JP6853974B2 - Biological substance detector - Google Patents

Biological substance detector Download PDF

Info

Publication number
JP6853974B2
JP6853974B2 JP2016160071A JP2016160071A JP6853974B2 JP 6853974 B2 JP6853974 B2 JP 6853974B2 JP 2016160071 A JP2016160071 A JP 2016160071A JP 2016160071 A JP2016160071 A JP 2016160071A JP 6853974 B2 JP6853974 B2 JP 6853974B2
Authority
JP
Japan
Prior art keywords
layer
detection
biological substance
optical prism
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016160071A
Other languages
Japanese (ja)
Other versions
JP2018028467A (en
Inventor
伸子 福田
伸子 福田
ティティマナン スリモンコン
ティティマナン スリモンコン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016160071A priority Critical patent/JP6853974B2/en
Publication of JP2018028467A publication Critical patent/JP2018028467A/en
Application granted granted Critical
Publication of JP6853974B2 publication Critical patent/JP6853974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、表面プラズモン共鳴又は光導波モードを利用した生体物質検出装置に関する。 The present invention relates to a biomaterial detection device using surface plasmon resonance or optical waveguide mode.

生体試料中のタンパク質や、病原菌、水中の金属イオン、有機分子など様々な物質を検出するセンサーとして、表面プラズモン共鳴(SPR)を利用したセンサが知られている(例えば、非特許文献1〜7参照)。この種のセンサは、SPRセンサと呼ばれ、クレッチマン配置型のものが広く普及しつつある。 Sensors using surface plasmon resonance (SPR) are known as sensors for detecting various substances such as proteins in biological samples, pathogens, metal ions in water, and organic molecules (for example, Non-Patent Documents 1 to 7). reference). This type of sensor is called an SPR sensor, and a Klechman-arranged type sensor is becoming widespread.

前記クレッチマン配置型のSPRセンサは、光学プリズムと光学プリズムの底面側に配される金属層で構成される検出板と前記光学プリズムに対し前記入射光を照射する光照射部と前記光学プリズムから出射される前記反射光を受光して前記反射光強度を検出する光検出部とで構成される。
前記入射光を全反射となる条件で前記光学プリズムに入射させると、前記金属層側に染み出すエバネセント波によって、ある入射角度θで表面プラズモン共鳴が発現する。前記表面プラズモン共鳴が発現すると、前記エバネセント波が表面プラズモンに吸収されるので、入射角度θ付近で前記反射光の強度が著しく減少する。前記表面プラズモン共鳴が発現する条件は、前記金属層の前記光学プリズムが配される面と反対側の検出面上の誘電率によって変化することから、前記SPRセンサでは、前記検出面上の誘電率に変化を与える物質の存在等を検出することができる。
The Klechman-arranged SPR sensor emits light from an optical prism, a detection plate composed of a metal layer arranged on the bottom surface side of the optical prism, a light irradiation unit that irradiates the optical prism with the incident light, and the optical prism. It is composed of an optical detection unit that receives the reflected light and detects the intensity of the reflected light.
When the incident light is incident on the optical prism under the condition of total internal reflection, surface plasmon resonance occurs at a certain incident angle θ due to the evanescent wave exuding to the metal layer side. When the surface plasmon resonance occurs, the evanescent wave is absorbed by the surface plasmon, so that the intensity of the reflected light is remarkably reduced near the incident angle θ. Since the conditions under which the surface plasmon resonance appears vary depending on the permittivity on the detection surface of the metal layer opposite to the surface on which the optical prism is arranged, the SPR sensor has a dielectric constant on the detection surface. It is possible to detect the presence of a substance that changes the optics.

また、前記検出面上の誘電率に変化を与える物質の存在等を検出するセンサとして、光導波モードセンサが知られている(例えば、特許文献1〜5参照)。
前記光導波モードセンサは、前記クレッチマン配置型のSPRセンサとよく似た構造を有し、前記光学プリズムと前記検出板と前記光照射部と前記光検出部とで構成され、前記検出板が、誘電体層と金属層等との積層体で形成される点で前記SPRセンサと異なっている。
前記入射光を全反射となる条件で前記光学プリズムに入射したとき、ある特定の入射角度θにおいて、前記入射光が前記誘電体層内を伝搬する光導波モード(漏洩モード、またはリーキーモードとも呼ばれる)と結合して光導波モードが励起され、入射角度θ付近で前記反射光の強度が著しく減少する。前記光導波モードの励起条件は、前記検出板の前記光学プリズムが配される面と反対側の検出面上の誘電率によって変化する。
したがって、前記光導波モードセンサでは、前記SPRセンサと同様、前記検出面上の誘電率に変化を与える物質の存在等を検出することができる。
Further, an optical waveguide mode sensor is known as a sensor for detecting the presence or the like of a substance that changes the permittivity on the detection surface (see, for example, Patent Documents 1 to 5).
The optical waveguide mode sensor has a structure similar to that of the Kletchman-arranged SPR sensor, and is composed of the optical prism, the detection plate, the light irradiation unit, and the light detection unit. It differs from the SPR sensor in that it is formed of a laminate of a dielectric layer and a metal layer or the like.
When the incident light is incident on the optical prism under the condition of total internal reflection, the incident light propagates in the dielectric layer at a specific incident angle θ, which is also called an optical waveguide mode (leakage mode or leaky mode). ), The optical waveguide mode is excited, and the intensity of the reflected light is remarkably reduced near the incident angle θ. The excitation conditions of the optical waveguide mode change depending on the permittivity on the detection surface of the detection plate opposite to the surface on which the optical prism is arranged.
Therefore, the optical waveguide mode sensor can detect the presence or the like of a substance that changes the dielectric constant on the detection surface, similarly to the SPR sensor.

前記SPRセンサ及び前記光導波モードセンサを用いて、細菌、真菌、ウィルス等の生体物質を検出する場合、前記生体物質の存在が疑われる被検体液を導入するチップを用意し、前記生体物質と特異的に結合する抗体などで表面修飾された前記検出面と前記チップ上の前記被検体液とを接触させることが行われる。
この手法は、広く普及した前記生体物質の検出手法である、前記生体物質を固体培地に導入後、顕微鏡を用いて培養状態を経過観察して行う手法に比べて、早い段階での検出が可能であり、また、前記生体物質の増殖速度や増殖量を誘電率変化に応じてタイムリーに検出することができる。
When a biological substance such as a bacterium, a fungus, or a virus is detected by using the SPR sensor and the optical waveguide mode sensor, a chip for introducing a sample solution suspected of having the biological substance is prepared, and the biological substance and the biological substance are used. The detection surface modified on the surface with a specifically binding antibody or the like is brought into contact with the sample liquid on the chip.
This method enables detection at an earlier stage than the widely used method for detecting a biological substance, which is performed by introducing the biological substance into a solid medium and then observing the culture state using a microscope. In addition, the growth rate and the amount of growth of the biological substance can be detected in a timely manner according to the change in the dielectric constant.

ところで、前記生体物質が感染性や有害性を持つ場合、安全衛生上の観点から、前記チップを使用ごとに交換のうえ廃棄する必要がある。
しかしながら、前記チップとしては、厚肉のガラス基板や樹脂基板が用いられ、廃棄物の重量が重く体積も大きいことから、運搬上の廃棄コストが嵩むほか、焼却や溶融に要するエネルギーも大きくなるため、より一層廃棄コストが嵩む問題がある。更には、滅菌後破砕処理を行って廃棄を行うことが求められる場合もあり、より一層廃棄コストが嵩む問題がある。
By the way, when the biological substance is infectious or harmful, it is necessary to replace and dispose of the chip after each use from the viewpoint of safety and health.
However, as the chip, a thick glass substrate or a resin substrate is used, and since the waste is heavy and has a large volume, the disposal cost for transportation is high and the energy required for incineration and melting is also large. However, there is a problem that the disposal cost is further increased. Further, there is a case where it is required to perform crushing treatment after sterilization for disposal, and there is a problem that the disposal cost is further increased.

特許第4581135号公報Japanese Patent No. 4581135 特許第4595072号公報Japanese Patent No. 4595072 特開2007−271596号公報Japanese Unexamined Patent Publication No. 2007-271596 特許第5131806号公報Japanese Patent No. 5131806 特許第5424229号公報Japanese Patent No. 5424229

W.Knoll, MRS Bulletin 16, pp.29-39(1991年)W.Knoll, MRS Bulletin 16, pp.29-39 (1991) W.Knoll, Annu.Rev.Phys.Chem.49, pp.569-638(1998年)W.Knoll, Annu.Rev.Phys.Chem.49, pp.569-638 (1998) H.Kano and S.Kawata,Appl.Opt.33, pp.5166-5170(1994年)H.Kano and S.Kawata, Appl.Opt.33, pp.5166-5170 (1994) C.Nylander, B.Liedberg,and T.Lind, Sensor.Actuat.3, pp.79-88(1982/83年)C.Nylander, B.Liedberg, and T.Lind, Sensor.Actuat.3, pp.79-88 (1982/83) K.Kambhampati, T.A.M.Jakob, J.W.Robertson, M.Cai, J.E.Pemberton, and W.Knoll,Langmuir 17, pp.1169-1175(2001年)K.Kambhampati, T.A.M.Jakob, J.W.Robertson, M.Cai, J.E.Pemberton, and W.Knoll, Langmuir 17, pp.1169-1175 (2001) O.R.Bolduc, L.S.Live, and J.F.Masson, Talanta 77, pp.1680-1687(2009年)O.R.Bolduc, L.S.Live, and J.F.Masson, Talanta 77, pp.1680-1687 (2009) I.Stammler, A.Brecht, and G.Gauglitz, Sensor.Actuat.B54, pp98-105(1999年)I.Stammler, A.Brecht, and G.Gauglitz, Sensor.Actuat.B54, pp98-105 (1999)

本発明は、従来技術における前記諸問題を解決し、廃棄が容易な検出シートを用いつつ、表面プラズモン共鳴又は光導波モードを利用したセンシング動作が可能な生体物質検出装置を提供することを課題とする。 An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a biological substance detection device capable of sensing operation using surface plasmon resonance or optical waveguide mode while using a detection sheet that is easy to dispose of. To do.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 入射される入射光を底面に向けて導入可能とされ、前記底面側から反射される前記入射光の反射光を外部に出射可能とされる光学プリズムと、前記光学プリズムの底面側に配され、前記光学プリズムが配される側の面と反対側の面を検出面として前記検出面上の誘電率変化に応じて前記反射光の特性に変化を生じさせる検出層と、前記光学プリズムに対し前記入射光として直線偏光を照射可能とされる光照射部と、前記光学プリズムから出射される前記反射光を受光して前記反射光の特性を検出可能とされる光検出部と、天然紙及び合成紙のいずれかの紙材で形成される基材層上に生体物質を培養可能な固体の培地層が形成され、前記培地層側が前記検出面と当接するように配される検出シートと、を有することを特徴とする生体物質検出装置。
<2> 基材層のブリストー法に準じて測定される接触時間10ミリ秒での吸水度が、高くとも10g/mであり、培地層が形成される前記基材層表面における表面自由エネルギーが、低くとも50mJ/mである前記<1>に記載の生体物質検出装置。
<3> 基材層の厚みが、薄くとも200μmである前記<1>から<2>のいずれかに記載の生体物質検出装置。
<4> 培地層の形成材料が、寒天を含む培地材である前記<1>から<3>のいずれかに記載の生体物質検出装置。
<5> 光照射部が照射可能とされる直線偏光がp偏光とされ、検出層が金属層とされる前記<1>から<4>のいずれかに記載の生体物質検出装置。
<6> 光照射部が照射可能とされる直線偏光がs偏光及びp偏光のいずれかとされ、検出層が光学プリズム側からみて金属層誘電体層とをこの順で積層させた積層体で構成される前記<1>から<4>のいずれかに記載の生体物質検出装置。
<7> 金属層が、直線偏光を照射したときの複素誘電率における実部が負の値を有し、虚部が正の値を有する層とされる前記<5>から<6>のいずれかに記載の生体物質検出装置。
<8> 光学プリズムの底面と光学的に密着される支持板を有し、検出層が前記支持板の前記光学プリズムが配される面と反対側の面上に形成される前記<1>から<7>のいずれかに記載の生体物質検出装置。
The means for solving the above-mentioned problems are as follows. That is,
<1> An optical prism capable of introducing incident light toward the bottom surface and emitting reflected light of the incident light reflected from the bottom surface side to the outside, and an optical prism on the bottom surface side of the optical prism. A detection layer that is arranged and has a surface opposite to the surface on which the optical prism is arranged as a detection surface and causes a change in the characteristics of the reflected light according to a change in the dielectric constant on the detection surface, and the optical prism. On the other hand, a light irradiation unit capable of irradiating linearly polarized light as the incident light, a light detection unit capable of receiving the reflected light emitted from the optical prism and detecting the characteristics of the reflected light, and a natural A detection sheet in which a solid medium layer capable of culturing biological substances is formed on a base material layer made of either paper or synthetic paper, and the medium layer side is arranged so as to be in contact with the detection surface. And, a biological substance detection device characterized by having.
<2> The water absorption of the base material layer at a contact time of 10 ms measured according to the Bristow method is at most 10 g / m 2 , and the surface free energy on the surface of the base material layer on which the medium layer is formed. However, the biological substance detection device according to the above <1>, which has a minimum of 50 mJ / m 2.
<3> The biological substance detection device according to any one of <1> to <2>, wherein the thickness of the base material layer is at least 200 μm.
<4> The biological substance detection device according to any one of <1> to <3>, wherein the material for forming the medium layer is a medium material containing agar.
<5> The biological substance detection device according to any one of <1> to <4>, wherein the linearly polarized light that can be irradiated by the light irradiation unit is p-polarized light and the detection layer is a metal layer.
<6> The linearly polarized light that can be irradiated by the light irradiation unit is either s-polarized light or p-polarized light, and the detection layer is a laminated body in which a metal layer and a dielectric layer are laminated in this order when viewed from the optical prism side. The biological substance detection device according to any one of <1> to <4>.
<7> Any of the above <5> to <6>, wherein the metal layer is a layer in which the real part has a negative value and the imaginary part has a positive value in the complex permittivity when irradiated with linearly polarized light. The biological substance detection device described in the above.
<8> From the above <1>, which has a support plate that is optically in close contact with the bottom surface of the optical prism, and the detection layer is formed on the surface of the support plate opposite to the surface on which the optical prism is arranged. The biological substance detection device according to any one of <7>.

本発明によれば、従来技術における前記諸問題を解決することができ、廃棄が容易な検出シートを用いつつ、表面プラズモン共鳴又は光導波モードを利用したセンシング動作が可能な生体物質検出装置を提供することができる。 According to the present invention, there is provided a biological substance detection device capable of solving the above-mentioned problems in the prior art and capable of sensing operation using surface plasmon resonance or optical waveguide mode while using a detection sheet that is easy to dispose of. can do.

第1実施形態に係る生体物質検出装置の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the biological substance detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る生体物質検出装置の変形例の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the modification of the biological substance detection apparatus which concerns on 1st Embodiment. 第2実施形態に係る生体物質検出装置の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the biological substance detection apparatus which concerns on 2nd Embodiment. 第2実施形態に係る生体物質検出装置の変形例の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the modification of the biological substance detection apparatus which concerns on 2nd Embodiment. 反射光強度の測定結果を示す図(1)である。It is a figure (1) which shows the measurement result of the reflected light intensity. 反射光強度の測定結果を示す図(2)である。It is a figure (2) which shows the measurement result of the reflected light intensity. 各サンプル紙における吸水度と表面自由エネルギーとの関係を示す図である。It is a figure which shows the relationship between the water absorption degree and the surface free energy in each sample paper. サンプル紙A上に培地層を形成した検出シートの様子を示す図である。It is a figure which shows the state of the detection sheet which formed the culture medium layer on the sample paper A. サンプル紙E上に培地層を形成した検出シートの様子を示す図である。It is a figure which shows the state of the detection sheet which formed the culture medium layer on the sample paper E.

(第1実施形態)
本発明の第1実施形態に係る生体物質検出装置について、図面を参照しつつ説明をする。図1は、第1実施形態に係る生体物質検出装置の構成を説明するための説明図である。
該図1に示すように、生体物質検出装置10は、光学プリズム1、支持板2、検出層3、光照射部6及び光検出部7で構成されるクレッチマン配置型SPRセンサのセンシング構造を有し、更に、被検体が導入される検出シート5を有する。
(First Embodiment)
The biological substance detection device according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram for explaining the configuration of the biological substance detection device according to the first embodiment.
As shown in FIG. 1, the biological substance detection device 10 has a sensing structure of a Kretschmann-arranged SPR sensor composed of an optical prism 1, a support plate 2, a detection layer 3, a light irradiation unit 6, and a light detection unit 7. In addition, it has a detection sheet 5 into which the subject is introduced.

光学プリズム1は、入射される入射光を底面に向けて導入可能とされ、前記底面側から反射される前記入射光の反射光を外部に出射可能とされる。図示の例では、三角形プリズムを用いているが、プリズムの形状に特に制限はなく、これに代えて、台形プリズム、半円柱プリズム、半球プリズム等の公知の光学プリズムを用いることができる。
また、光学プリズム1の形成材料としても特に制限はなく、シリカガラス等の公知のガラス材料の中から適宜選択することができる。
The optical prism 1 is capable of introducing the incident light incident toward the bottom surface, and is capable of emitting the reflected light of the incident light reflected from the bottom surface side to the outside. In the illustrated example, a triangular prism is used, but the shape of the prism is not particularly limited, and instead, a known optical prism such as a trapezoidal prism, a semi-cylindrical prism, or a hemispherical prism can be used.
Further, the material for forming the optical prism 1 is not particularly limited, and can be appropriately selected from known glass materials such as silica glass.

支持板2は、光学プリズム1の底面と光学的に密着される部材であり、例えば、公知の屈折率整合液を用いて光学プリズム1と光学的に密着される。
支持板2の形成材料としては、支持板2を構成する状態で前記直線偏光を透過する材料とされ、例えば、光学プリズム1の形成材料と同じものが好ましい。
The support plate 2 is a member that is optically brought into close contact with the bottom surface of the optical prism 1, and is optically brought into close contact with the optical prism 1 using, for example, a known refractive index matching liquid.
The material for forming the support plate 2 is a material that transmits the linearly polarized light in the state of forming the support plate 2, and for example, the same material as the material for forming the optical prism 1 is preferable.

検出層3は、光学プリズム1の底面側に配され、光学プリズム1が配される側の面と反対側の面を検出面として前記検出面上の誘電率変化に応じて前記反射光の特性に変化を生じさせる層とされる。本例では、金属で形成される金属層の単層とされ、支持板2の光学プリズム1が配される面と反対側の面上に形成される。
前記金属層としては、前記表面プラズモン共鳴を発現させる観点から、前記直線偏光を照射したときの複素誘電率における実部が負の値を有し、虚部が正の値を有する層であることが好ましい。
また、前記金属層の形成材料としては、特に制限はなく、前記SPRセンサに適用される公知の金属層の形成材料が挙げられるが、金、銀、銅、プラチナ及びアルミニウムの少なくともいずれかを含む形成材料が好ましい。
また、前記金属層の厚みとしては、特に制限はなく、例えば、1nm〜50nm程度とされる。
The detection layer 3 is arranged on the bottom surface side of the optical prism 1, and the surface opposite to the surface on which the optical prism 1 is arranged is used as a detection surface, and the characteristics of the reflected light are changed according to the change in the dielectric constant on the detection surface. It is said to be a layer that causes changes in the optics. In this example, it is a single layer of a metal layer made of metal, and is formed on a surface of the support plate 2 opposite to the surface on which the optical prism 1 is arranged.
The metal layer is a layer in which the real part in the complex permittivity when irradiated with the linearly polarized light has a negative value and the imaginary part has a positive value from the viewpoint of expressing the surface plasmon resonance. Is preferable.
The material for forming the metal layer is not particularly limited, and examples thereof include known materials for forming the metal layer applied to the SPR sensor, including at least one of gold, silver, copper, platinum, and aluminum. The forming material is preferable.
The thickness of the metal layer is not particularly limited, and is, for example, about 1 nm to 50 nm.

なお、検出層3の形成方法としては、特に制限はなく、例えば、公知の蒸着法等が挙げられ、本例では、支持板2の光学プリズム1が配される側の面と反対側の面上に前記形成材料を蒸着等することで形成することができる。
また、検出層3としては、使用ごとに高圧滅菌処理等の洗浄を行うことで繰返し使用することができ、また、光学プリズム1から支持板2とともに取り外すことで、使い捨てにすることもできる。
The method for forming the detection layer 3 is not particularly limited, and examples thereof include a known vapor deposition method. In this example, the surface of the support plate 2 opposite to the surface on which the optical prism 1 is arranged is arranged. It can be formed by depositing the forming material on top of it.
Further, the detection layer 3 can be used repeatedly by performing cleaning such as autoclave treatment each time it is used, and can also be made disposable by removing it from the optical prism 1 together with the support plate 2.

検出シート5は、基材層5a上に培地層5bが形成され、培地層5b側が前記検出面と当接するように配される。 In the detection sheet 5, a medium layer 5b is formed on the base material layer 5a, and the detection sheet 5 is arranged so that the medium layer 5b side is in contact with the detection surface.

基材層5aは、天然紙及び合成紙のいずれかの紙材で形成される。
したがって、基材層5aは、可燃性であり、廃棄時において培地層5bとともに容易に焼却することができる。即ち、日本国環境省が公表する感染性廃棄物ガイドライン(2014年)によれば、感染性及び感染の可能性がある物質を取り扱ったものである場合、感染性廃棄物として、(1)焼却設備により焼却されるもの(燃やせるもの)、(2)溶融設備により溶融されるもの(燃やせないもの)、(3)滅菌処理後、破砕されるもののいずれかの分類にしたがって廃棄されることになるが、前記紙材で形成される基材層5aを有して構成される検出シート5は、培地層5bが形成された状態で前記(1)に分類され、最も安価に廃棄可能な焼却処分の対象となる。
また、基材層5aを前記紙材で形成する場合、これを厚肉のガラス基板や樹脂基板で形成する場合に比べ、廃棄物の体積及び重量を小さくし、運搬上の廃棄コストも低減させることができる。
なお、本明細書において「可燃性」とは、室温、常圧下で着火した場合に燃焼が継続する性質を示す。
The base material layer 5a is made of either natural paper or synthetic paper.
Therefore, the base material layer 5a is flammable and can be easily incinerated together with the medium layer 5b at the time of disposal. That is, according to the Infectious Waste Guideline (2014) published by the Ministry of the Environment of Japan, if a substance that is infectious or has the possibility of being infectious is handled, it is treated as infectious waste (1) incinerated. It will be disposed of according to one of the following categories: incinerated by equipment (burnable), (2) melted by melting equipment (non-burnable), and (3) crushed after sterilization. However, the detection sheet 5 having the base material layer 5a formed of the paper material is classified into the above (1) with the medium layer 5b formed, and is incinerated at the lowest cost. Is the target of.
Further, when the base material layer 5a is formed of the paper material, the volume and weight of the waste are reduced and the disposal cost in transportation is also reduced as compared with the case where the base material layer 5a is formed of a thick glass substrate or a resin substrate. be able to.
In addition, in this specification, "flammable" means the property that combustion continues when ignited at room temperature and normal pressure.

培地層5bは、生体物質を培養可能な固体の層(固体培地)とされる。
培地層5bの形成材料としては、このような前記生体物質を培養可能な限り特に制限はなく、公知の培地材料が挙げられるが、適度に固化させた前記固体培地が得られ易いことから、寒天を含む培地材が好ましい。
また、前記培地材としては、特に制限はなく、LB培地、セルロース類培地、アルギン酸ゲル培地等の公知の培地材が挙げられる。
また、培地層5bの厚みとしては、特に制限はないが、前記生体物質の培養中における保水状態を維持する観点から、50μm以上が好ましい。なお、前記厚みの上限としては、10mm程度である。
なお、前記生体物質としては、特に制限はなく、細菌、真菌、ウィルス等が挙げられる。
The medium layer 5b is a solid layer (solid medium) capable of culturing biological substances.
The material for forming the medium layer 5b is not particularly limited as long as such a biological substance can be cultivated, and a known medium material can be used. However, since the solid medium solidified appropriately can be easily obtained, agar is used. A medium material containing the above is preferable.
The medium material is not particularly limited, and examples thereof include known medium materials such as LB medium, cellulose medium, and alginate gel medium.
The thickness of the medium layer 5b is not particularly limited, but is preferably 50 μm or more from the viewpoint of maintaining the water retention state during the culture of the biological substance. The upper limit of the thickness is about 10 mm.
The biological substance is not particularly limited, and examples thereof include bacteria, fungi, and viruses.

基材層5aは、前記紙材で形成され吸水性を有することから、培地層5bの形成に役立つ。即ち、前記寒天、栄養分、塩分等を含むLB培地材を用いて培地層5bを形成する場合、滅菌を兼ねて前記LB培地材に水を加えた組成物をオートクレーブで120℃程度の温度に加熱して、前記LB培地材を水に溶解、分散させた前駆体液とした後、固形化が始まる60℃程度まで温度が低下する前に、前記前駆体液を基材層5a上に塗布し、前記前駆体液が固形化された培地層5bを基材層5a上に形成する。この際、固形化が始まる前の前記前駆体液が基材層5a中に部分的に浸透することで、固形化後の培地層5bと基材層5aとが安定的に固定されることとなる。基材層5aが吸水性を持たない材料で形成される場合、基材層5aと培地層5bとを安定的に固定させることが困難となる。
なお、前記前駆体液を基材層5a上に塗布する方法としては、公知のスキージング法、ダイコード法、スクリーン印刷やインクジェット印刷に準じた塗布方法等が挙げられる。
Since the base material layer 5a is formed of the paper material and has water absorption, it is useful for forming the medium layer 5b. That is, when the medium layer 5b is formed using the LB medium containing agar, nutrients, salts, etc., the composition obtained by adding water to the LB medium for sterilization is heated to a temperature of about 120 ° C. in an autoclave. Then, the LB medium material is dissolved and dispersed in water to prepare a precursor solution, and then the precursor solution is applied onto the base material layer 5a before the temperature drops to about 60 ° C. at which solidification begins. A medium layer 5b in which the precursor liquid is solidified is formed on the base material layer 5a. At this time, the precursor liquid before the start of solidification partially permeates into the base material layer 5a, so that the medium layer 5b and the base material layer 5a after solidification are stably fixed. .. When the base material layer 5a is made of a material having no water absorption, it becomes difficult to stably fix the base material layer 5a and the medium layer 5b.
Examples of the method of applying the precursor liquid onto the base material layer 5a include a known squeezing method, a die coding method, a coating method similar to screen printing or inkjet printing, and the like.

ところで、紙の吸水度は種類によって様々であるが、前記紙材で形成される基材層5aとしては、ブリストー法(日本紙パルプ技術協会(Japan Tappi)規定、紙パルプ試験方法No.51:2000,“紙及び板紙−液体吸収性試験方法−ブリストー法”)に準じて測定される接触時間10ミリ秒での吸水度が、高くとも10g/mであることが好ましい。
即ち、前記吸水度が10g/mを超える場合、水分吸収時の膨張と乾燥時の収縮によって乾燥後の基材層5aに大きな皺を発生させ易く、同時に、基材層5a上の培地層5bにも大きな皺を発生させ易い。したがって、培地層5bの表面と検出層3の前記検出面とを当接させたときに、これらの界面に気泡が入り込み易く、前記生体物質の検出が妨げられることがある。
また、前記吸水度の下限としては、前記前駆体液の浸透により基材層5aと培地層5bとを安定的に固定させる観点から、低くとも1g/mであることが好ましい。
なお、前記接触時間を10ミリ秒としたのは、基材層5aの好適な前記吸水度を判断するのに十分な時間であるためである。
By the way, the water absorption of paper varies depending on the type, but the base material layer 5a formed of the paper material is defined by the Bristow method (Japan Pulp and Technology Association (Japan Tappi) regulation, pulp and paper test method No. 51: It is preferable that the water absorption at a contact time of 10 millisecond measured according to 2000, "Paper and Paperboard-Liquid Absorption Test Method-Bristow Method") is at most 10 g / m 2.
That is, when the water absorption degree exceeds 10 g / m 2 , large wrinkles are likely to be generated in the base material layer 5a after drying due to expansion during water absorption and contraction during drying, and at the same time, the medium layer on the base material layer 5a. Large wrinkles are likely to occur in 5b. Therefore, when the surface of the medium layer 5b and the detection surface of the detection layer 3 are brought into contact with each other, air bubbles easily enter the interface, and the detection of the biological substance may be hindered.
Further, the lower limit of the water absorption is preferably at least 1 g / m 2 from the viewpoint of stably fixing the base material layer 5a and the medium layer 5b by the permeation of the precursor liquid.
The contact time is set to 10 milliseconds because it is a sufficient time to determine the suitable water absorption of the base material layer 5a.

また、基材層5aとしては、前記吸水度とも関連して、培地層5bが形成される基材層5a表面における表面自由エネルギーが、低くとも50mJ/mであることが好ましい。
即ち、培地層5bを基材層5a上に安定的に固定する場合、前記培地材料を水に溶解、分散させた前記前駆体液を基材層5a上に塗工する必要があるが、この際、前記前駆体液が基材層5a上で濡れ広がらないと、形成される培地層5bの厚みが不均一となり、培地層5bと検出層3との界面に気泡が入り込む等、前記生体物質の検出を妨げる要因となる。また、培地層5bが不均一な厚みで形成されると、培地層5bにおける前記生体物質の培養に培養ムラが生じる要因ともなる。したがって、基材層5aとしては、適切な濡れ性を有することが好ましい。
この濡れ性としては、先の通り、前記表面自由エネルギーを指標として表すことができる。即ち、前記表面自由エネルギーが高いと、前記前駆体液が基材層5a表面上で均一に濡れ広がり易く、前記表面自由エネルギーが低いと、前記前駆体液が基材層5a表面で弾かれ、不均一な厚みを形成するダマ等が生じ易い。
基材層5a表面における前記表面自由エネルギーが、先の通り、低くとも50mJ/mであると、適切な濡れ性を有するものとして、前記生体物質を好適に検出することができる。なお、前記表面自由エネルギーの上限としては、高くとも100mJ/mであることが好ましい。
Further, as the base material layer 5a, it is preferable that the surface free energy on the surface of the base material layer 5a on which the medium layer 5b is formed is at least 50 mJ / m 2 in relation to the water absorption degree.
That is, when the medium layer 5b is stably fixed on the base material layer 5a, it is necessary to apply the precursor liquid in which the medium material is dissolved and dispersed in water on the base material layer 5a. If the precursor liquid does not get wet and spread on the base material layer 5a, the thickness of the formed medium layer 5b becomes non-uniform, and air bubbles enter the interface between the medium layer 5b and the detection layer 3 to detect the biological substance. It becomes a factor that hinders. Further, if the medium layer 5b is formed with a non-uniform thickness, it also causes uneven culture in the culture of the biological substance in the medium layer 5b. Therefore, it is preferable that the base material layer 5a has an appropriate wettability.
As described above, the wettability can be expressed by using the surface free energy as an index. That is, when the surface free energy is high, the precursor liquid easily wets and spreads uniformly on the surface of the base material layer 5a, and when the surface free energy is low, the precursor liquid is repelled on the surface of the base material layer 5a and is non-uniform. It is easy for lumps and the like to form a thick thickness to occur.
As described above, when the surface free energy on the surface of the base material layer 5a is at least 50 mJ / m 2 , the biological substance can be suitably detected as having appropriate wettability. The upper limit of the surface free energy is preferably 100 mJ / m 2 at the highest.

また、基材層5aの厚みとしては、特に制限はないが、前記前駆体液の浸透を通じて培地層5bを安定的に固定させる目的、培地層5bを安定的に支持するための強度を得る目的、更には、培地層5b形成後における皺の発生を抑制する目的で、薄くとも200μmであることが好ましい。
なお、基材層5aとしては、検出シート5の廃棄時に培地層5bを内側に包み込むように丸めることで、培地層5bに触れずに取り扱うことができる。したがって、前記厚みの上限としては、丸め易い柔軟性を持たせる観点から、厚くても500μmであることが好ましい。
The thickness of the base material layer 5a is not particularly limited, but the purpose is to stably fix the medium layer 5b through permeation of the precursor solution, and to obtain strength for stably supporting the medium layer 5b. Further, for the purpose of suppressing the generation of wrinkles after the formation of the medium layer 5b, the thickness is preferably at least 200 μm.
The base material layer 5a can be handled without touching the medium layer 5b by rolling the medium layer 5b so as to wrap it inside when the detection sheet 5 is discarded. Therefore, the upper limit of the thickness is preferably 500 μm at the thickest from the viewpoint of providing flexibility for easy rolling.

このように構成される検出シート5を用いる場合、前記SPRセンサ及び前記光導波モードセンサを用いる際に、従来行われてきた検出面に対する表面処理(前記生体物質と特異的に結合する抗原等の形成)が不要であり、検出のためのセッティングを大幅に簡略化させることができる。
即ち、培地層5bが検出層3の前記検出面と密着させ易いゲル状の固体培地として形成されるため、培地層5b上に前記生体物質の存在が疑われる被検体液を滴下した状態や培地層5bを前記被検体液と接触させ、前記生体物質を培養した状態で、検出シート5の培地層5b側を検出層3の前記検出面に当接させるだけで検出に必要なセッティングを完了させることができる。
When the detection sheet 5 configured in this way is used, when the SPR sensor and the optical waveguide mode sensor are used, the surface treatment on the detection surface (such as an antigen that specifically binds to the biological substance) that has been conventionally performed is performed. (Formation) is not required, and the setting for detection can be greatly simplified.
That is, since the medium layer 5b is formed as a gel-like solid medium that easily adheres to the detection surface of the detection layer 3, a state or medium in which a sample solution suspected to be present with the biological substance is dropped onto the medium layer 5b. The setting required for detection is completed only by bringing the layer 5b into contact with the sample liquid and bringing the medium layer 5b side of the detection sheet 5 into contact with the detection surface of the detection layer 3 in a state where the biological substance is cultured. be able to.

光照射部6は、レーザ6aとレーザ6aから照射される光を直線偏光に偏光させる偏光素子6bとを有し、光学プリズム1に対し前記入射光として前記直線偏光を照射可能とされる。なお、光学プリズム1に対し前記入射光として前記直線偏光を照射可能であれば、光照射部6の構成に代えて、公知の光源及び偏光素子などで構成された任意の光照射部を選択して用いてもよい。例えば、レーザ、LEDなどの光源、前記光源から照射される光をコリメート光とするコリメータ、前記光源から照射される光を前記直線偏光に偏光させる偏光板、前記光源から照射される光を前記コリメータに導く光ファイバ、前記光源からの光を集光して光学プリズム1に入射させる集光レンズなど、公知の光学部材から適宜選択して構成することができる。
光照射部6は、前記反射光の強度が減少する入射角度θを特定するため、公知の駆動装置(不図示)により、入射角を増減する方向に駆動可能とされる。
なお、検出層3を前記金属層で形成する場合、前記直線偏光としては、p偏光とされる。
The light irradiation unit 6 has a laser 6a and a polarizing element 6b that polarizes the light emitted from the laser 6a into linearly polarized light, and can irradiate the optical prism 1 with the linearly polarized light as the incident light. If the optical prism 1 can be irradiated with the linearly polarized light as the incident light, an arbitrary light irradiation unit composed of a known light source, a polarizing element, or the like is selected instead of the configuration of the light irradiation unit 6. May be used. For example, a light source such as a laser or an LED, a collimator that uses the light emitted from the light source as collimating light, a polarizing plate that polarizes the light emitted from the light source into the linear polarization, and the collimeter that emits light emitted from the light source. It can be configured by appropriately selecting from known optical members such as an optical fiber leading to an optical fiber, a condensing lens that condenses light from the light source and causes it to enter the optical prism 1.
The light irradiation unit 6 can be driven in a direction of increasing or decreasing the incident angle by a known driving device (not shown) in order to specify the incident angle θ at which the intensity of the reflected light decreases.
When the detection layer 3 is formed of the metal layer, the linearly polarized light is p-polarized light.

光検出部7は、光学プリズム1から出射される前記反射光を受光して前記反射光の特性を検出可能とされる。
光検出部7としては、特に制限はなく、サーモパイルセンサ、ダイオードセンサ、CMOSセンサ、CCDセンサ等の公知の光検出装置を用いて構成することができる。
The photodetector 7 receives the reflected light emitted from the optical prism 1 and can detect the characteristics of the reflected light.
The photodetector 7 is not particularly limited, and can be configured by using a known photodetector such as a thermopile sensor, a diode sensor, a CMOS sensor, or a CCD sensor.

このように構成される生体物質検出装置10では、光学プリズム1に対して全反射条件を満たすように前記入射光を導入すると、支持板2から検出層3に向けて前記エバネセント光が染み出し、検出層3の前記検出面近傍に前記表面プラズモンが励起される。
ここで、光照射部6を入射角を増減する方向に駆動させると、ある特定の入射角度θにおいて、前記エバネセント光が前記表面プラズモンに吸収される表面プラズモン共鳴が発現し、前記反射光の強度が著しく減少する。前記反射光の強度は、光検出部7により入射角ごとに検出される。
検出されるこの入射角度θは、前記検出面近傍における誘電率の変化に応じてシフト変化するため、入射角度θのシフト変化を通じて、前記検出面上に配される培地層5bに存在する前記生体物質を検出することができ、また、入射角度θのシフト変化量の解析に基づき、前記生体物質の増加(例えば、細菌等の増殖量や増殖速度等)をタイムリーに検出することができる。
In the biological substance detection device 10 configured as described above, when the incident light is introduced into the optical prism 1 so as to satisfy the total reflection condition, the evanescent light exudes from the support plate 2 toward the detection layer 3. The surface plasmon is excited in the vicinity of the detection surface of the detection layer 3.
Here, when the light irradiation unit 6 is driven in a direction of increasing or decreasing the incident angle, surface plasmon resonance in which the evanescent light is absorbed by the surface plasmon is exhibited at a specific incident angle θ, and the intensity of the reflected light is increased. Is significantly reduced. The intensity of the reflected light is detected by the photodetector 7 for each incident angle.
Since the detected incident angle θ changes in shift according to the change in the dielectric constant in the vicinity of the detection surface, the living body existing in the medium layer 5b arranged on the detection surface through the shift change in the incident angle θ. The substance can be detected, and the increase in the biological substance (for example, the growth amount of bacteria and the like, the growth rate, etc.) can be detected in a timely manner based on the analysis of the shift change amount of the incident angle θ.

生体物質検出装置10としては、図2に示す生体物質検出装置10’のように、光学プリズム1と別体とされる支持板2を設けず、光学プリズム1の底面上に直接、検出層3を形成してもよい。なお、図2は、第1実施形態に係る生体物質検出装置の変形例の構成を説明するための説明図である。 As the biological substance detection device 10, unlike the biological substance detection device 10'shown in FIG. 2, the support plate 2 which is separate from the optical prism 1 is not provided, and the detection layer 3 is directly on the bottom surface of the optical prism 1. May be formed. Note that FIG. 2 is an explanatory diagram for explaining the configuration of a modified example of the biological substance detection device according to the first embodiment.

(第2実施形態)
次に、本発明の第2実施形態を図面を参照しつつ説明をする。図3は、第2実施形態に係る生体物質検出装置の構成を説明するための説明図である。
該図3に示すように、生体物質検出装置20は、光学プリズム21、支持板22、金属層23、誘電体層24、検出シート25、光照射部26及び光検出部27で構成される。
(Second Embodiment)
Next, the second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is an explanatory diagram for explaining the configuration of the biological substance detection device according to the second embodiment.
As shown in FIG. 3, the biological substance detection device 20 is composed of an optical prism 21, a support plate 22, a metal layer 23, a dielectric layer 24, a detection sheet 25, a light irradiation unit 26, and a light detection unit 27.

第1実施形態に係る生体物質検出装置10は、前記クレッチマン配置型の前記SPRセンサを利用して構成される。これに対し、第2実施形態に係る生体物質検出装置20は、光導波モードセンサを利用して構成される。
前記光導波モードセンサは、前記SPRセンサと同様の光学系を用いて構成することができ、光学プリズム21、支持板22、金属層23、検出シート25(基材層25a及び培地層25b)、光照射部26(レーザ26a、偏光素子26b等)及び光検出部27としては、第1実施形態に係る生体物質検出装置10における、光学プリズム1、支持板2、金属層3、検出シート5、光照射部6及び光検出部7と共通する事項を適用することができる。
以下では、第1実施形態に係る生体物質検出装置10と異なる事項について説明する。
The biological substance detection device 10 according to the first embodiment is configured by using the Kletchman-arranged SPR sensor. On the other hand, the biological substance detection device 20 according to the second embodiment is configured by using an optical waveguide mode sensor.
The optical waveguide mode sensor can be configured by using the same optical system as the SPR sensor, and includes an optical prism 21, a support plate 22, a metal layer 23, a detection sheet 25 (base material layer 25a and a medium layer 25b), and the like. The light irradiation unit 26 (laser 26a, polarizing element 26b, etc.) and the light detection unit 27 include an optical prism 1, a support plate 2, a metal layer 3, and a detection sheet 5 in the biological substance detection device 10 according to the first embodiment. Items common to the light irradiation unit 6 and the light detection unit 7 can be applied.
Hereinafter, matters different from the biological substance detection device 10 according to the first embodiment will be described.

第2実施形態に係る生体物質検出装置20では、検出層3に代えて、光学プリズム21側からみて金属層23と誘電体層24とをこの順で積層させた積層体で構成される検出層が配され、誘電体層24の培地層25bと当接される面が検出面とされる。 In the biological substance detection device 20 according to the second embodiment, instead of the detection layer 3, the detection layer is composed of a laminated body in which the metal layer 23 and the dielectric layer 24 are laminated in this order when viewed from the optical prism 21 side. Is arranged, and the surface of the dielectric layer 24 that comes into contact with the medium layer 25b is defined as the detection surface.

金属層23の形成材料としては、特に制限はなく、前記光導波モードセンサに適用される公知の金属材料が挙げられるが、金、銀、銅、プラチナ及びアルミニウムの少なくともいずれかを含む形成材料が好ましく、リユース時の高圧蒸気滅菌等による洗浄処理を考慮すると、金が特に好ましい。
また、金属層23の厚みとしては、特に制限はなく、例えば、1nm〜50nm程度とされる。
また、金属層23としては、前記直線偏光を照射したときの複素誘電率における実部が負の値を有し、虚部が正の値を有する層であることが好ましい。
なお、金属層23の形成方法としては、特に制限はなく、例えば、公知の蒸着法等が挙げられ、本例では、支持板22の光学プリズム21が配される側の面と反対側の面上に前記形成材料を蒸着等することで形成することができる。
The material for forming the metal layer 23 is not particularly limited, and examples thereof include known metal materials applied to the optical waveguide mode sensor. However, a forming material containing at least one of gold, silver, copper, platinum, and aluminum may be used. Preferably, gold is particularly preferable in consideration of a cleaning treatment such as high-pressure steam sterilization at the time of reuse.
The thickness of the metal layer 23 is not particularly limited, and is, for example, about 1 nm to 50 nm.
Further, the metal layer 23 is preferably a layer in which the real part has a negative value and the imaginary part has a positive value in the complex dielectric constant when irradiated with the linearly polarized light.
The method for forming the metal layer 23 is not particularly limited, and examples thereof include a known vapor deposition method. In this example, the surface of the support plate 22 opposite to the surface on which the optical prism 21 is arranged is arranged. It can be formed by depositing the forming material on top of it.

誘電体層24の形成材料としては、特に制限はなく、前記光導波モードに適用される公知の誘電体層の形成材料を適用することができ、例えば、アクリル樹脂等の樹脂材料、シリカ、アルミナ、酸化亜鉛等の金属酸化物、窒化シリコン、窒化アルミニウム等の金属窒化物などが挙げられるが、リユース時の高圧蒸気滅菌等による洗浄処理を考慮すると、前記金属酸化物が好ましく、中でも前記シリカが特に好ましい。
また、誘電体層24の厚みとしては、特に制限はないが、例えば、1nm〜1μm程度とされる。
The material for forming the dielectric layer 24 is not particularly limited, and a known material for forming the dielectric layer applied to the optical waveguide mode can be applied. For example, a resin material such as an acrylic resin, silica, or alumina can be applied. , Metal oxides such as zinc oxide, and metal nitrides such as silicon nitride and aluminum nitride. Considering the cleaning treatment by high-pressure steam sterilization at the time of reuse, the metal oxides are preferable, and the silica is particularly preferable. Especially preferable.
The thickness of the dielectric layer 24 is not particularly limited, but is, for example, about 1 nm to 1 μm.

なお、誘電体層24の形成方法としては、特に制限はなく、形成材料に応じて、公知の物理的、化学的な形成方法を適用することができる。
また、前記検出層を高圧蒸気滅菌等による洗浄処理を行ってリユースする場合、金属層23と誘電体層24との剥離を避けるため、これらの間にクロムやチタンなどで形成される結合層(不図示)を厚み1nm程度で形成してもよい。
また、誘電体層24としては、1層単独で形成されてもよいが、前記形成材料を用いて2層以上の積層体として形成されてもよい。
The method for forming the dielectric layer 24 is not particularly limited, and known physical and chemical forming methods can be applied depending on the forming material.
Further, when the detection layer is cleaned by high-pressure steam sterilization or the like and reused, a bonding layer formed of chromium, titanium, or the like is formed between the metal layer 23 and the dielectric layer 24 in order to avoid peeling. (Not shown) may be formed with a thickness of about 1 nm.
Further, the dielectric layer 24 may be formed as a single layer alone, or may be formed as a laminate of two or more layers using the forming material.

前記検出層を金属層23及び誘電体層24で形成する場合、使用ごとに高圧滅菌処理等の洗浄を行うことで繰返し使用することができ、また、光学プリズム21から支持板22とともに取り外すことで、使い捨てにすることもできる。
また、前記検出層を金属層23及び誘電体層24で形成する場合、前記入射光として用いられる前記直線偏光としては、p偏光及びs偏光のいずれの偏光も利用することができる。
When the detection layer is formed of the metal layer 23 and the dielectric layer 24, it can be used repeatedly by performing cleaning such as autoclave treatment each time it is used, and it can be removed from the optical prism 21 together with the support plate 22. , Can be disposable.
When the detection layer is formed of the metal layer 23 and the dielectric layer 24, either p-polarized light or s-polarized light can be used as the linearly polarized light used as the incident light.

このように構成される生体物質検出装置20では、前記入射光を全反射となる条件で光学プリズム21に入射したとき、ある特定の入射角度θにおいて、前記入射光が誘電体層24内を伝搬する光導波モードと結合して光導波モードが励起され、入射角度θ付近で前記反射光の強度が著しく減少する。前記光導波モードの励起条件は、前記検出面上の誘電率によって変化する。
この入射角度θは、前記検出面近傍における誘電率の変化に応じてシフト変化するため、入射角度θのシフト変化を通じて、前記検出面上に配される培地層25bに存在する前記生体物質を検出することができ、また、入射角度θのシフト変化量の解析に基づき、前記生体物質の増加(例えば、細菌等の増殖量や増殖速度等)をタイムリーに検出することができる。
In the biological substance detection device 20 configured as described above, when the incident light is incident on the optical prism 21 under the condition of total internal reflection, the incident light propagates in the dielectric layer 24 at a specific incident angle θ. The optical waveguide mode is excited in combination with the optical waveguide mode, and the intensity of the reflected light is remarkably reduced near the incident angle θ. The excitation conditions of the optical waveguide mode change depending on the permittivity on the detection surface.
Since the incident angle θ shifts according to the change in the dielectric constant in the vicinity of the detection surface, the biological substance existing in the medium layer 25b arranged on the detection surface is detected through the shift change of the incident angle θ. In addition, based on the analysis of the shift change amount of the incident angle θ, the increase in the biological substance (for example, the growth amount of bacteria and the like, the growth rate, etc.) can be detected in a timely manner.

生体物質検出装置20としては、図4に示す生体物質検出装置20’のように、光学プリズム21と別体とされる支持板22を設けず、光学プリズム21の底面上に直接、前記検出層(金属層23、誘電体層24)を形成してもよい。なお、図4は、第2実施形態に係る生体物質検出装置の変形例の構成を説明するための説明図である。 The biological substance detection device 20 is not provided with a support plate 22 that is separate from the optical prism 21 as in the biological substance detection device 20'shown in FIG. 4, and the detection layer is directly on the bottom surface of the optical prism 21. (Metal layer 23, dielectric layer 24) may be formed. Note that FIG. 4 is an explanatory diagram for explaining the configuration of a modified example of the biological substance detection device according to the second embodiment.

(その他の変形例)
第1、第2実施形態に係る各生体物質検出装置では、前記光照射部を駆動させ、前記反射光の強度が減少する入射角度θのシフト変化を測定することで解析を行うが、前記光照射部を駆動させる場合、光学系が大型化するため、前記光照射部を固定して解析を行う波長分散型の光学系を採用してもよい。
例えば、第1実施形態に係る光照射部6において、レーザ6aに代えて、白色光源を用いることで、広波長帯域の入射光を光学プリズム1に照射する光学系を採用してもよい。
この場合、光検出部7では、前記反射光の波長スペクトルを検出することとされ、前記波長スペクトルでは、ある特定波長において前記反射光の強度が著しく減少することが観察される。
前記波長スペクトルにおける、前記特定波長で前記反射光の強度が著しく減少する曲線形状は、ディップと呼ばれ、前記波長分散型の光学系で構成される生体物質検出装置では、前記ディップ位置が前記検出面上における誘電率の変化に応じて短波長側又は長波長側にシフト変化することを利用して前記生体物質の検出を行う。
(Other variants)
In each of the biological substance detection devices according to the first and second embodiments, the analysis is performed by driving the light irradiation unit and measuring the shift change of the incident angle θ in which the intensity of the reflected light decreases. When driving the irradiation unit, the optical system becomes large. Therefore, a wavelength dispersion type optical system in which the light irradiation unit is fixed for analysis may be adopted.
For example, in the light irradiation unit 6 according to the first embodiment, an optical system that irradiates the optical prism 1 with incident light in a wide wavelength band may be adopted by using a white light source instead of the laser 6a.
In this case, the light detection unit 7 detects the wavelength spectrum of the reflected light, and it is observed that the intensity of the reflected light is remarkably reduced at a specific wavelength in the wavelength spectrum.
The curved shape in the wavelength spectrum in which the intensity of the reflected light is remarkably reduced at the specific wavelength is called a dip, and in the biological substance detection device composed of the wavelength dispersive optical system, the dip position is detected. The biological substance is detected by utilizing the shift change to the short wavelength side or the long wavelength side according to the change in the dielectric constant on the surface.

なお、第1、第2実施形態に係る各生体物質検出装置を例に挙げて種々説明をしたが、前記検出シートの構成以外の構成については、説明した事項に加えて、公知のクレッチマン配置型SPRセンサ及び光導波モードセンサに適用される事項を基づいて構成することができる。このことを裏返せば、本発明の生体物質検出装置は、既存の前記SPRセンサ及び前記光導波モードセンサをそのまま利用して構成でき、新たなセンサの導入を必要としないとのコスト上のメリットを有する。 In addition, although various explanations have been given by taking each biological substance detection device according to the first and second embodiments as an example, in addition to the matters described, the known Kretschmann arrangement type has been described for configurations other than the configuration of the detection sheet. It can be configured based on the matters applicable to the SPR sensor and the optical waveguide mode sensor. On the flip side of this, the biological substance detection device of the present invention can be configured by using the existing SPR sensor and the optical waveguide mode sensor as they are, and has a cost advantage that it does not require the introduction of a new sensor. Have.

以下、本発明の実施例について説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.

(実施例1)
図1に示す構成で、実施例1に係る生体物質検出装置を製造した。具体的には、次のように製造を行った。
(Example 1)
The biological substance detection device according to Example 1 was manufactured with the configuration shown in FIG. Specifically, it was manufactured as follows.

実施例1に係る生体物質検出装置では、レーザから照射される波長632.8nmの光を偏光板に導入してp偏光として偏光後、光学プリズムに入射させるように設定を行った。また、前記光学プリズムから出射される反射光をサーモパイルセンサで受光するように光学系の設定を行った。
前記光学プリズムとしては、波長632.8nmの光に対して屈折率が1.73のガラス製光学プリズム(三角形プリズム、頂角90°)を用いた。
前記光学プリズムと同素材で形成される25mm角の支持板(屈折率1.73)上に、検出層として金を厚み47nmで蒸着した。この支持板における前記検出層が蒸着形成された面と反対側の面と、前記光学プリズムの底面とを屈折率整合液を介して密着させた。
検出シートは、25mm角に裁断した市販のインクジェット印刷用光沢紙(エプソン社製、クリスピア)を基材層として、前記基材層上にLB寒天培地材で形成される培地層を形成して作製した。前記培地層の形成は、前記LB培地材に水を加えた組成物をオートクレーブで120℃程度の温度に加熱・滅菌して、前記LB培地材を水に溶解、分散させた前駆体液とした後、固形化が始まる60℃程度まで温度が低下する前に、スキージング法により前記前駆体液を前記基材層上に塗布し、その後、37℃まで冷却して前記前駆体液を固形化させて行った。
最後に前記検出層の前記光学プリズムが配される面と反対側の面を検出面として、前記検出面と前記検出シートの前記培地層と密着させ、実施例1に係る生体物質検出装置を製造した。
In the biological substance detection device according to the first embodiment, light emitted from the laser having a wavelength of 632.8 nm is introduced into the polarizing plate, polarized as p-polarized light, and then incident on the optical prism. In addition, the optical system was set so that the thermopile sensor receives the reflected light emitted from the optical prism.
As the optical prism, a glass optical prism (triangular prism, apex angle 90 °) having a refractive index of 1.73 with respect to light having a wavelength of 632.8 nm was used.
Gold was deposited as a detection layer on a 25 mm square support plate (refractive index 1.73) made of the same material as the optical prism to a thickness of 47 nm. The surface of the support plate opposite to the surface on which the detection layer was vapor-deposited was brought into close contact with the bottom surface of the optical prism via a refractive index matching liquid.
The detection sheet is prepared by forming a medium layer formed of an LB agar medium material on the base layer using a commercially available glossy paper for inkjet printing (Crispia, manufactured by Epson) cut into 25 mm squares as a base layer. did. The medium layer is formed by heating and sterilizing a composition obtained by adding water to the LB medium to a temperature of about 120 ° C. in an autoclave to prepare a precursor solution in which the LB medium is dissolved and dispersed in water. Before the temperature drops to about 60 ° C. at which solidification begins, the precursor liquid is applied onto the substrate layer by a squeezing method, and then cooled to 37 ° C. to solidify the precursor liquid. It was.
Finally, the surface of the detection layer opposite to the surface on which the optical prism is arranged is set as the detection surface, and the detection surface is brought into close contact with the medium layer of the detection sheet to manufacture the biological substance detection device according to Example 1. did.

実施例1に係る生体物質検出装置に対し、入射光の前記光学プリズムに対する入射角を50°から75°まで変化させ、各入射角での反射光強度の測定を行った。反射光強度の測定結果を図5に示す。
該図5に示すように、63.5°付近で反射光強度の減少が確認される。このように実施例1に係る生体物質検出装置では、表面プラズモン共鳴に起因する反射光強度の減少を確認することができる。
For the biological substance detection device according to Example 1, the incident angle of the incident light with respect to the optical prism was changed from 50 ° to 75 °, and the reflected light intensity at each incident angle was measured. The measurement result of the reflected light intensity is shown in FIG.
As shown in FIG. 5, a decrease in the reflected light intensity is confirmed at around 63.5 °. As described above, in the biological substance detection device according to the first embodiment, it is possible to confirm the decrease in the reflected light intensity due to the surface plasmon resonance.

次に、実施例1に係る生体物質検出装置中の前記検出シートを前記検出層から一旦取り外し、前記検出シートの前記培地層上に、細菌としてE.Coliが導入されたE.Coli懸濁液を滴下して、再度、前記検出シートを前記検出層に密着させた。なお、E.Coli懸濁液としては、別のLB培地液中で培養したE.Coliを1万分の1の濃度に希釈して調製したものを用いた。
この状態で、実施例1に係る生体物質検出装置に対し、入射光の前記光学プリズムに対する入射角を50°から75°まで変化させ、各入射角での反射光強度の測定を行った。
また、同様の測定を、一旦前記検出層から取り外した前記検出シートを37℃の温度下で一定時間静置後、再度、前記検出層に取り付けて行った。静置時間は、前記培地層に対するE.Coli懸濁液の滴下から1時間が経過する時間までと、同滴下から4時間が経過する時間までとした。各状態における、反射光強度の測定結果を図6に示す。
該図6に示すように、E.Coli懸濁液の滴下直後(0h)では、63.6°付近で反射光強度の減少が確認され、E.Coli懸濁液を滴下しない状態で測定を行ったときの反射光強度の減少が確認される入射角度(63.5°)からのシフト変化が確認される。
したがって、実施例1に係る生体物質検出装置では、前記シフト変化を通じて、前記培地層中の生体物質の検出を行うことができる。
Next, the detection sheet in the biological substance detection device according to Example 1 was once removed from the detection layer, and E.I. E. with the introduction of Coli. The Coli suspension was added dropwise, and the detection sheet was brought into close contact with the detection layer again. In addition, E. As the Coli suspension, E. cerevisiae cultured in another LB medium solution. The one prepared by diluting Coli to a concentration of 1 / 10,000 was used.
In this state, the incident angle of the incident light with respect to the optical prism was changed from 50 ° to 75 ° to the biological substance detection device according to Example 1, and the reflected light intensity at each incident angle was measured.
Further, the same measurement was performed by allowing the detection sheet once removed from the detection layer to stand at a temperature of 37 ° C. for a certain period of time, and then attaching it to the detection layer again. The standing time was determined by E.I. The time was set to 1 hour after the dropping of the Coli suspension and 4 hours after the dropping. The measurement result of the reflected light intensity in each state is shown in FIG.
As shown in FIG. 6, E.I. Immediately after dropping the Coli suspension (0 h), a decrease in the reflected light intensity was confirmed at around 63.6 °, and E.I. A shift change from the incident angle (63.5 °) is confirmed, in which a decrease in the reflected light intensity is confirmed when the measurement is performed without dropping the Coli suspension.
Therefore, the biological substance detection device according to the first embodiment can detect the biological substance in the medium layer through the shift change.

また、図6に示すように、E.Coli懸濁液の滴下から1時間経過時では、前記シフト変化が明確に確認されないものの、4時間経過時では、63.7°付近で反射光強度の減少が確認され、E.Coli懸濁液の滴下直後における反射光強度の減少が確認される入射角度(63.6°)からのシフト変化を明確に確認することができる。このようなシフト変化は、前記培地層中でE.Coliが成長ないし増殖したことを意味する。
したがって、実施例1に係る生体物質検出装置では、前記シフト変化を生じさせる時間、シフト変化量等を解析することで、前記生体物質の増加をタイムリーに検出することもできる。
Further, as shown in FIG. 6, E.I. Although the shift change was not clearly confirmed 1 hour after the dropping of the Coli suspension, a decrease in the reflected light intensity was confirmed at around 63.7 ° after 4 hours. It is possible to clearly confirm the shift change from the incident angle (63.6 °) at which the decrease in the reflected light intensity is confirmed immediately after the Coli suspension is dropped. Such shift changes are caused by E. coli in the medium layer. It means that Colli has grown or proliferated.
Therefore, the biological substance detecting apparatus according to the first embodiment can detect the increase in the biological substance in a timely manner by analyzing the time for causing the shift change, the amount of the shift change, and the like.

(吸水性試験)
次に、前記基材層と前記培地層との固定状態、及び、前記基材層を形成する紙材の吸水性に伴う前記検出シートの形状変化の状況を確認するため、前記基材層の吸水性試験として、吸水度及び表面自由エネルギーの測定試験を行った。
前記吸水度は、ブリストー法(日本紙パルプ技術協会(Japan Tappi)規定、紙パルプ試験方法No.51:2000,“紙及び板紙−液体吸収性試験方法−ブリストー法”)に準じて接触時間10ミリ秒での吸水度として測定した。
また、前記表面自由エネルギーは、前記培地層が形成される前記基材層表面における表面自由エネルギーとして次のように算定した。即ち、水及びジヨードメタンを用いた滴下法にて前記基材層表面に滴下した前記水及びジヨードメタンの静的接触角を、接触角測定装置(協和界面科学社製、DM−500)を用いて測定し、得られた測定値に基づき、Owens−Wendt法による表面自由エネルギー値の算出を行った。なお、この算出は、前記接触角測定装置に付属される多機能統合解析ソフトウエア(FAMAS)が有する表面自由エネルギー解析ツールを用いて行った。
また、これら吸水性試験は、実施例1に係る生体物質検出装置における前記基材層として用いた紙(エプソン社製、クリスピア)をサンプル紙Aとし、ピクトリコ社製、ピクトリコ・プロをサンプル紙Bとし、日本製紙パビリア社製、オーパーMDPをサンプル紙Cとし、王子製紙社製、ミラーコートプラチナをサンプル紙Dとし、三菱製紙社製、マットコート紙をサンプル紙Eとして、これらサンプル紙A〜Eに対して行った。
試験結果を図7及び下記表1に示す。なお、図7は、各サンプル紙における吸水度と表面自由エネルギーとの関係を示す図である。
(Water absorption test)
Next, in order to confirm the fixed state of the base material layer and the medium layer and the state of the shape change of the detection sheet due to the water absorption of the paper material forming the base material layer, the base material layer As a water absorption test, a measurement test of water absorption and surface free energy was performed.
The water absorption degree is determined according to the Bristow method (Japan Pulp and Paper Technology Association (Japan Tappi) regulation, Pulp and Paper Test Method No. 51: 2000, "Paper and Paperboard-Liquid Absorption Test Method-Bristow Method"). It was measured as the water absorption in millisecond.
Further, the surface free energy was calculated as follows as the surface free energy on the surface of the base material layer on which the medium layer is formed. That is, the static contact angle of the water and diiodomethane dropped on the surface of the base material layer by the dropping method using water and diiodomethane is measured using a contact angle measuring device (DM-500, manufactured by Kyowa Interface Science Co., Ltd.). Then, based on the obtained measured values, the surface free energy value was calculated by the Owns-Wendt method. This calculation was performed using the surface free energy analysis tool of the multifunctional integrated analysis software (FAMAS) attached to the contact angle measuring device.
Further, in these water absorption tests, the paper (manufactured by Epson, Crispia) used as the base material layer in the biological substance detection device according to Example 1 was used as sample paper A, and the paper manufactured by Pictorico, Pictorico Pro was used as sample paper B. These sample papers A to E are made by Nippon Paper Pavilia, Oper MDP as sample paper C, Oji Paper, mirror coated platinum as sample paper D, and Mitsubishi Paper Mills, matte coated paper as sample paper E. Went to.
The test results are shown in FIG. 7 and Table 1 below. Note that FIG. 7 is a diagram showing the relationship between the water absorption degree and the surface free energy of each sample paper.

Figure 0006853974
Figure 0006853974

図7及び表1に示すように、サンプル紙A,Bは、前記吸水度が10g/m以下であり、かつ、前記表面自由エネルギーが50mJ/m以上とされる。したがって、これらサンプル紙A,B上に前記培地層を形成すると、サンプル紙A,Bが、前記吸水度にしたがって吸水し過ぎによる強度の低下、乾燥に起因する皺の発生等の影響を受けにくく、延いては、前記培地層の平滑性が損われることを抑制することができる。また、前記表面自由エネルギーにしたがって、サンプル紙A,B上に前記培地層を形成する前記培地材(分散液)を適切に濡れ広がらせて、前記培地層を均一な厚みで安定的に固定することができる。
また、サンプル紙C,Dは、前記吸水度が10g/m以下であるが、前記表面自由エネルギーが50mJ/m未満とされる。したがって、これらサンプル紙C,D上に前記培地層を形成すると、前記培地材(分散液)がサンプル紙C,D表面の前記表面自由エネルギーにしたがって弾かれ易く(撥水)、前記培地材にダマ等が生じて前記培地層の厚みが不均一になり易い。
また、サンプル紙Eは、前記表面自由エネルギーが50mJ/m以上であるが、前記吸水度が前記吸水度が10g/mを超えるものとされる。したがって、サンプル紙E上に前記培地層を形成すると、サンプル紙Eが、前記吸水度にしたがって吸水し過ぎによる強度の低下、乾燥に起因する皺の発生等の影響を受け易く、延いては、前記培地層の平滑性が損われ易い。
As shown in FIGS. 7 and 1, the sample papers A and B have a water absorption of 10 g / m 2 or less and a surface free energy of 50 m J / m 2 or more. Therefore, when the medium layer is formed on the sample papers A and B, the sample papers A and B are less susceptible to the influence of the decrease in strength due to excessive water absorption and the generation of wrinkles due to drying according to the degree of water absorption. As a result, it is possible to prevent the smoothness of the medium layer from being impaired. Further, according to the surface free energy, the medium material (dispersion liquid) forming the medium layer on the sample papers A and B is appropriately wetted and spread to stably fix the medium layer with a uniform thickness. be able to.
Further, the sample papers C and D have the water absorption degree of 10 g / m 2 or less, but the surface free energy is less than 50 m J / m 2. Therefore, when the medium layer is formed on the sample papers C and D, the medium material (dispersion liquid) is easily repelled according to the surface free energy of the surface of the sample papers C and D (water repellent), and the medium material becomes. The thickness of the medium layer tends to be uneven due to lumps and the like.
Further, the sample paper E has the surface free energy of 50 mJ / m 2 or more, but the water absorption degree of the sample paper E exceeds 10 g / m 2 of the water absorption degree. Therefore, when the medium layer is formed on the sample paper E, the sample paper E is susceptible to a decrease in strength due to excessive water absorption according to the water absorption degree, wrinkles due to drying, and the like. The smoothness of the medium layer is easily impaired.

実際に、サンプル紙A,Eを前記基材層として、次のように前記培地層を形成し、その状況の確認を行った。
実施例1における前記基材層上に前記培地層を形成した方法と同様の方法で、サンプル紙A,E上に前記培地層を形成した。即ち、前記LB培地材に水を加えた組成物をオートクレーブで120℃程度の温度に加熱・滅菌して、前記LB培地材を水に溶解、分散させた前駆体液とした後、固形化が始まる60℃程度まで温度が低下する前に、スキージング法により前記前駆体液を前記基材層上に塗布し、その後、37℃まで冷却して前記前駆体液を固形化させ、サンプル紙A,E上に前記培地層を形成した。
サンプル紙A上に前記培地層を形成した検出シートの様子を図8に示す。また、サンプル紙E上に前記培地層を形成した検出シートの様子を図9に示す。
Actually, using the sample papers A and E as the base material layer, the medium layer was formed as follows, and the situation was confirmed.
The medium layer was formed on the sample papers A and E in the same manner as the method for forming the medium layer on the base material layer in Example 1. That is, the composition obtained by adding water to the LB medium is heated and sterilized in an autoclave to a temperature of about 120 ° C. to obtain a precursor solution in which the LB medium is dissolved and dispersed in water, and then solidification begins. Before the temperature drops to about 60 ° C., the precursor liquid is applied onto the substrate layer by a squeezing method, and then cooled to 37 ° C. to solidify the precursor liquid on sample papers A and E. The medium layer was formed in.
FIG. 8 shows the state of the detection sheet in which the medium layer is formed on the sample paper A. Further, FIG. 9 shows the state of the detection sheet in which the medium layer is formed on the sample paper E.

図8に示すように、サンプル紙A上に前記培地層を形成した検出シートでは、サンプル紙Aに大きな形状変化が見られず、前記培地層の表面が前記検出層の前記検出面に密着させ易い平坦な形状とされる。
一方、図9に示すように、サンプル紙E上に前記培地層を形成した検出シートでは、サンプル紙Eに大きな皺が複数発生し、同時に、前記培地層の表面にも、サンプル紙Eにおける形状変化に追従して形成された大きな皺が複数確認される。よって、サンプル紙E上に前記培地層を形成した検出シートを用いる場合、前記検出面への密着時に前記培地層表面と前記検出面との界面に気泡が入り込み易いことが想定される。前記界面に気泡等が入ると、前記生体物質の検出が妨げられることから、前記検出シートを前記検出層に取り付ける際のセッティングに負荷がかかることが想定される。
As shown in FIG. 8, in the detection sheet in which the medium layer is formed on the sample paper A, no significant change in shape is observed in the sample paper A, and the surface of the medium layer is brought into close contact with the detection surface of the detection layer. It has a flat shape that is easy to use.
On the other hand, as shown in FIG. 9, in the detection sheet in which the medium layer is formed on the sample paper E, a plurality of large wrinkles are generated on the sample paper E, and at the same time, the shape of the sample paper E is also formed on the surface of the medium layer. Multiple large wrinkles formed following the change are confirmed. Therefore, when the detection sheet in which the medium layer is formed on the sample paper E is used, it is assumed that air bubbles easily enter the interface between the surface of the medium layer and the detection surface when the detection sheet is in close contact with the detection surface. If air bubbles or the like enter the interface, the detection of the biological substance is hindered, so that it is assumed that a load is applied to the setting when the detection sheet is attached to the detection layer.

前記吸水度が10g/mを超える場合、水分吸収時の膨張と乾燥時の収縮によって乾燥後の前記基材層に大きな皺を発生させ易く、同時に、前記基材層上の前記培地層にも大きな皺を発生させ易いものと考えられる。
したがって、前記基材層としては、サンプル紙A,Bの吸水性試験の測定結果に準じて、前記吸水度が10g/m以下であることが好ましく、このような吸水度を持つ紙材で形成されることが好ましいと考えられる。
また、同時に、前記基材層としては、前記培地層を形成する表面における前記表面自由エネルギーが、低くとも50mJ/mであることが好ましいと考えられる。
即ち、比較用の写真を取得し難いため、図示しないが、実際にサンプル紙A〜Dを前記基材層として前記培地層を同様に形成して、状況確認を行ったところ、サンプル紙A,Bと比較して、サンプル紙C,Dは、前記培地材(分散液)が弾かれ易く、前記培地層の厚みが不均一になり易いものであった。
これに対し、サンプル紙A,Bでは、前記培地材(分散液)が適度に濡れ広がり易く、前記培地層の厚みを均一に形成することができている(例えば、図8参照)。
When the water absorption degree exceeds 10 g / m 2 , large wrinkles are likely to be generated in the base material layer after drying due to expansion during water absorption and contraction during drying, and at the same time, the medium layer on the base material layer is likely to have large wrinkles. It is considered that large wrinkles are likely to occur.
Therefore, as the base material layer, the water absorption is preferably 10 g / m 2 or less according to the measurement results of the water absorption tests of the sample papers A and B, and a paper material having such a water absorption is used. It is considered preferable to be formed.
At the same time, as the base material layer, it is considered preferable that the surface free energy on the surface forming the medium layer is at least 50 mJ / m 2.
That is, although it is not shown because it is difficult to obtain a photograph for comparison, when the medium layer was formed in the same manner using the sample papers A to D as the base material layer and the situation was confirmed, the sample papers A and A, Compared with B, in the sample papers C and D, the medium material (dispersion liquid) was easily repelled, and the thickness of the medium layer was likely to be non-uniform.
On the other hand, in the sample papers A and B, the medium material (dispersion liquid) easily wets and spreads appropriately, and the thickness of the medium layer can be formed uniformly (see, for example, FIG. 8).

1,21 光学プリズム
2,22 支持板
3 検出層
5,25 検出シート
5a,25a 基材層
5b,25b 培地層
6,26 光照射部
6a,26a レーザ
6b,26b 偏光素子
7,27 光検出部
10,10’20,20’ 生体物質検出装置
23 金属層
24 誘電体層

1,21 Optical prism 2,22 Support plate 3 Detection layer 5,25 Detection sheet 5a, 25a Base material layer 5b, 25b Medium layer 6,26 Light irradiation unit 6a, 26a Laser 6b, 26b Polarizing element 7,27 Light detection unit 10, 10'20, 20'Biological substance detector 23 Metal layer 24 Dielectric layer

Claims (8)

入射される入射光を底面に向けて導入可能とされ、前記底面側から反射される前記入射光の反射光を外部に出射可能とされる光学プリズムと、
前記光学プリズムの底面側に配され、前記光学プリズムが配される側の面と反対側の面を検出面として前記検出面上の誘電率変化に応じて前記反射光の特性に変化を生じさせる検出層と、
前記光学プリズムに対し前記入射光として直線偏光を照射可能とされる光照射部と、
前記光学プリズムから出射される前記反射光を受光して前記反射光の特性を検出可能とされる光検出部と、
天然紙及び合成紙のいずれかの紙材で形成される基材層上に生体物質を培養可能な固体の培地層が形成され、前記培地層側が前記検出面と当接するように配される検出シートと、
を有することを特徴とする生体物質検出装置。
An optical prism capable of introducing incident light toward the bottom surface and emitting reflected light of the incident light reflected from the bottom surface side to the outside.
It is arranged on the bottom surface side of the optical prism, and the surface opposite to the surface on which the optical prism is arranged is used as a detection surface, and the characteristics of the reflected light are changed according to the change in the dielectric constant on the detection surface. With the detection layer,
A light irradiation unit capable of irradiating the optical prism with linearly polarized light as the incident light,
A photodetector that receives the reflected light emitted from the optical prism and can detect the characteristics of the reflected light.
Detection in which a solid medium layer capable of culturing biological substances is formed on a base material layer made of either natural paper or synthetic paper, and the medium layer side is arranged so as to be in contact with the detection surface. Sheet and
A biological substance detection device characterized by having.
基材層のブリストー法に準じて測定される接触時間10ミリ秒での吸水度が、高くとも10g/mであり、培地層が形成される前記基材層表面における表面自由エネルギーが、低くとも50mJ/mである請求項1に記載の生体物質検出装置。 The water absorption of the base material layer at a contact time of 10 ms measured according to the Bristow method is at most 10 g / m 2 , and the surface free energy on the surface of the base material layer on which the medium layer is formed is low. The biological substance detection device according to claim 1, both of which are 50 mJ / m 2. 基材層の厚みが、薄くとも200μmである請求項1から2のいずれかに記載の生体物質検出装置。 The biological substance detection device according to any one of claims 1 to 2, wherein the thickness of the base material layer is at least 200 μm. 培地層の形成材料が、寒天を含む培地材である請求項1から3のいずれかに記載の生体物質検出装置。 The biological substance detection device according to any one of claims 1 to 3, wherein the material for forming the medium layer is a medium material containing agar. 光照射部が照射可能とされる直線偏光がp偏光とされ、検出層が金属層とされる請求項1から4のいずれかに記載の生体物質検出装置。 The biological substance detection device according to any one of claims 1 to 4, wherein the linearly polarized light that can be irradiated by the light irradiation unit is p-polarized light, and the detection layer is a metal layer. 光照射部が照射可能とされる直線偏光がs偏光及びp偏光のいずれかとされ、検出層が光学プリズム側からみて金属層誘電体層とをこの順で積層させた積層体で構成される請求項1から4のいずれかに記載の生体物質検出装置。 The linearly polarized light that can be irradiated by the light irradiation unit is either s-polarized light or p-polarized light, and the detection layer is composed of a laminated body in which a metal layer and a dielectric layer are laminated in this order when viewed from the optical prism side. The biological substance detection device according to any one of claims 1 to 4. 金属層が、直線偏光を照射したときの複素誘電率における実部が負の値を有し、虚部が正の値を有する層とされる請求項5から6のいずれかに記載の生体物質検出装置。 The biological material according to any one of claims 5 to 6, wherein the metal layer is a layer in which the real part has a negative value and the imaginary part has a positive value in the complex permittivity when irradiated with linearly polarized light. Detection device. 光学プリズムの底面と光学的に密着される支持板を有し、検出層が前記支持板の前記光学プリズムが配される面と反対側の面上に形成される請求項1から7のいずれかに記載の生体物質検出装置。 Any of claims 1 to 7, which has a support plate that is optically in close contact with the bottom surface of the optical prism, and the detection layer is formed on a surface of the support plate opposite to the surface on which the optical prism is arranged. The biological substance detection device according to the above.
JP2016160071A 2016-08-17 2016-08-17 Biological substance detector Active JP6853974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160071A JP6853974B2 (en) 2016-08-17 2016-08-17 Biological substance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160071A JP6853974B2 (en) 2016-08-17 2016-08-17 Biological substance detector

Publications (2)

Publication Number Publication Date
JP2018028467A JP2018028467A (en) 2018-02-22
JP6853974B2 true JP6853974B2 (en) 2021-04-07

Family

ID=61249122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160071A Active JP6853974B2 (en) 2016-08-17 2016-08-17 Biological substance detector

Country Status (1)

Country Link
JP (1) JP6853974B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018007282T5 (en) * 2018-03-15 2020-12-03 Mitsubishi Electric Corporation MEASURING DEVICE FOR BIOLOGICAL MATERIALS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365809B2 (en) * 1993-03-15 2003-01-14 オリンパス光学工業株式会社 Measurement device using surface plasmon resonance
JP2000097851A (en) * 1998-09-18 2000-04-07 Dainippon Printing Co Ltd In-fluid microbe measuring chip, measuring method and measuring device
US20070099180A1 (en) * 2005-10-31 2007-05-03 Robotti Karla M Evanescent wave sensor with attached ligand
JP2007271596A (en) * 2006-03-08 2007-10-18 National Institute Of Advanced Industrial & Technology Optical waveguide mode sensor
JP6500358B2 (en) * 2014-07-10 2019-04-17 大日本印刷株式会社 Colony detection system, colony detection method, and program

Also Published As

Publication number Publication date
JP2018028467A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
Samavati et al. Sustainable and fast saliva-based COVID-19 virus diagnosis kit using a novel GO-decorated Au/FBG sensor
Kim et al. Nanoisland‐based random activation of fluorescence for visualizing endocytotic internalization of adenovirus
JP5885350B2 (en) Detection device
JP2008278810A5 (en)
JP2007538264A (en) Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS
Oliveira et al. Surface plasmon resonance sensors: a materials guide to design, characterization, optimization, and usage
WO2015000243A1 (en) Micro-fluidic chip-based microbiological detection instrument and spr detection method thereof
US20110312103A1 (en) Sample detection sensor and sample detection method
Camposeo et al. Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods
Boujday et al. Detection of pathogenic Staphylococcus aureus bacteria by gold based immunosensors
JP6853974B2 (en) Biological substance detector
US20060147147A1 (en) Waveguide structure
JP5920692B2 (en) Target substance detection chip, target substance detection device, and target substance detection method
WO2018012436A1 (en) Optical detection apparatus and optical detection method
US20130063717A1 (en) Laminated structure for measuring reflected light intensity, device containing laminated structure for measuring reflected light intensity, and method for measuring film thickness and/or mass and/or viscosity of thin film
JP2009168469A (en) Spr sensor chip and spr sensor using it
WO2014132717A1 (en) Interaction analysis device
JP6913966B2 (en) Sensor chip, target substance detection device and target substance detection method
Martinez-Perdiguero et al. Enhanced transmission through gold nanohole arrays fabricated by thermal nanoimprint lithography for surface plasmon based biosensors
US20190056389A1 (en) System and method for determining the presence or absence of adsorbed biomolecules or biomolecular structures on a surface
Danz et al. Biosensing platform combining label-free and labelled analysis using Bloch surface waves
WO2002103339A1 (en) Photothermal conversion spectroscopic analysis method, and photothermal conversion spectroscopic analysis system for executing that method
US20150185457A1 (en) Optical Methods for Observing Samples and for Detecting or Metering Chemical or Biological Species
JP2004061141A (en) Method for measuring thickness of thin film
JP3945636B2 (en) measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210305

R150 Certificate of patent or registration of utility model

Ref document number: 6853974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250