JP6856356B2 - Aluminum nitride single crystal substrate and method for manufacturing the single crystal substrate - Google Patents
Aluminum nitride single crystal substrate and method for manufacturing the single crystal substrate Download PDFInfo
- Publication number
- JP6856356B2 JP6856356B2 JP2016220940A JP2016220940A JP6856356B2 JP 6856356 B2 JP6856356 B2 JP 6856356B2 JP 2016220940 A JP2016220940 A JP 2016220940A JP 2016220940 A JP2016220940 A JP 2016220940A JP 6856356 B2 JP6856356 B2 JP 6856356B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- aluminum nitride
- substrate
- crystal growth
- nitride single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Led Devices (AREA)
Description
本発明は、発光ダイオード(LED)などの紫外デバイスの製造に用いる窒化アルミニウム単結晶基板及び該単結晶基板の製造方法に関する。特に、紫外発光素子の性能のバラつきを抑制し、歩留まり良く紫外発光素子を製造するための窒化アルミニウム単結晶基板及び該単結晶基板の製造方法に関する。 The present invention relates to an aluminum nitride single crystal substrate used for manufacturing an ultraviolet device such as a light emitting diode (LED) and a method for manufacturing the single crystal substrate. In particular, the present invention relates to an aluminum nitride single crystal substrate for suppressing variation in the performance of an ultraviolet light emitting element and for producing an ultraviolet light emitting element with a high yield, and a method for producing the single crystal substrate.
アルミニウム(Al)を含むIII族窒化物半導体(AlXGaYInZN、X+Y+Z=1、0<X≦1、0≦Y≦1、0≦Z≦1)は、波長200nmから360nmに相当する紫外領域において直接遷移型のバンド構造を持つため、高効率な紫外発光素子の作製が可能である。このようなIII族窒化物半導体デバイスは、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、もしくはハイドライド気相エピタキシー(HVPE:Hydride Vapor Phase Epitaxy)法等の気相成長法によって、単結晶基板上にIII族窒化物半導体薄膜を結晶成長させることにより製造される。中でも、MOCVD法は、原子層レベルでの膜厚制御が可能であり、また比較的高い成長速度が得られることから、工業的には現在最も多く用いられている手法である。 Group III nitride semiconductors containing aluminum (Al) (Al X Ga Y In Z N, X + Y + Z = 1, 0 <X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1) correspond to wavelengths of 200 nm to 360 nm. Since it has a direct transition type band structure in the ultraviolet region, it is possible to manufacture a highly efficient ultraviolet light emitting device. Such group III nitride semiconductor devices are classified by the metalorganic vapor deposition (MOCVD) method, the molecular beam epitaxy (MBE) method, or the hydride vapor beam epitaxy (HVPE). It is produced by crystal-growning a Group III nitride semiconductor thin film on a single crystal substrate by a vapor phase growth method such as the Epitaxy) method. Among them, the MOCVD method is the most widely used method in the industry at present because the film thickness can be controlled at the atomic layer level and a relatively high growth rate can be obtained.
また、III族窒化物半導体薄膜を結晶成長させる単結晶基板としては、公知の結晶成長方法で得られたGaNやAlN等のIII族窒化物単結晶基板が用いられている。特に高効率な紫外デバイスを得るためには、基板による紫外線の吸収を抑える必要があり、紫外光に対する高い透過性を有するIII族窒化物単結晶基板の製造方法として、HVPE法によるIII族窒化物単結晶基板の製造方法がこれまでに提案されている(特許文献1又は2参照)。
Further, as the single crystal substrate for crystal growth of the group III nitride semiconductor thin film, a group III nitride single crystal substrate such as GaN or AlN obtained by a known crystal growth method is used. In order to obtain a particularly highly efficient ultraviolet device, it is necessary to suppress the absorption of ultraviolet rays by the substrate, and as a method for producing a group III nitride single crystal substrate having high transparency to ultraviolet light, a group III nitride by the HVPE method is used. A method for producing a single crystal substrate has been proposed so far (see
このようなIII族窒化物半導体に用いられるIII族窒化物単結晶基板は、上記方法によって、III族窒化物単結晶層を製造した後、通常該単結晶層の凹凸の低減、及び厚み調整のために両面の研削等の加工が行われた後、n型層、活性層、p型層等のIII族窒化物半導体薄膜を結晶成長させる面(以下、「結晶成長面」とも言う)をコロイダルシリカ等の研磨剤を用いた化学機械研磨(CMP:Chemical Mechanical Planarization)法等により超平坦な面に加工される。このように、結晶成長面を超平坦な面とすることによって、当該基板上にIII族窒化物半導体薄膜を容易に積層することができ、高品質のものを得ることができる。さらに、III族窒化物半導体薄膜を結晶成長させて得られたIII族窒化物半導体ウエハーは、該ウエハーを切断することで紫外発光素子を得ることができる。 In the group III nitride single crystal substrate used for such a group III nitride semiconductor, after producing the group III nitride single crystal layer by the above method, the unevenness of the single crystal layer is usually reduced and the thickness is adjusted. Therefore, after processing such as grinding on both sides, a surface (hereinafter, also referred to as “crystal growth surface”) for crystal growth of a group III nitride semiconductor thin film such as an n-type layer, an active layer, and a p-type layer is colloidal. It is processed into an ultra-flat surface by a chemical mechanical polishing (CMP) method or the like using an abrasive such as silica. By making the crystal growth surface an ultra-flat surface in this way, a group III nitride semiconductor thin film can be easily laminated on the substrate, and a high-quality one can be obtained. Further, the group III nitride semiconductor wafer obtained by crystal growth of the group III nitride semiconductor thin film can obtain an ultraviolet light emitting device by cutting the wafer.
しかしながら、本発明者らが、上記結晶成長面の研磨を施したIII族窒化物単結晶基板を用いて紫外発光素子を製造したところ、得られた各紫外発光素子の性能のバラつきが大きい場合が生じ、歩留まり良く紫外発光素子を得られない場合が生じるという課題があることが判明した。特にIII族窒化物単結晶基板として窒化アルミニウム(AlN)単結晶を用いた際の上記バラつきが大きく、歩留まり良く紫外発光素子を製造するという観点で課題があることが判明した。 However, when the present inventors manufacture an ultraviolet light emitting device using the group III nitride single crystal substrate obtained by polishing the crystal growth surface, the performance of each obtained ultraviolet light emitting device may vary greatly. It has been found that there is a problem that the ultraviolet light emitting element may not be obtained with good yield. In particular, when an aluminum nitride (AlN) single crystal is used as the group III nitride single crystal substrate, the above-mentioned variation is large, and it has been found that there is a problem from the viewpoint of producing an ultraviolet light emitting element with good yield.
従って、本発明の目的は紫外発光素子の性能のバラつきを抑制し、歩留まり良く紫外発光素子を製造するための窒化アルミニウム単結晶基板及び該単結晶基板を提供することにある。 Therefore, an object of the present invention is to provide an aluminum nitride single crystal substrate and the single crystal substrate for producing an ultraviolet light emitting device with good yield by suppressing variations in the performance of the ultraviolet light emitting element.
本発明者らは、上記課題に対し鋭意検討を行った。上記結晶成長面のみに研磨加工を施した窒化アルミニウム(AlN)単結晶基板を分析したところ、結晶格子面および基板面の湾曲が大きい基板があることが判明した。そして結晶格子面および基板面の湾曲が大きい基板を用いて、当該基板上にIII族窒化物半導体薄膜を結晶成長させて、III族窒化物半導体ウエハーを作製し、該ウエハーを切断して、紫外発光素子を作製したところ、作製した紫外発光素子における外部量子効率(EQE)のばらつきが大きく、また、EQEの平均値も低いことが判明した。 The present inventors have diligently studied the above-mentioned problems. When the aluminum nitride (AlN) single crystal substrate obtained by polishing only the crystal growth surface was analyzed, it was found that there was a substrate having a large curvature of the crystal lattice surface and the substrate surface. Then, using a substrate having a large curvature of the crystal lattice surface and the substrate surface, a group III nitride semiconductor thin film is crystal-grown on the substrate to produce a group III nitride semiconductor wafer, and the wafer is cut to obtain ultraviolet rays. When the light emitting device was manufactured, it was found that the external quantum efficiency (EQE) of the manufactured ultraviolet light emitting device varied widely and the average value of EQE was also low.
上記知見を基に本発明者らは、紫外発光素子のEQEのばらつきが小さく、EQEの平均値が高い紫外デバイスを得るための窒化アルミニウム単結晶基板の製造方法について鋭意検討した。その結果、窒化アルミニウム単結晶基板の結晶成長面のみならず、結晶成長面の裏面も超平坦な面に研磨することで結晶格子面および基板面の湾曲が低減することを見出した。ここで六方晶系のウルツ鉱型構造をとる窒化アルミニウム単結晶基板の結晶格子面にはc面、m面、a面、r面等があり、結晶格子面に垂直な軸を結晶軸とよぶ。結晶格子面に湾曲があるということは曲がりがあることを示す。一方、基板面の湾曲とは基板の最表面の湾曲を示す。さらに、窒化アルミニウム単結晶基板の上記両面を研磨した基板上にIII族窒化物半導体薄膜を結晶成長させ、紫外発光素子を作製したところ、EQEのばらつきおよびEQEの平均値が大きく改善することを見出し、本発明を完成するに至った。 Based on the above findings, the present inventors have diligently studied a method for manufacturing an aluminum nitride single crystal substrate in order to obtain an ultraviolet device in which the EQE variation of the ultraviolet light emitting device is small and the average value of the EQE is high. As a result, it was found that not only the crystal growth surface of the aluminum nitride single crystal substrate but also the back surface of the crystal growth surface is polished to an ultra-flat surface to reduce the curvature of the crystal lattice surface and the substrate surface. Here, the crystal lattice plane of the aluminum nitride single crystal substrate having a hexagonal wurtzite structure has c-plane, m-plane, a-plane, r-plane, etc., and the axis perpendicular to the crystal lattice plane is called the crystal axis. .. The fact that the crystal lattice plane is curved indicates that it is curved. On the other hand, the curvature of the substrate surface means the curvature of the outermost surface of the substrate. Furthermore, when a group III nitride semiconductor thin film was crystal-grown on a substrate obtained by polishing both sides of an aluminum nitride single crystal substrate to produce an ultraviolet light emitting device, it was found that the EQE variation and the average value of EQE were greatly improved. , The present invention has been completed.
すなわち、第一の本発明は、結晶成長法にて得られた窒化アルミニウム単結晶のみからなる窒化アルミニウム単結晶基板であって、該単結晶基板における結晶成長面及び該結晶成長面の裏面の白色干渉顕微鏡により測定した表面粗さRaが100nm以下であり、且つ該結晶成長面、及び該単結晶基板における結晶格子面の曲率半径が15m以上である窒化アルミニウム単結晶基板である。上記本発明の窒化アルミニウム単結晶基板においては、波長265nmの光の直線透過率が50%以上であることが好ましい。さらに、窒化アルミニウム単結晶基板における結晶成長面がAl極性面であることが好ましい。 That is, the first invention is an aluminum nitride single crystal substrate composed of only an aluminum nitride single crystal obtained by a crystal growth method, in which the crystal growth surface of the single crystal substrate and the back surface of the crystal growth surface are white. It is an aluminum nitride single crystal substrate having a surface roughness Ra of 100 nm or less measured by an interference microscope and a radius of curvature of the crystal growth surface and the crystal lattice surface of the single crystal substrate of 15 m or more. In the aluminum nitride single crystal substrate of the present invention, the linear transmittance of light having a wavelength of 265 nm is preferably 50% or more. Further, it is preferable that the crystal growth surface of the aluminum nitride single crystal substrate is an Al polar surface.
また、第二の本発明は、結晶成長法にて窒化アルミニウム単結晶基板を製造した後、該単結晶基板における結晶成長面及び該結晶成長面の裏面の両方を研削した後に、該両面の白色干渉顕微鏡により測定した表面粗さRaが100nm以下となるまで研磨することを特徴とする窒化アルミニウム単結晶基板の製造方法である。上記本発明の窒化アルミニウム単結晶基板の製造方法においては、下地基板上に結晶成長法にて窒化アルミニウム単結晶基板を製造することが好ましい。 Further, in the second invention, after producing an aluminum nitride single crystal substrate by a crystal growth method, both the crystal growth surface and the back surface of the crystal growth surface of the single crystal substrate are ground, and then both sides are white. This is a method for producing an aluminum nitride single crystal substrate, which comprises polishing until the surface roughness Ra measured by an interference microscope becomes 100 nm or less. In the method for producing an aluminum nitride single crystal substrate of the present invention, it is preferable to produce an aluminum nitride single crystal substrate on a base substrate by a crystal growth method.
さらに第三の本発明は、上記窒化アルミニウム単結晶基板上に発光素子層が積層された紫外発光デバイスである。 A third aspect of the present invention is an ultraviolet light emitting device in which a light emitting element layer is laminated on the aluminum nitride single crystal substrate.
本発明によれば、結晶成長法によって得られた窒化アルミニウム単結晶基板に対して、窒化物半導体薄膜を結晶成長させる結晶成長面のみならず、該結晶成長面と反対側の面も研磨することで、結晶成長面及び該結晶成長面の裏面の表面粗さRaが100nm以下であり、且つ該結晶成長面、及び該単結晶基板における結晶格子面の曲率半径が15m以上の湾曲の小さい窒化アルミニウム単結晶基板を製造することができる。このような結晶格子面および基板面の湾曲が小さい窒化アルミニウム単結晶基板上にIII族窒化物半導体薄膜を結晶成長させ、紫外デバイスを作製することにより、EQEの面内のばらつきが小さく、平均値が高い紫外デバイスを得ることができる。 According to the present invention, not only the crystal growth surface on which the nitride semiconductor thin film is crystal-grown but also the surface opposite to the crystal growth surface is polished on the aluminum nitride single crystal substrate obtained by the crystal growth method. The surface roughness Ra of the crystal growth surface and the back surface of the crystal growth surface is 100 nm or less, and the radius of curvature of the crystal growth surface and the crystal lattice surface of the single crystal substrate is 15 m or more, and the curvature is small. A single crystal substrate can be manufactured. By crystal-growing a group III nitride semiconductor thin film on an aluminum nitride single crystal substrate having a small curvature of the crystal lattice surface and the substrate surface to produce an ultraviolet device, the in-plane variation of EQE is small and the average value is small. Can obtain high ultraviolet devices.
(III族窒化物単結晶基板)
本発明のIII族窒化物単結晶基板は、結晶成長法にて得られた窒化アルミニウム単結晶基板であって、該単結晶基板における結晶成長面及び該結晶成長面の裏面の白色干渉顕微鏡により測定した表面粗さRaが100nm以下であり、且つ該結晶成長面、及び該単結晶基板における結晶格子面(以下、単に「結晶格子面」とも言う)の曲率半径が15m以上であることが特徴である。本発明の窒化アルミニウム単結晶基板の結晶成長面とは、結晶成長法にて窒化アルミニウム単結晶が積層される面を示すものである。図1は、本発明の窒化アルミニウム単結晶基板を示す概略図であるが、図1において窒化アルミニウム単結晶基板1にける12が結晶成長面に、13が結晶成長面の裏面に該当する。また、本発明の窒化アルミニウム単結晶基板は、窒化アルミニウム単結晶である下地基板上に結晶成長法にてさらに窒化アルミニウム単結晶を成長させた場合も含まれる。この場合には、複数の窒化アルミニウム単結晶層を有する窒化アルミニウム単結晶基板となる。図2は窒化アルミニウム単結晶である下地基板14上に結晶成長法にて窒化アルミニウム単結晶11を成長させた窒化アルミニウム単結晶基板を示す概略図であるが、この場合における12が結晶成長面に、13が結晶成長面の裏面に該当する。窒化アルミニウム単結晶基板における上記結晶成長面上にIII族窒化物半導体薄膜を結晶成長させ、紫外デバイスが製造されるが、このような曲率半径を有する湾曲の小さい窒化アルミニウム単結晶基板を用いることで、該発光素子層を均一に積層させることが可能である。このため、上記発光素子層を積層させたウエハーにおける外部量子効率(EQE)の面内のばらつきを抑制させることができ、該ウエハーから切断された紫外発光素子の品質のばらつきが抑制され、歩留まり良く紫外発光素子を製造することが可能となる。
(Group III nitride single crystal substrate)
The group III nitride single crystal substrate of the present invention is an aluminum nitride single crystal substrate obtained by the crystal growth method, and is measured by a white interference microscope on the crystal growth surface of the single crystal substrate and the back surface of the crystal growth surface. The surface roughness Ra is 100 nm or less, and the radius of curvature of the crystal growth surface and the crystal lattice surface (hereinafter, also simply referred to as “crystal lattice surface”) in the single crystal substrate is 15 m or more. is there. The crystal growth surface of the aluminum nitride single crystal substrate of the present invention indicates a surface on which aluminum nitride single crystals are laminated by the crystal growth method. FIG. 1 is a schematic view showing the aluminum nitride single crystal substrate of the present invention. In FIG. 1, 12 corresponds to the crystal growth surface and 13 corresponds to the back surface of the crystal growth surface of the aluminum nitride
特にIII族窒化物単結晶基板として窒化アルミニウム単結晶基板を用いる場合には、結晶軸の曲がりや結晶成長面最表面の湾曲による応力や欠陥の発生により、積層される発光素子層内にも応力や欠陥が生じることから、積層される発光素子層の面内のバラつきが大きくなる傾向にある。従って本発明の窒化アルミニウム単結晶基板を用いることにより、高性能の紫外発光素子を歩留まり良く製造することが可能である。 In particular, when an aluminum nitride single crystal substrate is used as the group III nitride single crystal substrate, stress or defects are generated due to bending of the crystal axis or curvature of the outermost surface of the crystal growth surface, so that stress is also generated in the laminated light emitting element layer. And defects occur, so that the in-plane variation of the laminated light emitting element layers tends to be large. Therefore, by using the aluminum nitride single crystal substrate of the present invention, it is possible to manufacture a high-performance ultraviolet light emitting device with good yield.
なお、本発明の窒化アルミニウム単結晶基板における結晶成長面、及び結晶格子面の曲率半径は、以下の方法により求めることができる。すなわち、結晶格子面の曲率半径は、結晶成長面内の異なる2点において測定したAlN(002)面のX線ロッキングカーブのピーク位置から計算する。具体的には、薄膜X線回折装置を用いて基板面内の異なる2点の場所においてX線ロッキングカーブを測定した後、2点間の距離をΔx、2点間の回折ピーク位置の差をΔωとした場合、曲率半径RはΔx/Δωにより計算される。一方、結晶成長面の曲率半径は、白色干渉顕微鏡等を用いて測定された結晶成長面最表面の最大高さと最小高さの差と直径から球形近似の仮定のもとで算出される。具体的には、白色干渉顕微鏡を用い、50倍の倍率で該基板の高さ情報を取得し、面内の高さ分布より、球形近似の仮定のもとで該基板の曲率半径を算出する。 The radius of curvature of the crystal growth plane and the crystal lattice plane in the aluminum nitride single crystal substrate of the present invention can be obtained by the following method. That is, the radius of curvature of the crystal lattice plane is calculated from the peak position of the X-ray locking curve of the AlN (002) plane measured at two different points in the crystal growth plane. Specifically, after measuring the X-ray locking curve at two different points on the substrate surface using a thin film X-ray diffractometer, the distance between the two points is Δx, and the difference between the two points is the difference in the diffraction peak position. When Δω, the radius of curvature R is calculated by Δx / Δω. On the other hand, the radius of curvature of the crystal growth surface is calculated from the difference between the maximum height and the minimum height of the outermost surface of the crystal growth surface and the diameter measured using a white interference microscope or the like under the assumption of spherical approximation. Specifically, using a white interference microscope, the height information of the substrate is acquired at a magnification of 50 times, and the radius of curvature of the substrate is calculated from the in-plane height distribution under the assumption of spherical approximation. ..
上記窒化アルミニウム単結晶基板は、上に凸状(すなわち結晶成長面が凸)になる場合と、下に凸状(すなわち結晶成長面が凹)になる場合があるが、本発明においては、上に凸の状態をプラスの曲率半径、下に凸となる状態をマイナスの曲率半径とした。従って、本発明の窒化アルミニウム単結晶基板の結晶成長面、及び結晶格子面の曲率半径は、±15m以上である。上記結晶成長面、及び結晶格子面の曲率半径が、正の値であっても、負の値であっても、値が大きいほうが湾曲が小さいと判断でき好ましいが、工業的に効率的に製造できるとの観点から、上記曲率半径は、±20m以上であることが特に好適である。なお、結晶成長面の曲率半径の上限としては、後述する研磨を精細に行えば大きくすることができるが、工業的な生産性の観点から数百〜1000m程度である。また、上記結晶格子面の上限は、結晶成長条件によるが、通常100m以下程度である。 The aluminum nitride single crystal substrate may be convex upward (that is, the crystal growth surface is convex) or convex downward (that is, the crystal growth surface is concave), but in the present invention, it is upper. The convex state was defined as a positive radius of curvature, and the downward convex state was defined as a negative radius of curvature. Therefore, the radius of curvature of the crystal growth plane and the crystal lattice plane of the aluminum nitride single crystal substrate of the present invention is ± 15 m or more. Regardless of whether the radius of curvature of the crystal growth plane and the crystal lattice plane is a positive value or a negative value, it is preferable that the larger the value, the smaller the curvature, but it is industrially efficient. From the viewpoint of being able to do so, it is particularly preferable that the radius of curvature is ± 20 m or more. The upper limit of the radius of curvature of the crystal growth surface can be increased by finely polishing, which will be described later, but it is about several hundred to 1,000 m from the viewpoint of industrial productivity. The upper limit of the crystal lattice plane is usually about 100 m or less, although it depends on the crystal growth conditions.
また、本発明の窒化アルミニウム単結晶基板における結晶成長面及び該結晶成長面の裏面の表面粗さRaは、小さいほど該表面が平坦となり、発光素子層が均一に積層させることが可能であるため好ましい。特に、基板内の応力低減、積層される発光素子層内の欠陥低減の観点から結晶成長面及び結晶成長面の裏面の表面粗さが100nm以下であることが好ましい。結晶成長面に関しては、積層される発光素子層内の欠陥低減のため、より好ましくは2nm以下、さらに好ましくは0.5nm以下である。また、結晶成長面の裏面に関しては、より好ましくは10nm以下、さらに好ましくは5nm以下である。なお、表面粗さの下限としては、後述する研磨条件により異なり、研磨を精細に行うほど小さくすることができるが、工業的な生産性の観点から結晶成長面で0.06nm、結晶成長面の裏面で1nm程度である。 Further, as the surface roughness Ra of the crystal growth surface and the back surface of the crystal growth surface in the aluminum nitride single crystal substrate of the present invention is smaller, the surface becomes flatter and the light emitting element layers can be uniformly laminated. preferable. In particular, the surface roughness of the crystal growth surface and the back surface of the crystal growth surface is preferably 100 nm or less from the viewpoint of reducing stress in the substrate and reducing defects in the laminated light emitting device layer. The crystal growth surface is more preferably 2 nm or less, still more preferably 0.5 nm or less in order to reduce defects in the laminated light emitting device layer. The back surface of the crystal growth surface is more preferably 10 nm or less, still more preferably 5 nm or less. The lower limit of the surface roughness differs depending on the polishing conditions described later, and can be made smaller as the polishing is performed finer. However, from the viewpoint of industrial productivity, the crystal growth surface is 0.06 nm, and the crystal growth surface is It is about 1 nm on the back surface.
本発明の窒化アルミニウム単結晶基板は、紫外発光素子を製造する際の基板として用いるものであり、該発光素子における発光効率の観点から、紫外光に対する透過性を有するものが好ましい。具体的には、波長265nmの光の直線透過率が50%以上であることが好ましく、更に好ましくは60%以上である。なお、上記直線透過率の上限は100%であるが、工業的な生産の容易性や直線透過率の理論限界などを考慮すると72%である。 The aluminum nitride single crystal substrate of the present invention is used as a substrate when manufacturing an ultraviolet light emitting element, and from the viewpoint of luminous efficiency in the light emitting element, one having transparency to ultraviolet light is preferable. Specifically, the linear transmittance of light having a wavelength of 265 nm is preferably 50% or more, and more preferably 60% or more. The upper limit of the linear transmittance is 100%, but it is 72% in consideration of the ease of industrial production and the theoretical limit of the linear transmittance.
また、本発明の窒化アルミニウム単結晶基板の厚さは一般的に1000μm以下で基板のコストの観点から薄いほうがより好ましいが、取り扱い上の観点から100μm以上が好ましい。 Further, the thickness of the aluminum nitride single crystal substrate of the present invention is generally 1000 μm or less, and it is more preferable that the thickness is thin from the viewpoint of the cost of the substrate, but 100 μm or more is preferable from the viewpoint of handling.
一般的に発光素子層の形成には、c面の露出した窒化アルミニウム単結晶基板を使用し、結晶成長面はAl極性面、結晶成長面結の裏面がN極性面であることが好ましい。Al極性面はN極性面と比べて耐薬品性が高く、発光素子層の形成に使用するガスに対して安定で積層された薄膜に欠陥が生じにくいという特徴があるためである。 Generally, it is preferable that a c-plane exposed aluminum nitride single crystal substrate is used for forming the light emitting device layer, the crystal growth surface is an Al polar surface, and the back surface of the crystal growth surface connection is an N polar surface. This is because the Al-polar surface has higher chemical resistance than the N-polar surface, and is stable against the gas used for forming the light emitting element layer, and the thin film laminated is less likely to have defects.
(窒化アルミニウム単結晶基板の製造方法)
上記、本発明の窒化アルミニウム単結晶基板は、結晶成長法にて窒化アルミニウム単結晶基板を製造した後、該単結晶基板における結晶成長面及び結晶成長面の裏面の両方を研削した後に、該結晶成長面及び結晶成長面の裏面の白色干渉顕微鏡により測定した表面粗さRaが100nm以下となるまで研磨することによって製造することができる。
(Manufacturing method of aluminum nitride single crystal substrate)
The above-mentioned aluminum nitride single crystal substrate of the present invention is the crystal after producing an aluminum nitride single crystal substrate by a crystal growth method and then grinding both the crystal growth surface and the back surface of the crystal growth surface of the single crystal substrate. It can be produced by polishing until the surface roughness Ra measured by a white interference microscope on the back surface of the growth surface and the crystal growth surface becomes 100 nm or less.
上記窒化アルミニウム単結晶を製造する結晶成長法としては、公知の結晶成長法を採用することができる。かかる結晶成長法として具体的には、昇華法、MOCVD法、HVPE(Hydride Vapor PhaseEpitaxy)法等が挙げられる。上記結晶成長法として、MOCVD法やHVPE法を用いる場合には、均質で膜厚の大きい窒化アルミニウム単結晶層を製造しやすいことから、下地基板を用いて該基板上に窒化アルミニウム単結晶層を成長させることが好ましい。以下、下地基板上に結晶成長法にて窒化アルミニウム単結晶基板を製造する場合を例として本発明の窒化アルミニウム単結晶基板の製造方法について詳述する。 As a crystal growth method for producing the aluminum nitride single crystal, a known crystal growth method can be adopted. Specific examples of such a crystal growth method include a sublimation method, a MOCVD method, and an HVPE (Hydride Vapor Phase Epitaxy) method. When the MOCVD method or the HVPE method is used as the crystal growth method, it is easy to produce a homogeneous aluminum nitride single crystal layer having a large film thickness. Therefore, an aluminum nitride single crystal layer is formed on the substrate by using a base substrate. It is preferable to grow it. Hereinafter, the method for producing the aluminum nitride single crystal substrate of the present invention will be described in detail, taking as an example the case where the aluminum nitride single crystal substrate is produced on the base substrate by the crystal growth method.
(下地基板)
本発明の製造方法で用いられる下地基板としては、窒化アルミニウム単結晶層が結晶成長できる下地基板であれば、特に制限されず、窒化アルミニウム単結晶を下地基板として用いても良いし、異種基板を下地基板として用いても良いが、均質で膜厚の大きい窒化アルミニウム単結晶層を成長させる観点から、下地基板として窒化アルミニウム単結晶基板を用いることが好ましい。下地基板としての窒化アルミニウム単結晶基板としては、昇華法やHVPE(Hydride Vapor PhaseEpitaxy)法など、公知の方法で製造された窒化アルミニウム単結晶基板を使用することができる。下地基板としては、欠陥が少なく(例えば転位密度が106cm−2以下)、厚みが100μm以上1000μm以下で、結晶成長面が2nm以下にまで平坦に研磨されていることが好ましい。下地基板自体の波長265nmの光の直線透過率については、積層された窒化アルミニウム単結晶基板の直線透過率への影響がなく、積層後に研削等で除去すれば良いので、低くてもよい。下地基板として用いた窒化アルミニウム単結晶の波長265nmの光の直線透過率が十分に高い場合には、該下地基板上に窒化アルミニウム単結晶層が積層された積層体自体を本発明の窒化アルミニウム単結晶基板として用いることができる。
(Base board)
The base substrate used in the production method of the present invention is not particularly limited as long as it is a base substrate capable of crystal growth of the aluminum nitride single crystal layer, and an aluminum nitride single crystal may be used as the base substrate, or a different type of substrate may be used. Although it may be used as a base substrate, it is preferable to use an aluminum nitride single crystal substrate as the base substrate from the viewpoint of growing a homogeneous and large-thickness aluminum nitride single crystal layer. As the aluminum nitride single crystal substrate as the base substrate, an aluminum nitride single crystal substrate manufactured by a known method such as a sublimation method or an HVPE (Hydride Vapor PhaseEpitaxy) method can be used. As the base substrate, few defects (e.g. dislocation density is 10 6 cm -2 or less), the thickness was 100μm or 1000μm or less, it is preferable that the crystal growth surface is polished flat to a 2nm or less. The linear transmittance of light having a wavelength of 265 nm of the base substrate itself may be low because it does not affect the linear transmittance of the laminated aluminum nitride single crystal substrate and may be removed by grinding or the like after lamination. When the linear transmittance of light having a wavelength of 265 nm of the aluminum nitride single crystal used as the base substrate is sufficiently high, the laminate itself in which the aluminum nitride single crystal layer is laminated on the base substrate is the aluminum nitride single crystal of the present invention. It can be used as a crystal substrate.
(窒化アルミニウム単結晶基板の製造)
本発明の製造方法では、上記下地基板上に結晶成長法にて窒化アルミニウム単結晶基板を積層させる。窒化アルミニウム単結晶基板を積層させる方法としては、公知の方法、例えば特許文献1に記載されているHVPE法や、昇華法等の結晶成長方法で製造されたものを使用することができる。これらの結晶成長法の中で、HVPE法は、昇華法と比べると成長速度が遅く、バルク単結晶を製造するには適していないが、深紫外光透過率に悪影響を及ぼす不純物濃度が低いため、紫外発光素子に用いる窒化アルミニウム単結晶基板の結晶成長法として好適である。
(Manufacturing of aluminum nitride single crystal substrate)
In the production method of the present invention, an aluminum nitride single crystal substrate is laminated on the base substrate by a crystal growth method. As a method for laminating the aluminum nitride single crystal substrate, a known method, for example, a method produced by a crystal growth method such as the HVPE method described in
HVPE法による窒化アルミニウム単結晶基板の成長は、加熱した下地基板上に原料ガスであるアルミニウム源ガスと、窒素源ガスとを反応器中に供給し、両者のガスを加熱された基板上で反応させることにより行われる。アルミニウム源ガスとしては塩化アルミニウムガス等の、ハロゲン化アルミニウムガスが、窒素源ガスとしてはアンモニアガスが好適に使用される。 In the growth of the aluminum nitride single crystal substrate by the HVPE method, the aluminum source gas and the nitrogen source gas, which are the raw material gases, are supplied into the reactor on the heated base substrate, and both gases are reacted on the heated substrate. It is done by letting. As the aluminum source gas, a halogenated aluminum gas such as aluminum chloride gas is preferably used, and as the nitrogen source gas, ammonia gas is preferably used.
上記下地基板の加熱温度、及び、原料ガスであるアルミニウム源ガス、及び窒素源ガスの供給量、供給速度は、結晶成長速度に影響する因子であり、所望する結晶成長速度に応じて適宜決定すれば良いが、通常下地基板の加熱温度を1400℃以上1700℃以下の範囲で、原料ガスであるアルミニウム源ガスの供給量は0.001〜100sccm、及び窒素源ガスの供給量は0.01〜1000sccmの範囲で行えば良い。 The heating temperature of the base substrate, the supply amount of the aluminum source gas and the nitrogen source gas as the raw material gas, and the supply rate are factors that affect the crystal growth rate, and are appropriately determined according to the desired crystal growth rate. Normally, the heating temperature of the base substrate is in the range of 1400 ° C. or higher and 1700 ° C. or lower, the supply amount of the aluminum source gas as the raw material gas is 0.001 to 100 sccm, and the supply amount of the nitrogen source gas is 0.01 to. It may be performed in the range of 1000 sccm.
(下地基板の除去)
下地基板に波長265nmの光の直線透過率の低い基板を用いた場合、下地基板上に窒化アルミニウム単結晶基板を積層した後、後述する研削により除去し、波長265nmの光の直線透過率が50%以上の部分を残す。なお、本下地基板の除去工程は、後述の発光素子層および電極を形成した後でもよい。
(Removal of base substrate)
When a substrate having a low linear transmittance of light having a wavelength of 265 nm is used as the substrate, an aluminum nitride single crystal substrate is laminated on the substrate and then removed by grinding described later, and the linear transmittance of light having a wavelength of 265 nm is 50. Leave a portion of% or more. The step of removing the base substrate may be performed after forming the light emitting element layer and the electrodes, which will be described later.
(研削)
上記結晶成長法にて製造した窒化アルミニウム単結晶基板は、結晶成長面及び結晶成長面の裏面の凹凸の低減、厚み調整のために両面の研削を行う。研削方法としては、基板を接着剤等でセラミック等のプレート上に固定し、砥粒が固定された砥石を回転させながら基板表面に当てて削る方法もしくは遊離砥粒を流し金属定盤を回転させながら基板表面を削る方法が挙げられる。研削等の加工で使用する砥粒の形態は、メタルやレジン等に固定化された砥粒および遊離砥粒を特に問わない。また、使用する砥粒は、ダイヤモンド、シリコンカーバイド、ボロンカーバイド等が一般的である。研削に使用する砥粒の粒子径は一般的に1μm以上100μm以下であり、1μm/分以上100μm/分以下の速度で削ればよい。どの程度まで研削するかの目安としては、後述する研磨における研磨条件を勘案して適宜決定すれば良い。例えば、基板の全面が均一に削られ、プレート上に固定した状態で基板の厚みのばらつき(例えば中心部1点と外周部4点の計5点の最大と最小の差)が5μm以下になる程度まで行えば十分である。片面の研削が終了した後、接着剤を除去し、基板を一旦剥して洗浄後、反対側の面を上にして再度貼り付けて研削加工を行う。研削する順番は特に制限されず結晶成長面および結晶成長面の裏面のどちらを先に行ってもよい。
(grinding)
The aluminum nitride single crystal substrate produced by the above crystal growth method is ground on both sides in order to reduce irregularities on the crystal growth surface and the back surface of the crystal growth surface and to adjust the thickness. As a grinding method, the substrate is fixed on a plate such as ceramic with an adhesive or the like, and the grindstone to which the abrasive grains are fixed is rotated and ground against the surface of the substrate, or the free abrasive grains are poured and the metal surface plate is rotated. However, there is a method of scraping the surface of the substrate. The form of the abrasive grains used in processing such as grinding is not particularly limited to the abrasive grains fixed to metal, resin or the like, and the free abrasive grains. The abrasive grains used are generally diamond, silicon carbide, boron carbide and the like. The particle size of the abrasive grains used for grinding is generally 1 μm or more and 100 μm or less, and may be ground at a speed of 1 μm / min or more and 100 μm / min or less. As a guideline for how much to grind, it may be appropriately determined in consideration of the polishing conditions in polishing described later. For example, when the entire surface of the substrate is uniformly scraped and fixed on the plate, the variation in the thickness of the substrate (for example, the maximum and minimum difference of a total of 5 points, 1 point at the center and 4 points at the outer periphery) becomes 5 μm or less. It is enough to go to the extent. After the grinding of one side is completed, the adhesive is removed, the substrate is once peeled off and washed, and then the opposite side is turned up and reattached for grinding. The order of grinding is not particularly limited, and either the crystal growth surface or the back surface of the crystal growth surface may be performed first.
(研磨)
本発明の製造方法では、上記研削を行った窒化アルミニウム単結晶基板に対し、該結晶成長面及び結晶成長面の裏面の白色干渉顕微鏡により測定した表面粗さRaが100nm以下となるまで研磨を行うことが特徴である。一般に研磨とは、研削痕等の荒れによる濁りの見えない程度の鏡面となる加工のことをいう。窒化アルミニウム単結晶基板上に発光素子層を形成する際、通常は、該基板の結晶成長面が、結晶成長面となり、結晶成長面上に発光素子層を積層する。従って、これまでは、発光素子層を均一に積層させるためには、結晶成長面を超平坦に研磨を行えば十分であると考えられてきた。しかしながら、結晶成長面及び結晶成長面の裏面の表面は研削によって、加工ダメージが生じるが、このダメージが、結晶成長面及び結晶成長面の裏面で異なるため、両面の加工によるダメージの差によって、窒化アルミニウム単結晶基板の湾曲が発生する。前述のとおり、片面のみの研磨では、該単結晶基板の湾曲を解消させることができず、結晶軸の曲がりや結晶成長面最表面の湾曲による応力や欠陥の発生により、積層される発光素子層内にも応力や欠陥が生じることから、積層される発光素子層の面内のバラつきが大きくなってしまうものと推測される。従って、窒化アルミニウム単結晶基板の湾曲を解消するためには、該単結晶基板の結晶成長面の裏面の研磨も必要である。さらに基板の結晶成長面の裏面の研磨を行ったとしても、結晶成長面の裏面の表面粗さが十分小さくなるまで行わなければ、基板の湾曲は十分には解消されないことを本願発明者らが見出した。例えば、結晶成長面を化学機械研磨(CMP)法にて原子間力顕微鏡(AFM)により4μm2(2μm×2μm)視野範囲を観察した、表面粗さRaが0.1nm程度の超平坦な面となるまで研磨を行った窒化アルミニウム単結晶基板で、該結晶成長面の裏面(すなわち基板面)表面粗さRaが100nm以上の研削面である片面研磨基板の場合、結晶格子面および基板面の曲率半径が±10m以下程度である。
(Polishing)
In the production method of the present invention, the ground aluminum nitride single crystal substrate is polished until the surface roughness Ra measured by a white interference microscope on the crystal growth surface and the back surface of the crystal growth surface becomes 100 nm or less. Is a feature. Generally, polishing refers to a process in which a mirror surface is formed so that turbidity cannot be seen due to roughness such as grinding marks. When forming a light emitting device layer on an aluminum nitride single crystal substrate, the crystal growth surface of the substrate is usually a crystal growth surface, and the light emitting device layer is laminated on the crystal growth surface. Therefore, until now, it has been considered sufficient to polish the crystal growth surface ultra-flat in order to uniformly stack the light emitting device layers. However, the surfaces of the crystal growth surface and the back surface of the crystal growth surface are subject to processing damage due to grinding, but since this damage is different between the crystal growth surface and the back surface of the crystal growth surface, nitriding due to the difference in damage due to processing on both sides. The aluminum single crystal substrate is curved. As described above, the bending of the single crystal substrate cannot be eliminated by polishing only one side, and the light emitting element layers laminated due to the generation of stresses and defects due to the bending of the crystal axis and the bending of the outermost surface of the crystal growth surface. Since stress and defects are also generated inside, it is presumed that the in-plane variation of the laminated light emitting element layers becomes large. Therefore, in order to eliminate the curvature of the aluminum nitride single crystal substrate, it is also necessary to polish the back surface of the crystal growth surface of the single crystal substrate. Further, the inventors of the present application have stated that even if the back surface of the crystal growth surface of the substrate is polished, the curvature of the substrate cannot be sufficiently eliminated unless the surface roughness of the back surface of the crystal growth surface is sufficiently reduced. I found it. For example, an ultra-flat surface having a surface roughness Ra of about 0.1 nm was observed in a 4 μm 2 (2 μm × 2 μm) field range with an atomic force microscope (AFM) using a chemical mechanical polishing (CMP) method on the crystal growth surface. In the case of a single-sided polished substrate in which the surface roughness Ra of the back surface (that is, the substrate surface) of the crystal growth surface is 100 nm or more, the surface of the crystal lattice surface and the substrate surface is polished. The radius of curvature is about ± 10 m or less.
従って、上記本発明の窒化アルミニウム単結晶基板を得るためには、結晶成長面の裏面の白色干渉顕微鏡により測定した表面粗さRaが100nm以下となるまで研磨を行うことが必要である。 Therefore, in order to obtain the aluminum nitride single crystal substrate of the present invention, it is necessary to polish the back surface of the crystal growth surface until the surface roughness Ra measured by a white interference microscope becomes 100 nm or less.
本発明の製造方法における研磨方法としては、上記表面粗さまで研磨が可能であれば、発光素子を製造する際に用いる公知の研磨方法を採用することができる。係る研磨方法として具体的には、化学機械研磨(CMP)法、ダイヤモンド砥粒等を用いた機械研磨等が挙げられる。また、結晶成長面及び結晶成長面の裏面の研磨方法として同じ方法を用いても、各々別々の方法を用いても良い。本発明の製造方法における結晶成長面の研磨としては、上記表面粗さまで研磨すればよいが、積層される発光素子層内に欠陥が生じないようにするため、原子間力顕微鏡(AFM)による4μm2(2μm×2μm)視野範囲での表面粗さRaが0.1nm程度の超平坦な面とすることが好ましい。従って、上記の研磨方法の中でも、結晶成長面の研磨方法としては、より超平坦な面に研磨が行える点から、CMP法が好適である。 As the polishing method in the manufacturing method of the present invention, a known polishing method used when manufacturing a light emitting element can be adopted as long as the polishing to the above surface roughness is possible. Specific examples of the polishing method include a chemical mechanical polishing (CMP) method, mechanical polishing using diamond abrasive grains, and the like. Further, the same method may be used as the polishing method for the crystal growth surface and the back surface of the crystal growth surface, or different methods may be used for each. The crystal growth surface in the production method of the present invention may be polished to the above surface roughness, but in order to prevent defects from occurring in the laminated light emitting element layer, 4 μm by an atomic force microscope (AFM). 2 (2 μm × 2 μm) It is preferable to use an ultra-flat surface having a surface roughness Ra of about 0.1 nm in the visual field range. Therefore, among the above polishing methods, the CMP method is preferable as the method for polishing the crystal growth surface because it can polish a more ultra-flat surface.
例えば、結晶成長面をAl極性面とし、結晶成長面の裏面をN極性面とした窒化アルミニウム単結晶の研磨を行う場合、結晶成長面としてのAl極性面をCMP法にて研磨を行うことで、原子間力顕微鏡(AFM)による4μm2(2μm×2μm)視野範囲での表面粗さRaが0.1nm程度、白色干渉顕微鏡による58800μm2(280μm×210μm)視野範囲での表面粗さRaが100nm以下の研磨が可能である。 For example, when polishing an aluminum nitride single crystal in which the crystal growth surface is an Al polar surface and the back surface of the crystal growth surface is an N polar surface, the Al polar surface as the crystal growth surface is polished by the CMP method. The surface roughness Ra in the 4 μm 2 (2 μm × 2 μm) visual field range by the atomic force microscope (AFM) is about 0.1 nm, and the surface roughness Ra in the 58800 μm 2 (280 μm × 210 μm) visual field range by the white interference microscope. Polishing of 100 nm or less is possible.
また、結晶成長面の裏面としてのN極性面の研磨方法としては、CMPのみならず、金属の定盤と粒子径が0.1〜5μm程度のダイヤモンド粒子を用いた機械研磨でも良い。なお、結晶成長面の裏面としてのN極性面は、耐薬品性が低いため、CMP法、機械研磨法ともに原子間力顕微鏡(AFM)による4μm2(2μm×2μm)視野範囲での表面粗さRaが1〜5nm程度となる。白色干渉顕微鏡による58800μm2(280μm×210μm)視野範囲での表面粗さRaは、100nm以下の研磨が可能である。 Further, as a method for polishing the N-polar surface as the back surface of the crystal growth surface, not only CMP but also mechanical polishing using a metal surface plate and diamond particles having a particle size of about 0.1 to 5 μm may be used. Since the N-polar surface as the back surface of the crystal growth surface has low chemical resistance , the surface roughness in the 4 μm 2 (2 μm × 2 μm) visual field range by the atomic force microscope (AFM) in both the CMP method and the mechanical polishing method is used. Ra is about 1 to 5 nm. The surface roughness Ra in the 58800 μm 2 (280 μm × 210 μm) visual field range measured by a white interference microscope can be polished to 100 nm or less.
CMP法によって研磨する方法は特に制限されず、公知の方法を採用することができる。具体的には、一次粒子径が20〜80ナノメートルのコロイダルシリカが20〜45質量%入ったpH2〜11のスラリーを滴下した不織布もしくはスウェードタイプのパッドの上で窒化アルミニウム単結晶基板を回転させながら加圧して研磨を行えばよい。 The method of polishing by the CMP method is not particularly limited, and a known method can be adopted. Specifically, the aluminum nitride single crystal substrate is rotated on a non-woven fabric or a suede type pad in which a slurry having a pH of 2 to 11 containing 20 to 45% by mass of colloidal silica having a primary particle size of 20 to 80 nanometers is dropped. While pressurizing, polishing may be performed.
一般的に発光素子層の形成には、c面の露出した窒化アルミニウム単結晶基板を使用するため、結晶成長面がAl極性面、結晶成長面の裏面がN極性面である上記本発明の窒化アルミニウム単結晶基板とした場合、N極性面は耐薬品性が低く、特にアルカリ性の液に触れると表面粗さが大きくなる。そこで結晶成長面の裏面であるN極性面を研磨する際は、酸性もしくは中性の研磨剤を用いることが好ましい。 Generally, since an aluminum nitride single crystal substrate with an exposed c-plane is used to form the light emitting element layer, the nitridation of the present invention is described in which the crystal growth surface is an Al polar plane and the back surface of the crystal growth plane is an N polar plane. When an aluminum single crystal substrate is used, the N-polar surface has low chemical resistance, and the surface roughness becomes large especially when it comes into contact with an alkaline liquid. Therefore, when polishing the N-polar surface, which is the back surface of the crystal growth surface, it is preferable to use an acidic or neutral abrasive.
本発明の製造方法における、結晶成長面及び結晶成長面の裏面の研磨順は、基板を接着剤等でセラミック等のプレート上に固定する際、接触する面に微小な傷が発生する可能性があることから、始めに結晶成長面の裏面の研磨を行い、次いで結晶成長面の研磨を行うことが好ましい。結晶成長面に傷が存在すると、積層される発光素子層内に欠陥が生じるためである。 In the manufacturing method of the present invention, the polishing order of the crystal growth surface and the back surface of the crystal growth surface may cause minute scratches on the contact surface when the substrate is fixed on a plate such as ceramic with an adhesive or the like. Therefore, it is preferable to first polish the back surface of the crystal growth surface and then polish the crystal growth surface. This is because the presence of scratches on the crystal growth surface causes defects in the laminated light emitting device layers.
研磨された基板は、流水で簡易に洗浄後、さらに半導体洗浄として一般的に知られている希釈したフッ化水素酸による洗浄(DHF洗浄)、硫酸と過酸化水素水の混合液による洗浄(SPM洗浄)、塩酸と過酸化水素水の混合液による洗浄(SC−2洗浄)によりコロイダルシリカ研磨剤、金属、有機物等の異物が除去される。 The polished substrate is simply washed with running water, then washed with diluted hydrofluoric acid (DHF cleaning), which is generally known as semiconductor cleaning, and with a mixed solution of sulfuric acid and hydrogen peroxide (SPM). Foreign substances such as colloidal silica abrasives, metals, and organic substances are removed by cleaning) and cleaning with a mixed solution of hydrochloric acid and hydrogen peroxide (SC-2 cleaning).
(本発明の窒化アルミニウム単結晶基板を用いた紫外発光素子)
本発明の窒化アルミニウム単結晶基板上にIII族窒化物半導体薄膜で構成される発光素子層を積層させてウエハーを製造し、次いで該ウエハーより紫外発光素子を分離することで、外部量子効率(EQE)のばらつきが小さく、且つEQEの平均値が高い紫外発光素子を得ることができる。以下本発明における紫外発光素子の製造方法について、詳細に説明する。
(Ultraviolet light emitting device using the aluminum nitride single crystal substrate of the present invention)
An external quantum efficiency (EQE) is obtained by laminating a light emitting device layer composed of a group III nitride semiconductor thin film on the aluminum nitride single crystal substrate of the present invention to manufacture a wafer, and then separating the ultraviolet light emitting device from the wafer. ) Is small, and an ultraviolet light emitting device having a high EQE average value can be obtained. Hereinafter, the method for manufacturing the ultraviolet light emitting device in the present invention will be described in detail.
(発光素子層)
発光素子層は、図4に示すように基板22上に形成され、n型層23、活性層24ならびにp型層25(p型クラッド層およびp型コンタクト層からなる層)がこの順で積層されてなる。
(Light emitting element layer)
The light emitting element layer is formed on the
発光素子層を構成する各層は、AlXGaYInZN、X+Y+Z=1、0<X≦1、0≦Y≦1、0≦Z≦1で構成されるIII族窒化物半導体であることが好ましい。また、好ましくは不純物を含む層であってもよい。不純物は、n型層ではSi、Geなどが挙げられ、p型層ではMgなどが挙げられる。活性層4は、井戸層と、前記井戸層よりもバンドギャップエネルギーの大きい障壁層との積層構造からなる。p型層25は、p型クラッド層およびp型コンタクト層で構成される。各層は、MOCVD法により製造できる。
Each layer constituting the light emitting device layer is a group III nitride semiconductor composed of Al X Ga Y In Z N, X + Y + Z = 1, 0 <X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1. Is preferable. Further, it may be preferably a layer containing impurities. Examples of impurities include Si, Ge and the like in the n-type layer, and Mg and the like in the p-type layer. The
(n電極およびp電極)
図3に示すように、n電極27はn型層22の露出面に、p電極28はメサ構造26のp型層25上に形成される。両電極のパターンニングは、リフトオフ法を用いて実施することができる。両電極金属を堆積する手法としては、例えば、真空蒸着、スパッタリング、化学気相成長法等が挙げられる。両電極に用いられる材料は、公知の材料から選択することができる。例えば、n電極ではTi、Al、Rh、Cr、In、Ni、PtおよびAuなどが、p電極ではNi、Cr、Au、Mg、Zn、PdおよびPtなどが挙げられる。n電極は、これらの金属の合金または酸化物を含む単層、または多層構造であってもよい。
(N electrode and p electrode)
As shown in FIG. 3, the n-electrode 27 is formed on the exposed surface of the n-
(紫外発光素子の構成を複数含むウエハーの製造と特性評価)
以上のような紫外発光素子の構成を複数含むのがウエハーである。図3に紫外発光素子の構成を複数含むウエハーを上からみた際の図面を示す。前記加工方法で得られた基板上の一面にMOCVD法により発光素子層(n型層、活性層、及びp型層)を形成する。この発光素子層上に、同一の形状を有する複数のマスクパターンを等間隔に形成する。この単一のマスクパターンが、後の工程で単一の紫外発光素子の構成となる。その後エッチングにより、マスクが形成されていない領域のp型層および活性層がエッチングされる。これにより、同一の形状を有する複数の発光素子層(p型層および活性層から成る)がウエハー面に台地状に形成される。次に、エッチングマスクを取り除いた後、n型層上にn電極をp型層の上にp電極をそれぞれ形成する。以上の工程により、n電極からp電極までを1つの半導体発光素子とした、半導体発光素子の構成が基板上に複数形成される。ウエハー製造用に用いた基板の面積にもよるが、通常、直径が1インチの円形のウエハーであれば、1枚のウエハーに100〜1000個単位の紫外発光素子が形成される。
(Manufacturing of wafers including multiple configurations of ultraviolet light emitting elements and evaluation of their characteristics)
A wafer includes a plurality of configurations of an ultraviolet light emitting element as described above. FIG. 3 shows a drawing of a wafer including a plurality of configurations of ultraviolet light emitting elements when viewed from above. A light emitting element layer (n-type layer, active layer, and p-type layer) is formed on one surface of the substrate obtained by the above processing method by the MOCVD method. A plurality of mask patterns having the same shape are formed at equal intervals on the light emitting element layer. This single mask pattern constitutes a single ultraviolet light emitting element in a later step. Then, by etching, the p-type layer and the active layer in the region where the mask is not formed are etched. As a result, a plurality of light emitting element layers (composed of a p-type layer and an active layer) having the same shape are formed on the wafer surface in a plateau shape. Next, after removing the etching mask, an n-electrode is formed on the n-type layer and a p-electrode is formed on the p-type layer. Through the above steps, a plurality of semiconductor light emitting device configurations are formed on the substrate, in which the n electrode to the p electrode are one semiconductor light emitting device. Although it depends on the area of the substrate used for manufacturing the wafer, in the case of a circular wafer having a diameter of 1 inch, 100 to 1000 ultraviolet light emitting elements are usually formed on one wafer.
紫外発光素子が形成されたウエハーの製造に、透過率の低い種基板の上に波長265nmの光の直線透過率が50%以上の窒化アルミニウム単結晶部分が積層された基板を用いた場合、素子形成後、機械研磨により透過率の低い種基板部分を除去することで、紫外発光素子を製造することができる。 When a substrate in which a single crystal portion of aluminum nitride having a wavelength of 265 nm and a linear transmittance of 50% or more is laminated on a seed substrate having a low transmittance is used for manufacturing a wafer on which an ultraviolet light emitting element is formed. After the formation, the ultraviolet light emitting element can be manufactured by removing the seed substrate portion having low transmittance by mechanical polishing.
以下、本発明を実施例によりさらに説明するが、本発明はこれらの実施例に何ら限定されるものではない。尚、以下の実施例及び比較例における結晶格子面、結晶成長面の曲率半径、研削面及び研磨面の表面粗さの測定方法は以下の方法にて行った。 Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited to these Examples. The methods for measuring the radius of curvature of the crystal lattice surface, the crystal growth surface, and the surface roughness of the ground surface and the polished surface in the following Examples and Comparative Examples were as follows.
〔結晶格子面の曲率半径の測定方法〕
窒化アルミニウム単結晶基板の結晶格子面の曲率半径は、結晶成長面内の異なる2点において測定したAlN(002)面のX線ロッキングカーブのピーク位置から計算する。結晶成長面を測定面とし、薄膜X線回折装置(PANalytical社製X’Pert MRD)を用いて結晶成長面内の異なる2点の場所においてX線ロッキングカーブを測定した後、2点間の距離をΔx、2点間の回折ピーク位置の差をΔωとした場合、曲率半径RはΔx/Δωにより計算される。今回測定する2点は、φ1inchの基板中心から左に8mmと右に8mmのポイントとした。上に凸となる状態をプラスの曲率半径、下に凸となる状態をマイナスの曲率半径とした。
[Measurement method of radius of curvature of crystal lattice plane]
The radius of curvature of the crystal lattice plane of the aluminum nitride single crystal substrate is calculated from the peak position of the X-ray locking curve of the AlN (002) plane measured at two different points in the crystal growth plane. The distance between the two points after measuring the X-ray locking curve at two different points in the crystal growth plane using a thin film X-ray diffractometer (X'Pert MRD manufactured by PANalytical) with the crystal growth plane as the measurement plane. Is Δx, and the difference between the diffraction peak positions between the two points is Δω, the radius of curvature R is calculated by Δx / Δω. The two points to be measured this time were 8 mm to the left and 8 mm to the right from the center of the φ1 inch substrate. The upwardly convex state was defined as a positive radius of curvature, and the downwardly convex state was defined as a negative radius of curvature.
〔結晶成長面の曲率半径の測定方法〕
結晶成長面の曲率半径は、白色干渉顕微鏡(Zygo社製NewView7300)を用い、50倍の倍率で該基板の高さ情報を取得し、面内の高さ分布より、球形近似の仮定のもとで該基板の曲率半径を算出した。なお、結晶格子面の曲率半径と同様、上に凸となる状態をプラスの曲率半径、下に凸となる状態をマイナスの曲率半径とした。
[Measurement method of radius of curvature of crystal growth surface]
For the radius of curvature of the crystal growth plane, a white interference microscope (NewView7300 manufactured by Zygo) was used to obtain the height information of the substrate at a magnification of 50 times, and the height distribution in the plane was based on the assumption of spherical approximation. The radius of curvature of the substrate was calculated in. As with the radius of curvature of the crystal lattice plane, the state of being convex upward was defined as a positive radius of curvature, and the state of being convex downward was defined as a negative radius of curvature.
〔研削面の表面粗さRaの測定方法〕
研磨前の研削面の表面粗さRaは、触針式表面粗さ計(東京精密社製サーフコム)を用い、φ1inchの基板中心から左に7.5mmと右に7.5mmの2点間で求めた。
[Measurement method of surface roughness Ra of ground surface]
The surface roughness Ra of the ground surface before polishing is set between two points, 7.5 mm to the left and 7.5 mm to the right from the center of the φ1 inch substrate, using a stylus type surface roughness meter (Surfcom manufactured by Tokyo Seimitsu Co., Ltd.). I asked.
〔研磨面の表面粗さRaの測定方法〕
研磨面の表面粗さRaは、AFMにより4μm2(2μm×2μm)視野範囲を観察することで求めた。また、さらに広い範囲の表面粗さRaは、白白色干渉顕微鏡(Zygo社NewView7300)を用い、50倍の倍率で58800μm2(280μm×210μm)視野範囲を観察することで求めた。
[Measurement method of surface roughness Ra of polished surface]
The surface roughness Ra of the polished surface was determined by observing a 4 μm 2 (2 μm × 2 μm) visual field range with an AFM. Further, the surface roughness Ra in a wider range was determined by observing a 58800 μm 2 (280 μm × 210 μm) visual field range at a magnification of 50 times using a white-white interference microscope (NewView7300 manufactured by Zygo).
実施例1
(結晶成長法による窒化アルミニウム単結晶基板の作製)
昇華法により製造された、φ1inchの市販の窒化アルミニウム単結晶基板の上に、特許文献2に記載されたHVPE法で結晶成長を行ったc面窒化アルミニウム単結晶基板である。
Example 1
(Preparation of aluminum nitride single crystal substrate by crystal growth method)
It is a c-plane aluminum nitride single crystal substrate obtained by performing crystal growth by the HVPE method described in
(HVPE法の製造条件)
昇華法により製造された、φ1inchの市販の窒化アルミニウム単結晶基板のAl極性側が成長面になるように、該窒化アルミニウム単結晶基板をHVPE装置内のBNコートグラファイト製サセプタ上に設置した。
(Manufacturing conditions of HVPE method)
The aluminum nitride single crystal substrate was placed on a BN-coated graphite susceptor in the HVPE apparatus so that the Al polar side of a commercially available aluminum nitride single crystal substrate of φ1 inch manufactured by the sublimation method was the growth surface.
III族原料ガスとして、石英ガラス製ボート上に6Nグレードの高純度アルミニウムを配置し、400℃に加熱後、水素と窒素を7:3の割合で混合した混合キャリアガスとともに塩化水素ガスを16.8sccm供給することにより塩化アルミニウムガスを発生させた。さらに該塩化アルミニウムガスには塩化水素ガスを1.1sccm供給し、水素窒素混合キャリアガス1782.1sccmを含めた合計1800sccmの混合ガスとし、該混合ガスを、下地基板を設置したサセプタのある反応器に導入した。 As a group III raw material gas, 6N grade high-purity aluminum was placed on a quartz glass boat, heated to 400 ° C., and then hydrogen chloride gas was added together with a mixed carrier gas in which hydrogen and nitrogen were mixed at a ratio of 7: 3. Aluminum chloride gas was generated by supplying 8 sccm. Further, 1.1 sccm of hydrogen chloride gas is supplied to the aluminum chloride gas to make a total of 1800 sccm of mixed gas including 1782.1 sccm of hydrogen-nitrogen mixed carrier gas, and the mixed gas is a reactor with a susceptor on which a base substrate is installed. Introduced in.
また、窒素源ガスとして、アンモニアガス31sccmと塩化水素ガス3.1sccm、水素キャリアガス165.9sccmの合計で200sccmを反応域へ供給した。その他、反応器の全体を押し流すためのガスとして、水素と窒素を7:3の割合で混合した水素窒素混合キャリアガス6500sccmを流した。さらに、基板に到達する前にIII族原料ガスと窒素源ガスが反応しないためのバリアガスとして、窒素ガス1500sccmをIII族原料ガス用ノズルと窒素源ガス用ノズルの間から供給した。以上、反応器内に供給したガスの合計流量は10000sccmとした。また、成長中の系内の圧力は0.99atmに保持した。 Further, as a nitrogen source gas, a total of 200 sccm of ammonia gas 31 sccm, hydrogen chloride gas 3.1 sccm, and hydrogen carrier gas 165.9 sccm was supplied to the reaction region. In addition, 6500 sccm of hydrogen-nitrogen mixed carrier gas in which hydrogen and nitrogen were mixed at a ratio of 7: 3 was flowed as a gas for flushing the entire reactor. Further, as a barrier gas for preventing the group III raw material gas and the nitrogen source gas from reacting before reaching the substrate, 1500 sccm of nitrogen gas was supplied from between the group III raw material gas nozzle and the nitrogen source gas nozzle. As described above, the total flow rate of the gas supplied into the reactor was set to 10000 sccm. In addition, the pressure in the growing system was maintained at 0.99 atm.
BNコートグラファイト製サセプタ上に設置した下地基板を1450℃に加熱し、上記ガスを流しながら25〜30μm/hの成長速度で11時間成長を行った後、ガスの供給を停止し、室温まで冷却した。 The base substrate placed on the BN-coated graphite susceptor was heated to 1450 ° C., grown at a growth rate of 25 to 30 μm / h for 11 hours while flowing the above gas, and then the gas supply was stopped and cooled to room temperature. did.
(窒化アルミニウム単結晶基板の加工)
予め直線透過率を測定するための基板としてHVPE法で結晶成長を行ったc面窒化アルミニウム単結晶基板(昇華法部分の厚み510μm、HVPE法部分の厚み280μm)を作製した。この基板の昇華法部分を研削で完全に除去し、HVPE法部分の結晶成長面及び結晶成長面の裏面の両面を機械研磨することで、厚み150μmの直線透過率を測定するための基板を作製し、直線光透過率をダブルビーム方式の紫外・可視分光光度計(日本分光製分光光度計V−7300)を用いて評価したところ、波長265nmにおいて62%であった。種基板に用いた昇華法基板を、同様に結晶成長面及び結晶成長面の裏面の両面を機械研磨して厚み150μmの直線透過率を測定すると、波長265nmにおいて35%であった。
(Processing of aluminum nitride single crystal substrate)
As a substrate for measuring the linear transmittance in advance, a c-plane aluminum nitride single crystal substrate (thickness of sublimation method portion 510 μm, thickness of HVPE method portion 280 μm) was produced by crystal growth by the HVPE method. The sublimation method portion of this substrate is completely removed by grinding, and both the crystal growth surface and the back surface of the crystal growth surface of the HVPE method portion are mechanically polished to prepare a substrate for measuring linear transmittance with a thickness of 150 μm. The linear light transmittance was evaluated using a double-beam type ultraviolet / visible spectrophotometer (JASCO spectrophotometer V-7300) and found to be 62% at a wavelength of 265 nm. The sublimation substrate used as the seed substrate was similarly mechanically polished on both sides of the crystal growth surface and the back surface of the crystal growth surface, and the linear transmittance with a thickness of 150 μm was measured and found to be 35% at a wavelength of 265 nm.
前述のHVPE法で作製したc面窒化アルミニウム単結晶基板(昇華法部分の厚み530μm、HVPE法部分の厚み270μm)の結晶成長面及び結晶成長面の裏面の両面を、#1200のダイヤモンド粒子をメタルに固定化した砥石で研削し、結晶成長面の裏面(N極性面)を、コロイダルシリカ研磨剤(粒子径20nm、pH7.3)とスウェードパッドを用いたCMP法により40μmの厚み分を研磨した。研磨後、純水によって5分間流水リンス(流量:1.8L/分)し、テフロン(登録商標)ビーカーに1%フッ化水素酸水溶液を加え、基板を入れ、10分間浸漬した。得られた基板を純水によって1分間流水リンス(流量:1.8L/分)し、イソプロパノールに1分間浸漬し、6000rpmでのスピン乾燥を30秒間行った。この研磨されたN極性面の表面粗さRaは、AFMによる4μm2(2μm×2μm)視野範囲で4nm、白色干渉顕微鏡による58800μm2(280μm×210μm)視野範囲で63nmであった。 Metal # 1200 diamond particles are used on both the crystal growth surface and the back surface of the crystal growth surface of the c-plane aluminum nitride single crystal substrate (thickness of sublimation method portion 530 μm, thickness of HVPE method portion 270 μm) produced by the above-mentioned HVPE method. The back surface (N-polar surface) of the crystal growth surface was polished to a thickness of 40 μm by the CMP method using a colloidal silica abrasive (particle size 20 nm, pH 7.3) and a suede pad. .. After polishing, the mixture was rinsed with pure water for 5 minutes (flow rate: 1.8 L / min), a 1% aqueous hydrofluoric acid solution was added to a Teflon (registered trademark) beaker, a substrate was placed therein, and the mixture was immersed for 10 minutes. The obtained substrate was rinsed with pure water for 1 minute under running water (flow rate: 1.8 L / min), immersed in isopropanol for 1 minute, and spin-dried at 6000 rpm for 30 seconds. The surface roughness Ra of the polished N-polar surface was 4 nm in the 4 μm 2 (2 μm × 2 μm) visual field range by AFM and 63 nm in the 58800 μm 2 (280 μm × 210 μm) visual field range by the white interference microscope.
次に、結晶成長面(Al極性面)を、コロイダルシリカ研磨剤(粒子径20nm、pH7.3)と不織布のパッドを用いて35μmの厚み分を研磨後、さらにパッドをスウェードパッドに変更して5μmの厚み分を研磨した。両面研磨後の厚みは585μmであった。前述の洗浄を行った後、この研磨されたAl極性面の表面粗さRaを測定すると、AFMによる4μm2(2μm×2μm)視野範囲で0.1nmであった。さらに、結晶成長面(Al極性面)の測定により、結晶格子面の曲率半径が−22.1m、基板面の曲率半径が+129.9mであった。 Next, the crystal growth surface (Al polar surface) was polished to a thickness of 35 μm using a colloidal silica abrasive (particle size 20 nm, pH 7.3) and a non-woven fabric pad, and then the pad was further changed to a suede pad. A thickness of 5 μm was polished. The thickness after double-side polishing was 585 μm. After the above-mentioned cleaning, the surface roughness Ra of the polished Al polar surface was measured and found to be 0.1 nm in a 4 μm 2 (2 μm × 2 μm) visual field range by AFM. Further, by measuring the crystal growth plane (Al polar plane), the radius of curvature of the crystal lattice plane was -22.1 m, and the radius of curvature of the substrate plane was +129.9 m.
(半導体発光素子の構成を複数含むウエハーの製造と特性評価)
MOCVD工程の直前に、ポリウレタンフォームと20倍希釈したサンウォッシュMD−3041(ライオン株式会社製)によるスクラブ洗浄による微小なパーティクルの除去、続いて90℃に加熱したリン酸および硫酸の混合液(リン酸:硫酸=1:3(体積比))に10分間浸漬することによる、表面の自然酸化膜の除去を行った。次に、MOCVD法を用いて、基板のAl極性面上に、n型層(Al0.7Ga0.3N)、活性層(井戸層:Al0.5Ga0.5N、障壁層:Al0.7Ga0.3N)、AlN層、pクラッド層(Al0.8Ga0.2N)およびp−GaN層を形成した。
(Manufacturing and characterization of wafers including multiple semiconductor light emitting device configurations)
Immediately before the MOCVD step, fine particles were removed by scrubbing with polyurethane foam and Sunwash MD-3041 (manufactured by Lion Co., Ltd.) diluted 20-fold, followed by a mixture of phosphoric acid and sulfuric acid heated to 90 ° C. (phosphorus). The natural oxide film on the surface was removed by immersing in (acid: sulfuric acid = 1: 3 (volume ratio)) for 10 minutes. Next, using the MOCVD method, an n-type layer (Al 0.7 Ga 0.3 N), an active layer (well layer: Al 0.5 Ga 0.5 N, barrier layer) are placed on the Al polar surface of the substrate. : Al 0.7 Ga 0.3 N), Al N layer, p-clad layer (Al 0.8 Ga 0.2 N) and p-GaN layer were formed.
次に、得られた半導体ウエハーを活性化アニールした。次に、p−GaN層上にメタルマスクを形成した後、ドライエッチングを行うことで、図4に示すようなメサ構造を形成した。その後、n型層上にn電極(Ti20nm/Al200nm/Au5nm)を、p型層上にp電極(Ni20nm/Au50nm)を形成した。上記の操作により、図3に示すような半導体発光素子(発光ピーク波長265nm)の構成を複数含むウエハーを製造した。 Next, the obtained semiconductor wafer was activated and annealed. Next, after forming a metal mask on the p-GaN layer, dry etching was performed to form a mesa structure as shown in FIG. Then, an n electrode (Ti20 nm / Al200 nm / Au5 nm) was formed on the n-type layer, and a p-electrode (Ni20 nm / Au50 nm) was formed on the p-type layer. By the above operation, a wafer including a plurality of semiconductor light emitting devices (emission peak wavelength 265 nm) as shown in FIG. 3 was manufactured.
次いで、直線透過率の低い昇華法部分を機械研磨で除去し、厚み110μmの直線透過率の高いHVPE法窒化アルミニウム単結晶を含む半導体発光素子ウエハーを作製した。このようにして製造した半導体ウエハー中の発光素子に対して、プローブテスタを用いて370個分の発光強度、発光波長、電圧等の特性を評価した。なお、この半導体発光素子の実電流値は400mAとした。その後、レーザスクライブによりウエハーからチップを切り出し、15個のチップについて多結晶AlNキャリアにマウントし、LEDを完成させた。作製した15個のLEDの発光強度および発光ピーク波長を、2インチ積分球(スフィアオプティクス社製ゼニスコーティング)、およびマルチチャンネル分光器(オーシャンフォトニクス社製USB4000)を用いて測定し、EQEの算出を行った。次に、15個のEQEとプローブテスタで測定した発光強度の検量線を作成した。この検量線を用い、プローブテスタを用いて測定したウエハー内全数の発光素子の発光強度からEQEを算出し、統計処理を行ったところ、EQEの平均値は2.00%、標準偏差は0.12%であった。 Next, the sublimation method portion having a low linear transmittance was removed by mechanical polishing to prepare a semiconductor light emitting device wafer containing an HVPE method aluminum nitride single crystal having a thickness of 110 μm and a high linear transmittance. With respect to the light emitting elements in the semiconductor wafer manufactured in this manner, characteristics such as light emission intensity, light emission wavelength, and voltage for 370 pieces were evaluated using a probe tester. The actual current value of this semiconductor light emitting device was set to 400 mA. Then, chips were cut out from the wafer by laser scribe, and 15 chips were mounted on a polycrystalline AlN carrier to complete the LED. The emission intensity and emission peak wavelength of the 15 LEDs produced were measured using a 2-inch integrating sphere (Zenis coating manufactured by Sphere Optics) and a multi-channel spectroscope (USB4000 manufactured by Ocean Photonics) to calculate EQE. went. Next, a calibration curve of emission intensity measured with 15 EQEs and a probe tester was prepared. Using this calibration curve, EQE was calculated from the emission intensities of all the light emitting elements in the wafer measured using a probe tester, and statistical processing was performed. As a result, the average value of EQE was 2.00% and the standard deviation was 0. It was 12%.
比較例1
(結晶成長法による窒化アルミニウム単結晶基板の作製)
実施例1と同様の方法にて昇華法により製造された、φ1inchの市販の窒化アルミニウム単結晶基板の上に、c面窒化アルミニウム単結晶層を成長させて窒化アルミニウム単結晶基板を作成した(昇華法部分の厚み510μm、HVPE法部分の厚み290μm)。
Comparative Example 1
(Preparation of aluminum nitride single crystal substrate by crystal growth method)
A c-plane aluminum nitride single crystal layer was grown on a φ1 inch commercially available aluminum nitride single crystal substrate manufactured by the sublimation method in the same manner as in Example 1 to prepare an aluminum nitride single crystal substrate (sublimation). The thickness of the method portion is 510 μm, and the thickness of the HVPE method portion is 290 μm).
(窒化アルミニウム単結晶基板の加工)
作製したc面窒化アルミニウム単結晶基板の結晶成長面及び結晶成長面の裏面の両面を、#1200のダイヤモンド粒子をメタルに固定化した砥石で研削した。結晶成長面の裏面(N極性面)の加工は研削で留めた。鏡面になっていないため、実施例1のようにAFMや白色干渉顕微鏡による表面粗さの測定は不可能であった。触針式表面粗さ計による測定で、表面粗さRaは149nmであった。
(Processing of aluminum nitride single crystal substrate)
Both the crystal growth surface and the back surface of the crystal growth surface of the produced c-plane aluminum nitride single crystal substrate were ground with a grindstone in which diamond particles of # 1200 were immobilized on metal. The back surface (N-polar surface) of the crystal growth surface was ground by grinding. Since it is not a mirror surface, it was impossible to measure the surface roughness with an AFM or a white interference microscope as in Example 1. The surface roughness Ra was 149 nm as measured by a stylus type surface roughness meter.
次に、結晶成長面(Al極性面)を、実施例1と同じ方法で研磨を行った。片面研磨後の厚みは600μmであった。実施例1と同じ洗浄を行った後、この研磨されたAl極性面の表面粗さRaを測定すると、AFMによる4μm2(2μm×2μm)視野範囲で0.1nmであった。さらに、結晶成長面(Al極性面)の測定により、結晶格子面の曲率半径が−4.9m、基板面の曲率半径が−4.1mであった。 Next, the crystal growth surface (Al polar surface) was polished by the same method as in Example 1. The thickness after single-side polishing was 600 μm. After performing the same cleaning as in Example 1, the surface roughness Ra of the polished Al polar surface was measured and found to be 0.1 nm in a 4 μm 2 (2 μm × 2 μm) visual field range by AFM. Further, by measuring the crystal growth plane (Al polar plane), the radius of curvature of the crystal lattice plane was -4.9 m, and the radius of curvature of the substrate plane was -4.1 m.
実施例1と同じ方法で、半導体発光素子を製造し、ウエハー内全数のEQEを算出したところ、EQEの平均値は1.64%、標準偏差は0.20%であった。 When a semiconductor light emitting device was manufactured by the same method as in Example 1 and the EQE of the entire number of wafers was calculated, the average value of EQE was 1.64% and the standard deviation was 0.20%.
比較例2
(結晶成長法による窒化アルミニウム単結晶基板の作製)
実施例1と同様の方法にて昇華法により製造された、φ1inchの市販の窒化アルミニウム単結晶基板の上に、c面窒化アルミニウム単結晶層を成長させて窒化アルミニウム単結晶基板を作製した(昇華法部分の厚み540μm、HVPE法部分の厚み310μm)。
Comparative Example 2
(Preparation of aluminum nitride single crystal substrate by crystal growth method)
A c-plane aluminum nitride single crystal layer was grown on a φ1 inch commercially available aluminum nitride single crystal substrate manufactured by the sublimation method in the same manner as in Example 1 to prepare an aluminum nitride single crystal substrate (sublimation). The thickness of the method portion is 540 μm, and the thickness of the HVPE method portion is 310 μm).
(窒化アルミニウム単結晶基板の加工)
作製したc面窒化アルミニウム単結晶基板の結晶成長面及び結晶成長面の裏面の両面を、#1200のダイヤモンド粒子をメタルに固定化した砥石で研削した。結晶成長面の裏面(N極性面)の加工は研削で留めた。鏡面になっていないため、実施例1のようにAFMや白色干渉顕微鏡による表面粗さの測定は不可能であった。触針式表面粗さ計による測定で、表面粗さRaは148nmであった。
(Processing of aluminum nitride single crystal substrate)
Both the crystal growth surface and the back surface of the crystal growth surface of the produced c-plane aluminum nitride single crystal substrate were ground with a grindstone in which diamond particles of # 1200 were immobilized on metal. The back surface (N-polar surface) of the crystal growth surface was ground by grinding. Since it is not a mirror surface, it was impossible to measure the surface roughness with an AFM or a white interference microscope as in Example 1. The surface roughness Ra was 148 nm as measured by a stylus type surface roughness meter.
次に、結晶成長面(Al極性面)を、実施例1と同じ方法で研磨を行った。片面研磨後の厚みは600μmであった。研磨後の洗浄について実施例1および比較例1との違いは、フッ化水素酸による洗浄の後、120℃に加熱した硫酸および過酸化水素水の混合液(硫酸:過酸化水素水=150:1(体積比))に10分間浸漬することによるSPM洗浄を追加していることである。この研磨されたAl極性面の表面粗さRaを測定すると、AFMによる4μm2(2μm×2μm)視野範囲で0.1nmであった。さらに、結晶成長面(Al極性面)の測定により、結晶格子面の曲率半径が−6.9m、基板面の曲率半径が−9.6mであった。 Next, the crystal growth surface (Al polar surface) was polished by the same method as in Example 1. The thickness after single-side polishing was 600 μm. Cleaning after polishing The difference between Example 1 and Comparative Example 1 is that after cleaning with hydrofluoric acid, a mixed solution of sulfuric acid and hydrogen peroxide solution heated to 120 ° C. (sulfuric acid: hydrogen peroxide solution = 150: SPM cleaning by immersing in 1 (volume ratio) for 10 minutes is added. The surface roughness Ra of the polished Al polar surface was measured and found to be 0.1 nm in a 4 μm 2 (2 μm × 2 μm) visual field range by AFM. Further, by measuring the crystal growth plane (Al polar plane), the radius of curvature of the crystal lattice plane was -6.9 m, and the radius of curvature of the substrate plane was -9.6 m.
実施例1と同じ方法で、半導体発光素子を製造し、ウエハー内全数のEQEを算出したところ、EQEの平均値は1.89%、標準偏差は0.22%であった。 When the semiconductor light emitting device was manufactured by the same method as in Example 1 and the EQE of the total number in the wafer was calculated, the average value of EQE was 1.89% and the standard deviation was 0.22%.
以上の実施例、比較例の結果を表1にまとめた。 The results of the above Examples and Comparative Examples are summarized in Table 1.
1 :窒化アルミニウム単結晶基板
11:窒化アルミニウム単結晶
12:結晶成長面
13:結晶成長面の裏面
14:下地基板
21:ウエハー
22:基板
23:n型層
24:活性層
25:p型層
26:メサ構造
27:n電極
28:p電極
29:紫外発光素子
1: Aluminum nitride single crystal substrate 11: Aluminum nitride single crystal 12: Crystal growth surface 13: Back surface of crystal growth surface 14: Base substrate 21: Wafer 22: Substrate 23: n-type layer 24: Active layer 25: p-type layer 26 : Mesa structure 27: n electrode 28: p electrode 29: ultraviolet light emitting element
Claims (7)
請求項4記載の窒化アルミニウム単結晶基板の製造方法。 The method for producing an aluminum nitride single crystal substrate according to claim 4, wherein the aluminum nitride single crystal substrate is produced on the base substrate by a crystal growth method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016220940A JP6856356B2 (en) | 2016-11-11 | 2016-11-11 | Aluminum nitride single crystal substrate and method for manufacturing the single crystal substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016220940A JP6856356B2 (en) | 2016-11-11 | 2016-11-11 | Aluminum nitride single crystal substrate and method for manufacturing the single crystal substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018078260A JP2018078260A (en) | 2018-05-17 |
JP6856356B2 true JP6856356B2 (en) | 2021-04-07 |
Family
ID=62150747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016220940A Active JP6856356B2 (en) | 2016-11-11 | 2016-11-11 | Aluminum nitride single crystal substrate and method for manufacturing the single crystal substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6856356B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112020006300T5 (en) | 2019-12-24 | 2022-12-29 | Tokuyama Corporation | GROUP III NITRIDE SINGLE CRYSTAL SUBSTRATE AND PROCESS FOR PRODUCTION THEREOF |
JP7028353B1 (en) * | 2021-04-21 | 2022-03-02 | 信越半導体株式会社 | Manufacturing method of silicon wafer |
DE112022000129T5 (en) | 2021-08-23 | 2023-07-20 | Tokuyama Corporation | METHOD OF PURIFYING A GROUP III NITRIDE SINGLE CRYSTAL SUBSTRATE AND METHOD OF PRODUCTION THEREOF |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4787891B2 (en) * | 2009-06-09 | 2011-10-05 | 住友電気工業株式会社 | Group III nitride crystal substrate for epitaxial layer formation, group III nitride crystal substrate with epitaxial layer, and semiconductor device |
JP5304713B2 (en) * | 2010-04-07 | 2013-10-02 | 新日鐵住金株式会社 | Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer |
JP6080148B2 (en) * | 2011-02-21 | 2017-02-15 | 国立大学法人東京農工大学 | Aluminum nitride single crystal and method for producing the same |
CA2884169C (en) * | 2012-09-11 | 2020-08-11 | Tokuyama Corporation | Aluminum nitride substrate and group-iii nitride laminate |
JP2015179734A (en) * | 2014-03-19 | 2015-10-08 | 旭化成株式会社 | Method for manufacturing semiconductor light emitting device and semiconductor light emitting device |
TWI717777B (en) * | 2014-11-10 | 2021-02-01 | 日商德山股份有限公司 | Apparatus for manufacturing group iii nitride single crystal, method for manufacturing group iii nitride single crystal using the same, and aluminum nitride single crystal |
-
2016
- 2016-11-11 JP JP2016220940A patent/JP6856356B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018078260A (en) | 2018-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7863609B2 (en) | Compound semiconductor substrate, semiconductor device, and processes for producing them | |
US8012882B2 (en) | Method of manufacturing nitride substrate for semiconductors | |
KR100550491B1 (en) | Nitride semiconductor substrate and processing method of nitride semiconductor substrate | |
JP4696935B2 (en) | III-V nitride semiconductor substrate and III-V nitride light emitting device | |
JP6042545B2 (en) | Highly transparent aluminum nitride single crystal layer and device comprising the same | |
CN102471931B (en) | III nitride semiconductor substrate, epitaxial substrate and semiconducter device | |
US9312129B2 (en) | Group III-V substrate material with particular crystallographic features and methods of making | |
KR20100138879A (en) | Process for producing laminate comprising al-based group iii nitride single crystal layer, laminate produced by the process, process for producing al-based group iii nitride single crystal substrate using the laminate, and aluminum nitride single crystal substrate | |
EP2924150B1 (en) | ß-GA2O3-BASED SINGLE CRYSTAL SUBSTRATE | |
JP2007103457A (en) | Polishing slurry, surface treatment method of group iii nitride crystal, group iii nitride crystal substrate, group iii nitride crystal substrate with epitaxial layer, semiconductor device and its fabrication process | |
TW201638378A (en) | Group iii nitride laminate and light emitting element comprising said laminate | |
US12116697B2 (en) | Group III nitride single crystal substrate and method for production thereof | |
JP6856356B2 (en) | Aluminum nitride single crystal substrate and method for manufacturing the single crystal substrate | |
US9287453B2 (en) | Composite substrates and functional device | |
JP2013201326A (en) | Gallium nitride substrate and epitaxial wafer | |
JP5636642B2 (en) | Compound semiconductor substrate | |
JP4921761B2 (en) | Method for producing zinc oxide single crystal substrate | |
JP2012030991A (en) | Method for producing semiconductor light-emitting element, semiconductor light-emitting element, and sapphire single crystal substrate | |
CN204067415U (en) | Composite crystal and function element | |
JP2010199598A (en) | Group iii-v nitride semiconductor substrate | |
JP2010166017A (en) | Compound semiconductor substrate and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6856356 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |