JP6852406B2 - 距離測定装置、距離測定方法および距離測定プログラム - Google Patents

距離測定装置、距離測定方法および距離測定プログラム Download PDF

Info

Publication number
JP6852406B2
JP6852406B2 JP2017004573A JP2017004573A JP6852406B2 JP 6852406 B2 JP6852406 B2 JP 6852406B2 JP 2017004573 A JP2017004573 A JP 2017004573A JP 2017004573 A JP2017004573 A JP 2017004573A JP 6852406 B2 JP6852406 B2 JP 6852406B2
Authority
JP
Japan
Prior art keywords
pixel
matching
blocks
distance
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017004573A
Other languages
English (en)
Other versions
JP2018112527A (ja
Inventor
由樹雄 平井
由樹雄 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017004573A priority Critical patent/JP6852406B2/ja
Publication of JP2018112527A publication Critical patent/JP2018112527A/ja
Application granted granted Critical
Publication of JP6852406B2 publication Critical patent/JP6852406B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本件は、距離測定装置、距離測定方法および距離測定プログラムに関する。
カメラで取得した画像を基に、対象物までの距離を測定する技術が望まれている。そこで、例えば、複数のカメラを用いてステレオマッチングする技術が開示されている(例えば、特許文献1参照)。
特開2005−9883号公報
しかしながら、上記技術では、複数のカメラが取得した対象物の複数の画像同士を比較することから、斜面等の影響が小さくなる。一方、対象物からの反射光から得られる画像と、予め定めておいた参照画像との比較を行うマッチングにおいては、対象物からの反射光に、斜面等が及ぼす影響が大きくなってしまう。それにより、正確な距離測定を行うことが困難である。
1つの側面では、本発明は、高精度に距離測定を行うことができる距離測定装置、距離測定方法および距離測定プログラムを提供することを目的とする。
1つの態様では、距離測定装置は、対象物に参照パターンを照射する発光装置と、前記対象物からの反射光から対象物画像を取得する撮影装置と、長さ方向が異なる少なくとも2つのブロックを前記対象物画像および参照画像のそれぞれから抽出し、長さ方向が対応するブロック同士をマッチングするマッチング部と、前記マッチング部のマッチング結果に基づいて、前記対応するブロック同士のマッチング結果のいずれかを選択し、選択したマッチング結果から前記対象物画像と前記参照画像との画素ずれ量を検出する検出部と、前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を算出する距離算出部と、を備える。他の態様では、距離測定装置は、対象物に参照パターンを照射する発光装置と、前記対象物からの反射光から対象物画像を取得する撮影装置と、長さ方向が異なる少なくとも2つのブロックを前記対象物画像および参照画像のそれぞれから抽出し、長さ方向が対応するブロック同士をマッチングするマッチング部と、前記マッチング部のマッチング結果に基づいて、第1方向に長さ方向を有するブロックでのマッチング結果から当該第1方向における画素ずれの差分和を検出し、第2方向に長さ方向を有するブロックでのマッチング結果から当該第2方向における画素ずれの差分和を検出し、小さい方の差分和に基づいて前記対象物画像と前記参照画像との画素ずれ量を検出する検出部と、前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を算出する距離算出部と、を備える。
高精度に距離測定を行うことができる。
(a)および(b)は距離測定技術の概略を表す図である。 距離測定技術の概略を表す図である。 距離測定技術の概略を表す図である。 距離測定装置のハードウェア構成を例示するブロック図である。 距離測定装置の機能ブロック図である。 距離測定の対象物およびマッチング対象のブロックについて例示する図である。 マッチングを例示する図である。 マッチングを例示する図である。 (a)〜(c)は画素ずれ量の検出結果を例示する図である。 (a)〜(d)は画素ずれ量の検出結果を例示する図である。 各機能の動作を表すフローチャートを例示する図である。 各機能の動作を表すフローチャートを例示する図である。 (a)は実施例1の手法で算出された距離の分布を例示する図であり、(b)は変形例の手法で算出された距離の分布を例示する図である。 実施例2に係る距離測定装置の機能ブロック図である。 実施例3に係る距離測定装置の機能ブロック図である。 実施例3に係る処理を例示する図である。 探索範囲について例示する図である。 探索範囲について例示する図である。 (a)は実施例4に係る距離測定装置の機能ブロック図であり、(b)は探索範囲を例示する図である。
実施例の説明に先立って、三角測量を用いた距離測定について説明する。
図1(a)および図1(b)で例示するように、例えば、距離測定技術において、測定装置に備わる発光装置201が赤外線(IR)の参照パターンを対象物に照射し、測定装置に備わるIRカメラ202が対象物から反射した光を受光することで、対象物画像を取得する。
測定装置と対象物との距離が変化すると、三角測量の原理により、対象物画像と参照画像との間で画素ずれ量が変化する。参照画像とは、IRカメラ202のセンサ面に平行で発光装置201からの距離が規定値に定められた平面に対して参照パターンが照射された場合にIRカメラ202が予め得ておいた画像のことである。対象物画像と参照画像との間で同じ大きさのブロック同士のマッチングを行って画素ずれ量を検出することで、測定装置と対象物との距離を測定することができる。画素ずれ量は、ブロックマッチングにより、対象物画像と参照画像とで同じパターンを探索することで検出することができる。
通常のステレオマッチングでは、視差がある2個のカメラの画像同士を比較しているため、概略形状が同じものを探索していることになる。これに対して、参照パターンの反射光を受光する方式では、参照画像は平面を表しているが、対象物が平面であるとは限らない。例えば、図2で例示するように、発光装置201の光軸に垂直でIRカメラ202のセンサ面に対して平行な平行面203においては、ある程度の大きさの領域では概略距離は同じとなる。しかしながら、IRカメラ202のセンサ面に対して非平行の非平行面204においては、ある程度の大きさの領域で距離が大きく変化する。したがって、IRカメラ202のセンサ面に対して非平行な対象物においては、対象物画像におけるパターンの位置が距離に応じてずれることになる。その結果、マッチング精度が劣化する。
次に、マッチング精度の劣化について詳細に説明する。図3は、参照画像と対象物画像との画素ずれについて説明するための図である。本来は位置を特定するために、唯一無二のランダムパターンであるが、説明の簡略化のために、格子点状の円形パターンを示している(その後の図6等も同様)。図3の例では、参照パターンは、格子点状に円形パターン(ドットパターン)を含んでいる。図3で例示するように、平行面203が当該平行を維持したまま移動したとする。この場合、平行面203からの反射によって得られる受光パターン205の配置が平行にずれるため、各円形パターンの画素ずれ量は略同じである。したがって、マッチング精度の劣化が抑制される。これに対して、非平行面204がIRカメラ202のセンサ面と非平行に移動したとする。この場合、非平行面204からの反射によって得られる対象物画像206における円形パターンの画素ずれ量が変動してしまう。すなわち、各円形パターンの画素ずれ量が異なるようになる。マッチングにはある程度の大きさの領域を用いることが好ましいが、当該領域で画素ずれ量にバラツキが生じて正確な画素ずれ量を検出できないため、マッチング精度が劣化してしまう。
ここで、参照パターンの反射光を受光する方式における課題について整理する。まず、複数のカメラを用いるステレオマッチングでは、対象物の2枚の画像そのものを比較するため、カメラのセンサ面に対して非平行の斜面における影響度合いは低くなる。これに対して、参照パターンの反射光を受光して画素ずれ量を検出することで距離を測定する方式においては、対象物がカメラのセンサ面に対して非平行の場合に、マッチング領域内で距離のずれが生じる。その結果、パターンの位置がマッチング領域内でずれてしまうため、画素ずれ量の検出精度が低下し、マッチング精度が劣り、正確な距離を算出できないおそれがある。
そこで、以下の実施例では、画素ずれ量の検出精度を向上させることで高精度に距離測定を行うことができる距離測定装置、距離測定方法および距離測定プログラムについて説明する。
図4は、距離測定装置100のハードウェア構成を例示するブロック図である。図4で例示するように、距離測定装置100は、CPU101、RAM102、記憶装置103、表示装置104、発光装置105、撮影装置106などを備える。これらの各機器は、バスなどによって接続されている。
CPU(Central Processing Unit)101は、中央演算処理装置である。CPU101は、1以上のコアを含む。RAM(Random Access Memory)102は、CPU101が実行するプログラム、CPU101が処理するデータなどを一時的に記憶する揮発性メモリである。記憶装置103は、不揮発性記憶装置である。記憶装置103として、例えば、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD)、ハードディスクドライブに駆動されるハードディスクなどを用いることができる。表示装置104は、液晶ディスプレイ、エレクトロルミネッセンスパネル等であり、距離測定の結果などを表示する。発光装置105は、距離測定の対象物に対して参照パターンを照射する装置であり、例えば、赤外線照射装置である。参照パターンは、一例としてランダムなドットパターンなどである。撮影装置106は、対象物からの反射光を受光することで画像を生成する装置であり、例えば、IRカメラである。
図5は、距離測定装置100の機能ブロック図である。図5で例示するように、CPU101が距離測定プログラムを実行することによって、距離測定装置100内に第1ブロック抽出部10a、第2ブロック抽出部10b、第1評価関数算出部20a、第2評価関数算出部20b、第1最小値算出部30a、第2最小値算出部30b、画素検出部40、距離算出部50などが実現される。これらの各機能は、専用の回路などのハードウェアで実現されてもよい。
図6は、距離測定の対象物60およびマッチング対象のブロック70について例示する図である。図6で例示するように、対象物60は、例えば、発光装置105の光軸に垂直で撮影装置106のセンサ面に対して平行な平行面61と、当該センサ面に非平行な非平行面62とを備えている。図6の例では、撮影装置106のセンサ面をなす互いに直交する軸をX軸およびY軸とする。X軸は、発光装置105と撮影装置106とを結ぶ線の方向である。Z軸は、X軸およびY軸と直交する軸である。図6の例では、Z軸は、撮影装置106と対象物60との距離方向を表している。
図6で例示するように、非平行面62では、XY平面における画素ずれ量がドットごとに変動する。図6の例では、ドットのX軸方向(以下、横方向とも称する)の画素ずれ量は、Y軸方向(以下、縦方向とも称する)の位置に応じて異なっている。一方で、パターンマッチングには、マッチング対象のブロック70がある程度の大きさの領域有していることが好ましい。しかしながら、ブロックサイズが大きいと、受光パターンの画素ずれ量にバラツキが生じて特定することができず、マッチング精度が劣化する。
ブロック70を縦方向に狭くする場合、画素ずれ量のばらつきが抑制されて縦方向の分解能は上がるが、唯一無二のランダムな受光パターンの位置を識別するには、ある程度のブロックサイズが必要である。したがって、ブロック70を縦方向に狭くしてブロックを小さくすると、マッチング精度が悪化するおそれがある。そこで、ブロックサイズを確保するため、ブロック70を縦方向に狭くするとともに横方向に広げた横長ブロック71を用いる。この場合、縦方向の分解能が上がることから、非平行面62の距離変化に対しては対応することができる。しかしながら、横方向の分解能が悪くなる。例えば、図7で例示するように、X軸の端部では対象物60が存在せずに反射光が戻ってこない領域も横長ブロック71の範囲に含まれてしまう。
そこで、本実施例においては、図8で例示するように、横長ブロック71および縦長ブロック72を互いに重複させて両方でマッチング処理を行い、良好な結果が得られる方のブロックを用いたマッチング結果を採用する。この場合、図8で例示するように、いずれか一方の方向において対象物60が存在せずに反射光が戻ってこない領域が含まれていても、画素ずれ量を検出することができる。
図9(a)〜図9(c)は、画素ずれ量の検出結果を例示する図である。図9(a)〜図9(c)において、距離測定の対象物60が対象物画像として取得されている。横軸および縦軸は、各画素位置(ピクセル)を表している。周辺の画素ずれ量との差異が大きくなければドットが現れず、周辺の画素ずれ量との差異が大きいとドットが現れる。すなわち、画素ずれ量にバラツキが生じなければドットが現れず、画素ずれ量にバラツキが生じるとドットが現れる。マッチング精度を向上させるためには画素ずれ量にバラツキが生じていないことが好ましいため、ドットが現れていないことが好ましい。
図9(a)は、16ピクセル(X軸)×16ピクセル(Y軸)のブロックを用いてパターンマッチングした結果である。図9(a)で例示するように、縦方向および横方向が同じサイズのブロックを用いた場合には、非平行面62において画素ずれ量にバラツキが生じている。これに対して、図9(b)で例示するように、16ピクセル(X軸)×8ピクセル(Y軸)縦方向に狭くしたブロックを用いてパターンマッチングした場合には、画素ずれ量のバラツキが小さくなっていることがわかる。次に、図9(c)で例示するように、24ピクセル(X軸)×8ピクセル(Y軸)のように横方向に長くした横長ブロックを用いてパターンマッチングした場合には、画素ずれ量のバラツキがさらに小さくなっていることがわかる。したがって、非平行面62に対して、マッチング精度が向上したことがわかる。これは、パターンマッチングに必要なブロックサイズを用いたからである。一方で、対象物60の横方向の端部において画素ずれ量のバラツキが大きくなっている。
図10(c)は、8ピクセル(X軸)×24ピクセル(Y軸)の縦長ブロックを用いてパターンマッチングした結果である。図10(c)で例示するように、縦長のブロックを用いると、非平行面62では画素ずれ量のバラツキが大きくなったものの、対象物60の横方向の端部において画素ずれ量のバラツキが小さくなっている。なお、図10(a)は図9(a)と同じ図であり、図10(b)は図9(c)と同じ図である。横長ブロックを用いた結果(図9(c))と、縦長ブロックを用いた結果(図10(c))の画素ずれ量のバラツキが少ない部分を組み合わせれば、非平行面62の画素ずれ量の精度向上と、横方向の分解能とを両立することができる。図10(d)は、両者の類似度を評価関数とすることで、非平行面62の画素ずれ量の精度向上と、横方向の分解能とを両立した結果である。
続いて、図5の各機能の動作について、図5および図11を参照しつつ説明する。図11は、図5の各機能の動作を表すフローチャートを例示する図である。まず、第1ブロック抽出部10aおよび第2ブロック抽出部10bは、撮影装置106から対象物画像を取得する。次に、第1ブロック抽出部10aは、対象物画像の対象画素位置を含む横長ブロックの範囲を抽出する。第2ブロック抽出部10bは、対象物画像の対象画素位置を含む縦長ブロックの範囲を抽出する(ステップS1)。例えば、横長ブロックとして24ピクセル(X軸)×8ピクセル(Y軸)のブロックを用い、縦長ブロックとして8ピクセル(X軸)×24ピクセル(Y軸)のブロックを用いる。
次に、第1ブロック抽出部10aおよび第2ブロック抽出部10bは、データベースなどに格納されている参照画像を取得する。本実施例においては、参照画像とは、撮影装置106のセンサ面に平行で発光装置105からの距離が規定値に定められた平面に対して参照パターンが照射された場合に撮影装置106が予め得ておいた画像のことである。次に、第1ブロック抽出部10aは、参照画像においてステップS1で着目した対象画素位置でステップS1と同じ横長ブロックの範囲を抽出する。また、第2ブロック抽出部10bは、参照画像においてステップS1で着目した対象画素位置でステップS1と同じ縦長ブロックの範囲を抽出する(ステップS2)。
次に、第1評価関数算出部20aは、ステップS1で抽出した横長ブロックと、ステップS2で抽出した横長ブロックとに対して、第1評価関数を算出する。また、第2評価関数算出部20bは、ステップS1で抽出した縦長ブロックと、ステップS2で抽出した縦長ブロックとに対して、第2評価関数を算出する(ステップS3)。評価関数として、例えば、マッチングの両対象の輝度値分布の類似度を表す概念を用いることができる。本実施例においては、一例として、差分二乗和、差分絶対和、相関係数正規化等の、輝度値分布の類似度が高いと小さい値となる評価関数を用いる。
次に、第1最小値算出部30aは、ステップS2〜ステップS4の繰り返しにおいて、第1評価関数算出部20aが算出した評価関数の最小値を算出する。第2最小値算出部30bは、ステップS2〜ステップS4の繰り返しにおいて、第2評価関数算出部20bが算出した評価関数の最小値を算出する。画素検出部40は、第1最小値算出部30aが算出した最小値から得られる画素ずれ量を算出し、第2最小値算出部30bが算出した最小値から得られる画素ずれ量を算出する(ステップS4)。ステップS2〜ステップS4は、ステップS1で着目した対象画素位置を含む探索範囲(参照画像において横長ブロックおよび縦長ブロックを含む所定範囲)の全てにおいて繰り返される。
探索範囲の全てにおいてステップS2〜ステップS4が繰り返された後、画素検出部40は、最後に実行されたステップS4において算出された2つの画素ずれ量のうち、小さい方を選択する(ステップS5)。
次に、距離算出部50は、ステップS5で選択された画素ずれ量を距離に換算する(ステップS6)。例えば、三角測量を用いることができる。ステップS1〜ステップS6は、全ての画素を対象として繰り返される。全ての画素に対して距離を求めることで、対象物60の各部と撮影装置106との距離を求めることができるとともに、対象物60の形状を求めることができる。
本実施例によれば、対象物画像および参照画像から抽出した横長ブロック同士および縦長ブロック同士をマッチングし、いずれかのマッチング結果のうち類似度が高くなる方が選択される。それにより、縦方向および横方向の分解能と、対象物60の端部におけるマッチング精度とを両立させることができる。その結果、画素ずれ量の検出精度が向上し、高精度に距離測定を行うことができる。
(変形例1−1)
対象物画像において、輝度が低い領域が縦方向に狭い場合、縦長のブロックではより輝度の高い周辺領域の影響が大きくなる。したがって、横長ブロックで算出した結果より、縦長ブロックで算出した結果の影響が大きくなるおそれがある。この場合、縦長ブロックのマッチング結果が誤って選択されるおそれがある。すなわち、対象物画像において、反射率が低くて輝度値が低く(SNが良好ではなく)、細い領域に対しては、良好なマッチング精度を実現することが困難である。そこで、変形例1−1では、より高いマッチング精度が得られる例について説明する。
本変形例における図5の各機能の動作について、図5および図12を参照しつつ説明する。図12は、図5の各機能の動作を表すフローチャートを例示する図である。ステップS11〜ステップS14は、図11のステップS1〜ステップS4と同様である。
探索範囲の全てにおいてステップS12〜ステップS14が繰り返された後、画素検出部40は、最後に実行されたステップS14において、第1最小値算出部30aが算出した最小値から得られる画素ずれ量から横方向の差分ずれ(差分和)を算出する。また、画素検出部40は、最後に実行されたステップS14において、第2最小値算出部30bが算出した最小値から得られる画素ずれ量から縦方向の差分ずれ(差分和)を算出する(ステップS15)。横方向の差分ずれが小さいことは、横方向に画素ずれ量が概略同じであることを意味する。縦方向の差分ずれが小さいことは、縦方向に画素ずれ量が概略同じであることを意味する。
例えば、横方向の差分ずれは下記式(1)を用いて算出することができ、縦方向の差分ずれは下記式(2)を用いて算出することができる。下記式において、pxyは、対象画素位置における画素ずれ量を表す。piyは、対象画素位置の横方向の位置(i)での画素ずれ量を表す。pxjは、対象画素位置の縦方向の位置(j)での画素ずれ量を表す。なお、畳み込み用の差分フィルタとして、[1 1 1 1 1 −10 1 1 1 1 1]/10のような行列を用いてもよい。
Figure 0006852406
Figure 0006852406
次に、画素検出部40は、ステップS15で算出された差分ずれ量のうち小さい方の画素ずれ量を選択する(ステップS16)。次に、距離算出部50は、ステップS16で選択された画素ずれ量を距離に換算する(ステップS17)。例えば、三角測量を用いることができる。ステップS11〜ステップS17は、全ての画素を対象として繰り返される。全ての画素に対して距離を求めることで、対象物60の各部と撮影装置106との距離を求めることができるとともに、対象物60の形状を求めることができる。
図13(a)は、実施例1の手法で算出された距離の分布を例示する図である。図13(a)において、同じ模様の領域は、同一距離範囲として検出された領域である。実施例1の手法により、距離分布にバラツキが生じていないことがわかる。図13(b)は、本変形例の手法で算出された距離の分布を例示する図である。図13(b)において、同じ模様の領域は、同一距離範囲として検出された領域である。図13(b)で例示するように、本変形例の手法により、距離範囲の境界が平滑化されている。これは、反射率が低くて輝度値が低く細い領域に対しても、良好なマッチング精度を実現することができているからである。
本変形例によれば、差分ずれを取得することで、当該差分ずれの方向に画素ずれ量が概略同じであるか否かを検出することができる。この差分ずれが小さくなるようにマッチング結果が選択されることから、画素ずれ量の検出精度がさらに向上し、高精度に距離測定を行うことができる。
上記各例において、横方向(X軸方向)に長いブロックと、縦方向(Y軸方向)に長いブロックとを用いたがそれに限られない。撮影装置106のセンサ面に平行な平面において長さ方向が異なる2つのブロックを用いることで、画素ずれ量の検出精度を向上させることができる。
実施例1および変形例1−1では、長さ方向が互いに異なる2つのブロックを用いたが、長さ方向が互いに異なる3つ以上のブロックを用いてもよい。実施例2では、横方向(X軸方向)に長いブロックと、縦方向(Y軸方向)に長いブロックと、斜め方向に長いブロックとを用いる例について説明する。
図14は、実施例2に係る距離測定装置100aの機能ブロック図である。図5と異なる点は、第3ブロック抽出部10c、第3評価関数算出部20c、第3最小値算出部30cがさらに備わっている点である。これらの各機能は、CPU101が距離測定プログラムを実行することによって実現される。または、これらの各機能は、専用の回路などのハードウェアで実現されてもよい。
第3ブロック抽出部10cは、撮影装置106が取得した対象物画像を取得し、対象物画像の対象画素位置を含み斜め方向に長いブロックの範囲を抽出する。例えば、縦方向2ブロックが、横方向に1ブロック進むにつれて縦方向に1ブロックずれるような範囲を、斜め方向に長いブロックの範囲とすることができる。
次に、第3ブロック抽出部10cは、データベースなどに格納されている参照画像を取得し、参照画像において、対象画素位置で、斜め方向に長い同じブロックの範囲を抽出する。次に、第3評価関数算出部20cは、対象物画像から抽出した斜め方向に長いブロックと、参照画像から抽出した斜め方向に長いブロックとに対して、第3評価関数を算出する。次に、第3最小値算出部30cは、探索範囲の全てにおいて算出された第3評価関数の最小値を算出する。画素検出部40は、探索範囲の全てにおいて、第1最小値算出部30aが算出した最小値から得られる画素ずれ量を算出し、第2最小値算出部30bが算出した最小値から得られる画素ずれ量を算出し、第3最小値算出部30cが算出した最小値から得られる画素ずれ量を算出する。画素検出部40は、第1最小値算出部30aが算出した最小値から得られる画素ずれ量と、第2最小値算出部30bが算出した最小値から得られる画素ずれ量と、第3最小値算出部30cが算出した最小値とから、最小のものを選択する。
次に、距離算出部50は、画素検出部40によって選択された画素ずれ量を距離に換算する。例えば、三角測量を用いることができる。以上の処理が、全ての画素を対象として繰り返される。全ての画素に対して距離を求めることで、対象物60の各部と撮影装置106との距離を求めることができるとともに、対象物60の形状を求めることができる。
本実施例によれば、対象物画像および参照画像から抽出した3方向に長いブロック同士をマッチングし、いずれかのマッチング結果のうち類似度が高くなる結果が選択される。それにより、3方向の分解能と、対象物60の端部におけるマッチング精度とを両立させることができる。その結果、画素ずれ量の検出精度が向上し、高精度に距離測定を行うことができる。
上述した評価関数として挙げた差分二乗和、差分絶対値和等は、輝度の大きさに応じたずれが大きくなる。相関係数正規化については、処理量が多くなる。そこで、輝度の大きさに応じたずれを抑制するために、隣接画素の輝度差分を算出し、当該差分がプラスの閾値よりも大きい場合に1、マイナスの閾値よりも小さい場合に−1、それ以外を0とすることで、3値化してもよい。これにより、輝度の絶対値の影響を抑制することができる。隣接差分は、X軸方向の差分、Y軸方向の差分、あるいは両者の平均などとすることができる。なお、差分を算出する前に、ローパスフィルタなどでノイズを低減してもよい。
図15は、実施例3に係る距離測定装置100bの機能ブロック図である。図5と異なる点は、第1微分処理部60aおよび第2微分処理部60bがさらに備わっている点である。これらの各機能は、CPU101が距離測定プログラムを実行することによって実現される。または、これらの各機能は、専用の回路などのハードウェアで実現されてもよい。
例えば、隣接差分のフィルタとして、下記式(3)のようなX軸方向の隣接差分を算出するための行列を適用することができる。
Figure 0006852406
また、隣接差分のフィルタとして、下記式(4)のようなY軸方向の隣接差分を算出するための行列を適用することができる。
Figure 0006852406
また、隣接差分のフィルタとして、下記式(5)または下記式(6)のような斜め方向の隣接差分を算出するための行列を適用することができる。
Figure 0006852406
Figure 0006852406
例えば、図16(a)のように、上記式(5)および上記式(6)のいずれか一方を用いて、対象物画像を畳み込む。それにより、対象物画像を3値化することができる。例えば、図16(b)のように、第1微分処理部60aは、ローパスフィルタでノイズが除去された対象物画像を上記式(5)で3値化したものを、対象物画像として、第1評価関数算出部20aに入力する。第2微分処理部60bは、ローパスフィルタでノイズが除去された参照画像を上記式(5)で3値化したものを、3値化参照画像として、第1評価関数算出部20aに入力する。また、第1微分処理部60aは、対象物画像を上記式(6)で3値化したものを、対象物画像として、第2評価関数算出部20bに入力する、第2微分処理部60bは、参照画像を上記式(6)で3値化したものを、3値化参照画像として、第2評価関数算出部20bに入力する。その後の処理は、実施例1と同様である。
なお、第1評価関数算出部20aは、図17で例示するように、対象物画像の対象位置で抽出されたブロックと、3値化参照画像の探索範囲において抽出されたブロックとの差分絶対値を算出し、ブロック全体の和を評価関数としてもよい。第1最小値算出部30aは、3値化参照画像の探索範囲内での評価関数が最小となる画素ずれ量を算出する。横長ブロックを用いる場合には、探索範囲は、横長ブロックを横方向に延長した範囲となる。光軸ずれが生じる場合などにおいては、縦方向に延長した範囲を探索範囲に付加してもよい。縦長ブロックを用いる場合には、探索範囲を、縦長ブロックを縦方向に延長した範囲とし、光軸ずれが生じる場合などにおいては横方向に延長した範囲を探索範囲に付加してもよい。
本実施例によれば、対象物画像および参照画像を3値化することで、輝度の大きさに起因する評価関数のずれを抑制することができる。また、3値化により、値の種類が低減されることから、処理量が低減される。
(変形例)
図17の例では、参照画像の探索範囲内での評価関数が最小となる画素ずれを画素位置ごとに算出しているが、それに限られない。例えば、図18で例示するように、3値化参照画像を1画素ごとシフトし、画素ずれの差分絶対値和を評価関数として算出し、シフト前の最小評価関数よりも最小となる画素位置において、画素ずれシフトと最小評価関数とを順次入れ替えることで、全シフト後(探索範囲内)に全画素位置で評価関数が最小となる画素ずれを算出してもよい。ここでの評価関数の例として、斜め方向の微分3値化に対し、3値化参照画像をシフトし、差分絶対値をとり、斜め方向の2種類の平均をとってもよい。この平均に対して、横長ブロックおよび縦長ブロックの畳み込み(総和)をそれぞれとり、最小の方を評価関数としてもよい。
図19(a)は、実施例4に係る距離測定装置100cの機能ブロック図である。図19(a)で例示するように、図15と異なる点は、第1ブロック抽出部10aおよび第2ブロック抽出部10bの代わりにブロック抽出部10が備わり、第1評価関数算出部20aおよび第2評価関数算出部20bの代わりに評価関数算出部20が備わり、第1最小値算出部30aおよび第2最小値算出部30bの代わりに最小値算出部30が備わる点である。
図19(b)で例示するように、ブロック抽出部10は、対象物画像の対象画素位置で、横長ブロックと縦長ブロックとで重複する正方ブロックを抽出する。また、ブロック抽出部10は、参照画像において、対象画素位置に対して探索範囲内の画素位置での同じ正方のブロックを抽出する。評価関数算出部20は、対象物画像の正方ブロックと参照画像の正方ブロックとの差分絶対値和を評価関数として算出する。最小値算出部30は、当該正方ブロックの縦方向ブロック数よりも少ないブロック数で横方向に探索範囲を広げ、例えば横方向1列の和を算出する。また、最小値算出部30は、当該正方ブロックの横方向ブロック数よりも少ないブロック数で縦方向に探索範囲を広げ、例えば縦方向1列の和を算出する。最小値算出部30は、両者の最小の評価関数を算出する。画素検出部40は、両者の最小の評価関数となる画素ずれ量を算出する。距離算出部50は、得られた画素ずれ量から、三角測量により距離を算出する。本実施例によれば、探索範囲を広げる場合の処理量が低減される。
上記各例において、発光装置105が、対象物に参照パターンを照射する発光装置の一例として機能する。撮影装置106が、前記対象物からの反射光から対象物画像を取得する撮影装置の一例として機能する。第1ブロック抽出部10a、第2ブロック抽出部10b、第3ブロック抽出部10c、ブロック抽出部10、第1評価関数算出部20a、第2評価関数算出部20b、第3評価関数算出部20c、評価関数算出部20が、長さ方向が異なる少なくとも2つのブロックを前記対象物画像および参照画像のそれぞれから抽出し、長さ方向が対応するブロック同士をマッチングするマッチング部の一例として機能する。画素検出部40が、前記マッチング部のマッチング結果に基づいて、前記対象物画像と前記参照画像との画素ずれ量を検出する検出部の一例として機能する。距離算出部50が、前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を算出する距離算出部の一例として機能する。
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10a 第1ブロック抽出部
10b 第2ブロック抽出部
20a 第1評価関数算出部
20b 第2評価関数算出部
30a 第1最小値算出部
30b 第2最小値算出部
40 画素検出部
50 距離算出部
100 距離測定装置

Claims (10)

  1. 対象物に参照パターンを照射する発光装置と、
    前記対象物からの反射光から対象物画像を取得する撮影装置と、
    長さ方向が異なる少なくとも2つのブロックを前記対象物画像および参照画像のそれぞれから抽出し、長さ方向が対応するブロック同士をマッチングするマッチング部と、
    前記マッチング部のマッチング結果に基づいて、前記対応するブロック同士のマッチング結果のいずれかを選択し、選択したマッチング結果から前記対象物画像と前記参照画像との画素ずれ量を検出する検出部と、
    前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を算出する距離算出部と、を備えることを特徴とする距離測定装置。
  2. 対象物に参照パターンを照射する発光装置と、
    前記対象物からの反射光から対象物画像を取得する撮影装置と、
    長さ方向が異なる少なくとも2つのブロックを前記対象物画像および参照画像のそれぞれから抽出し、長さ方向が対応するブロック同士をマッチングするマッチング部と、
    前記マッチング部のマッチング結果に基づいて、第1方向に長さ方向を有するブロックでのマッチング結果から当該第1方向における画素ずれの差分和を検出し、第2方向に長さ方向を有するブロックでのマッチング結果から当該第2方向における画素ずれの差分和を検出し、小さい方の差分和に基づいて前記対象物画像と前記参照画像との画素ずれ量を検出する検出部と、
    前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を算出する距離算出部と、を備えることを特徴とする距離測定装置。
  3. 前記検出部は、前記第1方向において対象画素位置に対して画素ずれの差分和の絶対値を算出し、前記第2方向において対象画素位置に対して画素ずれの差分和の絶対値を算出し、小さい方の絶対値に基づいて前記画素ずれ量を検出することを特徴とする請求項2記載の距離測定装置。
  4. 前記マッチング部は、輝度値または輝度値を3値化したものを用いてマッチングを行うことを特徴とする請求項1〜3のいずれか一項に記載の距離測定装置。
  5. 前記長さ方向が異なる2つのブロックは、互いに直交する方向に長さ方向を有することを特徴とする請求項1〜4のいずれか一項に記載の距離測定装置。
  6. 前記長さ方向が異なる少なくとも2つのブロックは、長さ方向が異なる3つのブロックであることを特徴とする請求項1〜5のいずれか一項に記載の距離測定装置。
  7. 発光装置により、対象物に参照パターンを照射し、
    撮影装置により、前記対象物からの反射光から対象物画像を取得し、
    長さ方向が異なる少なくとも2つのブロックを前記対象物画像および参照画像のそれぞれから抽出し、長さ方向が対応するブロック同士をマッチング部がマッチングし、
    前記マッチング部のマッチング結果に基づいて、前記対応するブロック同士のマッチング結果のいずれかを選択し、選択したマッチング結果から前記対象物画像と前記参照画像との画素ずれ量を検出部が検出し、
    前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を距離算出部が算出する、ことを特徴とする距離測定方法。
  8. 発光装置により、対象物に参照パターンを照射し、
    撮影装置により、前記対象物からの反射光から対象物画像を取得し、
    長さ方向が異なる少なくとも2つのブロックを前記対象物画像および参照画像のそれぞれから抽出し、長さ方向が対応するブロック同士をマッチング部がマッチングし、
    前記マッチング部のマッチング結果に基づいて、第1方向に長さ方向を有するブロックでのマッチング結果から当該第1方向における画素ずれの差分和を検出し、第2方向に長さ方向を有するブロックでのマッチング結果から当該第2方向における画素ずれの差分和を検出し、小さい方の差分和に基づいて前記対象物画像と前記参照画像との画素ずれ量を検出部が検出し、
    前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を距離算出部が算出する、ことを特徴とする距離測定方法。
  9. コンピュータに、
    参照画像と、発光装置が対象物に参照パターンを照射することで前記対象物からの反射光から撮影装置が取得した対象物画像とから、長さ方向が異なる少なくとも2つのブロックをそれぞれ抽出し、長さ方向が対応するブロック同士をマッチングする処理と、
    前記マッチングの結果に基づいて、前記対応するブロック同士のマッチング結果のいずれかを選択し、選択したマッチング結果から前記対象物画像と前記参照画像との画素ずれ量を検出する処理と、
    前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を算出する処理と、を実行させることを特徴とする距離測定プログラム。
  10. コンピュータに、
    参照画像と、発光装置が対象物に参照パターンを照射することで前記対象物からの反射光から撮影装置が取得した対象物画像とから、長さ方向が異なる少なくとも2つのブロックをそれぞれ抽出し、長さ方向が対応するブロック同士をマッチングする処理と、
    前記マッチングの結果に基づいて、第1方向に長さ方向を有するブロックでのマッチング結果から当該第1方向における画素ずれの差分和を検出し、第2方向に長さ方向を有するブロックでのマッチング結果から当該第2方向における画素ずれの差分和を検出し、小さい方の差分和に基づいて前記対象物画像と前記参照画像との画素ずれ量を検出する処理と、
    前記画素ずれ量から、前記発光装置または前記撮影装置と前記対象物との距離を算出する処理と、を実行させることを特徴とする距離測定プログラム。
JP2017004573A 2017-01-13 2017-01-13 距離測定装置、距離測定方法および距離測定プログラム Active JP6852406B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004573A JP6852406B2 (ja) 2017-01-13 2017-01-13 距離測定装置、距離測定方法および距離測定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004573A JP6852406B2 (ja) 2017-01-13 2017-01-13 距離測定装置、距離測定方法および距離測定プログラム

Publications (2)

Publication Number Publication Date
JP2018112527A JP2018112527A (ja) 2018-07-19
JP6852406B2 true JP6852406B2 (ja) 2021-03-31

Family

ID=62911133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004573A Active JP6852406B2 (ja) 2017-01-13 2017-01-13 距離測定装置、距離測定方法および距離測定プログラム

Country Status (1)

Country Link
JP (1) JP6852406B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570059B1 (ko) * 2018-08-16 2023-08-23 엘지이노텍 주식회사 센싱 방법 및 장치
KR102040410B1 (ko) * 2018-10-01 2019-11-04 오준호 카메라 비전을 이용한 촬영 사물 거리 측정 방법 및 그 장치

Also Published As

Publication number Publication date
JP2018112527A (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
US10699476B2 (en) Generating a merged, fused three-dimensional point cloud based on captured images of a scene
US8121400B2 (en) Method of comparing similarity of 3D visual objects
US7471809B2 (en) Method, apparatus, and program for processing stereo image
KR101298915B1 (ko) 정보처리장치, 그 처리 방법 및 컴퓨터 판독가능한 기억매체
US8818077B2 (en) Stereo image matching apparatus and method
CN110766669B (zh) 一种基于多目视觉的管线测量方法
KR100930626B1 (ko) 스테레오 카메라를 구비한 로봇의 물체 자세 인식 방법
EP3582182B1 (en) A method, a device, and a system for estimating a sub-pixel position of an extreme point in an image
JP2016217944A (ja) 計測装置、および計測方法
JP6411188B2 (ja) ステレオマッチング装置とステレオマッチングプログラムとステレオマッチング方法
JP6852406B2 (ja) 距離測定装置、距離測定方法および距離測定プログラム
JP2006350465A (ja) 画像マッチング装置、画像マッチング方法および画像マッチング用プログラム
JP5772675B2 (ja) 濃淡画像のエッジ抽出方法、エッジ抽出装置並びに濃淡画像のエッジ抽出プログラム
JP6855938B2 (ja) 距離測定装置、距離測定方法および距離測定プログラム
JP4935769B2 (ja) 平面領域推定装置及びプログラム
CN103714528B (zh) 物体分割装置和方法
CN109902695B (zh) 一种面向像对直线特征匹配的线特征矫正与提纯方法
JP2015045919A (ja) 画像認識方法及びロボット
US20170064286A1 (en) Parallax detection device
WO2017032096A1 (en) Method for predicting stereoscopic depth and apparatus thereof
EP3062516B1 (en) Parallax image generation system, picking system, parallax image generation method, and computer-readable recording medium
JPWO2009107365A1 (ja) 複眼測距装置の検査方法及び検査装置並びにそれに用いるチャート
JP7152506B2 (ja) 撮像装置
EP3688407B1 (en) Light projection systems
KR101765223B1 (ko) 밝기에 대한 에지 변위 추정 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6852406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150