JP6852609B2 - Glass substrate, organic EL lighting device - Google Patents

Glass substrate, organic EL lighting device Download PDF

Info

Publication number
JP6852609B2
JP6852609B2 JP2017143309A JP2017143309A JP6852609B2 JP 6852609 B2 JP6852609 B2 JP 6852609B2 JP 2017143309 A JP2017143309 A JP 2017143309A JP 2017143309 A JP2017143309 A JP 2017143309A JP 6852609 B2 JP6852609 B2 JP 6852609B2
Authority
JP
Japan
Prior art keywords
layer
glass substrate
angle
light
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017143309A
Other languages
Japanese (ja)
Other versions
JP2019024069A (en
Inventor
苅部 林也
林也 苅部
宗太郎 岩田
宗太郎 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2017143309A priority Critical patent/JP6852609B2/en
Priority to PCT/JP2018/017510 priority patent/WO2019021567A1/en
Publication of JP2019024069A publication Critical patent/JP2019024069A/en
Application granted granted Critical
Publication of JP6852609B2 publication Critical patent/JP6852609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、ガラス基板、ガラス基板を備える有機EL照明装置に関するものである。 The present invention relates to a glass substrate and an organic EL lighting device including a glass substrate.

有機EL(Electro Luminescence)素子は、面発光が可能な自発光素子であり、薄型照明光源やフラットパネルディスプレイなどに用いられている。この有機EL素子は、ガラス基板などの透明基板上に、ITOなどの透明導電層、発光層を含む有機層、金属導電層などを形成する薄膜積層構造を備えており、透明導電層と金属導電層を一対の電極(陽極と陰極)として、電極間への通電で発光した光を透明基板を介して外部に取り出す。 The organic EL (Electro Luminescence) element is a self-luminous element capable of surface emission, and is used in a thin illumination light source, a flat panel display, and the like. This organic EL element has a thin film laminated structure in which a transparent conductive layer such as ITO, an organic layer including a light emitting layer, a metal conductive layer and the like are formed on a transparent substrate such as a glass substrate, and the transparent conductive layer and the metal conductive layer are provided. The layers are used as a pair of electrodes (electrode and cathode), and the light emitted by energization between the electrodes is taken out to the outside through a transparent substrate.

このような有機EL素子は、有機層や透明導電層の屈折率が透明基板の屈折率に対してかなり高いことから、有機層で発光した光の一部が透明導電層と透明基板の界面或いは透明基板と空気層の界面で全反射を起こして素子内部に閉じ込められる現象が生じ、発光した光の全てを外部に取り出すことができない。発光した光に対して外部に取り出すことができる光の割合を光取り出し効率と呼んでいるが、光取り出し効率の向上が、省電力で可能な限り高輝度を得たい有機EL装置、特に有機EL照明装置の大きな課題になっている。 In such an organic EL element, since the refractive index of the organic layer or the transparent conductive layer is considerably higher than the refractive index of the transparent substrate, a part of the light emitted by the organic layer is at the interface between the transparent conductive layer and the transparent substrate or. A phenomenon occurs in which total reflection occurs at the interface between the transparent substrate and the air layer and is confined inside the element, and all the emitted light cannot be taken out to the outside. The ratio of light that can be extracted to the outside with respect to the emitted light is called the light extraction efficiency. Organic EL devices that want to improve the light extraction efficiency to obtain the highest possible brightness with low power consumption, especially organic EL. It has become a major issue for lighting equipment.

光取り出し効率の改善策としては、透明基板の内部に入る光を増やすことと、透明基板に入った光のうち透明基板の表面から出射する光を増やすことの2面で検討することが必要になる。前者の改善策としては、透明導電膜と透明基板との間に光散乱機能を有する屈折率調整層を設けることが検討されており、例えば、屈折率調整用粒子とバインダーとの配合で透明基板より高い屈折率に調整された母材部の中に、母材部の屈折率とは異なる屈折率を有する透明材料で形成された散乱粒子を分散させることなどが提案されている(下記特許文献1参照)。 As a measure to improve the light extraction efficiency, it is necessary to consider two aspects: increasing the amount of light entering the inside of the transparent substrate and increasing the amount of light entering the transparent substrate that is emitted from the surface of the transparent substrate. Become. As a remedy for the former, it is considered to provide a refractive index adjusting layer having a light scattering function between the transparent conductive film and the transparent substrate. For example, a transparent substrate is formed by blending a refractive index adjusting particle and a binder. It has been proposed to disperse scattered particles formed of a transparent material having a refractive index different from that of the base material portion in the base material portion adjusted to a higher refractive index (the following patent documents). 1).

また、後者の改善策としては、透明基板の光取り出し側の表面に凹凸賦形を設けることが検討されており、例えば、透明基板の表面に、凸状又は凹状であって、頂角が20°〜120°の範囲に設定された錐状のレンズアレイ素子を設けることが提案されている(下記特許文献2参照)。 Further, as a remedy for the latter, it is considered to provide an uneven shape on the surface of the transparent substrate on the light extraction side. For example, the surface of the transparent substrate is convex or concave and has an apex angle of 20. It has been proposed to provide a cone-shaped lens array element set in the range of ° to 120 ° (see Patent Document 2 below).

特開2015−176734号公報Japanese Unexamined Patent Publication No. 2015-176734 特開2003−59641号公報Japanese Unexamined Patent Publication No. 2003-59641

有機EL素子の光取り出し効率を改善するには、前述した前者の改善策と後者の改善策を組み合わせることが考えられる。しかしながら、透明基板の裏面側(光入射側)に光拡散機能を有する屈折率調整層を設けた場合には、光散乱の効果で、透明基板に入射した光の進行方向は様々な方向に広い分布を有することになる。これに対して、透明基板の表面側(光取り出し側)には、頂角の角度が一定(20°〜120°の範囲で設定された一定角度)の凹凸賦形(レンズアレイ素子)が設けられることになり、透明基板の内部を様々な方向に進行する光を、効率良く外に取り出すことができない問題があった。 In order to improve the light extraction efficiency of the organic EL element, it is conceivable to combine the former improvement measures and the latter improvement measures described above. However, when a refractive index adjusting layer having a light diffusion function is provided on the back surface side (light incident side) of the transparent substrate, the traveling direction of the light incident on the transparent substrate is wide in various directions due to the effect of light scattering. Will have a distribution. On the other hand, on the surface side (light extraction side) of the transparent substrate, a concavo-convex shape (lens array element) having a constant apex angle (constant angle set in the range of 20 ° to 120 °) is provided. Therefore, there is a problem that the light traveling in various directions inside the transparent substrate cannot be efficiently taken out.

本発明は、このような問題を解決することを課題としている。すなわち、有機EL素子の光取り出し側透明基板となるガラス基板において、ガラス基板の内部により多くの光を取り込み、且つガラス基板に入射した光を効率良く外部に取り出すことで、有機EL素子の光取り出し効率の改善を図ることが本発明の課題である。 An object of the present invention is to solve such a problem. That is, in the glass substrate which is the transparent substrate on the light extraction side of the organic EL element, more light is taken into the inside of the glass substrate, and the light incident on the glass substrate is efficiently extracted to the outside to extract the light of the organic EL element. It is an object of the present invention to improve efficiency.

このような課題を解決するために、本発明は、以下の構成を具備するものである。
有機EL素子の光取り出し側透明基板であるガラス基板であって、ガラス層の光入射側には、光散乱機能を有する屈折率調整層が設けられ、ガラス層の光出射側には、平坦面に対して角度分布を有する表面賦形が設けられていることを特徴とするガラス基板。
In order to solve such a problem, the present invention has the following configurations.
A glass substrate that is a transparent substrate on the light extraction side of an organic EL element. A refractive index adjusting layer having a light scattering function is provided on the light incident side of the glass layer, and a flat surface is provided on the light emitting side of the glass layer. A glass substrate characterized in that a surface shaping having an angle distribution with respect to a glass substrate is provided.

このような特徴を有するガラス基板は、光散乱機能を有する屈折率調整層の存在で、ガラス層の光入射側の面では、そこで一旦反射された光が再び角度を変えてガラス層内に入射しようとするので、結果的に多くの光をガラス層内に取り込むことができる。この際、ガラス層に入射した光の進行方向は様々な方向に広い分布を有することになるが、ガラス層の光出射側に、平坦面に対して角度分布を有する表面賦形を設けることで、ガラス層内の様々な方向に進行する光を効率的に外部に取り出すことができる。これによって、有機EL素子の光取り出し効率を改善することができるガラス基板を提供することができる。 The glass substrate having such characteristics has a refractive index adjusting layer having a light scattering function, and on the surface of the glass layer on the light incident side, the light once reflected there changes the angle again and enters the glass layer. As a result, a large amount of light can be taken into the glass layer. At this time, the traveling direction of the light incident on the glass layer has a wide distribution in various directions, but by providing a surface shaping having an angular distribution with respect to the flat surface on the light emitting side of the glass layer. , Light traveling in various directions in the glass layer can be efficiently taken out to the outside. This makes it possible to provide a glass substrate capable of improving the light extraction efficiency of the organic EL element.

本発明の実施形態に係るガラス基板を示した説明図((a)が断面図、(b)が(a)のA部拡大図)である。An explanatory view showing a glass substrate according to an embodiment of the present invention ((a) is a cross-sectional view, (b) is an enlarged view of part A of (a)). 有機EL素子(有機EL照明装置)の構成例を示した説明図である。It is explanatory drawing which showed the structural example of the organic EL element (organic EL lighting apparatus). 実施例の説明図である((a)が賦形Aの角度分布を示したヒストグラムであり、(b)が賦形Bの角度分布を示したヒストグラムである)。It is explanatory drawing of an Example ((a) is a histogram which showed the angular distribution of a shaping A, (b) is a histogram which showed the angular distribution of a shaping B). 図3(a),(b)のヒストグラムの累積度数を角度毎に示したグラフである。3 is a graph showing the cumulative power of the histograms of FIGS. 3A and 3B for each angle.

以下、図面を参照して本発明の実施形態を説明する。図1に示すように、ガラス基板は、ガラス層1と屈折率調整層2とを備えている。ガラス層1は、光出射側(表面側)に表面賦形1Aが設けられており、光入射側(裏面側)には、粗面1Bが設けられている。そして、ガラス層1の光入射側に屈折率調整層2が設けられている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the glass substrate includes a glass layer 1 and a refractive index adjusting layer 2. The glass layer 1 is provided with a surface shaping 1A on the light emitting side (front surface side) and a rough surface 1B on the light incident side (back surface side). The refractive index adjusting layer 2 is provided on the light incident side of the glass layer 1.

屈折率調整層2は、ガラス層1より高い屈折率を有する樹脂層2Aと樹脂層2Aの屈折率とは異なる屈折率を有する散乱粒子2Bを有しており、透過する光を散乱させる機能(光散乱機能)を有している。散乱粒子2Bは、可視光の波長と同程度の粒径を有している。具体的には、0.1〜2.5μmの粒径を有するものを用いることができ、粒径は均一であっても不均一であってもよい。また、散乱粒子2Bは、体積分率20〜80%の範囲で樹脂層2A内に混入されており、一例として、シリコーン粒子で構成することができる。但し、散乱粒子2Bの材料は屈折率調整層2と屈折率の異なる材料であればシリコーン粒子とは限らない。たとえばガラスなどのセラミックを用いることができる。 The refractive index adjusting layer 2 has a resin layer 2A having a higher refractive index than the glass layer 1 and scattered particles 2B having a refractive index different from the refractive index of the resin layer 2A, and has a function of scattering transmitted light ( It has a light scattering function). The scattered particles 2B have a particle size similar to that of visible light. Specifically, those having a particle size of 0.1 to 2.5 μm can be used, and the particle size may be uniform or non-uniform. Further, the scattered particles 2B are mixed in the resin layer 2A in the range of a volume fraction of 20 to 80%, and can be composed of silicone particles as an example. However, the material of the scattered particles 2B is not limited to silicone particles as long as the material has a different refractive index from that of the refractive index adjusting layer 2. For example, ceramics such as glass can be used.

屈折率調整層2は、ガラス層1の裏面側の粗面1B上に形成されており、有機EL素子の構成要素である透明導電層の下地層となるもので、透明導電層の屈折率以下でガラス層1の屈折率より大きい屈折率を有している。また、屈折率調整層2は、その上に形成される透明導電層が平坦になるように、ガラス層1の粗面1Bを埋めて平坦化する機能を有している。また、屈折率調整層2に用いられる材料は透明体であれば樹脂に限らない。たとえばガラスなどのセラミックを用いることができる。 The refractive index adjusting layer 2 is formed on the rough surface 1B on the back surface side of the glass layer 1 and serves as a base layer of the transparent conductive layer which is a component of the organic EL element, and is equal to or lower than the refractive index of the transparent conductive layer. Has a refractive index higher than that of the glass layer 1. Further, the refractive index adjusting layer 2 has a function of filling and flattening the rough surface 1B of the glass layer 1 so that the transparent conductive layer formed on the transparent conductive layer 2 becomes flat. Further, the material used for the refractive index adjusting layer 2 is not limited to resin as long as it is a transparent material. For example, ceramics such as glass can be used.

ガラス層1の表面に形成される表面賦形1Aは、ガラス基板の平坦面Hに対して様々な角度分布を有している。この表面賦形1Aは、凹形状又は凸形状の単位形状を複数並列配置したものであり、一つの単位形状内における空気層との界面に様々な角度分布を設けている。 The surface shaping 1A formed on the surface of the glass layer 1 has various angular distributions with respect to the flat surface H of the glass substrate. In this surface shaping 1A, a plurality of concave or convex unit shapes are arranged in parallel, and various angular distributions are provided at the interface with the air layer in one unit shape.

図2は、前述したガラス基板を備える有機EL素子の構成例を示している。有機EL素子は、ガラス層1の裏面側に設けられる屈折率調整層2上に透明導電層3を形成し、透明導電層3上に発光層を有する有機層4を形成し、有機層4の上に金属導電層5を形成する。このような有機EL素子は、有機EL照明装置の発光要素になる。 FIG. 2 shows a configuration example of the organic EL element including the glass substrate described above. In the organic EL element, the transparent conductive layer 3 is formed on the refractive index adjusting layer 2 provided on the back surface side of the glass layer 1, the organic layer 4 having a light emitting layer is formed on the transparent conductive layer 3, and the organic layer 4 is formed. A metal conductive layer 5 is formed on the metal conductive layer 5. Such an organic EL element becomes a light emitting element of an organic EL lighting device.

有機EL素子は、透明導電層3と金属導電層5を一対の電極としており、この電極間に通電して発光層から発光した光が、透明導電層3と屈折率調整層2とガラス層1を通過して外部に取り出される。この際、光散乱機能を有する屈折率調整層2により、ガラス層1の光入射側の面では、そこで一旦反射された光が再び角度を変えてガラス層1内に入射しようとするので、結果的に多くの光がガラス層1内に取り込まれることになる。ここで、ガラス層1に入射した光の進行方向は様々な方向に広い分布を有することになるが、ガラス層1の光出射側に、平坦面に対して角度分布を有する表面賦形1Aを設けることで、ガラス層1内の様々な方向に進行する光を効率的に外部に取り出すことができる。これによって、有機EL素子の光取り出し効率を改善することが可能になる。 The organic EL element has a transparent conductive layer 3 and a metal conductive layer 5 as a pair of electrodes, and the light emitted from the light emitting layer by energizing between the electrodes is the transparent conductive layer 3, the refractive index adjusting layer 2, and the glass layer 1. It passes through and is taken out to the outside. At this time, due to the refractive index adjusting layer 2 having a light scattering function, on the surface of the glass layer 1 on the light incident side, the light once reflected there tries to change the angle again and enter the glass layer 1, resulting in a result. A lot of light is taken into the glass layer 1. Here, the traveling directions of the light incident on the glass layer 1 have a wide distribution in various directions, but the surface shaping 1A having an angular distribution with respect to the flat surface is provided on the light emitting side of the glass layer 1. By providing the light, the light traveling in various directions in the glass layer 1 can be efficiently taken out to the outside. This makes it possible to improve the light extraction efficiency of the organic EL element.

以下に実施例を説明する。ガラス層1に形成される表面賦形1Aを、溶融状態のガラス層1に四角錐(ピラミッド状)の凸型を押し当てて形成する。この際、賦形深さが約20μmの賦形Aと、賦形深さが約50μmの賦形Bを形成する。 An embodiment will be described below. The surface shaping 1A formed on the glass layer 1 is formed by pressing a convex shape of a quadrangular pyramid (pyramid shape) against the glass layer 1 in a molten state. At this time, a shape A having a shape depth of about 20 μm and a shape B having a shape depth of about 50 μm are formed.

ガラス層1に形成される表面賦形1Aは、前述した賦形Aを形成した場合には、一つの単位形状内で、図3(a)のヒストグラムに示されるような角度分布が形成される。ここでの角度0°は、ガラス基板の平坦面と平行な角度であり、角度90°は、ガラス基板の平坦面と直交する角度であって、ヒストグラムの階級幅を1°としている。賦形Aの角度分布は、角度1°の頻度が最も高く、角度0°から角度30°の範囲で主に分布しているが、ヒストグラムのピーク度数が16%以下になっている。 When the surface shaping 1A formed on the glass layer 1 forms the above-mentioned shaping A, an angular distribution as shown in the histogram of FIG. 3A is formed within one unit shape. .. Here, the angle 0 ° is an angle parallel to the flat surface of the glass substrate, and the angle 90 ° is an angle orthogonal to the flat surface of the glass substrate, and the class width of the histogram is 1 °. The angular distribution of the shape A has the highest frequency of 1 °, and is mainly distributed in the range of 0 ° to 30 °, but the peak frequency of the histogram is 16% or less.

これに対して、ガラス層1に形成される表面賦形1Aは、前述した賦形Bを形成した場合には、一つの単位形状内で、図3(b)のヒストグラムに示されるような角度分布が形成される。賦形Bの角度分布は、ヒストグラムの階級幅を1°とした場合に、角度4°〜8°の頻度が最も高く(各約5〜6%)、角度0°から角度70°の範囲で広く分布しているが、ヒストグラムのピーク度数が6%以下になっている。 On the other hand, the surface shaping 1A formed on the glass layer 1 has an angle as shown in the histogram of FIG. 3B within one unit shape when the above-mentioned shaping B is formed. A distribution is formed. The angle distribution of the shape B is most frequently at an angle of 4 ° to 8 ° (about 5 to 6% each) when the class width of the histogram is 1 °, and is in the range of an angle of 0 ° to an angle of 70 °. Although it is widely distributed, the peak frequency of the histogram is 6% or less.

図4は、図3(a),(b)のヒストグラムの累積度数を角度毎に示したグラフである。賦形Aに対して賦形Bが広い角度範囲の分布を示していることが分かる。累計度数は、賦形Aの角度分布では、50%以上の角度が3°であり、賦形Bの角度分布では、50%以上の角度が9°である。 FIG. 4 is a graph showing the cumulative power of the histograms of FIGS. 3A and 3B for each angle. It can be seen that the shape B shows a distribution in a wide angle range with respect to the shape A. As for the cumulative frequency, in the angular distribution of the shape A, the angle of 50% or more is 3 °, and in the angle distribution of the shape B, the angle of 50% or more is 9 °.

そして、ガラス層1の表面賦形1Aとして賦形Aを採用し、屈折率調整層2として、粒径0.2〜2μmの散乱粒子(シリコーン粒子)2Bを体積分率44%で樹脂層2Aに分散させたガラス基板を実施例1とする。また、ガラス層1の表面賦形1Aとして賦形Bを採用し、屈折率調整層2として、同様に、粒径0.2〜2μmの散乱粒子(シリコーン粒子)2Bを体積分率44%で樹脂層2Aに分散させたガラス基板を実施例2とする。 Then, the shaping A is adopted as the surface shaping 1A of the glass layer 1, and the scattering particles (silicone particles) 2B having a particle size of 0.2 to 2 μm are used as the refractive index adjusting layer 2 as the resin layer 2A with a volume fraction of 44%. The glass substrate dispersed in the above is designated as Example 1. Further, the shaping B is adopted as the surface shaping 1A of the glass layer 1, and the scattered particles (silicone particles) 2B having a particle size of 0.2 to 2 μm are similarly used as the refractive index adjusting layer 2 at a volume fraction of 44%. The glass substrate dispersed in the resin layer 2A is referred to as Example 2.

そして、実施例1のガラス基板と実施例2のガラス基板で、それぞれ有機EL素子を形成して光取り出し効率を測定し、その測定値と、平坦ガラス基板上(ガラス層の材質は同じ)に有機EL素子を形成して光取り出し効率を測定した測定値とを比較した。また、平坦ガラス基板表面に光取り出し効率を改善する市販フィルムを貼り付けた有機EL素子の光取り出し効率を測定し、その測定値と、平坦ガラス基板上(ガラス層の材質は同じ)に有機EL素子を形成して光取り出し効率を測定した測定値とを比較した。測定結果を下記の表に示す。

Figure 0006852609
Then, an organic EL element is formed on the glass substrate of Example 1 and the glass substrate of Example 2, respectively, and the light extraction efficiency is measured, and the measured value is measured on the flat glass substrate (the material of the glass layer is the same). An organic EL element was formed and the light extraction efficiency was measured and compared with the measured value. In addition, the light extraction efficiency of an organic EL element in which a commercially available film for improving the light extraction efficiency is attached to the surface of a flat glass substrate is measured, and the measured value and the organic EL on the flat glass substrate (the material of the glass layer is the same). The element was formed and the light extraction efficiency was measured and compared with the measured value. The measurement results are shown in the table below.
Figure 0006852609

表1から明らかなように、実施例1,2は、共に平坦ガラス基板より高い光取り出し効率となっており、実施例1は、市販フィルムを貼り付けた場合と同程度の光取り出し効率であり、実施例2は、市販フィルムを貼り付けた場合と比較しても更に高い光取り出し効率が得られている。 As is clear from Table 1, both Examples 1 and 2 have higher light extraction efficiency than the flat glass substrate, and Example 1 has the same light extraction efficiency as when a commercially available film is attached. In Example 2, even higher light extraction efficiency is obtained as compared with the case where a commercially available film is attached.

実施例2が実施例1より高い光取り出し効率が得られていることから、ガラス層1の裏面側に光散乱機能を有する屈折率調整2を設けた場合には、ガラス層1の表面賦形1Aの角度分布をより広い角度範囲に分散させること、即ち、角度分布のヒストグラムのピーク度数をより低くすることで、高い光取り出し効率が得られることが分かった。実施例1の賦形Aにおいては、階級幅1°でのヒストグラムのピーク度数が全体の16%以下であるが、それと同程度に角度分布を分散させることで、光取り出し効率を改善する市販フィルムを貼り付けた場合と同程度の光取り出し効率を得ることができ、賦形Bのように更にピーク度数の割合を低くすることで、より高い光取り出し効率を得ることができる。 Since the light extraction efficiency of the second embodiment is higher than that of the first embodiment, when the refractive index adjustment 2 having a light scattering function is provided on the back surface side of the glass layer 1, the surface shaping of the glass layer 1 is performed. It was found that high light extraction efficiency can be obtained by dispersing the angle distribution of 1A over a wider angle range, that is, by lowering the peak frequency of the angle distribution histogram. In Form A of Example 1, the peak frequency of the histogram at a class width of 1 ° is 16% or less of the total, but a commercially available film that improves the light extraction efficiency by dispersing the angle distribution to the same extent. It is possible to obtain the same level of light extraction efficiency as in the case of pasting, and by further lowering the ratio of the peak frequency as in the modified B, a higher light extraction efficiency can be obtained.

なお、前述の実施例では、表面賦形1Aの形状を四角錐を押し込んだ形状にしているが、表面賦形1Aの形状はこれに限らず、角度分布が広く分散している形状であればどのような形状であってもよい。 In the above-described embodiment, the shape of the surface shaping 1A is a shape in which a quadrangular pyramid is pushed in, but the shape of the surface shaping 1A is not limited to this, as long as the angle distribution is widely dispersed. It may have any shape.

1:ガラス層,1A:表面賦形,1B:粗面,
2:屈折率調整層,2A:樹脂層,2B:散乱粒子,
3:透明導電層,4:有機層(発光層),5:金属導電層
1: Glass layer, 1A: Surface shaping, 1B: Rough surface,
2: Refractive index adjustment layer, 2A: Resin layer, 2B: Scattered particles,
3: Transparent conductive layer, 4: Organic layer (light emitting layer), 5: Metal conductive layer

Claims (5)

有機EL素子の光取り出し側透明基板であるガラス基板であって、
ガラス層の光入射側には、光散乱機能を有する屈折率調整層が設けられ、ガラス層の光出射側には、角度分布を有する表面賦形が設けられ
前記角度分布の角度は、前記ガラス基板の平坦面と平行である場合に角度0°、前記ガラス基板の平坦面と直行である場合に角度90°と定義され、
前記表面賦形の一単位形状内の角度分布は、階級幅を1°としたヒストグラムにおいて、階級全ての度数が16%以下に分散するように構成されていることを特徴とするガラス基板。
A glass substrate that is a transparent substrate on the light extraction side of an organic EL element.
On the light incident side of the glass layer has a refractive index adjustment layer having a light scattering function is provided on the light emission side of the glass layer, the surface shaping having an angular distribution is provided,
The angle of the angle distribution is defined as an angle of 0 ° when it is parallel to the flat surface of the glass substrate and an angle of 90 ° when it is orthogonal to the flat surface of the glass substrate.
The angle distribution within one unit shape of the surface shaping is a glass substrate characterized in that the frequencies of all the classes are dispersed to 16% or less in a histogram in which the class width is 1 °.
前記表面賦形の一単位形状内の角度分布が、ヒストグラムの累積度数において、角度3°以上の階級の累積度数が50%以上になるように構成されていることを特徴とする請求項1記載のガラス基板。The first aspect of claim 1, wherein the angle distribution within one unit shape of the surface shaping is configured such that the cumulative power of the class having an angle of 3 ° or more is 50% or more in the cumulative power of the histogram. Glass substrate. 前記屈折率調整層には、粒径0.1〜2.5μmの散乱粒子が体積分率20〜80%の範囲で分散されていることを特徴とする請求項1又は2記載のガラス基板。The glass substrate according to claim 1 or 2, wherein scattered particles having a particle size of 0.1 to 2.5 μm are dispersed in the refractive index adjusting layer in a volume fraction of 20 to 80%. 前記ガラス層の光入射側の面が粗面になっていることを特徴とする請求項1〜3のいずれか1項記載のガラス基板。The glass substrate according to any one of claims 1 to 3, wherein the surface of the glass layer on the light incident side is a rough surface. 請求項1〜4のいずれか1項に記載されたガラス基板を備え、前記屈折率調整層上に透明導電膜が形成されていることを特徴とする有機EL照明装置。An organic EL lighting apparatus comprising the glass substrate according to any one of claims 1 to 4, wherein a transparent conductive film is formed on the refractive index adjusting layer.
JP2017143309A 2017-07-25 2017-07-25 Glass substrate, organic EL lighting device Active JP6852609B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017143309A JP6852609B2 (en) 2017-07-25 2017-07-25 Glass substrate, organic EL lighting device
PCT/JP2018/017510 WO2019021567A1 (en) 2017-07-25 2018-05-02 Glass substrate, and organic el illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143309A JP6852609B2 (en) 2017-07-25 2017-07-25 Glass substrate, organic EL lighting device

Publications (2)

Publication Number Publication Date
JP2019024069A JP2019024069A (en) 2019-02-14
JP6852609B2 true JP6852609B2 (en) 2021-03-31

Family

ID=65041119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143309A Active JP6852609B2 (en) 2017-07-25 2017-07-25 Glass substrate, organic EL lighting device

Country Status (2)

Country Link
JP (1) JP6852609B2 (en)
WO (1) WO2019021567A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910926B2 (en) * 2003-02-26 2007-04-25 株式会社東芝 Method for producing transparent substrate for display device
TWI540939B (en) * 2010-09-14 2016-07-01 半導體能源研究所股份有限公司 Solid-state light-emitting element, light-emitting device, and lighting device
KR102138213B1 (en) * 2010-11-24 2020-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic optical device and protective component of organic optical device
US8921841B2 (en) * 2012-05-09 2014-12-30 Samsung Corning Precision Materials Co., Ltd. Porous glass substrate for displays and method of manufacturing the same
WO2015137448A1 (en) * 2014-03-14 2015-09-17 凸版印刷株式会社 El element, substrate for el element, illumination device, display device and liquid crystal display device
JP2015179584A (en) * 2014-03-19 2015-10-08 パイオニア株式会社 Light emitting element
JP5850122B2 (en) * 2014-05-01 2016-02-03 東洋製罐グループホールディングス株式会社 Glass substrate, organic EL lighting device, and method for manufacturing glass substrate

Also Published As

Publication number Publication date
JP2019024069A (en) 2019-02-14
WO2019021567A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
CN107505769B (en) Backlight structure and display device
TWI577631B (en) Light emitting device and display device adopting the light emitting device
US8963414B2 (en) Organic electroluminescent device, lighting apparatus, and method for manufacturing the organic electroluminescent device
JP6085555B2 (en) LED package with rounded square lens
CN102620235B (en) Light extraction film and light emitting element using the same
US7473019B2 (en) Lighting apparatus
DE102012110757A1 (en) LIGHTING APPARATUS
US20150204490A1 (en) Printed led layer with diffusing dielectric and conductor layers
WO2016002310A1 (en) Organic el panel-use transparent resin layer, organic el panel, organic el illumination device, and organic el display
JP5703251B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
WO2015137448A1 (en) El element, substrate for el element, illumination device, display device and liquid crystal display device
CN105090811B (en) Light source module
US9052424B2 (en) Backlight module
JP2017027728A (en) Organic el element, organic el lighting, organic el light source, and organic el display device
JP2006100257A (en) Organic electroluminescent element
KR101949667B1 (en) Illumination device
JP6002410B2 (en) Display device and manufacturing method thereof
JP6852609B2 (en) Glass substrate, organic EL lighting device
JP2013145744A (en) Light guide plate having pseudo two-dimensional pattern
TWI274941B (en) Back light system
CN108563072A (en) Backlight module and display device
JP2009058659A (en) Optical sheet
TWM592981U (en) Front light source module
DE202018005077U1 (en) phosphor module
DE202018005079U1 (en) phosphor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6852609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150