JP6856189B2 - Excavator, excavator using excavator - Google Patents

Excavator, excavator using excavator Download PDF

Info

Publication number
JP6856189B2
JP6856189B2 JP2016047319A JP2016047319A JP6856189B2 JP 6856189 B2 JP6856189 B2 JP 6856189B2 JP 2016047319 A JP2016047319 A JP 2016047319A JP 2016047319 A JP2016047319 A JP 2016047319A JP 6856189 B2 JP6856189 B2 JP 6856189B2
Authority
JP
Japan
Prior art keywords
excavator
connecting portion
tubular body
tubular
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016047319A
Other languages
Japanese (ja)
Other versions
JP2017160716A (en
Inventor
中村 太郎
太郎 中村
守 永井
守 永井
千晴 平林
千晴 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Original Assignee
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University filed Critical Chuo University
Priority to JP2016047319A priority Critical patent/JP6856189B2/en
Publication of JP2017160716A publication Critical patent/JP2017160716A/en
Application granted granted Critical
Publication of JP6856189B2 publication Critical patent/JP6856189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)

Description

本発明は、曲進可能に構成された掘削具等に関する。 The present invention relates to an excavator and the like configured to be bendable.

従来、地盤等の掘削対象部を無人で掘削する掘削推進装置が知られている(特許文献1参照)。 Conventionally, an excavation propulsion device for unmanned excavation of an excavation target portion such as the ground has been known (see Patent Document 1).

特開2011−169056号公報Japanese Unexamined Patent Publication No. 2011-169506

しかしながら、従来の掘削推進装置は、掘削具としてのアースオーガが直進して掘削する構成であり、アースオーガを曲進させることができなかった。
本発明は、曲進可能な掘削具等を提供するものである。
However, the conventional excavation propulsion device has a configuration in which the earth auger as an excavator goes straight to excavate, and the earth auger cannot be bent.
The present invention provides a bendable excavator and the like.

本発明に係る掘削具によれば、回転軸と、当該回転軸に沿った方向に螺旋状に延長するように回転軸の周りに設けられた螺旋体と、前記回転軸及び螺旋体の先端側に設けられた掘削手段とを備え、回転軸は、複数本の剛体軸の端部同士が可撓性を有した材料により形成された軸連結部を介して折曲可能でかつ回転力を伝達可能なように連結され、螺旋体は、軸連結部の周囲を覆うように設けられた折曲可能なゴム製の螺旋部を備えたので、曲進可能な掘削具を提供できる。
また、前記回転軸は、複数本の剛体軸の端部同士が軸連結部を介して折曲可能でかつ回転力を伝達可能なように連結されて構成されたので、軸連結部が折曲して曲進可能な掘削具を提供できる。
また、前記螺旋体は、前記軸連結部の周囲を覆うように設けられた折曲可能な螺旋部を備えたので、連続する螺旋体により掘削土が連続してスムーズに後方に搬送されるようになるため、回転軸を回転させるためのトルクの上昇を抑制でき、回転軸を駆動する駆動源の負荷を軽減できるようになる。
本発明に係る掘削装置は、上記いずれかに記載の掘削具と、内部に掘削具が設置された状態で予め折曲された筒状体とを備えた掘削装置であって、掘削具は、回転軸が筒状体の中心軸に沿って延長するように筒状体の内部に配置され、掘削具が、筒状体の折曲に沿って折曲し、当該掘削具の回転による掘削の進路を変更可能としたので、曲進掘削が可能な掘削装置を提供できる。
また、本発明に係る掘削装置は、上記いずれかに記載の掘削具と、内部に当該掘削具が設置された状態で折曲可能に構成された筒状体とを備えた掘削装置であって、筒状体は、複数の筒体の端部同士が折曲可能な筒連結部を介して連結され、折曲可能に構成された掘削具又は筒状体の筒連結部、或いはこれらの両方を折曲させる折曲装置を備え、掘削具は、回転軸が前記筒状体の中心軸に沿って延長するように筒状体の内部に配置され、折曲装置が掘削具又は筒状体の筒連結部或いはこれらの両方を折曲させることにより、掘削具の回転による掘削の進路を変更可能としたので、曲進掘削が可能な掘削装置を提供できる。
また、他の掘削装置として、筒状体の周囲に掘削具の回転軸の半径方向への拡径時に収縮し、縮径時に伸長する複数の推進機構を備えたので、複数の推進機構の動作によって、掘削面との密着力、及び掘削方向への推進力を得ることが可能となる。
According to the excavator according to the present invention, a rotating shaft, a spiral body provided around the rotating shaft so as to extend spirally in a direction along the rotating shaft, and the rotating shaft and the tip side of the spiral body are provided. The rotating shaft is bendable and capable of transmitting rotational force via a shaft connecting portion formed of a material in which the ends of a plurality of rigid shafts are made of a flexible material. The spiral body is provided with a bendable rubber spiral portion provided so as to wrap around the axial connection portion, so that a bendable excavator can be provided.
Further, since the rotating shaft is configured so that the ends of a plurality of rigid shafts can be bent via the shaft connecting portion and the rotational force can be transmitted, the shaft connecting portion is bent. And can provide a bendable excavator.
Further, since the spiral body is provided with a bendable spiral portion provided so as to cover the periphery of the shaft connecting portion, the excavated soil can be continuously and smoothly transported backward by the continuous spiral body. Therefore, it is possible to suppress an increase in torque for rotating the rotating shaft, and it is possible to reduce the load on the drive source that drives the rotating shaft.
The excavating device according to the present invention is an excavating device including the excavating tool according to any one of the above and a tubular body bent in advance with the excavating tool installed inside. The axis of rotation is placed inside the tubular body so that it extends along the central axis of the tubular body, and the excavator bends along the bend of the tubular body and excavates by rotating the excavator. Since the course can be changed, it is possible to provide an excavation device capable of curved excavation.
Further, the excavating device according to the present invention is an excavating device including the excavating tool according to any one of the above and a tubular body configured to be bendable with the excavating tool installed inside. In the tubular body, the ends of a plurality of tubular bodies are connected to each other via a bendable tubular connecting portion, and the excavator and the tubular connecting portion of the tubular body are configured to be bendable, or both of them. The excavator is provided with a folding device that bends the excavator, and the excavator is arranged inside the tubular body so that the axis of rotation extends along the central axis of the tubular body, and the folding device is the excavator or the tubular body. Since it is possible to change the excavation course by rotating the excavator by bending the cylinder connecting portion or both of them, it is possible to provide an excavation device capable of curved excavation.
Further, as another excavating device, since a plurality of propulsion mechanisms that contract when the diameter of the rotating shaft of the excavator expands in the radial direction and expand when the diameter is reduced are provided around the tubular body, the operation of the plurality of propulsion mechanisms is provided. Therefore, it is possible to obtain a close contact force with the excavation surface and a propulsive force in the excavation direction.

掘削推進装置の概略構成を示す断面図。The cross-sectional view which shows the schematic structure of the excavation propulsion device. 掘削具を示す図。The figure which shows the excavator. 筒状体を示す図。The figure which shows the tubular body. 折曲装置の例1を示す図。The figure which shows the example 1 of the folding apparatus. 折曲装置の例2を示す図。The figure which shows the example 2 of the folding apparatus. 折曲装置の例3を示す図。The figure which shows the example 3 of the folding apparatus. 折曲装置の例4を示す図。The figure which shows the example 4 of the folding apparatus. 折曲装置の例5を示す図。The figure which shows the example 5 of the folding apparatus. 折曲装置の例6を示す図。The figure which shows the example 6 of the folding apparatus. 推進ユニットの一例を示す断面図。Sectional drawing which shows an example of a propulsion unit. 推進ユニットの一例を示す概要図。The schematic diagram which shows an example of a propulsion unit. 推進ユニットの動作を示す概要図 。Schematic diagram showing the operation of the propulsion unit.

図1に示すように、実施形態に係る掘削具を使用した掘削推進装置1は、掘削装置2と、推進装置3と、抽出装置4と、制御装置5とを備えた構成であり、推進装置3で掘削装置2を推進させるとともに掘削装置2の掘削具20で掘削対象部としての例えば地盤Eを掘削する装置である。 As shown in FIG. 1, the excavation propulsion device 1 using the excavator according to the embodiment has a configuration including an excavation device 2, a propulsion device 3, an extraction device 4, and a control device 5. 3 is a device for propelling the excavation device 2 and the excavator 20 of the excavation device 2 for excavating, for example, the ground E as an excavation target portion.

掘削装置2は、いわゆるアースオーガであり、掘削具20と、掘削具20を駆動する駆動源としてのモータ51と、折曲自在に構成された筒状体(ケーシング)6と、筒状体6の先端に設けられたスカート部7とを備えて構成される。 The excavator 2 is a so-called earth auger, which includes an excavator 20, a motor 51 as a drive source for driving the excavator 20, a freely bendable tubular body (casing) 6, and a tubular body 6. It is configured to include a skirt portion 7 provided at the tip of the.

図2にも示すように掘削具20は、回転軸21と、回転軸21に沿った方向に螺旋状に延長するように回転軸21の周りに設けられた螺旋体としての螺旋羽根22と、回転軸21及び螺旋羽根22の先端側に設けられた掘削手段としての掘削ビット23とを備え、回転軸21が折曲可能に構成されている。
即ち、掘削具20は、回転軸21に沿った方向に螺旋状に延長するように回転軸21の周りに螺旋羽根22が取付けられた構成であるスクリュ24の先端に掘削ビット23を備えた構成である。
As shown in FIG. 2, the excavator 20 rotates with a rotating shaft 21 and a spiral blade 22 as a spiral body provided around the rotating shaft 21 so as to extend spirally in a direction along the rotating shaft 21. A shaft 21 and an excavation bit 23 as an excavation means provided on the tip end side of the spiral blade 22 are provided, and the rotary shaft 21 is configured to be bendable.
That is, the excavator 20 has a configuration in which an excavation bit 23 is provided at the tip of a screw 24 having a configuration in which spiral blades 22 are attached around the rotating shaft 21 so as to extend spirally in a direction along the rotating shaft 21. Is.

スクリュ24は、回転軸に沿った方向に螺旋状に延長するように回転軸の周りに螺旋羽根が取付けられて構成された例えば1本のスクリュ(言い換えれば、回転軸が螺旋羽根の回転中心軸を形成する剛体により構成された1本のスクリュ)を、軸の長さが所定の長さとなるように複数に分割した複数の分割スクリュ24A,24B,24Cを用いて構成される。 The screw 24 is composed of, for example, one screw (in other words, the rotation axis is the rotation center axis of the spiral blade), which is configured by attaching spiral blades around the rotation axis so as to extend spirally in a direction along the rotation axis. A single screw) composed of a rigid body forming the above is divided into a plurality of divided screws 24A, 24B, 24C so that the length of the shaft becomes a predetermined length.

つまり、スクリュ24は、複数の分割スクリュ24A,24B,24Cの回転軸の端部同士が軸連結部26を介して連結され、先端側に位置する分割スクリュ24Aの先端に掘削ビット23を備え、軸連結部26が折曲自在に形成された構成である。 That is, in the screw 24, the ends of the rotating shafts of the plurality of split screws 24A, 24B, 24C are connected to each other via the shaft connecting portion 26, and the drilling bit 23 is provided at the tip of the split screw 24A located on the tip side. The shaft connecting portion 26 is formed so as to be bendable.

スクリュ24は、スクリュ24の先端部を形成する分割スクリュとしての先端側スクリュ24Aと、スクリュ24の中間部を形成する分割スクリュとしての1つ以上の中間側スクリュ24Bと、スクリュ24の後端部を形成する分割スクリュとしての後端側スクリュ24Cとを備える。 The screw 24 includes a tip side screw 24A as a split screw forming the tip portion of the screw 24, one or more intermediate side screws 24B as a split screw forming an intermediate portion of the screw 24, and a rear end portion of the screw 24. It is provided with a rear end side screw 24C as a split screw forming the above.

スクリュ24は、例えば図2に示すように、先端側スクリュ24Aと、2つの中間側スクリュ24Bと、後端側スクリュ24Cと、先端側スクリュ24Aの後端と先端側に位置する中間側スクリュ24Bの前端とを連結する軸連結部26と、先端側に位置する中間側スクリュ24Bの後端と後端側に位置する中間側スクリュ24Bの前端とを連結する軸連結部26と、後端側に位置する中間側スクリュ24Bの後端と後端側スクリュ24Cの前端とを連結する軸連結部26とを備え、後端側スクリュ24Cの後端とモータ51の出力軸とがカップリング等の軸連結部材27により連結されて構成される。 As shown in FIG. 2, for example, the screw 24 includes a front end side screw 24A, two intermediate side screw 24B, a rear end side screw 24C, and an intermediate side screw 24B located at the rear end and the front end side of the front end side screw 24A. A shaft connecting portion 26 that connects the front end of the screw 24B, and a shaft connecting portion 26 that connects the rear end of the intermediate screw 24B located on the front end side and the front end of the intermediate screw 24B located on the rear end side, and the rear end side. A shaft connecting portion 26 for connecting the rear end of the intermediate screw 24B and the front end of the rear screw 24C located at the rear end side screw 24C is provided, and the rear end of the rear end side screw 24C and the output shaft of the motor 51 are coupled to each other. It is configured by being connected by a shaft connecting member 27.

換言すると、スクリュ24は、例えば金属製等の剛体軸により形成された1本の回転軸を複数に分割した複数の分割回転軸(例えば図2に示すように先端側分割回転軸21A、2つの中間側分割回転軸21B、後端側分割回転軸21C)の端部同士が軸連結部26を介して折曲可能、かつ回転力を伝達可能なように連結され、各分割回転軸の周りに分割回転軸に沿った方向に螺旋状に延長する例えば金属製等の剛体により形成された螺旋羽根(例えば図2に示すように先端側螺旋羽根22A、2つの中間側螺旋羽根22B、後端側螺旋羽根22C)が取付けられている。 In other words, the screw 24 has a plurality of divided rotating shafts (for example, as shown in FIG. 2, tip side divided rotating shafts 21A, two) obtained by dividing one rotating shaft formed of a rigid shaft made of metal or the like into a plurality of divided rotating shafts. The ends of the intermediate side split rotary shaft 21B and the rear end side split rotary shaft 21C) are connected to each other via the shaft connecting portion 26 so that the rotational force can be transmitted, and around each split rotary shaft. Spiral blades formed of a rigid body such as metal that extends spirally in the direction along the split rotation axis (for example, as shown in FIG. 2, tip side spiral blade 22A, two intermediate side spiral blades 22B, rear end side) The spiral blade 22C) is attached.

軸連結部26は、上述した各分割回転軸の端部同士を折曲可能でかつ回転力を伝達可能に連結する例えば自在継手(ユニバーサルジョイント)により構成される。 The shaft connecting portion 26 is composed of, for example, a universal joint that connects the ends of the above-mentioned divided rotating shafts so as to be bendable and transmit rotational force.

尚、スクリュ24は、各軸連結部26の周囲に何も設けない構成としても良い。しかしながら、このように各軸連結部26の周囲に何も設けずに、各軸連結部26の周囲において螺旋羽根が欠落した構成の場合、当該螺旋羽根が欠落した部分を掘削物としての例えば掘削土が通過する際に、スクリュ24を回転させるためのトルクが上昇し、モータ51の負荷が大きくなる可能性がある。
そこで、スクリュ24は、各軸連結部26の周囲に折曲可能な可撓性を有した螺旋部としての、例えばゴム製の螺旋羽根部28を備えた構成として、螺旋羽根が欠落せずに連続する構成とすることが好ましい。当該螺旋羽根部28は、例えば図2に示すように、軸連結部26の軸の径とほぼ同径の円筒状に形成されて軸連結部26の外周面を覆うゴム製の円筒体28aと、当該ゴム製の円筒体28aの外周面より突出するように設けられたゴム製の螺旋羽根28bとを備えた構成である。このように、螺旋羽根が欠落せずに連続するように構成されたスクリュ24であれば、軸連結部26の外側でゴム製の螺旋羽根28bにより掘削土が破砕され、回転軸21に沿って連続して設けられた螺旋羽根により掘削土が連続してスムーズに後方に搬送されるようになるため、スクリュ24を回転させるためのトルクの上昇を抑制でき、モータ51の負荷を軽減できるようになる。また、軸連結部26の外周面を覆うゴム製の円筒体28aを備えていることにより、軸連結部26の折れ曲がりに追従できて、かつ、軸連結部26への防塵効果も得られる。
The screw 24 may be configured so that nothing is provided around each shaft connecting portion 26. However, in the case where nothing is provided around each shaft connecting portion 26 and the spiral blade is missing around each shaft connecting portion 26, the portion where the spiral blade is missing is excavated as an excavated object, for example. When the soil passes, the torque for rotating the screw 24 increases, which may increase the load on the motor 51.
Therefore, the screw 24 is configured to include, for example, a rubber spiral blade portion 28 as a spiral portion having flexibility that can be bent around each shaft connecting portion 26, so that the spiral blade is not missing. It is preferable to have a continuous configuration. As shown in FIG. 2, for example, the spiral blade portion 28 is formed in a cylindrical shape having substantially the same diameter as the shaft of the shaft connecting portion 26, and is formed with a rubber cylindrical body 28a that covers the outer peripheral surface of the shaft connecting portion 26. The structure is provided with a rubber spiral blade 28b provided so as to project from the outer peripheral surface of the rubber cylinder 28a. In the screw 24 configured to be continuous without missing the spiral blades in this way, the excavated soil is crushed by the rubber spiral blades 28b on the outside of the shaft connecting portion 26, and the excavated soil is crushed along the rotating shaft 21. Since the excavated soil is continuously and smoothly transported to the rear by the spiral blades provided continuously, it is possible to suppress an increase in torque for rotating the screw 24 and reduce the load on the motor 51. Become. Further, by providing the rubber cylindrical body 28a that covers the outer peripheral surface of the shaft connecting portion 26, it is possible to follow the bending of the shaft connecting portion 26 and also obtain a dustproof effect on the shaft connecting portion 26.

このように、スクリュ24は、軸連結部26を備えたことにより、モータ51の回転力を後端側から先端側に伝達できるとともに、折れ曲がり可能に構成されている。
即ち、掘削具20は、地盤Eを掘削ビット23により掘削しながら折れ曲がって進行可能であり、掘削ビット23で掘削された掘削土が螺旋羽根22の螺旋回転により後方に搬送されるように構成されている。
As described above, since the screw 24 is provided with the shaft connecting portion 26, the rotational force of the motor 51 can be transmitted from the rear end side to the front end side, and the screw 24 is configured to be bendable.
That is, the excavator 20 is configured to be able to bend and proceed while excavating the ground E with the excavation bit 23, and the excavated soil excavated by the excavation bit 23 is conveyed rearward by the spiral rotation of the spiral blade 22. ing.

上記スクリュ24が内部に配置される筒状体6は、例えば金属製等の剛体により形成された1つの円筒を複数に分割した複数の分割円筒を用いて構成される。即ち、筒状体6は、複数の分割円筒62A,62B,62Cの端部同士が、折曲自在に形成された筒連結部61を介して連結され、当該筒連結部61で折曲可能に構成された円筒体62と、制御装置5によって制御されて各筒連結部61を折曲させる折曲装置63とを備えた構成である。 The tubular body 6 in which the screw 24 is arranged is configured by using a plurality of divided cylinders obtained by dividing one cylinder formed of, for example, a rigid body made of metal or the like into a plurality of divided cylinders. That is, in the tubular body 6, the ends of the plurality of divided cylinders 62A, 62B, 62C are connected to each other via a tubular connecting portion 61 formed so as to be bendable, and the tubular connecting portion 61 can be bent. It is configured to include a formed cylindrical body 62 and a folding device 63 that is controlled by a control device 5 to bend each cylinder connecting portion 61.

円筒体62は、円筒体62の先端部を形成する分割円筒としての先端側円筒62Aと、円筒体62の中間部を形成する分割円筒としての1つ以上の中間側円筒62Bと、円筒体62の後端部を形成する分割円筒としての後端側円筒62Cとを備える。なお、先端側円筒62A、中間側円筒62B、後端側円筒62Cの構成の詳細については後述する。 The cylinder 62 includes a tip-side cylinder 62A as a split cylinder forming the tip of the cylinder 62, one or more intermediate-side cylinders 62B as a split cylinder forming an intermediate portion of the cylinder 62, and a cylinder 62. A rear end side cylinder 62C is provided as a split cylinder forming the rear end portion. The details of the configuration of the front end side cylinder 62A, the intermediate side cylinder 62B, and the rear end side cylinder 62C will be described later.

図3に示すように、筒状体6は、先端側円筒62Aと、中間側円筒62Bと、後端側円筒62Cと、先端側円筒62Aの後端と中間側円筒62Bの前端とを連結する筒連結部61と、中間側円筒62Bの後端と後端側円筒62Cの前端とを連結する筒連結部61とを備え、先端側円筒62Aの前端が筒連結部61を介してスカート部7の後端と連結された構成である。図1に示すように、各筒連結部61の外周側には、後述の折曲装置63が配設されており、折曲装置63の駆動により、筒連結部61が独立して折曲することにより、全体を自在に折曲可能とされている。
尚、図示しないが、中間側円筒62Bを2つ以上備える場合は、先端側に近い中間側円筒62Bの後端と後端側に近い中間側円筒62Bの前端とを筒連結部61を介して連結し、かつ、当該筒連結部61と対応する位置に折曲装置63を配設すればよい。
As shown in FIG. 3, the tubular body 6 connects the front end side cylinder 62A, the intermediate side cylinder 62B, the rear end side cylinder 62C, the rear end of the front end side cylinder 62A, and the front end of the intermediate side cylinder 62B. A cylinder connecting portion 61 and a cylinder connecting portion 61 for connecting the rear end of the intermediate side cylinder 62B and the front end of the rear end side cylinder 62C are provided, and the front end of the tip side cylinder 62A has a skirt portion 7 via the cylinder connecting portion 61. It is a configuration connected to the rear end. As shown in FIG. 1, a bending device 63, which will be described later, is arranged on the outer peripheral side of each cylinder connecting portion 61, and the cylinder connecting portion 61 bends independently by driving the bending device 63. As a result, the whole can be bent freely.
Although not shown, when two or more intermediate cylinders 62B are provided, the rear end of the intermediate cylinder 62B close to the front end side and the front end of the intermediate cylinder 62B close to the rear end side are connected via a cylinder connecting portion 61. The bending device 63 may be arranged at a position corresponding to the cylinder connecting portion 61 which is connected.

筒連結部61の構成としては例えば可撓性を有する蛇腹状部材(例えばゴム製の蛇腹)等を用いるのが好適である。 As the configuration of the cylinder connecting portion 61, for example, a flexible bellows-shaped member (for example, a rubber bellows) or the like is preferably used.

以下、折曲装置63の例について複数の形態を通じて説明する。
折曲装置の例1
本例における折曲装置63は、例えば図4に示す伸縮ユニット63Aにより構成される。伸縮ユニット63Aは、先端側円筒62A、中間側円筒62B、後端側円筒62Cにそれぞれ対応して設けられる後述の推進装置3を構成する推進ユニット8(図10参照)が備えるフランジ65;65間に連結された伸縮体である。伸縮ユニット63A内には、空気等の流体を導入可能となっており、制御装置5が伸縮ユニット63Aに対する流体の給排量を制御することで、伸縮ユニット63Aが軸方向に伸縮し、筒連結部61を自在に曲げることが可能となる(図4(b)参照)。尚、伸縮ユニット63Aは、筒連結部61の周囲に例えば等間隔に3箇所以上設けられ(好ましくは例えば筒連結部61の中心軸を中心として筒連結部61の周方向に90度間隔で伸縮ユニット63Aを4箇所に設ける)、制御装置5で各伸縮ユニット63Aを制御することにより、筒連結部61を全方位に曲げることが可能となる。図4に示すように、伸縮ユニット63Aは、両端の開口がそれぞれ蓋部材63a,63aで閉塞された両端閉塞の筒状のゴム等の弾性体からなる伸縮体63bと、伸縮体63bの筒の中央側の外周を取り囲むように設けられて伸縮体63bの膨張を制限するリング63cとを備える。伸縮体63bを構成する弾性体の内部には、軸方向に沿って延長する複数のカーボンロービング繊維等により形成された繊維層63dが内挿されており、当該繊維層63dの両端部は、弾性体と共に蓋部材63a,63aによって拘束される。そして、このように構成された伸縮ユニット63Aの伸縮体63b内に、蓋部材63aに形成された図外の流体供給口及びゴムチューブ等の流路を介して流体が導入された場合、伸縮体63bの膨張が繊維層63dの拘束によって半径方向のみに規制される結果、その全体長が軸方向に収縮することとなる。一方、蓋部材63aに形成された図外の流体供給口及び流路を介して流体が排出された場合、伸縮体63bの弾性力によってその全体長が伸長し、自然長に復帰する。複数のリング63cは、伸縮体63bの長さ方向に等しい間隔を隔てて複数個設けられており、伸縮体63bの半径方向への膨張を抑制する。よって、その数は、使用環境に応じて適宜設定可能である。
なお、伸縮ユニット63Aの構成を、個別に形成された複数の伸縮体63bを軸方向に連結した構成としてもよい。当該構成を採用する場合、各伸縮体63bを上記蓋部材63a,63aによって個々に閉塞する。そして、個々に閉塞された各伸縮体63b同士を軸方向に連結するとともに、各伸縮体63bに個別に流体を給排可能なチューブ等を接続することにより、各伸縮体63bを独立して伸長させることができる。そして、制御装置5によって給排対象とする伸縮体63b及び流体の給排量を制御することにより、筒連結部61をより細かく全方位に曲げることが可能となる。なお、図示では省略しているが、フランジ65の径方向外側には、図1に示すように折曲装置63の外周側を覆う可撓性を有する防塵カバー66が配置されている。
Hereinafter, an example of the folding device 63 will be described through a plurality of forms.
Example of folding device 1
The folding device 63 in this example is composed of, for example, the telescopic unit 63A shown in FIG. The telescopic unit 63A is between the flanges 65; 65 provided by the propulsion unit 8 (see FIG. 10) constituting the propulsion device 3 described later, which is provided corresponding to the front end side cylinder 62A, the intermediate side cylinder 62B, and the rear end side cylinder 62C, respectively. It is a stretchable body connected to. A fluid such as air can be introduced into the telescopic unit 63A, and the control device 5 controls the amount of fluid supplied to and discharged from the telescopic unit 63A so that the telescopic unit 63A expands and contracts in the axial direction and is connected in a cylinder. The portion 61 can be bent freely (see FIG. 4B). The expansion / contraction unit 63A is provided around the cylinder connecting portion 61 at three or more locations at equal intervals (preferably, at intervals of 90 degrees in the circumferential direction of the cylinder connecting portion 61 with the central axis of the cylinder connecting portion 61 as the center). Units 63A are provided at four locations), and by controlling each telescopic unit 63A with the control device 5, the cylinder connecting portion 61 can be bent in all directions. As shown in FIG. 4, the expansion / contraction unit 63A is composed of an expansion / contraction body 63b made of an elastic body such as a tubular rubber whose ends are closed by lid members 63a and 63a, respectively, and a cylinder of the expansion / contraction body 63b. It is provided with a ring 63c which is provided so as to surround the outer periphery on the central side and limits the expansion of the stretchable body 63b. A fiber layer 63d formed of a plurality of carbon roving fibers extending along the axial direction is interpolated inside the elastic body constituting the stretchable body 63b, and both ends of the fiber layer 63d are elastic. It is restrained by the lid members 63a and 63a together with the body. When a fluid is introduced into the telescopic body 63b of the telescopic unit 63A configured in this way through a flow path such as a fluid supply port and a rubber tube (not shown) formed on the lid member 63a, the stretchable body As a result of the expansion of 63b being restricted only in the radial direction by the restraint of the fiber layer 63d, the total length thereof contracts in the axial direction. On the other hand, when the fluid is discharged through the fluid supply port and the flow path (not shown) formed on the lid member 63a, the total length of the stretchable body 63b is extended by the elastic force and returns to the natural length. A plurality of rings 63c are provided at equal intervals in the length direction of the stretchable body 63b, and suppress the expansion of the stretchable body 63b in the radial direction. Therefore, the number can be appropriately set according to the usage environment.
The expansion / contraction unit 63A may be configured by connecting a plurality of individually formed expansion / contraction bodies 63b in the axial direction. When this configuration is adopted, each stretchable body 63b is individually closed by the lid members 63a and 63a. Then, each stretchable body 63b is independently stretched by connecting the individually closed stretchable bodies 63b in the axial direction and connecting a tube or the like capable of supplying and discharging a fluid to each stretchable body 63b individually. Can be made to. Then, by controlling the expansion / contraction body 63b to be supplied / discharged and the amount of fluid supplied / discharged by the control device 5, the cylinder connecting portion 61 can be bent more finely in all directions. Although omitted in the drawing, a flexible dustproof cover 66 that covers the outer peripheral side of the bending device 63 is arranged on the radial outer side of the flange 65 as shown in FIG.

折曲装置の例2
折曲装置63を例えば図5に示すように、流体の給排によって収縮するバルーンBが介在する収縮機構63Bを用いて構成してもよい。収縮機構63Bは、可撓性を有する筒連結部61の周囲に取り付けられ、筒連結部61を取り囲む複数(図示では4つ)の円環体64aを備える。複数の円環体64aは、フランジ65;65間において筒連結部61の軸方向に沿って配置され、その周面には半径方向外側に向けて突出するバルーン支持部64bが形成される。バルーン支持部64bは、筒連結部61の周方向に沿って等間隔(例えば90度間隔、以下の説明についても同様)に複数形成されており、軸方向に隣接する円環体64aのバルーン支持部64b間にバルーンBが介挿される。バルーンBは、バルーン支持部64bにおいて脱落不能に取着されており、複数の円環体64a同士が、バルーン支持部64b間に介挿されたバルーンBによって軸方向に連結された状態とされる。
各バルーンBに対しては、図外のチューブ等の流路を介して流体の給排が可能とされており、制御装置5が膨張対象とするバルーンB、及び各バルーンBに対する流体の給排を制御することで、バルーンBが膨張した側のバルーン支持部64b同士が軸方向に離間し、収縮した側のバルーン支持部64b同士が軸方向に近接することから、筒連結部61を自在に曲げることが可能となる(図5(b)参照)。尚、バルーン支持部64bを増設すると共に、介在するバルーンBの数を増やす程、筒連結部61の曲げ方向の自由度を高めることが可能となり、限りなく全方位に曲げることが可能となる。
Example of folding device 2
As shown in FIG. 5, for example, the folding device 63 may be configured by using a contraction mechanism 63B in which a balloon B that contracts by supplying and discharging a fluid is interposed. The contraction mechanism 63B is attached around the flexible tubular connecting portion 61, and includes a plurality of (four in the drawing) torus 64a surrounding the tubular connecting portion 61. The plurality of torus 64a are arranged between the flanges 65; 65 along the axial direction of the tubular connecting portion 61, and a balloon support portion 64b protruding outward in the radial direction is formed on the peripheral surface thereof. A plurality of balloon support portions 64b are formed at equal intervals (for example, 90 degree intervals, the same applies to the following description) along the circumferential direction of the cylinder connecting portion 61, and the balloon support of the annular body 64a adjacent in the axial direction is formed. A balloon B is inserted between the portions 64b. The balloon B is attached to the balloon support portion 64b so as not to fall off, and the plurality of torus 64a are connected to each other in the axial direction by the balloon B inserted between the balloon support portions 64b. ..
Fluid can be supplied and discharged to each balloon B through a flow path such as a tube (not shown), and the balloon B to be expanded by the control device 5 and the fluid supplied and discharged to each balloon B. By controlling the above, the balloon support portions 64b on the side where the balloon B is inflated are separated from each other in the axial direction, and the balloon support portions 64b on the side where the balloon B is contracted are close to each other in the axial direction. It can be bent (see FIG. 5 (b)). As the number of balloon support portions 64b is increased and the number of intervening balloons B is increased, the degree of freedom in the bending direction of the cylinder connecting portion 61 can be increased, and the cylinder connecting portion 61 can be bent in all directions as much as possible.

折曲装置の例3
折曲装置63を例えば図6に示すように、ボールねじ63D,63Eを用いて構成してもよい。同図においてボールねじ63Dは左ねじ、ボールねじ63Eは右ねじ、63Fは推進ユニット8に形成されたナットハウジングであって、ボールねじ63D及びボールねじ63Eとそれぞれ螺合する。フランジ65には、上記ボールねじ63D,63Eを挿通可能な円孔が形成されている。ボールねじ63D,63Eは互いに自在継手(ユニバーサルジョイント)63Cによって連結される。例えば、ボールねじ63Dの一端部には、制御装置によって駆動制御される図外のモータが接続されており、モータの駆動による回転力は、ボールねじ63D及び自在継手63Cによって連結されたボールねじ63Eにも伝達される。このようなボールねじ機構は、例えば前述の実施形態と同様に筒連結部61の周囲に等間隔(例えば90度間隔)で配設されており、図6(b)に示すように、等間隔に配設された一部のボールねじ機構についてモータを正方向に駆動させ、他部のボールねじ機構についてモータを逆方向に駆動させることにより、筒連結部61により連結された筒状体6同士の距離を離間又は近接させることができ、筒連結部61を曲げることが可能となる。
Example of folding device 3
The folding device 63 may be configured by using the ball screws 63D and 63E, for example, as shown in FIG. In the figure, the ball screw 63D is a left-hand screw, the ball screw 63E is a right-hand screw, and 63F is a nut housing formed on the propulsion unit 8, which is screwed with the ball screw 63D and the ball screw 63E, respectively. The flange 65 is formed with a circular hole through which the ball screws 63D and 63E can be inserted. The ball screws 63D and 63E are connected to each other by a universal joint 63C. For example, a motor (not shown) driven and controlled by a control device is connected to one end of the ball screw 63D, and the rotational force generated by driving the motor is the ball screw 63E connected by the ball screw 63D and the universal joint 63C. Is also transmitted to. Such a ball screw mechanism is arranged around the cylinder connecting portion 61 at equal intervals (for example, at 90 degree intervals) as in the above-described embodiment, and as shown in FIG. 6B, the ball screw mechanisms are evenly spaced. By driving the motor in the forward direction for some of the ball screw mechanisms arranged in the above and driving the motor in the opposite direction for the other ball screw mechanisms, the tubular bodies 6 connected by the cylinder connecting portion 61 are connected to each other. Can be separated or brought close to each other, and the cylinder connecting portion 61 can be bent.

折曲装置の例4
折曲装置63を例えば図7に示すように、シリンダーピストン63Gを用いて構成してもよい。図7において、63Hは、フランジ65上に配設された椀状の受け部である。筒連結部61を挟む各フランジ65;65に配設された受け部63Hには、当該受け部63Hによって脱落不能とされ、内部における回転が許容される球部64Iを両端部に備えたシリンダーピストン63Gが配設される。シリンダーピストン63Gは、上述の機構と同様に筒連結部61の周方向に等間隔となるように配設され、制御装置5によって各シリンダーピストン63Gの伸長を制御することにより、筒連結部61を全方位に曲げることが可能となる。
Example of folding device 4
The folding device 63 may be configured using a cylinder piston 63G, for example, as shown in FIG. In FIG. 7, reference numeral 63H is a bowl-shaped receiving portion arranged on the flange 65. The receiving portions 63H arranged on the flanges 65; 65 sandwiching the cylinder connecting portion 61 are provided with ball portions 64I at both ends, which are prevented from falling off by the receiving portion 63H and are allowed to rotate inside. 63G is arranged. The cylinder pistons 63G are arranged at equal intervals in the circumferential direction of the cylinder connecting portions 61 as in the above mechanism, and the cylinder connecting portions 61 are controlled by the control device 5 to control the extension of each cylinder piston 63G. It can be bent in all directions.

折曲装置の例5
折曲装置63を例えば図8に示すように、前述の伸縮ユニット63Aに接続されたワイヤ63Iを牽引することにより筒連結部61を曲げる構成としてもよい。具体的には、伸縮ユニット63Aの一端をフランジ65に固定するとともに、伸縮ユニット63Aの他端にワイヤ63Iの一端を連結する。筒連結部61の周囲には、半径方向に突出するワイヤ挿通部63Kが周方向に等間隔(例えば90度間隔)に形成される。軸方向に隣接する各ワイヤ挿通部63K同士は、軸方向に所定の間隔を有して離間しており、図外の挿通孔を介してワイヤ63Iが挿通される。ワイヤ63Iの他端部には、固定部63Jが取り付けられ、上方に位置する伸縮ユニット63Aから最も遠い位置にあるワイヤ挿通部63Kに対して固着される。図8(b)に示すように、当該機構において、制御装置5が伸縮ユニット63Aに対する流体の給排を制御し、一部の伸縮ユニット63Aを収縮させてワイヤ63Iを伸縮ユニット63A側に牽引し、他部の伸縮ユニット63Aを伸長させてワイヤ63Iを伸縮ユニット63Aから離れる方向に押し出すことによって、各ワイヤ挿通部63K同士が近接又は離間するため、筒連結部61を全方位に曲げることが可能となる。
Example of folding device 5
As shown in FIG. 8, for example, the folding device 63 may be configured to bend the cylinder connecting portion 61 by pulling the wire 63I connected to the telescopic unit 63A described above. Specifically, one end of the telescopic unit 63A is fixed to the flange 65, and one end of the wire 63I is connected to the other end of the telescopic unit 63A. Around the cylinder connecting portion 61, wire insertion portions 63K projecting in the radial direction are formed at equal intervals (for example, 90 degree intervals) in the circumferential direction. The wire insertion portions 63K adjacent to each other in the axial direction are separated from each other with a predetermined interval in the axial direction, and the wire 63I is inserted through an insertion hole (not shown). A fixing portion 63J is attached to the other end of the wire 63I and is fixed to the wire insertion portion 63K located at the position farthest from the telescopic unit 63A located above. As shown in FIG. 8B, in the mechanism, the control device 5 controls the supply and discharge of fluid to the expansion / contraction unit 63A, contracts a part of the expansion / contraction unit 63A, and pulls the wire 63I toward the expansion / contraction unit 63A. By extending the telescopic unit 63A of the other portion and pushing the wire 63I away from the telescopic unit 63A, the wire insertion portions 63K are brought close to each other or separated from each other, so that the tubular connecting portion 61 can be bent in all directions. It becomes.

折曲装置の例6
スカート部7と先端側円筒62Aとを連結する先端側の筒連結部61を曲げる折曲装置63については、図9に示すように上述の折曲装置の例4と同様に、球部64Iを両端部に備えたシリンダーピストン63Gを受け部63Hによって回転自在に拘束する球面ジョイントを用いた構成としてもよい。当該構成によれば、筒連結部61を全方位に曲げることが可能となり、スカート部7を掘削方向に応じて自在に曲げることが可能となる
Example of folding device 6
Regarding the bending device 63 that bends the cylinder connecting portion 61 on the tip side that connects the skirt portion 7 and the cylinder portion 62A on the tip side, as shown in FIG. 9, the spherical portion 64I is used in the same manner as in Example 4 of the bending device described above. A spherical joint that is rotatably restrained by the receiving portions 63H of the cylinder pistons 63G provided at both ends may be used. According to this configuration, the cylinder connecting portion 61 can be bent in all directions, and the skirt portion 7 can be freely bent according to the excavation direction.

スカート部7は、後端開口の直径が、円筒体62の先端開口の直径と対応するように形成され、先端開口の直径が、後端開口の直径よりも大きい寸法に形成されて、かつ、スクリュ24の螺旋羽根22の先端の回転径よりも小さい寸法に形成された筒体により構成される。即ち、スカート部7の筒孔の直径は、後端開口側から先端開口側に向かうに従って徐々に漸増するように形成される。つまり、スカート部7の筒孔の内周面は、円錐台の外周面と対応した面に形成されている。 The skirt portion 7 is formed so that the diameter of the rear end opening corresponds to the diameter of the tip opening of the cylindrical body 62, the diameter of the tip opening is formed to be larger than the diameter of the rear end opening, and the skirt portion 7 is formed. The screw 24 is composed of a cylinder formed to a size smaller than the rotation diameter of the tip of the spiral blade 22. That is, the diameter of the tubular hole of the skirt portion 7 is formed so as to gradually increase from the rear end opening side toward the front end opening side. That is, the inner peripheral surface of the tubular hole of the skirt portion 7 is formed on the surface corresponding to the outer peripheral surface of the truncated cone.

図1に示すように、筒状体6及びスカート部7の筒孔を貫通して筒状体6の後端開口6eより後方に突出するスクリュ24の後端に連結されたモータ51が、モータ固定部52に固定される。そして、当該モータ固定部52が支持部53を介して筒状体6の後端のフランジに連結されていることで、筒状体6の中心軸とスクリュ24の中心軸とが一致して、かつ、スクリュ24の先端側がスカート部7の先端開口7eよりも前方に位置するように、スクリュ24が配置される。また、スクリュ24の先端側がスカート部7の先端開口7eよりも前方に位置し、かつ、スクリュ24の螺旋羽根22の先端の回転径がスカート部7の先端開口7eの外周の直径よりも大きく形成されていることにより、既に掘削した掘削穴の内壁から掘削土が崩れて穴底側に落下した場合でも、当該崩れた掘削土がスクリュ24により後方に搬送されるので、効率よく掘削することができる。 As shown in FIG. 1, the motor 51 connected to the rear end of the screw 24 which penetrates the tubular hole of the tubular body 6 and the skirt portion 7 and projects rearward from the rear end opening 6e of the tubular body 6 is a motor. It is fixed to the fixing portion 52. Then, since the motor fixing portion 52 is connected to the flange at the rear end of the tubular body 6 via the support portion 53, the central axis of the tubular body 6 and the central axis of the screw 24 coincide with each other. The screw 24 is arranged so that the tip side of the screw 24 is located in front of the tip opening 7e of the skirt portion 7. Further, the tip side of the screw 24 is located in front of the tip opening 7e of the skirt portion 7, and the rotation diameter of the tip of the spiral blade 22 of the screw 24 is formed to be larger than the outer diameter of the outer circumference of the tip opening 7e of the skirt portion 7. Therefore, even if the excavated soil collapses from the inner wall of the excavated hole that has already been excavated and falls to the bottom side of the hole, the collapsed excavated soil is transported to the rear by the screw 24, so that excavation can be performed efficiently. it can.

尚、筒状体6の筒連結部61及び掘削具20の軸連結部26は、筒状体6及び掘削具20の中心軸と直交する同一平面上、又は、当該同一平面近傍位置に設けられることが好ましい。このようにすることで、筒連結部61を曲げた場合に追従して曲がる軸連結部26の追従性が良好になり、掘削装置2の進行方向制御を正確に行うことができるようになる。 The tubular connecting portion 61 of the tubular body 6 and the shaft connecting portion 26 of the excavator 20 are provided on the same plane orthogonal to the central axis of the tubular body 6 and the excavator 20, or at a position near the same plane. Is preferable. By doing so, the followability of the shaft connecting portion 26 that bends following the bending of the cylinder connecting portion 61 is improved, and the traveling direction of the drilling device 2 can be accurately controlled.

即ち、実施形態1の掘削装置2は、掘削具20と、筒内に掘削具20が設置された状態で折曲可能に構成された筒状体6と、掘削具20の駆動源としてのモータ51と、制御装置5とを備え、筒状体6は、複数の分割円筒62A,62B,62Cの端部同士が折曲可能な筒連結部61を介して連結されるとともに、筒連結部61を折曲させる折曲装置63を備え、掘削具20は、回転軸21が筒状体6の中心軸に沿って延長するように筒状体6の内側に配置され、制御装置5が、モータ51を制御して掘削具20の回転軸21を回転させるとともに、折曲装置63を制御して筒連結部61を折曲させることにより、筒連結部61の折れ曲がりに追従して掘削具20の軸連結部26が折れ曲がるように構成されたことにより、曲進掘削が可能な掘削装置2となる。 That is, the excavator 2 of the first embodiment includes the excavator 20, a tubular body 6 configured to be bendable with the excavator 20 installed in the cylinder, and a motor as a drive source for the excavator 20. The tubular body 6 includes the 51 and the control device 5, and the ends of the plurality of divided cylinders 62A, 62B, 62C are connected to each other via a bendable tubular connecting portion 61, and the tubular connecting portion 61 is connected. The excavator 20 is provided with a folding device 63 for bending the excavator, the rotating shaft 21 is arranged inside the tubular body 6 so as to extend along the central axis of the tubular body 6, and the control device 5 is a motor. By controlling 51 to rotate the rotating shaft 21 of the excavator 20 and controlling the bending device 63 to bend the cylinder connecting portion 61, the excavator 20 follows the bending of the cylinder connecting portion 61. Since the shaft connecting portion 26 is configured to be bent, the excavation device 2 is capable of curved excavation.

図1に戻り、推進装置3について説明する。
推進装置3は、筒状体6の周囲に設けられた複数の推進ユニット8を備えて構成される。各推進ユニット8は、先端側円筒62A、中間側円筒62B、後端側円筒62Cの筒の外周面に配設される。
Returning to FIG. 1, the propulsion device 3 will be described.
The propulsion device 3 includes a plurality of propulsion units 8 provided around the tubular body 6. Each propulsion unit 8 is arranged on the outer peripheral surface of the cylinders of the front end side cylinder 62A, the intermediate side cylinder 62B, and the rear end side cylinder 62C.

図10は、推進ユニット8の一例を示す概略断面図である。なお、各推進ユニット8の構成は同様であるので、中間側円筒62Bに配置された推進ユニット8を例として説明する。図10に示すように、推進ユニット8は、内周面側に前述のスクリュ24を挿通可能な空間を有する略円筒状の中間側円筒62Bの外周面側に配設される。推進ユニット8は、中間側円筒62Bを取り囲むように軸方向に延長する円筒状の外郭筒81A;81Bと、当該外郭筒81A;81Bを互いに軸方向に連結すると共に外郭筒81A;81Bの伸縮動作を許容する伸縮部81Cと、外郭筒81A;81Bの軸方向に渡って延長し、外郭筒81A;81Bの周囲を取り囲む弾性膨張体82とを備える。外郭筒81A;81Bのそれぞれの一端側には、前述のフランジ65が設けられている。伸縮部81Cは、例えば、可撓性を有する部材により構成され、その軸方向に沿って伸縮可能な蛇腹状に形成される。伸縮部81Cの両端部の内周面は、外郭筒81A;81Bの両端部の外周面に液密かつ強固に固定される。弾性膨張体82は、前述の伸縮体63bと同様に内部に、軸方向に沿って延長する複数のカーボンロービング繊維等により形成された繊維層が内挿されており、当該繊維層の両端部は、弾性膨張体82と共に外郭筒81A;81Bの外周面に対して強固に固定される。当該構成により、推進ユニット8内には、外郭筒81A;81Bと弾性膨張体82との間に流体を導入可能な気室Sが形成される。気室S内には、制御装置5の制御によって、一方の外郭筒81Bにおいてフランジ65を貫通して気室Sに至る貫通孔として設けられた給排孔83aに図外のチューブ等の流路を接続することにより、油や空気等の流体が給排可能に構成される。気室S内に流体が導入されると、弾性膨張体82は、前述の伸縮体63bと同様に軸方向への伸長が規制されることによって、径方向に膨張(拡径)すると共に、伸縮部81Cが縮められて軸方向に収縮した状態で図1に示す後述のランチャ31や掘削孔の壁面と密に接することが可能となる。そして、拡径した状態から流体が排出されると、拡径した弾性膨張体82が縮径すると共に軸方向に伸長する。このような、拡径及び収縮、縮径と伸長の動作が可能な推進ユニット8を複数備え、制御装置5によって拡径動作及び縮径動作がそれぞれの推進ユニット8に対して所定の周期で繰り返し実行されることにより、いずれかの推進ユニット8が拡径して外周面に接した状態において掘削に必要な反力が得られると共に、拡径した推進ユニットが縮径して外周面から離れた状態において掘削方向(図1では先端側)に伸長するため、蠕動運動による推進力を得ることができる。なお、スクリュ24は、軸方向の長さが、上記推進装置3の蠕動運動による軸線方向の長さの変化を考慮して設定されている。 FIG. 10 is a schematic cross-sectional view showing an example of the propulsion unit 8. Since the configuration of each propulsion unit 8 is the same, the propulsion unit 8 arranged in the intermediate side cylinder 62B will be described as an example. As shown in FIG. 10, the propulsion unit 8 is arranged on the outer peripheral surface side of a substantially cylindrical intermediate side cylinder 62B having a space on the inner peripheral surface side through which the screw 24 can be inserted. The propulsion unit 8 connects the cylindrical outer cylinder 81A; 81B extending in the axial direction so as to surround the intermediate cylinder 62B and the outer cylinder 81A; 81B in the axial direction, and expands and contracts the outer cylinder 81A; 81B. 81C is provided with an elastic expansion body 82 that extends in the axial direction of the outer cylinder 81A; 81B and surrounds the outer cylinder 81A; 81B. The above-mentioned flange 65 is provided on one end side of each of the outer cylinders 81A; 81B. The telescopic portion 81C is composed of, for example, a flexible member, and is formed in a bellows shape that can be stretched along the axial direction thereof. The inner peripheral surfaces of both ends of the telescopic portion 81C are liquidtightly and firmly fixed to the outer peripheral surfaces of both ends of the outer cylinder 81A; 81B. Similar to the above-mentioned stretchable body 63b, the elastic expansion body 82 has a fiber layer formed of a plurality of carbon roving fibers extending along the axial direction interpolated therein, and both ends of the fiber layer are interpolated. , Together with the elastic expander 82, is firmly fixed to the outer peripheral surface of the outer cylinder 81A; 81B. With this configuration, an air chamber S capable of introducing a fluid is formed in the propulsion unit 8 between the outer cylinder 81A; 81B and the elastic expansion body 82. In the air chamber S, under the control of the control device 5, a flow path such as a tube (not shown) is provided in the supply / discharge hole 83a provided as a through hole that penetrates the flange 65 in one outer cylinder 81B and reaches the air chamber S. By connecting the above, fluids such as oil and air can be supplied and discharged. When a fluid is introduced into the air chamber S, the elastic expansion body 82 expands (diameters) in the radial direction and expands and contracts by restricting the extension in the axial direction in the same manner as the above-mentioned expansion and contraction body 63b. In a state where the portion 81C is contracted and contracted in the axial direction, it is possible to make close contact with the launcher 31 and the wall surface of the excavation hole described later shown in FIG. Then, when the fluid is discharged from the expanded state, the expanded elastic expander 82 contracts in diameter and extends in the axial direction. A plurality of propulsion units 8 capable of such operations of diameter expansion and contraction, diameter reduction and extension are provided, and the diameter expansion operation and diameter reduction operation are repeated for each propulsion unit 8 at a predetermined cycle by the control device 5. By executing this, the reaction force required for excavation is obtained in a state where one of the propulsion units 8 is expanded in diameter and is in contact with the outer peripheral surface, and the increased diameter propulsion unit is reduced in diameter and separated from the outer peripheral surface. Since it extends in the excavation direction (tip side in FIG. 1) in the state, it is possible to obtain propulsive force by the peristaltic motion. The length of the screw 24 in the axial direction is set in consideration of a change in the length in the axial direction due to the peristaltic movement of the propulsion device 3.

なお、推進ユニット8を備えない掘削装置を用い、掘削具の回転軸を回転させるだけで地盤Eを掘り下げていく場合、掘り進めるに従って土圧が重力に勝って掘削装置による掘削が進まなくなる可能性がある。しかしながら、推進ユニット8を備えた掘削推進装置1を用いれば、推進ユニット8と壁との摩擦を利用した蠕動運動により掘削推進装置1が掘進するため、土圧に関係なく、曲進掘削が可能となる。 If a drilling device without a propulsion unit 8 is used and the ground E is dug down simply by rotating the rotation axis of the drilling tool, the earth pressure may overcome the gravity and the drilling by the drilling device may not proceed as the drilling progresses. There is. However, if the excavation propulsion device 1 provided with the propulsion unit 8 is used, the excavation propulsion device 1 excavates by the peristaltic motion utilizing the friction between the propulsion unit 8 and the wall, so that the excavation propulsion device 1 can excavate regardless of the earth pressure. It becomes.

図1において、31は掘削装置の発進基地(ランチャ)であり、この発進基地(ランチャ31)は、例えば先端開口縁が鋭利に形成された円筒体により構成される。 In FIG. 1, reference numeral 31 denotes a starting base (launcher) for an excavator, and the starting base (launcher 31) is composed of, for example, a cylindrical body having a sharply formed tip opening edge.

また、図1に示すように、筒状体6の後端には、筒状体6の後端開口6eより後方に排出される掘削土を後方に導く排出路41が連結される。そして、モータ固定部52を筒状体6の後端に連結する支持部53には、筒状体6の後端開口6eと排出路41とを連通させる連通孔54が形成されている。
従って、モータ51を駆動してスクリュ24を回転させることにより、スクリュ24の先端の掘削ビット23により掘削された掘削土がスクリュ24の螺旋羽根22の螺旋運動によって筒状体6の筒孔内の後方に搬送され、後端開口6eより排出され、かつ、連通孔54を介して排出路41に排出されるように構成されている。
Further, as shown in FIG. 1, a discharge path 41 for guiding the excavated soil discharged rearward from the rear end opening 6e of the tubular body 6 is connected to the rear end of the tubular body 6. The support portion 53 that connects the motor fixing portion 52 to the rear end of the tubular body 6 is formed with a communication hole 54 that connects the rear end opening 6e of the tubular body 6 and the discharge path 41.
Therefore, by driving the motor 51 to rotate the screw 24, the excavated soil excavated by the excavation bit 23 at the tip of the screw 24 is formed in the tubular hole of the tubular body 6 by the spiral motion of the spiral blade 22 of the screw 24. It is configured to be conveyed rearward, discharged from the rear end opening 6e, and discharged to the discharge path 41 through the communication hole 54.

排出路41の後方には図外の掘削土収容部が設けられる。即ち、抽出装置4は、少なくとも、連通孔54を通過して後方に搬送されてくる掘削土を収容する掘削土収容部と、連通孔54から当該掘削土収容部への掘削土の排出路41とを備えた構成である。尚、掘削土収容部の大きさは、例えば調査に必要となる掘削土の量に応じて変更可能に構成される。
即ち、抽出装置4は、掘削具20の掘削ビット23により掘削されて螺旋羽根22の螺旋回転により後方に搬送される掘削土を収容する掘削土収容部を備え、例えば当該掘削土収容部が排出路41の後方に着脱可能に構成されている。
従って、掘削具20の掘削ビット23により掘削されて螺旋羽根25の螺旋回転により後方に搬送される掘削土が掘削土収容部に収容され、掘削終了後、掘削土収容部を取り外して、掘削土を回収できるように構成されている。
An excavated soil accommodating portion (not shown) is provided behind the discharge path 41. That is, the extraction device 4 has at least an excavated soil accommodating portion for accommodating excavated soil that has passed through the communication hole 54 and is transported rearward, and an excavated soil discharge path 41 from the communication hole 54 to the excavated soil accommodating portion. It is a configuration with and. The size of the excavated soil accommodating portion can be changed according to, for example, the amount of excavated soil required for the survey.
That is, the extraction device 4 includes an excavated soil accommodating portion for accommodating excavated soil excavated by the excavation bit 23 of the excavator 20 and conveyed rearward by the spiral rotation of the spiral blade 22, for example, the excavated soil accommodating portion discharges. It is configured to be removable behind the road 41.
Therefore, the excavated soil excavated by the excavation bit 23 of the excavator 20 and transported backward by the spiral rotation of the spiral blade 25 is housed in the excavated soil accommodating portion, and after the excavation is completed, the excavated soil accommodating portion is removed and the excavated soil is excavated. Is configured to be recoverable.

実施形態に係る掘削推進装置1は、例えば、海底下調査において使用される。この場合、実施形態1の掘削推進装置1を遠隔操縦して海底地盤を掘削する。また、本調査においては、土圧の関係から推進ユニット8に供給する流体を油とし、油圧によって拡径,縮径動作させることが好ましい。具体的には、まず、ランチャ31内に掘削装置2及び推進装置3を備えた掘削推進装置1を海底に沈め、ランチャ31の先端開口縁を海底地盤に突き刺す。そして、制御装置5により、モータ51及び推進ユニット8を制御して掘削推進装置1を掘進させる。この場合、最初は、スクリュ24の回転、及び、推進ユニット8とランチャ31の内壁との摩擦を利用した蠕動運動によって、掘削装置2及び推進装置3が海底地盤を掘進し始める。そして、推進ユニット8が海底地盤を掘削した掘削孔内に入った場合には、スクリュ24の回転、及び、推進ユニット8と掘削孔の内壁との摩擦を利用した蠕動運動によって掘削装置2、推進装置3及び抽出装置4が海底地盤をさらに掘進する。なお、蠕動運動を生じさせるには、図1に示す状態から先端側円筒62A、中間側円筒62B、後端側円筒62Cに配設された推進ユニット8を所定の周期で順次拡径,縮径動作させれば良い。また、掘削装置2の掘進方向を変更は、制御装置5により複数の実施形態を用いて示した折曲装置63を制御して筒連結部61を曲げ、当該筒連結部61に追従させるように軸連結部26を曲げることにより行われる。
そして、海底に沿って海底地盤中を掘進する作業を行った後に、掘削装置2及び推進装置3を海底に向けて曲げるように制御して、掘削装置2及び推進装置3を海底に戻し、かつ、掘削装置2、推進装置3及び抽出装置4を海面に浮上させて回収する。そして、抽出装置4の掘削土収容部に収容されている掘削土を採取して所望の調査を行う。
The excavation propulsion device 1 according to the embodiment is used, for example, in an undersea survey. In this case, the excavation propulsion device 1 of the first embodiment is remotely controlled to excavate the seabed ground. Further, in this survey, it is preferable that the fluid supplied to the propulsion unit 8 is oil because of the earth pressure, and the diameter is expanded or reduced by hydraulic pressure. Specifically, first, the drilling propulsion device 1 provided with the drilling device 2 and the propulsion device 3 is submerged in the launcher 31, and the tip opening edge of the launcher 31 is pierced into the seabed ground. Then, the control device 5 controls the motor 51 and the propulsion unit 8 to dig the excavation propulsion device 1. In this case, first, the drilling device 2 and the propulsion device 3 start digging the seabed ground by the rotation of the screw 24 and the peristaltic motion utilizing the friction between the propulsion unit 8 and the inner wall of the launcher 31. Then, when the propulsion unit 8 enters the excavation hole excavated from the seabed ground, the excavation device 2 is propelled by the rotation of the screw 24 and the peristaltic movement utilizing the friction between the propulsion unit 8 and the inner wall of the excavation hole. The device 3 and the extraction device 4 further excavate the seabed ground. In order to generate the peristaltic motion, the propulsion units 8 arranged in the front end side cylinder 62A, the middle side cylinder 62B, and the rear end side cylinder 62C are sequentially expanded and reduced in diameter at a predetermined cycle from the state shown in FIG. Just make it work. Further, when changing the drilling direction of the drilling device 2, the control device 5 controls the bending device 63 shown using the plurality of embodiments to bend the cylinder connecting portion 61 so as to follow the cylinder connecting portion 61. This is done by bending the shaft connecting portion 26.
Then, after performing the work of digging in the seabed ground along the seabed, the excavation device 2 and the propulsion device 3 are controlled to bend toward the seabed, and the excavation device 2 and the propulsion device 3 are returned to the seabed. , The excavation device 2, the propulsion device 3, and the extraction device 4 are floated on the sea surface and collected. Then, the excavated soil contained in the excavated soil accommodating portion of the extraction device 4 is collected and a desired survey is conducted.

上記実施形態に係る掘削推進装置1によれば、掘削具20の周りに配置された筒状体6を曲げる構造として、制御装置5が筒状体6の折曲装置63を制御して筒連結部61を曲げることにより、掘削具20の軸連結部26も追従して曲がるように構成されているので、曲進掘削が可能となり、広い範囲の地盤調査等が可能となる。 According to the excavation propulsion device 1 according to the above embodiment, the control device 5 controls the bending device 63 of the tubular body 6 to connect the cylinders 6 as a structure for bending the tubular body 6 arranged around the excavator 20. By bending the portion 61, the shaft connecting portion 26 of the excavator 20 is also configured to follow and bend, so that curved excavation is possible, and a wide range of ground surveys and the like are possible.

また、上記実施形態係る掘削具20によれば、回転軸21と、回転軸21に沿った方向に螺旋状に延長するように回転軸21の周りに設けられた螺旋体としての螺旋羽根22と、回転軸21及び螺旋羽根22の先端側に設けられた掘削手段としての掘削ビット23とを備え、回転軸21が折曲可能に構成されたので、曲進可能な掘削具を得ることができる。 Further, according to the excavator 20 according to the above embodiment, the rotating shaft 21 and the spiral blade 22 as a spiral body provided around the rotating shaft 21 so as to extend spirally in the direction along the rotating shaft 21. Since the rotating shaft 21 and the excavating bit 23 as an excavating means provided on the tip end side of the spiral blade 22 are provided and the rotating shaft 21 is configured to be bendable, a bendable excavator can be obtained.

また、上記実施形態に係る筒状体6によれば、複数の分割円筒62A,62B,62Cの端部同士が、折曲可能な筒連結部61を介して連結されるとともに、制御装置5によって制御され、筒連結部61の少なくとも1つを折曲させる折曲装置63を備え、制御装置5が折曲装置63を制御することよって筒連結部61が折曲するように構成されたので、制御装置5による制御で折曲可能でかつ折曲角度を調整可能な筒状体6を得ることができる。
そして、回転軸21が筒状体6の中心軸に沿って延長するように当該筒状体の内側に掘削具20が配置されて掘削装置2が構成されていることにより、曲進掘削が可能な掘削装置2を得ることができる。
即ち、折曲可能に構成された筒状体6内に掘削具20を設置し、筒状体6の筒連結部61を折り曲げるように制御することによって、掘削具20の軸連結部26を折り曲げて、曲進掘削を行う掘削方法を実現可能となった。
なお、上記例では、筒状体6を金属等の剛体により形成された複数の分割円筒62A,62B,62Cを筒連結部61で連結することにより、折曲可能な構成としたが、筒状体6を例えば可撓性を有するゴムやコイルばね等により構成し、筒連結部61を省略した構成としてもよい。
Further, according to the tubular body 6 according to the above embodiment, the ends of the plurality of divided cylinders 62A, 62B, 62C are connected to each other via the bendable tubular connecting portion 61, and are connected by the control device 5. A folding device 63 that is controlled and bends at least one of the cylinder connecting portions 61 is provided, and the cylinder connecting portion 61 is configured to bend by controlling the folding device 63 by the control device 5. A tubular body 6 that can be bent and whose bending angle can be adjusted can be obtained under the control of the control device 5.
Then, the excavating tool 20 is arranged inside the tubular body so that the rotating shaft 21 extends along the central axis of the tubular body 6, and the excavating device 2 is configured, so that curved excavation is possible. Excavation device 2 can be obtained.
That is, the excavator 20 is installed in the tubular body 6 configured to be bendable, and the shaft connecting portion 26 of the excavating tool 20 is bent by controlling the tubular body 6 to bend the tubular connecting portion 61. As a result, it has become possible to realize an excavation method that performs curved excavation.
In the above example, the tubular body 6 is connected to a plurality of divided cylinders 62A, 62B, 62C formed of a rigid body such as metal by a tubular connecting portion 61 so that the tubular body 6 can be bent. The body 6 may be formed of, for example, flexible rubber, a coil spring, or the like, and the cylinder connecting portion 61 may be omitted.

尚、上記実施形態では、筒状体6のすべての折曲装置63を制御装置で制御する、即ち、筒状体6のすべての筒連結部61をアクティブ構造にして制御により曲げる方式を例示したが、筒状体6の先頭側の筒連結部、即ち、先端側円筒62Aの前端とスカート部7の後端とを連結する先頭側の筒連結部61を折曲させる折曲装置63のみを制御装置5で制御して、先頭側の筒連結部61以外の筒連結部61は、先頭側の筒連結部61の曲がりに追従して曲がるように構成してもよい。即ち、筒状体の先頭側の筒連結部61のみを折曲装置63を備えたアクティブ構造にして制御装置5の制御によって曲げるようにし、先頭側の筒連結部61以外の筒連結部61については、折曲装置63を備えないパッシブ構造にして追従させる方式としてもよい。 In the above embodiment, a method in which all the bending devices 63 of the tubular body 6 are controlled by the control device, that is, all the tubular connecting portions 61 of the tubular body 6 are made active and bent by control is exemplified. However, only the folding device 63 that bends the tubular connecting portion on the leading side of the tubular body 6, that is, the tubular connecting portion 61 on the leading side that connects the front end of the distal cylindrical 62A and the rear end of the skirt portion 7. Controlled by the control device 5, the cylinder connecting portion 61 other than the cylinder connecting portion 61 on the leading side may be configured to bend following the bending of the cylinder connecting portion 61 on the leading side. That is, only the tubular connecting portion 61 on the leading side of the tubular body is formed into an active structure provided with the bending device 63 so as to be bent under the control of the control device 5, and the tubular connecting portion 61 other than the tubular connecting portion 61 on the leading side is May be a method in which the folding device 63 is not provided and the passive structure is formed so as to follow.

また、上記実施形態では、筒状体6の筒連結部61をアクティブ構造にして制御により曲げる方式とするとともに、掘削具20の軸連結部26をパッシブ構造にして筒状体6の曲げに追従させる方式とした構成の掘削推進装置1を例示したが、掘削具20の軸連結部26をアクティブ構造にして制御により曲げる方式とするとともに、筒状体6の筒連結部61をパッシブ構造にして掘削具20の曲げに追従させる方式とした構成の掘削推進装置1としてもよい。掘削具20をアクティブ構造とする場合には、例えば図4乃至図8で例示した折曲装置63を中空状とした回転軸21の内部に収容する構成とすれば良い。このような構成とすれば、筒状体6に設けられた折曲装置63を省略でき、筒状体6を掘削具20の折曲に対して追従させることができる。また、筒状体6及び掘削具20の両方にいずれかの折曲装置63を配設することにより、両構成をアクティブ構造とすることも可能である。 Further, in the above embodiment, the tubular connecting portion 61 of the tubular body 6 has an active structure and is bent by control, and the shaft connecting portion 26 of the excavator 20 has a passive structure to follow the bending of the tubular body 6. An example of the excavation propulsion device 1 having a configuration in which the excavation tool 20 is used is illustrated. The excavation propulsion device 1 may be configured to follow the bending of the excavator 20. When the excavator 20 has an active structure, for example, the bending device 63 illustrated in FIGS. 4 to 8 may be housed inside the hollow rotating shaft 21. With such a configuration, the folding device 63 provided on the tubular body 6 can be omitted, and the tubular body 6 can be made to follow the bending of the excavator 20. Further, by disposing either of the bending devices 63 on both the tubular body 6 and the excavator 20, both configurations can be made into an active structure.

また、掘削具20は、軸連結部26が、可撓性を有した材料、例えば、ゴム、あるいは、コイルばねなどの弾性体により形成された構成であってもよい。 Further, the excavator 20 may have a structure in which the shaft connecting portion 26 is formed of a flexible material, for example, rubber or an elastic body such as a coil spring.

また、掘削具20は、軸連結部26を備えずに、回転軸のすべてが可撓性を有した材料、例えば、ゴム、あるいは、コイルばねなどの弾性体により形成されて、当該ゴムにより形成された回転軸、あるいは、コイルばねにより形成された回転軸の周りに螺旋体が設けられた構成であってもよい。 Further, the excavator 20 is not provided with the shaft connecting portion 26, and all of the rotating shafts are formed of a flexible material, for example, rubber or an elastic body such as a coil spring, and the excavator 20 is formed of the rubber. A spiral body may be provided around a rotating shaft formed by a coil spring or a rotating shaft formed by a coil spring.

また、筒状体6を剛体として形成すると共に、予め折曲された構成としてもよい。本実施形態に係る掘削具20によれば、当該折曲された筒状体6に対しても配設できるため、掘削具20の回転によって、筒状体6の折曲形状に沿って掘削することが可能となる。なお、当該構成を採用した場合、掘削の進路が筒状体6によって規定される。 Further, the tubular body 6 may be formed as a rigid body and may be pre-bent. According to the excavator 20 according to the present embodiment, since the excavator 20 can be arranged on the bent tubular body 6, the excavator 20 rotates to excavate along the bent shape of the tubular body 6. It becomes possible. When this configuration is adopted, the excavation course is defined by the tubular body 6.

また、上述した筒状体6と、制御装置5と、筒状体6の各筒部(分割円筒62A,62B,62C)の外周面に取付けられて筒部の中心軸に沿った方向に伸縮可能に構成された推進ユニット8(伸縮ユニット)とを備え、制御装置5が推進ユニット8の伸縮を制御することで、前記推進ユニット8が接触面との摩擦を利用した蠕動運動を行って移動するように構成された筒状移動体を得ることができる。例えば、本出願人による発明である特開2015−152169号公報に開示された管状移動体の代わりに上記構成からなる筒状移動体を用いれば、制御装置5により筒状体6の折曲装置63を制御して筒連結部61を折曲げることが可能となり、例えば、配管内検査等において管内の曲路をスムーズに移動させることが可能な筒状移動体を提供できる。即ち、制御装置5による制御で折曲可能でかつ折曲角度を調整可能な筒状体6を有して曲路をスムーズに移動させることが可能な筒状移動体を提供できる。 Further, it is attached to the outer peripheral surfaces of the above-mentioned tubular body 6, the control device 5, and each tubular portion (divided cylinders 62A, 62B, 62C) of the tubular body 6, and expands and contracts in the direction along the central axis of the tubular portion. A propulsion unit 8 (expansion / contraction unit) configured to be possible is provided, and the control device 5 controls the expansion / contraction of the propulsion unit 8, so that the propulsion unit 8 moves by performing a peristaltic movement utilizing friction with the contact surface. It is possible to obtain a tubular moving body configured to do so. For example, if a tubular moving body having the above configuration is used instead of the tubular moving body disclosed in Japanese Patent Application Laid-Open No. 2015-152169, which is the invention of the present applicant, the control device 5 can be used to bend the tubular body 6. It is possible to control the 63 to bend the tubular connecting portion 61, and for example, it is possible to provide a tubular moving body capable of smoothly moving a curved path in a pipe in an in-pipe inspection or the like. That is, it is possible to provide a tubular moving body that has a tubular body 6 that can be bent under the control of the control device 5 and whose bending angle can be adjusted, and that can smoothly move the curved path.

また、筒部の数をさらに増大し、筒部の端部同士を連結する筒連結部61毎に折曲装置63を備えた構成とすることで、筒状体6の曲げ角度をより細かく調整可能な掘削装置、あるいは、管状移動体となり、曲進掘削、あるいは、曲進をスムーズに行える掘削装置、あるいは、管状移動体を提供できるようになる。 Further, by further increasing the number of tubular portions and configuring each tubular connecting portion 61 for connecting the end portions of the tubular portions with a bending device 63, the bending angle of the tubular body 6 can be adjusted more finely. It becomes possible to provide a possible excavator or a tubular moving body, and to provide an excavating device or a tubular moving body that can perform curved excavation or smooth bending.

また、上記実施形態おいては、直線状に延長するランチャ31によって、掘削推進装置1の初期の掘進方向を設定するものとして説明したが、地盤に対するランチャ31の傾斜角度を変更することや、ランチャ31の形状を予め折曲された形状とし、任意の深さまで突き刺すことにより、任意の方向に向けて掘削を開始させることができる。 Further, in the above embodiment, the launcher 31 extending linearly has been described as setting the initial excavation direction of the excavation propulsion device 1, but the inclination angle of the launcher 31 with respect to the ground can be changed or the launcher can be set. By making the shape of 31 a pre-bent shape and piercing it to an arbitrary depth, excavation can be started in an arbitrary direction.

図11は、推進ユニット8の他の実施形態を示す図である。推進ユニット8は、概略、上記筒状体6が貫通し、当該筒状体6の外周に沿って軸線方向に摺動可能に形成された一対の軸方向可動部材91;91と、各一対の軸方向可動部材91;91の間に配置され、放射状に径方向へ進退可能に支持された複数の径方向可動部材100と、軸方向可動部材91と径方向可動部材100を連動して作動させるためのリンク機構92と、一対の軸方向可動部材91を互いに近接離間させる駆動源となるモーター93と、モーター93の回転駆動を一対の軸方向可動部材91に伝達する伝達機構99とを備える。 FIG. 11 is a diagram showing another embodiment of the propulsion unit 8. The propulsion unit 8 roughly includes a pair of axially movable members 91; 91, which are formed so as to be slidable in the axial direction along the outer circumference of the tubular body 6 through which the tubular body 6 penetrates, and a pair of each. A plurality of radially movable members 100 arranged between the axially movable members 91; 91 and supported radially in a radial direction, and the axially movable member 91 and the radially movable member 100 are operated in conjunction with each other. A link mechanism 92 for this purpose, a motor 93 as a drive source for separating the pair of axially movable members 91 from each other, and a transmission mechanism 99 for transmitting the rotational drive of the motor 93 to the pair of axially movable members 91 are provided.

リンク機構92は、各軸方向可動部材91;91の対向面のそれぞれに突設された支持部材94と、各支持部材94に設けられた2個の軸部95と、各軸部95により一端が回動自在に軸支された二本ずつの平行なアーム96とを備え、各アーム96;96の他端部は径方向可動部材(加圧部材)100に対して軸部97;97によって回動自在に支持される四節平行リンク機構により構成される。 The link mechanism 92 is formed by a support member 94 projecting from each of the facing surfaces of the axially movable members 91; 91, two shaft portions 95 provided on each support member 94, and one end of each shaft portion 95. Is provided with two parallel arms 96 rotatably supported by the shaft portion 97; 97 with respect to the radial movable member (pressurizing member) 100 at the other end of each arm 96; 96. It is composed of a four-node parallel link mechanism that is rotatably supported.

モーター93は、一方の軸方向可動部材91に設けられ、制御装置5によって駆動が制御される。モーター93は、一方の軸方向可動部材91に、少なくとも一個以上、本実施形態では、2個搭載される。伝達機構99は、ボールねじ機構により構成され、他方の軸方向可動部材91の対向面91aから一方の軸方向可動部材91に向けて延長する柱91Aの頂部に設けられたボールナット99Aに、モーター93に連結され、一方の軸方向可動部材91から他方の軸方向可動部材91に向けて延長するボールねじ99Bを螺合することで構成される。 The motor 93 is provided on one of the axially movable members 91, and its drive is controlled by the control device 5. At least one or more motors 93 are mounted on one of the axially movable members 91, and in this embodiment, two motors 93 are mounted. The transmission mechanism 99 is formed by a ball screw mechanism, and is formed by a ball nut 99A provided on the top of a pillar 91A extending from the facing surface 91a of the other axially movable member 91 toward the one axially movable member 91, and a motor. It is configured by screwing a ball screw 99B which is connected to 93 and extends from one axially movable member 91 toward the other axially movable member 91.

図12は、推進ユニット8の伸縮動作を示す図である。図12(a)に示すように、例えば、制御装置5がモーター93を右回転させたときには、ボールねじ99Bがボールナット99Aに螺入され、軸方向可動部材91;91が近接し、径方向可動部材100が半径方向外側に移動して推進ユニット8の軸方向長さが収縮するとともに外径が拡径する。また、図12(b)に示すように、制御装置5がモーター93を左回転させたときには、ボールねじ99Bがボールナット99Aに螺出され、軸方向可動部材91;91が離間し、径方向可動部材100が半径方向内側に移動して推進ユニット8の軸方向長さが伸長するとともに外径が縮径する。 FIG. 12 is a diagram showing an expansion / contraction operation of the propulsion unit 8. As shown in FIG. 12A, for example, when the control device 5 rotates the motor 93 clockwise, the ball screw 99B is screwed into the ball nut 99A, the axially movable members 91; 91 are close to each other, and the radial direction is large. The movable member 100 moves outward in the radial direction, the axial length of the propulsion unit 8 contracts, and the outer diameter increases. Further, as shown in FIG. 12B, when the control device 5 rotates the motor 93 counterclockwise, the ball screw 99B is screwed into the ball nut 99A, the axially movable members 91; 91 are separated from each other, and the axially movable members 91; 91 are separated from each other in the radial direction. The movable member 100 moves inward in the radial direction, the axial length of the propulsion unit 8 is extended, and the outer diameter is reduced.

なお、本実施形態における軸方向可動部材91;91は、上記実施形態におけるフランジ65;65に対応する。このような推進ユニット8を採用した場合であっても、拡径動作及び縮径動作がそれぞれの推進ユニット8に対して所定の周期で繰り返し実行されることにより、いずれかの推進ユニット8が拡径して外周面に接した状態において掘削に必要な反力が得られると共に、拡径した推進ユニットが縮径して外周面から離れた状態において掘削方向に伸長するため、蠕動運動による推進力を得ることができる。 The axially movable member 91; 91 in this embodiment corresponds to the flange 65; 65 in the above embodiment. Even when such a propulsion unit 8 is adopted, one of the propulsion units 8 is expanded by repeatedly executing the diameter-expanding operation and the diameter-reducing operation for each propulsion unit 8 at a predetermined cycle. The reaction force required for excavation is obtained when the diameter is in contact with the outer peripheral surface, and the diameter-expanded propulsion unit is reduced in diameter and extends in the excavation direction when it is away from the outer peripheral surface. Can be obtained.

2 掘削装置、5 制御装置、6 筒状体、20 掘削具、21 回転軸、
22 螺旋羽根(螺旋体)、23 掘削ビット(掘削手段)、26 軸連結部、
28 螺旋羽根部(螺旋部)、51 モータ(駆動源)61 筒連結部、
63 折曲装置。
2 Excavator, 5 Control, 6 Cylindrical, 20 Excavator, 21 Rotating Shaft,
22 Spiral blade (spiral body), 23 Excavation bit (excavation means), 26-axis connection,
28 Spiral blade (spiral), 51 Motor (drive source) 61 Cylinder connection,
63 Folding device.

Claims (4)

回転軸と、
当該回転軸に沿った方向に螺旋状に延長するように回転軸の周りに設けられた螺旋体と、前記回転軸及び螺旋体の先端側に設けられた掘削手段と、を備え、
前記回転軸は、複数本の剛体軸の端部同士が可撓性を有した材料により形成された軸連結部を介して折曲可能でかつ回転力を伝達可能なように連結され、
前記螺旋体は、前記軸連結部の周囲を覆うように設けられた折曲可能なゴム製の螺旋部を備えたことを特徴とする掘削具。
Rotation axis and
A spiral body provided around the rotation axis so as to extend spirally in a direction along the rotation axis, and an excavation means provided on the rotation axis and the tip end side of the spiral body are provided.
The rotating shafts are connected so that the ends of a plurality of rigid shafts can be bent and the rotational force can be transmitted via a shaft connecting portion formed of a flexible material.
The excavator is characterized in that the spiral body is provided with a bendable rubber spiral portion provided so as to cover the periphery of the shaft connecting portion.
請求項1に記載の掘削具と、
内部に前記掘削具が設置された状態で予め折曲された筒状体と、
を備えた掘削装置であって、
前記掘削具は、前記回転軸が前記筒状体の中心軸に沿って延長するように前記筒状体の内部に配置され、
前記掘削具が、前記筒状体の折曲に沿って折曲し、当該掘削具の回転による掘削の進路を変更可能とした掘削装置。
The excavator according to claim 1 and
A tubular body that has been bent in advance with the excavator installed inside,
It is a drilling device equipped with
The excavator is arranged inside the tubular body so that the axis of rotation extends along the central axis of the tubular body.
An excavator that allows the excavator to bend along the bend of the tubular body so that the course of excavation can be changed by the rotation of the excavator.
請求項1に記載の掘削具と、内部に前記掘削具が設置された状態で折曲可能に構成された筒状体と、
を備えた掘削装置であって、
前記筒状体は、複数の筒体の端部同士が折曲可能な筒連結部を介して連結され、
前記折曲可能に構成された掘削具又は前記筒状体の筒連結部、或いはこれらの両方を折曲させる折曲装置を備え、
前記掘削具は、前記回転軸が前記筒状体の中心軸に沿って延長するように前記筒状体の内部に配置され、
前記折曲装置が前記掘削具又は前記筒状体の筒連結部或いはこれらの両方を折曲させることにより、前記掘削具の回転による掘削の進路を変更可能とした掘削装置。
The excavator according to claim 1, and a tubular body configured to be bendable with the excavator installed inside.
It is a drilling device equipped with
The tubular bodies are connected to each other via a tubular connecting portion in which the ends of the plurality of tubular bodies are bendable.
The excavator configured to be bendable, the tubular connecting portion of the tubular body, or a folding device for bending both of them.
The excavator is arranged inside the tubular body so that the axis of rotation extends along the central axis of the tubular body.
An excavation device capable of changing the excavation course by rotation of the excavator by bending the excavator, the tubular connecting portion of the tubular body, or both of them.
前記筒状体の周囲に前記掘削具の回転軸の半径方向への拡径時に収縮し、縮径時に伸長する複数の推進機構を備えたことを特徴とする請求項2又は請求項3に記載の掘削装置。 The second or third aspect of the present invention, wherein a plurality of propulsion mechanisms that contract when the diameter of the rotating shaft of the excavator is expanded in the radial direction and expand when the diameter is reduced is provided around the tubular body. Excavation equipment.
JP2016047319A 2016-03-10 2016-03-10 Excavator, excavator using excavator Active JP6856189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016047319A JP6856189B2 (en) 2016-03-10 2016-03-10 Excavator, excavator using excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016047319A JP6856189B2 (en) 2016-03-10 2016-03-10 Excavator, excavator using excavator

Publications (2)

Publication Number Publication Date
JP2017160716A JP2017160716A (en) 2017-09-14
JP6856189B2 true JP6856189B2 (en) 2021-04-07

Family

ID=59856736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016047319A Active JP6856189B2 (en) 2016-03-10 2016-03-10 Excavator, excavator using excavator

Country Status (1)

Country Link
JP (1) JP6856189B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852892B2 (en) * 2017-05-09 2021-03-31 学校法人 中央大学 Screw rotating body
WO2023287355A2 (en) * 2021-07-12 2023-01-19 National University Of Singapore Drill equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136594U (en) * 1988-02-29 1989-09-19
JPH0552093A (en) * 1991-08-26 1993-03-02 Kido Kensetsu Kogyo Kk Curve jacking method
JP2605174Y2 (en) * 1992-10-21 2000-06-26 株式会社小松製作所 Screw conveyor joint device
JP2003035082A (en) * 2001-07-23 2003-02-07 Giken Seisakusho Co Ltd Auger with casing
JP5554586B2 (en) * 2010-02-19 2014-07-23 学校法人 中央大学 Automatic drilling propulsion device
US9334693B2 (en) * 2015-09-08 2016-05-10 Otis Walton Vertical-screw-auger conveyer feeder

Also Published As

Publication number Publication date
JP2017160716A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5554586B2 (en) Automatic drilling propulsion device
US9016159B2 (en) Flexible tool
US6722442B2 (en) Subsurface apparatus
EP1171733B1 (en) Pipe cleaning device
JP6856189B2 (en) Excavator, excavator using excavator
US20100031461A1 (en) Pipeline pig
EP1180194B1 (en) Subsurface apparatus
JP6815620B2 (en) Cylindrical body and excavator
JP2019513936A (en) Hydraulic motor for drilling system
JP6852892B2 (en) Screw rotating body
JP6991547B2 (en) A screw mechanism and an excavator equipped with the screw mechanism
JP4208244B2 (en) Automatic running robot with hairy body as propulsion means
US11517187B2 (en) System and method for endoscope locomotion and shaping
JP7164148B2 (en) Drilling propulsion device
JP4195855B2 (en) Screw conveyor applied to tube propulsion equipment
JP4033753B2 (en) Bending tunnel excavator
JP2007154470A (en) Small-bore jacking machine
JP6455924B2 (en) Automatic drilling propulsion device
JP2017145644A (en) Expansion unit and automatic excavation propulsion device
JP4390584B2 (en) Shield excavator
JP7112316B2 (en) Tunnel excavator and tunnel excavation method
JP2006207237A (en) Directional-controlled drilling device
JP3479923B2 (en) Parent-child shield machine
JP4883427B2 (en) Excavated body
CN118241984A (en) Directional rotary steering drilling tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210304

R150 Certificate of patent or registration of utility model

Ref document number: 6856189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250