the margin power Pa1. The power bin is set (S210).

これにより、余裕電力Pa1を蓄電設備32に蓄えることができ、電力不足時には蓄電設備32から放電することで、電力不足を解消できる。
次に、電力制御装置20の制御部21は、DR指令で要請された削減要請電力PDRが発電電力PG以上である場合には(S130で否定判定)、蓄電設備32の充電を停止するとともに蓄電設備32からの放電を行い、蓄電設備32からの放電電力の供給先として、負荷設備31での消費電力Lおよび外部供給電力Pg3(削減要請電力PDR)のうち少なくとも一方を設定する(S140)。
As a result, the surplus power Pa1 can be stored in the power storage facility 32, and when the power is insufficient, the power storage facility 32 can be discharged to solve the power shortage.
Next, when the reduction request power PDR requested by the DR command is equal to or greater than the generated power PG (negative determination in S130), the control unit 21 of the power control device 20 stops charging the power storage facility 32 and stores the power. Discharge from the equipment 32 is performed, and at least one of the power consumption L of the load equipment 31 and the external power supply Pg3 (reduction request power PDR) is set as the supply destination of the discharge power from the power storage equipment 32 (S140).

これにより、発電電力PGでは削減要請電力PDRを確保できない場合であっても、削減要請電力PDRから発電電力PGを差し引いた不足分の少なくとも一部を蓄電設備32の放電電力Boutで補うことができるため、DR指令に対応できる可能性を高めることができる。 As a result, even if the power generation power PG cannot secure the reduction request power PDR, at least a part of the shortage obtained by subtracting the power generation power PG from the reduction request power PDR can be supplemented by the discharge power Bout of the power storage facility 32. Therefore, the possibility of responding to the DR command can be increased.

[1−5.文言の対応関係]
ここで、文言の対応関係について説明する。
電力制御装置20(BEMS20)が電力制御装置の一例に相当し、制御部21が電力需給制御部の一例に相当し、電力管理領域30(30A)が電力管理領域の一例に相当し、負荷設備31が電力負荷設備の一例に相当し、蓄電設備32が蓄電設備の一例に相当し、発電設備33が発電設備の一例に相当する。
[1-5. Correspondence of wording]
Here, the correspondence between words will be described.
The power control device 20 (BEMS 20) corresponds to an example of the power control device, the control unit 21 corresponds to an example of the power supply / demand control unit, the power management area 30 (30A) corresponds to an example of the power management area, and the load equipment. 31 corresponds to an example of power load equipment, power storage equipment 32 corresponds to an example of power storage equipment, and power generation equipment 33 corresponds to an example of power generation equipment.

商用電源16、管理装置10(CEMS10)、他の電力管理領域30(30B、30C)が外部領域の一例に相当し、DR指令が電力需要の削減要請の一例に相当する。
[2.他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
The commercial power supply 16, the management device 10 (CEMS10), and the other power management areas 30 (30B, 30C) correspond to an example of the external area, and the DR directive corresponds to an example of a request for reduction of power demand.
[2. Other embodiments]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented in various embodiments without departing from the gist of the present invention.

上記実施形態では、DR対応制御処理が予め定められた実行周期で定期的に実行される形態について記載したが、DR対応制御処理の実行時期はこのような形態に限られることはない。例えば、DR対応制御処理は、何らかの条件成立時(DR指令を受信した場合など)に実行される形態であってもよい。その場合、S110を省略してもよいし、再確認のためにS110を実行する形態としてもよい。 In the above embodiment, the mode in which the DR-compatible control process is periodically executed in a predetermined execution cycle has been described, but the execution time of the DR-compatible control process is not limited to such a mode. For example, the DR correspondence control process may be executed when some condition is satisfied (such as when a DR command is received). In that case, S110 may be omitted, or S110 may be executed for reconfirmation.

また、図1では、便宜上、1つの電力管理領域30に備えられる電力関連設備として、負荷設備31、蓄電設備32、発電設備33をそれぞれ1個ずつ記載しているが、本開示の電力制御装置が制御する電力関連設備は、このような形態に限られることはない。例えば、1つの電力管理領域30に、負荷設備31、蓄電設備32、発電設備33がそれぞれ複数備えられる構成であっても良い。 Further, in FIG. 1, for convenience, one load facility 31, one power storage facility 32, and one power generation facility 33 are shown as power-related equipment provided in one power management area 30, but the power control device of the present disclosure is provided. The power-related equipment controlled by the company is not limited to this type. For example, one power management area 30 may be provided with a plurality of load equipment 31, power storage equipment 32, and power generation equipment 33, respectively.

次に、上記実施形態では、蓄電設備32が放電可能な電力量が負荷設備31の消費電力L以上である場合を想定して、S140およびS200の内容を説明した。もし、S140またはS200の実行時に、蓄電設備32が放電可能な電力量が負荷設備31の消費電力Lよりも小さくなっている場合には、他の電力管理領域30から電力供給を受けることで、電力の不足分を補うように構成してもよい。 Next, in the above embodiment, the contents of S140 and S200 have been described on the assumption that the amount of power that can be discharged by the power storage equipment 32 is equal to or greater than the power consumption L of the load equipment 31. If the amount of power that can be discharged by the power storage equipment 32 is smaller than the power consumption L of the load equipment 31 during the execution of S140 or S200, the power is supplied from the other power management area 30. It may be configured to make up for the shortage of power.

次に、電力制御装置は、制御対象の電力管理領域がビルである形態(BEMS:Building Energy Management System)に限られることはない。例えば、電力管理領域が一般家庭である形態(HEMS:Home Energy Management System)、電力管理領域が工場である形態(FEMS:Factory Energy Management System)、電力管理領域がマンションである形態(MEMS:Mansion Energy Management System)、電力管理領域が店舗流通である形態(REMS:Retail Energy Management System)、電力管理領域がショッピングモールである形態(SEMS:Store Energy Management System)、電力管理領域が所定地域である形態などであってもよい。 Next, the power control device is not limited to the form (BEMS: Building Energy Management System) in which the power management area to be controlled is a building. For example, the power management area is a general household (HEMS: Home Energy Management System), the power management area is a factory (FEMS: Factory Energy Management System), and the power management area is an apartment (MEMS: Mansion Energy). Management System), power management area is store distribution (REMS: Retail Energy Management System), power management area is shopping mall (SEMS: Store Energy Management System), power management area is a predetermined area, etc. It may be.

次に、上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を、省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 Next, the function of one component in each of the above embodiments may be shared by a plurality of components, or the function of the plurality of components may be exerted by one component. Further, a part of the configuration of each of the above embodiments may be omitted. In addition, at least a part of the configuration of each of the above embodiments may be added or replaced with respect to the configuration of the other embodiment. It should be noted that all aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

上述したコンピュータシステムの他、当該コンピュータシステムを構成要素とする上位システム、当該コンピュータシステムとしてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、濃度算出方法など、種々の形態で本開示を実現することもできる。 In addition to the above-mentioned computer system, a higher-level system having the computer system as a component, a program for operating the computer as the computer system, a non-transitional actual recording medium such as a semiconductor memory in which this program is recorded, and a concentration calculation method. The present disclosure can also be realized in various forms such as.

1…電力管理システム、10…管理装置、11…通信経路、16…商用電源、17…電力線、20…電力制御装置、21…制御部、30(30A,30B,30C)…電力管理領域、31…負荷設備、32…蓄電設備、33…発電設備、34…個別負荷。 1 ... Power management system, 10 ... Management device, 11 ... Communication path, 16 ... Commercial power supply, 17 ... Power line, 20 ... Power control device, 21 ... Control unit, 30 (30A, 30B, 30C) ... Power management area, 31 ... load equipment, 32 ... power storage equipment, 33 ... power generation equipment, 34 ... individual load.

Claims (7)

電力関連設備が配置される電力管理領域と外部領域との間における電力伝送状態を制御する電力制御装置であって、
前記電力関連設備は、電力を消費する電力負荷設備と、発電を行う発電設備と、電力の蓄電および放電を行う蓄電設備と、を備えており、
前記電力関連設備における電力需要および電力供給を制御するにあたり、前記電力管理領域での電力需要の削減要請を前記外部領域から受信すると、前記発電設備での発電電力の供給先として前記外部領域への供給電力である外部供給電力を最優先供給先に設定する電力需給制御部を備え、
前記電力需給制御部は、前記削減要請で要請された削減要請電力が前記発電電力よりも小さい場合には、前記発電電力のうち前記削減要請電力を差し引いた余裕電力の供給先として少なくとも前記電力負荷設備を設定する、
電力制御装置。
A power control device that controls the power transmission state between the power management area where power-related equipment is located and the external area.
The electric power-related equipment includes a power load equipment that consumes electric power, a power generation equipment that generates electric power, and a power storage equipment that stores and discharges electric power.
In controlling the power demand and power supply in the power-related equipment, when a request for reducing the power demand in the power management area is received from the external area, the power generated by the power generation facility is supplied to the external area as a supply destination. Equipped with a power supply and demand control unit that sets the external power supply, which is the power supply, as the highest priority supply destination.
When the reduction request power requested by the reduction request is smaller than the generated power, the power supply and demand control unit has at least the power load as a supply destination of the surplus power obtained by subtracting the reduction request power from the generated power. Set up the equipment,
Power control device.
前記電力需給制御部は、前記電力負荷設備での消費電力が前記余裕電力以上である場合には、前記蓄電設備の充電を停止する、
請求項1に記載の電力制御装置。
When the power consumption of the power load equipment is equal to or greater than the margin power, the power supply and demand control unit stops charging of the power storage equipment.
The power control device according to claim 1.
前記電力需給制御部は、前記電力負荷設備での消費電力が前記余裕電力よりも大きい場合には、前記蓄電設備からの放電を行い、前記蓄電設備からの放電電力の供給先として少なくとも前記電力負荷設備を設定する、
請求項2に記載の電力制御装置。
When the power consumption in the power load equipment is larger than the margin power, the power supply / demand control unit discharges the power storage equipment, and at least the power load is supplied as a supply destination of the discharge power from the power storage equipment. Set up the equipment,
The power control device according to claim 2.
前記電力需給制御部は、前記電力負荷設備での消費電力が前記余裕電力よりも小さい場合には、前記余裕電力の供給先として少なくとも前記蓄電設備の充電電力を設定する、
請求項1に記載の電力制御装置。
When the power consumption of the power load equipment is smaller than the margin power, the power supply and demand control unit sets at least the charging power of the power storage facility as a supply destination of the margin power.
The power control device according to claim 1.
電力関連設備が配置される電力管理領域と外部領域との間における電力伝送状態を制御する電力制御装置であって、
前記電力関連設備は、電力を消費する電力負荷設備と、発電を行う発電設備と、電力の蓄電および放電を行う蓄電設備と、を備えており、
前記電力関連設備における電力需要および電力供給を制御するにあたり、前記電力管理領域での電力需要の削減要請を前記外部領域から受信すると、前記発電設備での発電電力の供給先として前記外部領域への供給電力である外部供給電力を最優先供給先に設定する電力需給制御部を備え、
前記電力需給制御部は、前記削減要請で要請された削減要請電力が前記発電電力以上である場合には、前記蓄電設備の充電を停止するとともに前記蓄電設備からの放電を行い、前記蓄電設備からの放電電力の供給先として、前記電力負荷設備での消費電力および前記外部供給電力のうち少なくとも一方を設定する、
電力制御装置。
A power control device that controls the power transmission state between the power management area where power-related equipment is located and the external area.
The electric power-related equipment includes a power load equipment that consumes electric power, a power generation equipment that generates electric power, and a power storage equipment that stores and discharges electric power.
In controlling the power demand and power supply in the power-related equipment, when a request for reducing the power demand in the power management area is received from the external area, the power generated by the power generation facility is supplied to the external area as a supply destination. Equipped with a power supply and demand control unit that sets the external power supply, which is the power supply, as the highest priority supply destination.
When the reduction request power requested by the reduction request is equal to or more than the generated power, the power supply / demand control unit stops charging the power storage facility and discharges the power storage facility from the power storage facility. As the discharge power supply destination of the above, at least one of the power consumption in the power load facility and the external power supply is set.
Power control device.
電力関連設備が配置される電力管理領域と外部領域との間における電力伝送状態を制御する電力制御方法であって、 It is a power control method that controls the power transmission state between the power management area where power-related equipment is located and the external area.
前記電力関連設備は、電力を消費する電力負荷設備と、発電を行う発電設備と、電力の蓄電および放電を行う蓄電設備と、を備えており、 The electric power-related equipment includes a power load equipment that consumes electric power, a power generation equipment that generates electric power, and a power storage equipment that stores and discharges electric power.
前記電力関連設備における電力需要および電力供給を制御するにあたり、前記電力管理領域での電力需要の削減要請を前記外部領域から受信すると、前記発電設備での発電電力の供給先として前記外部領域への供給電力である外部供給電力を最優先供給先に設定し、 In controlling the power demand and power supply in the power-related equipment, when a request for reducing the power demand in the power management area is received from the external area, the power generated by the power generation facility is supplied to the external area as a supply destination. Set the external power supply, which is the power supply, as the highest priority supply destination,
前記削減要請で要請された削減要請電力が前記発電電力よりも小さい場合には、前記発電電力のうち前記削減要請電力を差し引いた余裕電力の供給先として少なくとも前記電力負荷設備を設定する、 When the reduction request power requested by the reduction request is smaller than the generated power, at least the power load facility is set as a supply destination of the surplus power obtained by subtracting the reduction request power from the generated power.
電力制御方法。 Power control method.
電力関連設備が配置される電力管理領域と外部領域との間における電力伝送状態を制御する電力制御方法であって、
前記電力関連設備は、電力を消費する電力負荷設備と、発電を行う発電設備と、電力の蓄電および放電を行う蓄電設備と、を備えており、
前記電力関連設備における電力需要および電力供給を制御するにあたり、前記電力管理領域での電力需要の削減要請を前記外部領域から受信すると、前記発電設備での発電電力の供給先として前記外部領域への供給電力である外部供給電力を最優先供給先に設定し、
前記削減要請で要請された削減要請電力が前記発電電力以上である場合には、前記蓄電設備の充電を停止するとともに前記蓄電設備からの放電を行い、前記蓄電設備からの放電電力の供給先として、前記電力負荷設備での消費電力および前記外部供給電力のうち少なくとも一方を設定する、
電力制御方法。
It is a power control method that controls the power transmission state between the power management area where power-related equipment is located and the external area.
The electric power-related equipment includes a power load equipment that consumes electric power, a power generation equipment that generates electric power, and a power storage equipment that stores and discharges electric power.
In controlling the power demand and power supply in the power-related equipment, when a request for reducing the power demand in the power management area is received from the external area, the power generated by the power generation facility is supplied to the external area as a supply destination. Set the external power supply, which is the power supply, as the highest priority supply destination,
When the reduction request power requested by the reduction request is equal to or more than the generated power, charging of the power storage facility is stopped and discharge is performed from the power storage facility as a supply destination of the discharge power from the power storage facility. , Set at least one of the power consumption in the power load facility and the external power supply.
Power control method.
JP2017028211A 2017-02-17 2017-02-17 Power control device and power control method Active JP6856399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028211A JP6856399B2 (en) 2017-02-17 2017-02-17 Power control device and power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028211A JP6856399B2 (en) 2017-02-17 2017-02-17 Power control device and power control method

Publications (2)

Publication Number Publication Date
JP2018133967A JP2018133967A (en) 2018-08-23
JP6856399B2 true JP6856399B2 (en) 2021-04-07

Family

ID=63248720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028211A Active JP6856399B2 (en) 2017-02-17 2017-02-17 Power control device and power control method

Country Status (1)

Country Link
JP (1) JP6856399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463856B2 (en) 2020-06-04 2024-04-09 中国電力株式会社 Power selling system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807171B2 (en) * 2009-09-30 2015-11-10 パナソニックIpマネジメント株式会社 Energy management system and power supply control device
JP2012249476A (en) * 2011-05-30 2012-12-13 Panasonic Corp Power supply system
JP6402550B2 (en) * 2014-09-10 2018-10-10 オムロン株式会社 Power control apparatus, power control method, program, and power control system
JP6420188B2 (en) * 2015-03-17 2018-11-07 積水化学工業株式会社 Power management system, power management method and program

Also Published As

Publication number Publication date
JP2018133967A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6420912B2 (en) Management server, management method and management system
US10516270B2 (en) Method and apparatus for coordination of generators in droop controlled microgrids using hysteresis
JP5319156B2 (en) Power supply / demand control program, power supply / demand control apparatus, and power supply / demand control system
KR101661704B1 (en) Microgrid energy management system and power storage method of energy storage system
WO2011065495A1 (en) Control apparatus and control method
WO2020077786A1 (en) Energy control method and device, energy management system, and storage medium
KR20130102681A (en) System and method for frequency control
KR20170044153A (en) Power distribution control system
WO2011118627A1 (en) Power supply system
JPWO2017179178A1 (en) Power management system
US20180226801A1 (en) Determining an Operating Strategy for a Local Storage Device
WO2012043636A1 (en) Power supply system
JP7032248B2 (en) Power management equipment and programs
JP6856399B2 (en) Power control device and power control method
JP2019047612A (en) Photovoltaic power generation device and control method of the same
JP2015035912A (en) Management device of power storage system, and control target value determination method
JP2016214029A (en) Vehicle charge system
US11217998B2 (en) Power conditioner
WO2021038762A1 (en) Charge/discharge control device, electricity storage system, and charge/discharge control method
JP2015162925A (en) power management system
JP2018186678A (en) Power supply system
EP3480152B1 (en) Power management of a passenger transport system
JP6730151B2 (en) Power supply and demand management device
JP2019030161A (en) Distribution-type power supply system
JPWO2015045100A1 (en) Control device, energy management system, control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210318

R150 Certificate of patent or registration of utility model

Ref document number: 6856399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150