JP6852007B2 - Radar system and its radar signal processing method - Google Patents

Radar system and its radar signal processing method Download PDF

Info

Publication number
JP6852007B2
JP6852007B2 JP2018047142A JP2018047142A JP6852007B2 JP 6852007 B2 JP6852007 B2 JP 6852007B2 JP 2018047142 A JP2018047142 A JP 2018047142A JP 2018047142 A JP2018047142 A JP 2018047142A JP 6852007 B2 JP6852007 B2 JP 6852007B2
Authority
JP
Japan
Prior art keywords
pulse
signal
doppler
range
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047142A
Other languages
Japanese (ja)
Other versions
JP2019158670A (en
Inventor
晋一 竹谷
晋一 竹谷
知彦 白坂
知彦 白坂
真志 辻
真志 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018047142A priority Critical patent/JP6852007B2/en
Publication of JP2019158670A publication Critical patent/JP2019158670A/en
Application granted granted Critical
Publication of JP6852007B2 publication Critical patent/JP6852007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

本実施形態は、レーダシステム及びそのレーダ信号処理方法に関する。 The present embodiment relates to a radar system and a radar signal processing method thereof.

従来のレーダシステムにあっては、被探知性を低下させるLPI(Low Probability of Intercept)レーダとして、符号化を用いたレーダ(特許文献1、非特許文献1)がある。これは、パルス内をSS変調(非特許文献2)するものや、パルス毎に符号化を行い、参照信号を用いてレンジ圧縮するものである。近年、レーダ波の受信装置の性能も広帯域化し、SS変調のみでは十分なLPI性を確保できない場合もあることが予想され、更なるLPI性を確保する手法が望まれる。 In the conventional radar system, as an LPI (Low Probability of Intercept) radar that reduces the detectability, there are radars using coding (Patent Document 1 and Non-Patent Document 1). This is the one in which the inside of a pulse is SS-modulated (Non-Patent Document 2), or the one in which each pulse is encoded and range-compressed using a reference signal. In recent years, the performance of the radar wave receiving device has also been widened, and it is expected that sufficient LPI characteristics may not be ensured only by SS modulation, and a method for further ensuring LPI characteristics is desired.

特開2014−182010号公報Japanese Unexamined Patent Publication No. 2014-182010

符号化レーダ、吉田、‘改訂レーダ技術’、電子情報通信学会、pp.278-280(1996)Coded Radar, Yoshida,'Revised Radar Technology', Institute of Electronics, Information and Communication Engineers, pp.278-280 (1996) SS変調、丸林、‘スペクトル拡散通信とその応用’、電子情報通信学会編、pp.1-18(1998)SS Modulation, Marubayashi,'Spectral Diffusion Communication and Its Applications', Institute of Electronics, Information and Communication Engineers, pp.1-18 (1998) 符号コード(M系列)発生方式、M.I.Skolnik、‘Introduction to radar systems’、McGRAW-HILL、pp.429-430(1980)Code code (M-sequence) generation method, M.I.Skolnik, ‘Introduction to radar systems’, McGRAW-HILL, pp.429-430 (1980) BPSK、QPSK、西村、‘ディジタル信号処理による通信システム設計’、CQ出版社、pp.222-226(2006)BPSK, QPSK, Nishimura,'Communication System Design by Digital Signal Processing', CQ Publisher, pp.222-226 (2006) CFAR処理、吉田、‘改訂レーダ技術’、電子情報通信学会、pp.87-89(1996)CFAR processing, Yoshida,'Revised radar technology', Institute of Electronics, Information and Communication Engineers, pp.87-89 (1996) MIMO処理、JIAN LI, PETER STOICA、‘MIMO RADAR SIGNAL PROCESSING’、WILEY、pp.163-170, pp.1-5(2009)MIMO processing, JIAN LI, PETER STOICA, ‘MIMO RADAR SIGNAL PROCESSING’, WILEY, pp.163-170, pp.1-5 (2009)

以上述べたように、従来のレーダシステムでは、パルス内またはパルス間でSS変調することでLPI性を高めるようにしているが、パルス内またはパルス間でSS変調するだけでは、十分なLPI性を確保できない場合があった。 As described above, in the conventional radar system, the LPI property is enhanced by SS modulation within or between pulses, but sufficient LPI property can be obtained only by SS modulation within or between pulses. In some cases, it could not be secured.

本実施形態は上記課題に鑑みなされたもので、十分なLPI性を確保しつつ目標の速度及び距離を観測することのできるレーダシステム及びそのレーダ信号処理方法を提供することを目的とする。 The present embodiment has been made in view of the above problems, and an object of the present invention is to provide a radar system capable of observing a target speed and distance while ensuring sufficient LPI characteristics, and a radar signal processing method thereof.

上記の課題を解決するために、本実施形態に係るレーダシステムは、符号化またはランダム信号による変調パルスを用い、レンジ抽出用のパルス幅、パルス間隔、パルス振幅を、パルス毎に変化させたパルス列と、ドップラ抽出用のパルス間隔が一定で、所定の間引き率ρ(ρ≧0)で間引いたパルス列とを混合して生成されたレーダ信号を送信アンテナより送信する送信系統と、受信アンテナで受信した前記レーダ信号の反射信号に対して、ドップラ抽出用のパルス列でドップラを抽出し、抽出したドップラで補正したレンジ抽出用の参照信号を用いて、相関処理によりレンジを抽出して、速度とレンジを出力する受信系統とを具備する。すなわち、間引きしたドップラ抽出用パルス列により、ドップラを抽出し、パルス幅、パルス間隔、パルス振幅等を変えることで、LPI性を確保するとともに、測距及び測速ができる。 In order to solve the above problems, the radar system according to the present embodiment uses a modulated pulse by a coded or random signal, and a pulse train in which the pulse width, pulse interval, and pulse amplitude for range extraction are changed for each pulse. And the transmission system that transmits the radar signal generated by mixing the pulse sequence for Doppler extraction with a constant pulse interval and thinned out at a predetermined thinning rate ρ (ρ ≧ 0) from the transmitting antenna, and the receiving antenna. For the reflected signal of the radar signal, the Doppler is extracted with the pulse train for Doppler extraction, and the range is extracted by correlation processing using the reference signal for range extraction corrected by the extracted Doppler, and the speed and range are extracted. It is equipped with a receiving system that outputs. That is, by extracting Doppler from the thinned-out pulse train for Doppler extraction and changing the pulse width, pulse interval, pulse amplitude, etc., LPI property can be ensured, and distance measurement and speed measurement can be performed.

第1の実施形態に係るレーダシステムの送信系統の概略構成を示すブロック図。The block diagram which shows the schematic structure of the transmission system of the radar system which concerns on 1st Embodiment. 第1の実施形態に係るレーダシステムの受信系統の概略構成を示すブロック図。The block diagram which shows the schematic structure of the receiving system of the radar system which concerns on 1st Embodiment. 第1の実施形態において、送信ファンビーム及び受信マルチビームを形成する様子を示す概念図。FIG. 6 is a conceptual diagram showing how a transmitting fan beam and a receiving multi-beam are formed in the first embodiment. 第1の実施形態において、送信系統の混合パルス列を生成する様子を示すタイミング図。In the first embodiment, a timing diagram showing how to generate a mixed pulse train of a transmission system. 第1の実施形態において、混合パルス列による送信信号に対する受信信号からドップラ信号を抽出する様子を示すタイミング図。In the first embodiment, a timing diagram showing a state in which a Doppler signal is extracted from a received signal with respect to a transmitted signal by a mixed pulse train. 第1の実施形態において、受信信号からパルス列を抽出してレンジセル毎のslow-time軸の処理を行う様子を示すタイミング図。In the first embodiment, a timing diagram showing a state in which a pulse train is extracted from a received signal and processing of a slow-time axis for each range cell is performed. 第1の実施形態において、ドップラ補正参照信号による相関処理によって目標のレンジを抽出する様子を示すタイミング図。In the first embodiment, a timing diagram showing a state in which a target range is extracted by correlation processing using a Doppler correction reference signal. 第1の実施形態において、時間軸をセル単位でスライディングして畳み込み積分することで目標のレンジを抽出する様子を示すタイミング図。In the first embodiment, a timing diagram showing a state in which a target range is extracted by sliding the time axis in cell units and convolving and integrating the time axis. 第2の実施形態に係るレーダシステムの送信系統の概略構成を示すブロック図。The block diagram which shows the schematic structure of the transmission system of the radar system which concerns on 2nd Embodiment. 第2の実施形態に係るレーダシステムの受信系統の概略構成を示すブロック図。The block diagram which shows the schematic structure of the receiving system of the radar system which concerns on 2nd Embodiment. 第2の実施形態において、角度欺瞞のための送信開口分割を示す概念図。In the second embodiment, a conceptual diagram showing a transmission aperture division for angle deception. 第2の実施形態において、高レート信号を低レート信号に変換する処理系統を示すブロック図。In the second embodiment, the block diagram which shows the processing system which converts a high rate signal into a low rate signal. 第2の実施形態において、送信系統において混合パルス列を生成する様子を示すタイミング図。In the second embodiment, a timing diagram showing how a mixed pulse train is generated in a transmission system. 第2の実施形態において、受信信号を高レート信号から低レート信号に変換する様子を示す図。The figure which shows the mode of converting a received signal from a high rate signal to a low rate signal in the 2nd Embodiment. 第2の実施形態において、高レート受信信号からドップラ抽出用パルス内符号列、レンジ抽出用パルス内符号列でそれぞれ相関処理する様子を示す図。In the second embodiment, the figure which shows the state of correlating each of the high rate received signal with the in-pulse code string for Doppler extraction and the in-pulse code string for range extraction. 第2の実施形態において、高レート受信信号からM系統のサブアレイ用パルス内符号列でそれぞれ相関処理する様子を示す図。In the second embodiment, it is a figure which shows the state of correlating each of the high-rate received signal with the in-pulse code string for sub-array of M system. 第2の実施形態において、高レート送受信信号から生成されるサブアレイ分割信号の合成出力を用いてドップラ抽出を行う様子を示す図。The figure which shows the state of performing Doppler extraction using the composite output of the sub-array division signal generated from the high-rate transmission / reception signal in the 2nd Embodiment. 第2の実施形態において、高レート送受信信号から生成されるサブアレイ分割信号の合成出力を用いてレンジ抽出を行う様子を示す図。The figure which shows the mode of performing the range extraction using the composite output of the sub-array division signal generated from the high-rate transmission / reception signal in the 2nd Embodiment.

以下、実施形態について、図面を参照して説明する。尚、各実施形態の説明において、同一部分には同一符号を付して示し、重複する説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In the description of each embodiment, the same parts are designated by the same reference numerals, and duplicate description will be omitted.

(第1の実施形態)
図1乃至図8を参照して、第1の実施形態に係るレーダシステムを説明する。
(First Embodiment)
The radar system according to the first embodiment will be described with reference to FIGS. 1 to 8.

図1乃至図8は第1の実施形態に係るレーダシステムの構成、処理例を示しており、図1は送信系統の概略構成を示すブロック図、図2は受信系統の概略構成を示すブロック図、図3は送信ファンビーム及び受信マルチビームを形成する様子を示す概念図、図4は送信系統において混合パルス列を生成する様子を示すタイミング図、図5は混合パルス列による送信信号に対する受信信号からドップラ信号を抽出する様子を示すタイミング図、図6は受信信号からパルス列を抽出してレンジセル毎のslow-time軸の処理を行う様子を示すタイミング図、図7はドップラ補正参照信号による相関処理によって目標のレンジを抽出する様子を示すタイミング図、図8は時間軸をセル単位でスライディングして畳み込み積分することで目標のレンジを抽出する様子を示すタイミング図である。 1 to 8 show a configuration and a processing example of the radar system according to the first embodiment, FIG. 1 is a block diagram showing a schematic configuration of a transmission system, and FIG. 2 is a block diagram showing a schematic configuration of a reception system. , FIG. 3 is a conceptual diagram showing how a transmitting fan beam and a receiving multi-beam are formed, FIG. 4 is a timing diagram showing how a mixed pulse train is generated in a transmitting system, and FIG. A timing diagram showing how the signal is extracted, FIG. 6 is a timing diagram showing how the slow-time axis is processed for each range cell by extracting a pulse train from the received signal, and FIG. 7 is a target by correlation processing using a Doppler correction reference signal. FIG. 8 is a timing diagram showing how the range of the above is extracted, and FIG. 8 is a timing diagram showing how the target range is extracted by sliding the time axis in cell units and convolving and integrating.

まず、図1に示す送信系統では、基準信号生成器11で生成される送信用の基準信号を符号生成器12で生成されるランダム符号を共に変調器13に送り、パルス制御器14からの制御パルスに従って基準信号に符号化変調を施すことでランダムパルス列を生成し、周波数変換器15で高周波(RF)信号に変換し、高出力増幅器16で電力増幅して、送信アンテナ17から送信する。 First, in the transmission system shown in FIG. 1, the reference signal for transmission generated by the reference signal generator 11 is sent to the modulator 13 together with the random code generated by the code generator 12, and the control from the pulse controller 14 is performed. A random pulse train is generated by performing coding modulation on the reference signal according to the pulse, converted into a radio frequency (RF) signal by the frequency converter 15, power is amplified by the high output amplifier 16, and transmitted from the transmitting antenna 17.

次に、図2に示す受信系統では、目標からの反射信号を受信アンテナ21で捕捉し、低雑音増幅器22でノイズを低減して増幅した後、周波数変換器23でベースバンドに周波数変換し、AD変換器24でデジタル信号に変換する。その後、ドップラ用パルス列抽出器25で受信信号からドップラ用パルス列を抽出し、FFT(Fast Fourier Transform:高速フーリエ変換)処理器26で周波数領域の信号に変換し、ドップラ抽出器27で目標からのドップラ周波数信号を抽出する。続いて、レンジ抽出用参照信号補正器28でレンジ抽出用参照信号を生成し、すでに抽出されたドップラ周波数信号を用いて参照信号を補正する。一方、レンジ用パルス列抽出器29でレンジ用パルス列を抽出し、補正された参照信号を用いて相関処理器2Aでレンジ用パルス列との相関をとり、レンジ抽出器2Bで相関結果から目標のレンジを抽出し、出力処理器2Cで目標の速度を算出して、レンジ・速度情報を出力する。 Next, in the receiving system shown in FIG. 2, the reflected signal from the target is captured by the receiving antenna 21, the noise is reduced and amplified by the low noise amplifier 22, and then the frequency is converted to the baseband by the frequency converter 23. It is converted into a digital signal by the AD converter 24. After that, the Doppler pulse train extractor 25 extracts the Doppler pulse train from the received signal, the FFT (Fast Fourier Transform) processor 26 converts it into a signal in the frequency domain, and the Doppler extractor 27 extracts the Doppler from the target. Extract the frequency signal. Subsequently, the range extraction reference signal corrector 28 generates a range extraction reference signal, and corrects the reference signal using the already extracted Doppler frequency signal. On the other hand, the range pulse train extractor 29 extracts the range pulse train, the corrected reference signal is used to correlate with the range pulse train with the correlation processor 2A, and the range extractor 2B determines the target range from the correlation result. Extract, calculate the target speed with the output processor 2C, and output the range / speed information.

上記構成において、以下に処理動作を説明する。なお、本実施形態に係るレーダシステムでは、図3に示すように、観測範囲を送信ビームが覆い、受信ビームは、時分割かDBF(Digital Beam Forming)により同時に形成するマルチビームを想定し、長時間の積分ができる場合を考える。ただし、必ずしも長時間積分が必要ということではない。 In the above configuration, the processing operation will be described below. In the radar system according to the present embodiment, as shown in FIG. 3, the transmission beam covers the observation range, and the reception beam is assumed to be a multi-beam formed simultaneously by time division or DBF (Digital Beam Forming). Consider the case where time integration is possible. However, it does not necessarily mean that long-term integration is necessary.

送信パルスは、図4(a)に示すドップラ抽出用パルス列と図4(b)に示すレンジ抽出用パルス列の合成して、図4(c)に示すように生成された混合パルス列である。ドップラ抽出用パルス列は、時間軸で等間隔のパルス列を間引くことにより、周期性を崩してLPI性を確保する。レンジ抽出用パルス列は、パルス幅、パルス間隔及び振幅の少なくともいずれか1つをパルス毎に変える。図4では、わかりやすいように「パルス振幅は一定」の場合としている。このドップラ抽出用パルス列とレンジ抽出用パルス列を合成(混合)することで、相手方の受信装置に用いられるESM(Electronic Support Measure:電子支援対策)装置のパルス諸元(パルス幅、パルス間隔、パルス振幅)によるレーダ識別を困難にする欺瞞処理を行うものとする。なお、図4の横軸はfast-time軸の時間である。 The transmission pulse is a mixed pulse train generated as shown in FIG. 4 (c) by synthesizing the pulse train for Doppler extraction shown in FIG. 4 (a) and the pulse train for range extraction shown in FIG. 4 (b). The pulse train for Doppler extraction breaks the periodicity and secures the LPI property by thinning out the pulse trains at equal intervals on the time axis. The range extraction pulse train changes at least one of pulse width, pulse interval, and amplitude for each pulse. In FIG. 4, for the sake of clarity, it is assumed that the pulse amplitude is constant. By synthesizing (mixing) this pulse train for Doppler extraction and the pulse train for range extraction, the pulse specifications (pulse width, pulse interval, pulse amplitude) of the ESM (Electronic Support Measure) device used for the receiving device of the other party. ) Shall perform deception processing that makes radar identification difficult. The horizontal axis of FIG. 4 is the time on the fast-time axis.

図1に示す送信系統において、送信信号の生成方法について述べる。高周波信号(RF信号)を得るための基準信号生成(11)を、符号生成(12)によりパルス内及びパルス間の符号を生成した変調信号により変調器(13)で変調し、高周波(RF)信号に周波数変換(15)し、高出力増幅(16)で、変調器(13)で生成したパルス幅に応じて高出力増幅し、送信アンテナ(17)より送信する。この際、パルス制御(14)により、パルス毎に符号系列、パルス幅、パルス間隔、パルス振幅を変化させる。 A method of generating a transmission signal in the transmission system shown in FIG. 1 will be described. The reference signal generation (11) for obtaining a high frequency signal (RF signal) is modulated by the modulator (13) with the modulation signal that generates the intra-pulse and inter-pulse code by the code generation (12), and the high frequency (RF) The signal is frequency-converted (15), high-output amplified (16), high-output amplified according to the pulse width generated by the modulator (13), and transmitted from the transmitting antenna (17). At this time, the code sequence, the pulse width, the pulse interval, and the pulse amplitude are changed for each pulse by the pulse control (14).

ドップラ抽出用のパルス列Sig1は、同じ符号をパルス間で繰り返すパルスであるが、繰り返し周期を検知しにくくするために、ランダムに間引いた信号とする。 The pulse train Sig1 for Doppler extraction is a pulse in which the same code is repeated between pulses, but the signal is randomly thinned out in order to make it difficult to detect the repetition period.

Figure 0006852007
Figure 0006852007

レンジ抽出用のパルス列Sig2は、パルス内及びパルス間でランダム符号(M系列等、非特許文献3,4)により変調する。この信号列を用いて、パルス幅及びパルス間隔が異なる送信波形を生成する。この混合波形の様子を図4に示す。 The pulse train Sig2 for range extraction is modulated by a random code (M-sequence, etc., Non-Patent Documents 3 and 4) within and between pulses. This signal sequence is used to generate transmission waveforms with different pulse widths and pulse intervals. The state of this mixed waveform is shown in FIG.

Figure 0006852007
Figure 0006852007

これを合成すると、次式の混合パルス列を生成できる。 By synthesizing this, the mixed pulse train of the following equation can be generated.

Figure 0006852007
Figure 0006852007

次に、図2に示す受信系統において、受信処理を述べる。受信アンテナ21により受信した信号は、低雑音増幅(22)された後、周波数変換(23)されて、AD変換(24)によりデジタル信号になる。このようにして得られた受信信号は、次式となる。 Next, the reception process will be described in the reception system shown in FIG. The signal received by the receiving antenna 21 is low-noise amplified (22), frequency-converted (23), and AD-converted (24) to become a digital signal. The received signal obtained in this way has the following equation.

Figure 0006852007
Figure 0006852007

本実施形態では、比較的長い観測時間を想定するため、レンジ抽出用パルス列の相関処理の際には、ドップラ補正が必要である。まず、受信パルス列から、既知のパルス間隔のドップラ抽出用パルス列を抽出(25)する。 In this embodiment, since a relatively long observation time is assumed, Doppler correction is required when correlating the pulse train for range extraction. First, a pulse train for Doppler extraction with a known pulse interval is extracted (25) from the received pulse train.

Figure 0006852007
Figure 0006852007

この様子を図5に示す。図5(a)は送信パルス列、(b)は受信パルス列、(c)はドップラ抽出用パルス列、(d)はドップラ抽出結果を示している。 This situation is shown in FIG. 5A shows a transmission pulse train, FIG. 5B shows a reception pulse train, FIG. 5C shows a pulse train for Doppler extraction, and FIG. 5D shows a Doppler extraction result.

ここで、ドップラパルス列抽出(25)は、ドップラパルス列のPRI(Pulse Repetetion Interval)に分割する処理であり、レンジ抽出用パルス列を含んでいる。このレンジ抽出用パルスは、次に示すslow-time軸FFTにより、抑圧できるため、図5では簡単のために、レンジ抽出用パルス列を除去した図としている。一方、パルス内変調を用いてドップラ抽出用とレンジ抽出用のパルスを弁別する手法もあるが、これについては第2の実施形態で述べることとする。 Here, the Doppler pulse train extraction (25) is a process of dividing the Doppler pulse train into PRI (Pulse Repetetion Interval), and includes a range extraction pulse train. Since this range extraction pulse can be suppressed by the slow-time axis FFT shown below, the pulse sequence for range extraction is removed in FIG. 5 for the sake of simplicity. On the other hand, there is also a method of discriminating between pulses for Doppler extraction and range extraction using intra-pulse modulation, which will be described in the second embodiment.

上記ドップラ抽出用パルス列を用いて、ドップラ抽出を行うために、fast-time軸のセル毎にslow-time軸のFFT(26)を行う。 Using the pulse train for Doppler extraction, FFT (26) on the slow-time axis is performed for each cell on the fast-time axis in order to perform Doppler extraction.

Figure 0006852007
Figure 0006852007

この様子を図6に示す。図6(a)は受信パルス列、(b)はslow-time軸を示している。このSr1out(ωs,tf)を用いて、レンジ−ドップラ軸で、CFAR(非特許文献6)等により検出することで、ドップラfd(ωs=2πfd)を抽出(27)でき、次式により速度に換算できる。 This situation is shown in FIG. FIG. 6A shows a received pulse train, and FIG. 6B shows a slow-time axis. Using this Sr1out (ωs, tf), Doppler fd (ωs = 2πfd) can be extracted (27) by detecting with CFAR (Non-Patent Document 6) or the like on the range-Doppler axis, and the velocity can be determined by the following equation. Can be converted.

Figure 0006852007
Figure 0006852007

次に、レンジ抽出用パルス列を用いて測距を行う手法について述べる。この信号列は、パルス毎に符号が異なるため、図7に示すように、参照信号との相関処理(2A)になる。図7において、(a)は送信パルス列、(b)は受信パルス列、(c)はレンジ抽出結果を示している。 Next, a method of performing distance measurement using a pulse train for range extraction will be described. Since the sign of this signal sequence is different for each pulse, as shown in FIG. 7, the signal sequence is subjected to the correlation processing (2A) with the reference signal. In FIG. 7, (a) shows a transmission pulse train, (b) shows a reception pulse train, and (c) shows a range extraction result.

まず、受信信号Sr(tf)をfast-time軸でFFTする。この場合は、パルス番号pnによらない。 First, the received signal Sr (tf) is FFTed on the fast-time axis. In this case, it does not depend on the pulse number pn.

Figure 0006852007
Figure 0006852007

参照信号は、ドップラ抽出用パルス列で抽出したドップラによる補正(28)を含めて、信号長を揃えるためにゼロ埋めを行う。 The reference signal is zero-padded to make the signal lengths uniform, including correction (28) by the Doppler extracted by the Doppler extraction pulse train.

Figure 0006852007
Figure 0006852007

次にこれをFFTする。 Next, this is FFT.

Figure 0006852007
Figure 0006852007

(8)式と(10)式より、次式により相関出力Sr2を得る。 From the equations (8) and (10), the correlation output Sr2 is obtained by the following equation.

Figure 0006852007
Figure 0006852007

これにより、レンジ(fast-time)軸で相関出力が得られるため、CFAR処理等により、目標を検出し、目標距離(レンジ)を抽出(2B)できる(図7参照)。これにより目標のドップラと距離を出力(2C)できる。 As a result, since the correlation output can be obtained on the range (fast-time) axis, the target can be detected by CFAR processing or the like, and the target distance (range) can be extracted (2B) (see FIG. 7). As a result, the target Doppler and the distance can be output (2C).

以上、入力信号と参照信号の相関処理の際に、パルス振幅が0も含めて相関処理を行う場合について述べた。この処理は、処理規模が小さい長所があるが、パルス振幅が0の部分も含めると、ノイズを含めた相関処理になるため、SN(信号対雑音電力比)が低下する。この対策として、図8に示すように、送信パルス振幅が0以外のレンジ(時間)軸セルを抽出して相関処理する手法が考えられる。図8において、(a)は送信パルス列、(b)は受信パルス列、(c)は受信信号抽出結果、(d)は受信信号時間のみ抽出した結果、(e)はレンジ抽出結果を示している。ここで、送信パルス振幅が0以外の部分では、周期性が無いため、レンジセルをずらせた畳み込み積分を行う必要があり、処理規模が増えるが、SNを向上できる。以下に、この場合の処理を具体化する。 The case where the correlation processing of the input signal and the reference signal is performed including the pulse amplitude of 0 has been described above. This processing has an advantage that the processing scale is small, but if the portion where the pulse amplitude is 0 is also included, the correlation processing including noise is performed, so that the SN (signal-to-noise power ratio) is lowered. As a countermeasure for this, as shown in FIG. 8, a method of extracting range (time) axis cells in which the transmission pulse amplitude is other than 0 and performing correlation processing can be considered. In FIG. 8, (a) is a transmission pulse train, (b) is a reception pulse train, (c) is a reception signal extraction result, (d) is a result of extracting only the reception signal time, and (e) is a range extraction result. .. Here, since there is no periodicity in the portion where the transmission pulse amplitude is other than 0, it is necessary to perform convolution integration with the range cell shifted, which increases the processing scale but can improve the SN. The processing in this case is embodied below.

まず、入力信号としては、Sr(tf)であり、送信振幅が0以外の信号系列に従って、開始時間tの受信信号セル列を抽出する。 First, the input signal is Sr (tf), and the received signal cell sequence having the start time t is extracted according to the signal sequence having the transmission amplitude other than 0.

Figure 0006852007
Figure 0006852007

参照信号は、ドップラ抽出用パルス列で抽出したドップラによる補正(28)を含めて、信号長を揃えるために、ゼロ埋めを行う。 The reference signal is padded with zeros in order to make the signal lengths uniform, including the correction (28) by the Doppler extracted by the Doppler extraction pulse train.

Figure 0006852007
Figure 0006852007

(12)と(13)を用いて畳み込み積分を行う。 Convolution integration is performed using (12) and (13).

Figure 0006852007
Figure 0006852007

以上により、時間軸(レンジ軸)に対応する各相関出力Sr(t)が得られるため、CFAR等を用いて目標の距離を出力することができる。 As a result, each correlation output Sr (t) corresponding to the time axis (range axis) can be obtained, so that the target distance can be output using CFAR or the like.

なお、ドップラ抽出においては、加速度がある場合には、図5及び図6におけるslow-time軸のFFT時に、パルス列を時系列に分割して、各々の分割単位でFFTして、時系列のドップラfd(t)を抽出してもよい。時系列のドップラfd(t)を、(9)式の参照信号補正に適用することで、レーダと目標の相対目標が加速度を持つ場合にも、本実施形態が適用できることになる。 In the Doppler extraction, when there is acceleration, the pulse train is divided into time series at the time of FFT of the slow-time axis in FIGS. 5 and 6, and FFT is performed in each division unit to perform the time series Doppler. You may extract fd (t). By applying the time-series Doppler fd (t) to the reference signal correction of Eq. (9), the present embodiment can be applied even when the relative target of the radar and the target has acceleration.

以上のように、第1の実施形態に係るレーダシステムによれば、符号化またはランダム信号(ノイズ)による変調パルスを用いて、レンジ抽出用のパルス幅、パルス間隔、パルス振幅を、パルス毎に変化させたパルス列と、ドップラ抽出用のパルス間隔が一定で、所定の間引き率ρ(ρ≧0)で間引いたパルス列を重複(混合)して送信アンテナより送信し、受信アンテナで受信した信号に対して、ドップラ抽出用のパルス列でドップラを抽出し、抽出したドップラで補正したレンジ抽出用の参照信号を用いて、相関処理により目標のレンジを抽出して、速度とレンジを出力する。すなわち、間引きしたドップラ抽出用パルス列により、ドップラを抽出し、パルス幅、パルス間隔、パルス振幅等を変えることで、LPI性を確保しつつ測距及び測速を行うことができる。 As described above, according to the radar system according to the first embodiment, the pulse width, pulse interval, and pulse amplitude for range extraction are set for each pulse by using a modulated pulse by coding or a random signal (noise). The changed pulse train and the pulse interval for Doppler extraction are constant, and the pulse trains thinned out at a predetermined thinning rate ρ (ρ ≧ 0) are overlapped (mixed) and transmitted from the transmitting antenna to the signal received by the receiving antenna. On the other hand, the Doppler is extracted with the pulse train for Doppler extraction, the target range is extracted by correlation processing using the reference signal for range extraction corrected by the extracted Doppler, and the speed and range are output. That is, by extracting the Doppler from the thinned-out pulse train for Doppler extraction and changing the pulse width, pulse interval, pulse amplitude, etc., distance measurement and speed measurement can be performed while ensuring LPI property.

(第2の実施形態)角度欺瞞
第1の実施形態では、パルス毎にパルス幅、パルス間隔、パルス振幅を変えることにより、相手側の受信装置に用いられるESM装置を欺瞞する方式について述べた。第2の実施形態では、図9乃至図18を参照して、パルス毎にESM装置の測角を欺瞞する方式について述べる。図9乃至図18は第2の実施形態に係るレーダシステムの構成、処理例を示しており、図9は送信系統の概略構成を示すブロック図、図10は受信系統の概略構成を示すブロック図、図11は角度欺瞞のための送信開口分割を示す概念図、図12は高レート信号を低レート信号に変換する処理系統を示すブロック図、図13は送信系統において混合パルス列を生成する様子を示すタイミング図、図14は受信信号を高レート信号から低レート信号に変換する様子を示す図、図15は高レート受信信号からドップラ抽出用パルス内符号列、レンジ抽出用パルス内符号列でそれぞれ相関処理する様子を示す図、図16は高レート受信信号からM系統のサブアレイ用パルス内符号列でそれぞれ相関処理する様子を示す図、図17は高レート送受信信号から生成されるサブアレイ分割信号の合成出力を用いてドップラ抽出を行う様子を示す図、図18は高レート送受信信号から生成されるサブアレイ分割信号の合成出力を用いてレンジ抽出を行う様子を示す図である。
(Second embodiment) Angle deception
In the first embodiment, a method of deceiving an ESM device used as a receiving device on the other side by changing the pulse width, pulse interval, and pulse amplitude for each pulse has been described. In the second embodiment, a method of deceiving the angle measurement of the ESM device for each pulse will be described with reference to FIGS. 9 to 18. 9 to 18 show a configuration and a processing example of the radar system according to the second embodiment, FIG. 9 is a block diagram showing a schematic configuration of a transmission system, and FIG. 10 is a block diagram showing a schematic configuration of a reception system. , FIG. 11 is a conceptual diagram showing transmission aperture division for angle deception, FIG. 12 is a block diagram showing a processing system for converting a high rate signal into a low rate signal, and FIG. 13 shows a state in which a mixed pulse train is generated in the transmission system. The timing diagram shown, FIG. 14 is a diagram showing how a received signal is converted from a high-rate signal to a low-rate signal, and FIG. 15 is an in-pulse code sequence for Doppler extraction and an in-pulse code sequence for range extraction from the high-rate received signal, respectively. A diagram showing how the correlation processing is performed, FIG. 16 is a diagram showing how the high-rate reception signal is correlated with the intra-pulse code sequence for the sub-array of the M system, and FIG. 17 is a diagram showing the sub-array division signal generated from the high-rate transmission / reception signal. FIG. 18 is a diagram showing a state in which Doppler extraction is performed using the combined output, and FIG. 18 is a diagram showing a state in which range extraction is performed using the combined output of the sub-array division signal generated from the high-rate transmission / reception signal.

まず、角度欺瞞を実施するためには、送信系統を図9に示すようにM系統(121〜171,…,12M〜17M)に分割し、送信開口を図11に示すようにM分割して、各々の開口で変調信号を変化させる。これにより、相手側のESM装置では、レーダ波を観測する際に、受信ビーム幅内に複数の信号源があることになり、振幅や位相が異なるベクトル合成によって測角値を欺瞞することができる。 First, in order to carry out angle deception, the transmission system is divided into M systems (121 to 171, ..., 12M to 17M) as shown in FIG. 9, and the transmission aperture is divided into M as shown in FIG. , The modulated signal is changed at each aperture. As a result, when observing the radar wave, the ESM device on the other side has a plurality of signal sources within the received beam width, and the measured angle value can be deceived by vector synthesis having different amplitudes and phases. ..

次に、この送信分割信号の受信について、図10乃至図18を用いて説明する。なお、図17及び図18では、簡単のために、送信開口分割が2系統(LとR、M=2)の場合としている。 Next, the reception of the transmission division signal will be described with reference to FIGS. 10 to 18. In addition, in FIG. 17 and FIG. 18, for the sake of simplicity, it is assumed that the transmission aperture division is two systems (L and R, M = 2).

まず、分割単位の各送信信号は、受信処理で分離できるように、図13(a)のドップラ抽出用パルス列、図13(b)のレンジ抽出用パルス列、図13(c)の混合パルス列に示すように、任意の幅のパルス内を高レートでサンプルし、所定の同一幅のサンプル単位で符号変調等を施して、送信開口分割単位のアイソレ−ションを確保する。これにより、送受信のDBFであるMIMO処理(非特許文献6)を行う。送信開口2分割の場合は、送信M=2ch、受信N=1chのM×Nチャンネルの送受信DBFに相当する。また、パルス間では、異なる符号系列、パルス幅、パルス間隔としている。その他、必要に応じて、パルス毎に振幅も変えることができる。 First, each transmission signal of the division unit is shown in the Doppler extraction pulse train of FIG. 13 (a), the range extraction pulse train of FIG. 13 (b), and the mixed pulse train of FIG. 13 (c) so that they can be separated by the reception process. As described above, a pulse having an arbitrary width is sampled at a high rate, and code modulation or the like is performed in units of a predetermined sample having the same width to secure isolation in the transmission aperture division unit. As a result, MIMO processing (Non-Patent Document 6), which is a DBF for transmission and reception, is performed. In the case of the transmission opening divided into two, it corresponds to the transmission / reception DBF of the M × N channel of transmission M = 2ch and reception N = 1ch. Further, different code sequences, pulse widths, and pulse intervals are used between pulses. In addition, the amplitude can be changed for each pulse as needed.

受信系統では、図10に示すように、受信アンテナ21で捕捉された受信信号は、低雑音増幅器22で増幅され、周波数変換器23でベースバンドに変換されて、AD変換器24によりデジタル信号に変換される。この信号は高レートサンプリング信号であるため、レート変換器2Dにおいて、低サンプリングレート信号に変換する。その後、ドップラ用パルス列抽出器251〜25M、レンジ用パルス列抽出器291〜29Mに分配する。 In the receiving system, as shown in FIG. 10, the received signal captured by the receiving antenna 21 is amplified by the low noise amplifier 22, converted into a baseband by the frequency converter 23, and converted into a digital signal by the AD converter 24. Will be converted. Since this signal is a high rate sampling signal, it is converted into a low sampling rate signal by the rate converter 2D. After that, it is distributed to the pulse train extractor 251 to 25M for Doppler and the pulse train extractor 291 to 29M for the range.

次に、ドップラ用パルス列抽出器251〜25Mで抽出されたM系統のドップラ用パルス列をFFT処理器261〜26Mで周波数領域の信号に変換し、補正後合成器2Eで位相を補正して合成し、ドップラ抽出器27でドップラ周波数信号を抽出する。続いて、レンジ抽出用参照信号補正器28でレンジ抽出用参照信号を生成し、すでに抽出されたドップラ周波数信号を用いて参照信号を補正する。一方、M系統のレンジ用パルス列抽出器291〜29Mで抽出されるレンジ用パルス列を抽出し、補正された参照信号を用いて相関処理器2A1〜2AMでレンジ用パルス列との相関をとり、補正後合成器2Fで位相を補正して合成した後、レンジ抽出器2Bで相関合成結果から目標のレンジを抽出し、出力処理器2Cで目標の速度を算出して、レンジ・速度情報を出力する。 Next, the pulse train for Doppler of the M system extracted by the pulse train extractor for Doppler 251 to 25M is converted into a signal in the frequency domain by the FFT processor 261 to 26M, and the phase is corrected and synthesized by the synthesizer 2E after correction. , The Doppler frequency signal is extracted by the Doppler extractor 27. Subsequently, the range extraction reference signal corrector 28 generates a range extraction reference signal, and corrects the reference signal using the already extracted Doppler frequency signal. On the other hand, the range pulse train extracted by the range pulse train extractor 291 to 29M of the M system is extracted, and the corrected reference signal is used to correlate with the range pulse train with the correlation processor 2A1 to 2AM, and after correction. After the phase is corrected and synthesized by the synthesizer 2F, the target range is extracted from the correlation synthesis result by the range extractor 2B, the target speed is calculated by the output processor 2C, and the range / speed information is output.

ここで、上記レート変換器2Dは、図12に示すように、時間軸分割部2D1、fast-time FFT処理部2D2、周波数分割部2D3、乗算部2D4、fast-time IFFT処理部2D5、位相補正部2D6、相関結果加算部2D7、参照信号生成部2D8、参照信号fast-time FFT処理部2D9、周波数分割部2DAで構成される。 Here, as shown in FIG. 12, the rate converter 2D includes a time axis dividing unit 2D1, a fast-time FFT processing unit 2D2, a frequency dividing unit 2D3, a multiplication unit 2D4, a fast-time Fourier processing unit 2D5, and a phase correction. It is composed of a unit 2D6, a correlation result addition unit 2D7, a reference signal generation unit 2D8, a reference signal fast-time FFT processing unit 2D9, and a frequency division unit 2DA.

上記構成によるレート変換器2Dでは、まず、図14(a)に示す符号変調信号を入力すると、図14(b)に示すように、fast-time軸において、所定の時間幅Tdiv毎に信号を時間軸分割(2D1)し、各Tdivにおけるfast-time軸の信号をFFT(2D2)する。 In the rate converter 2D having the above configuration, first, when the code modulation signal shown in FIG. 14A is input, as shown in FIG. 14B, the signal is output for each predetermined time width Tdiv on the fast-time axis. The time axis is divided (2D1), and the fast-time axis signal in each Tdiv is FFT (2D2).

Figure 0006852007
Figure 0006852007

なお、Tdivは、ドップラ抽出用のパルスの場合は、間引き前のパルス間隔PRI(Pulse Repetition Interval)が決まっているため、Tdiv=PRIとする。これを図14(c)に示すようにM系統の周波数帯域に分割(2D3)する。 In the case of a pulse for Doppler extraction, Tdiv = PRI because the pulse interval PRI (Pulse Repetition Interval) before thinning is determined. This is divided (2D3) into the frequency band of the M system as shown in FIG. 14 (c).

Figure 0006852007
Figure 0006852007

次に、周波数分割毎に、参照信号を相関処理するため、参照信号を生成(2D8)する。 Next, a reference signal is generated (2D8) in order to correlate the reference signal for each frequency division.

Figure 0006852007
Figure 0006852007

これをFFT(2D9)する。 This is FFT (2D9).

Figure 0006852007
Figure 0006852007

これを周波数分割(2DA)する。 This is frequency divided (2DA).

Figure 0006852007
Figure 0006852007

これを用いて、各周波数分割毎の相関処理は、乗算(2D4)して、IFFT(2D5)となり、次式となる。 Using this, the correlation processing for each frequency division is multiplied (2D4) to obtain an Fourier (2D5), and the following equation is obtained.

Figure 0006852007
Figure 0006852007

この各周波数分割毎の相関処理結果を、位相補正(2D6)して、図14(d)に示すように加算(2D7)する。 The correlation processing result for each frequency division is phase-corrected (2D6) and added (2D7) as shown in FIG. 14 (d).

Figure 0006852007
Figure 0006852007

補正された位相は、周波数分割帯域毎の信号を加算するための中心周波数差による位相を補正する項であり、次式で表現できる。 The corrected phase is a term for correcting the phase due to the center frequency difference for adding the signals for each frequency division band, and can be expressed by the following equation.

Figure 0006852007
Figure 0006852007

(22)式の信号は、高レートな(15)式の入力信号に比べて、低レートな信号になっている。 The signal of the formula (22) is a low-rate signal as compared with the input signal of the high-rate formula (15).

この高レート信号を低レート信号に変換する手法は、fast-time軸の信号を所定のTdivで分割して適用できるため、ドップ抽出用とレンジ抽出用のいずれの信号にも適用できる。特に、レンジ抽出用のようなパルス間隔がランダムな場合にも適用できる。 This method of converting a high-rate signal into a low-rate signal can be applied to both dopp extraction and range extraction signals because the fast-time axis signal can be divided into predetermined Tdivs and applied. In particular, it can be applied to a case where the pulse interval is random, such as for range extraction.

例えば、送信サブアレイ分割数Mが1の場合において、ドップラ抽出用とレンジ抽出用で変調符号を変えた場合の適用例を図15に示す。図15において、(a)は受信パルス列、(b)はTdiv で区分して時間軸(slow-time)上に揃えた受信パルス列、(c)は低レートに変換したドップラ抽出用パルス内符号化列での相関処理結果、(d)は低レートに変換したレンジ抽出用パルス内符号列での相関処理結果を示している。 For example, FIG. 15 shows an application example in which the modulation code is changed between the Doppler extraction and the range extraction when the transmission subarray division number M is 1. In FIG. 15, (a) is a received pulse train, (b) is a received pulse train divided by Tdiv and aligned on the time axis (slow-time), and (c) is in-pulse coding for Doppler extraction converted to a low rate. Correlation processing result in the column, (d) shows the correlation processing result in the in-pulse code string for range extraction converted to a low rate.

ここでは、Tdivで分割したfast-time軸の各々に対して、高レート信号を低レート信号に変換する手法を適用する。 Here, a method of converting a high-rate signal into a low-rate signal is applied to each of the fast-time axes divided by the Tdiv.

また、送信サブアレイ毎に変調符号を変えた場合の適用例を図16に示す。図16において、(a)は受信パルス列、(b)はTdivで区分して時間軸(slow-time)上に揃えた受信パルス列、(c)は低レートに変換したサブアレイ1用パルス内符号列での相関処理結果、(d)は低レートに変換したサブアレイM用パルス内符号列での相関処理結果を示している。これは、ドップラ抽出用、レンジ抽出用及び送信サブアレイ毎に全て変調符号を変えた場合にも適用できる。この場合は、M(送信アサブアレイ数)×2(ドップラ抽出用、レンジ抽出用)の異なる変調符合が必要となる。 Further, FIG. 16 shows an application example in which the modulation code is changed for each transmission subarray. In FIG. 16, (a) is a received pulse train, (b) is a received pulse train divided by Tdiv and aligned on the time axis (slow-time), and (c) is an in-pulse code string for subarray 1 converted to a low rate. As a result of the correlation processing in (d), the correlation processing result in the in-pulse code string for the sub-array M converted to a low rate is shown. This can also be applied to the case where the modulation code is changed for each of the Doppler extraction, the range extraction, and the transmission subarray. In this case, different modulation codes of M (number of transmission subarrays) × 2 (for Doppler extraction and range extraction) are required.

この手法を用いて、入力の高レート信号を低レート信号に変換して、ドップラを抽出する処理を図17に示す。図17では、簡単のため、送信のサブアレイをLとRの2個に分割した場合を示しているが、勿論、任意のM個の分割であってよい。図17において、(a),(b)は送信信号L,R、(c)は受信パルス列L,R、(d)はドップラ抽出用パルス列L,R、(e)はFFTパルス列L,R、(f)はドップラ抽出用パルス列の抽出結果を示している。 FIG. 17 shows a process of converting an input high-rate signal into a low-rate signal and extracting a Doppler using this method. FIG. 17 shows a case where the transmission sub-array is divided into two, L and R, for the sake of simplicity, but of course, any M sub-array may be used. In FIG. 17, (a) and (b) are transmission signals L and R, (c) are reception pulse trains L and R, (d) are Doppler extraction pulse trains L and R, and (e) are FFT pulse trains L and R. (F) shows the extraction result of the pulse train for Doppler extraction.

上記構成では、送信信号LとRについて、第1の実施形態と同様に、分割したLとR毎に、全PRI間隔の時間軸に対応するslow-time軸のFFT(261〜26M)を行い、LとRの信号を開口分割の位置と観測方向に応じて各サブアレイの位相を揃えるようにMIMO処理(非特許文献6参照)により位相を補正して合成(2E)した信号により、CFAR等によりドップラを抽出(27)する。次に、入力の高レート信号を低レート信号に変換して、レンジを抽出する様子を図18に示す。図18において、(a),(b)は送信信号L,R、(c)は受信パルス列L,R、(d)は相関処理結果L,R、(e)はサブアレイ分割信号の合成からレンジ(距離)を抽出する様子を示している。 In the above configuration, for the transmission signals L and R, the slow-time axis FFT (261 to 26M) corresponding to the time axis of the entire PRI interval is performed for each of the divided L and R as in the first embodiment. , CFAR, etc., based on the signal obtained by synthesizing (2E) the L and R signals by correcting the phase by MIMO processing (see Non-Patent Document 6) so that the phases of each subarray are aligned according to the position of the aperture division and the observation direction. Doppler is extracted (27). Next, FIG. 18 shows how the high-rate signal of the input is converted into the low-rate signal and the range is extracted. In FIG. 18, (a) and (b) are transmission signals L and R, (c) are reception pulse trains L and R, (d) are correlation processing results L and R, and (e) is a range from the synthesis of subarray division signals. It shows how to extract (distance).

次に、レート変換器2Dにより、低レートの信号に変換する。この際、図15や図16のように、所定の時間幅Tdivで分割して低レート信号に変換するが、レンジ抽出の場合は、低レートに変換後に、分割したTdivの信号を、一軸の時系列に再度並べ替える。この信号を用いて、レンジ用パルス列抽出(291〜29M)により抽出した信号に対して、参照信号ドップラ補正(28)によりドップラ補正した参照信号により、fast-time軸(低レート)で相関処理(2A1〜2AM)し、開口分割の位置と観測方向に応じて位相の補正後に合成(2F)して、CFAR等によりレンジ抽出(2B)して、ドップラとレンジを出力(2C)する。 Next, the rate converter 2D converts the signal into a low-rate signal. At this time, as shown in FIGS. 15 and 16, the Tdiv signal is divided by a predetermined time width Tdiv and converted into a low rate signal, but in the case of range extraction, after the conversion to a low rate, the divided Tdiv signal is uniaxially arranged. Sort again in chronological order. Using this signal, the signal extracted by the range pulse train extraction (291 to 29M) is subjected to correlation processing (low rate) on the fast-time axis (low rate) by the reference signal corrected by the reference signal Doppler correction (28). 2A1 to 2AM), after phase correction according to the position and observation direction of the aperture division, synthesis (2F) is performed, range extraction (2B) is performed by CFAR or the like, and Doppler and range are output (2C).

この方式では、開口を送信符号コード分にM分割し、受信は全開口を使った信号を用いて、M分割した信号を合成するMIMO処理であるため、分割及び合成によるSN劣化は生じない。なお、レンジ抽出においては、レンジ抽出用パルス列のみではなく、ドップラ抽出用パルス列を含めて用いてもよい。 In this method, since the aperture is divided into M for the transmission code code and the reception is MIMO processing in which the signal using all openings is used to synthesize the M-divided signal, SN deterioration due to the division and synthesis does not occur. In the range extraction, not only the range extraction pulse train but also the Doppler extraction pulse train may be included.

以上のように、第2の実施形態に係るレーダシステムによれば、送信系統において、符号化またはランダム信号(ノイズ)による変調パルスを用いた場合に、レンジ抽出用のパルス幅、パルス間隔、パルス振幅を、パルス毎に変化させたパルス列と、ドップラ抽出用のパルス間隔が一定で、所定の間引き率ρ(ρ≧0)で間引いたパルス列を重複した混合パルス列を生成し、送信アンテナの開口をM(M≧1)分割し、送信開口の分割単位で、パルス列のパルス内変調を変えたM種の信号を用いて、更に必要に応じて、ドップラ抽出用とレンジ抽出用のパルス内変調を変えた信号を用いて、送信アンテナより送信する。 As described above, according to the radar system according to the second embodiment, when a modulated pulse by coding or a random signal (noise) is used in the transmission system, the pulse width, pulse interval, and pulse for range extraction are used. A mixed pulse train in which the pulse train in which the amplitude is changed for each pulse and the pulse train in which the pulse interval for Doppler extraction is constant and thinned out at a predetermined thinning ratio ρ (ρ ≧ 0) is overlapped is generated, and the opening of the transmitting antenna is opened. Intra-pulse modulation for Doppler extraction and range extraction is performed by using M-type signals obtained by dividing M (M ≧ 1) and changing the intra-pulse modulation of the pulse train in the division unit of the transmission aperture. The changed signal is used and transmitted from the transmitting antenna.

一方、受信系統において、アンテナの全開口で受信した信号に対して、パルス内変調を復調して低レートの信号に変換した後、M種の送信信号に対してパルス列を分離し、送信開口分割単位の位相中心の位相に応じて補正して加算してドップラ抽出する。次に、抽出したドップラで補正したレンジ抽出用の参照信号を用いて、M種の送信信号に対して相関処理した結果を、送信開口分割単位の位相中心の位相に応じて補正して加算してレンジ抽出して、速度とレンジを出力する。すなわち、間引きしたドップラ抽出用パルス列により、ドップラを抽出し、送信開口を分割して、分割単位で符号系列を変えることにより、相手の受信器の測角性能に対するLPI性を確保するとともに、測距及び測速ができる。 On the other hand, in the receiving system, after the signal received at the full aperture of the antenna is demodulated in-pulse modulation and converted into a low-rate signal, the pulse train is separated for the M type transmission signal, and the transmission aperture is divided. Doppler extraction is performed by correcting and adding according to the phase of the phase center of the unit. Next, using the reference signal for range extraction corrected by the extracted Doppler, the result of correlation processing for the M type transmission signal is corrected and added according to the phase of the phase center of the transmission aperture division unit. Extract the range and output the speed and range. That is, the Doppler is extracted by the thinned-out pulse train for Doppler extraction, the transmission aperture is divided, and the code sequence is changed in each division unit to ensure the LPI property for the angle measurement performance of the other receiver and to measure the distance. And speed measurement is possible.

また、上記システムでは、高レートサンプリング信号を、所定の時間幅Tdivに分割し、各TdivにおいてFFTしたfast-timeの周波数軸の結果Sig_fftと、パルス内の変調信号に対応する時間軸の信号をFFTしたfast-time軸の周波数軸の結果Ref_fftを用いて、Sig_fftとRef_fftを各々Ndiv個の同じ周波数帯に分割して、各々の分割毎に相関処理し、各分割周波数帯の中心周波数に対応する位相補正後、各相関処理結果を合成して、低レートのサンプリング信号を得て、ドップラ及びレンジを抽出する。すなわち、送信開口を分割して、分割単位で符号系列を変えたパルス内変調のような高レート信号を低レート信号に変換することにより、処理規模を低減して、測距及び測速ができる。 Further, in the above system, the high-rate sampling signal is divided into Tdivs having a predetermined time width, and the result Sig_fft of the fast-time frequency axis FFTed in each Tdiv and the signal of the time axis corresponding to the modulated signal in the pulse are displayed. Using the FFT fast-time axis frequency axis result Ref_fft, Sig_fft and Ref_fft are each divided into Ndivs of the same frequency band, and correlation processing is performed for each division to correspond to the central frequency of each divided frequency band. After the phase correction is performed, the results of each correlation processing are combined to obtain a low-rate sampling signal, and the Doppler and range are extracted. That is, by dividing the transmission aperture and converting a high-rate signal such as in-pulse modulation in which the code sequence is changed for each division into a low-rate signal, the processing scale can be reduced, and distance measurement and speed measurement can be performed.

なお、本発明は上記実施形態をそのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. Furthermore, components over different embodiments may be combined as appropriate.

11…基準信号生成器、12…符号生成器、13…変調器、14…パルス制御器、15…周波数変換器、16…高出力増幅器、17…送信アンテナ、21…受信アンテナ、22…低雑音増幅器、23…周波数変換器、24…AD変換器、25,251〜25M…ドップラ用パルス列抽出器、26,261〜26M…FFT処理器、27…ドップラ抽出器、28…レンジ抽出用参照信号補正器、29,291〜29M…レンジ用パルス列抽出器、2A,2A1〜2AM…相関処理器、2B…レンジ抽出器、2C…出力処理器、2D…レート変換器、2D1…時間軸分割部、2D2…fast-time FFT処理部、2D3…周波数分割部、2D4…乗算部、2D5…fast-time IFFT処理部、2D6…位相補正部、2D7…相関結果加算部、2D8…参照信号生成部、2D9…参照信号fast-time FFT処理部、2DA…周波数分割部、2E…補正後合成器、2F…補正後合成器。 11 ... Reference signal generator, 12 ... Code generator, 13 ... Modulator, 14 ... Pulse controller, 15 ... Frequency transform, 16 ... High power amplifier, 17 ... Transmit antenna, 21 ... Receive antenna, 22 ... Low noise Amplifier, 23 ... frequency converter, 24 ... AD converter, 25, 251 to 25 M ... pulse train extractor for Doppler, 26, 261 to 26 M ... FFT processor, 27 ... Doppler extractor, 28 ... reference signal correction for range extraction Instrument, 29,291-29M ... Range pulse train extractor, 2A, 2A1-2AM ... Correlation processor, 2B ... Range extractor, 2C ... Output processor, 2D ... Rate converter, 2D1 ... Time axis divider, 2D2 ... fast-time FFT processing unit, 2D3 ... frequency division unit, 2D4 ... multiplication unit, 2D5 ... fast-time Fourier processing unit, 2D6 ... phase correction unit, 2D7 ... correlation result addition unit, 2D8 ... reference signal generation unit, 2D9 ... Reference signal fast-time FFT processing unit, 2DA ... frequency division unit, 2E ... corrected synthesizer, 2F ... corrected synthesizer.

Claims (5)

符号化またはランダム信号による変調パルスを用いたレーダシステムにおいて、
レンジ抽出用のパルス幅、パルス間隔、パルス振幅を、パルス毎に変化させたパルス列と、ドップラ抽出用のパルス間隔が一定で、所定の間引き率ρ(ρ≧0)で間引いたパルス列とを混合して生成されたレーダ信号を送信アンテナより送信する送信系統と、
受信アンテナで受信した前記レーダ信号の反射信号に対して、ドップラ抽出用のパルス列でドップラを抽出し、抽出したドップラで補正したレンジ抽出用の参照信号を用いて、相関処理によりレンジを抽出して、速度とレンジを出力する受信系統と
を具備するレーダシステム。
In radar systems using coded or random signal modulated pulses
A pulse train in which the pulse width, pulse interval, and pulse amplitude for range extraction are changed for each pulse and a pulse train in which the pulse interval for Doppler extraction is constant and thinned at a predetermined thinning rate ρ (ρ ≧ 0) are mixed. And the transmission system that transmits the radar signal generated by
For the reflected signal of the radar signal received by the receiving antenna, the Doppler is extracted with the pulse train for Doppler extraction, and the range is extracted by correlation processing using the reference signal for range extraction corrected by the extracted Doppler. , A radar system equipped with a receiving system that outputs speed and range.
符号化またはランダム信号による変調パルスを用いたレーダシステムにおいて、
レンジ抽出用のパルス幅、パルス間隔、パルス振幅を、パルス毎に変化させたパルス列と、ドップラ抽出用のパルス間隔が一定で、所定の間引き率ρ(ρ≧0)で間引いたパルス列を混合して混合パルス列を生成し、送信のアンテナ開口をM(M≧1)分割し、送信開口の分割単位で、前記パルス列のパルス内変調を変えたM種の信号を用いて、更に必要に応じて、ドップラ抽出用とレンジ抽出用のパルス内変調を変えたレーダ信号を送信アンテナより送信する送信系統と、
受信アンテナの全開口で受信した前記レーダ信号の反射信号に対して、パルス内変調を復調して低レートの信号に変換した後、M種の送信信号に対してパルス列を分離し、送信開口分割単位の位相中心の位相に応じて補正して加算してドップラを抽出し、次に、抽出したドップラで補正したレンジ抽出用の参照信号を用いて、M種の送信信号に対して相関処理した結果を、送信開口分割単位の位相中心の位相に応じて補正して加算してレンジ抽出して、速度とレンジを出力する受信系統と
を具備するレーダシステム。
In radar systems using coded or random signal modulated pulses
A pulse train in which the pulse width, pulse interval, and pulse amplitude for range extraction are changed for each pulse and a pulse train in which the pulse interval for Doppler extraction is constant and thinned at a predetermined thinning rate ρ (ρ ≧ 0) are mixed. To generate a mixed pulse train, divide the transmission antenna aperture into M (M ≧ 1), and use M-type signals in which the intra-pulse modulation of the pulse train is changed in the division unit of the transmission aperture, and further if necessary. , A transmission system that transmits radar signals with different in-pulse modulation for Doppler extraction and range extraction from a transmission antenna,
The reflected signal of the radar signal received at the full aperture of the receiving antenna is demodulated by intra-pulse modulation and converted into a low-rate signal, and then the pulse train is separated for the M type transmission signal to divide the transmission aperture. The Doppler was extracted by correcting and adding according to the phase of the phase center of the unit, and then the reference signal for range extraction corrected by the extracted Doppler was used to perform correlation processing on the M type transmission signal. A radar system including a receiving system that outputs a speed and a range by correcting the result according to the phase of the phase center of the transmission aperture division unit, adding the result, and extracting the range.
前記受信系統は、高レートサンプリング信号を、所定の時間幅に分割し、前記時間幅毎にFFTしたfast-timeの周波数軸の第1の結果と、パルス内の変調信号に対応する時間軸の信号をFFTしたfast-time軸の周波数軸の第2の結果を用いて、前記第1の結果と前記第2の結果を各々N個の同じ周波数帯に分割して、各々の分割毎に相関処理し、各分割周波数帯の中心周波数に対応する位相補正後、各相関処理結果を合成して、低レートのサンプリング信号を得てドップラ及びレンジを抽出する請求項2記載のレーダシステム。 The receiving system divides the high-rate sampling signal into a predetermined time width, and the first result of the fast-time frequency axis obtained by FFT for each time width and the time axis corresponding to the modulated signal in the pulse. Using the second result of the frequency axis of the fast-time axis in which the signal is FFT, the first result and the second result are each divided into N same frequency bands, and each division correlates. The radar system according to claim 2, wherein the radar system is processed, after phase correction corresponding to the central frequency of each divided frequency band, each correlation processing result is synthesized, a low-rate sampling signal is obtained, and a Doppler and a range are extracted. 符号化またはランダム信号による変調パルスを用いたレーダシステムのレーダ信号処理方法において、
レンジ抽出用のパルス幅、パルス間隔、パルス振幅を、パルス毎に変化させたパルス列と、ドップラ抽出用のパルス間隔が一定で、所定の間引き率ρ(ρ≧0)で間引いたパルス列とを混合して生成されたレーダ信号を送信アンテナより送信し、
受信アンテナで受信した前記レーダ信号の反射信号に対して、ドップラ抽出用のパルス列でドップラを抽出し、抽出したドップラで補正したレンジ抽出用の参照信号を用いて、相関処理によりレンジを抽出して、速度とレンジを出力するレーダシステムのレーダ信号処理方法。
In a radar signal processing method of a radar system using a modulated pulse with a coded or random signal.
A pulse train in which the pulse width, pulse interval, and pulse amplitude for range extraction are changed for each pulse and a pulse train in which the pulse interval for Doppler extraction is constant and thinned at a predetermined thinning rate ρ (ρ ≧ 0) are mixed. The radar signal generated by the above is transmitted from the transmitting antenna,
For the reflected signal of the radar signal received by the receiving antenna, the Doppler is extracted with the pulse train for Doppler extraction, and the range is extracted by correlation processing using the reference signal for range extraction corrected by the extracted Doppler. , Radar signal processing method of radar system that outputs speed and range.
符号化またはランダム信号による変調パルスを用いたレーダシステムのレーダ信号処理方法において、
レンジ抽出用のパルス幅、パルス間隔、パルス振幅を、パルス毎に変化させたパルス列と、ドップラ抽出用のパルス間隔が一定で、所定の間引き率ρ(ρ≧0)で間引いたパルス列を混合して混合パルス列を生成し、送信のアンテナ開口をM(M≧1)分割し、送信開口の分割単位で、前記パルス列のパルス内変調を変えたM種の信号を用いて、更に必要に応じて、ドップラ抽出用とレンジ抽出用のパルス内変調を変えたレーダ信号を送信アンテナより送信し、
受信アンテナの全開口で受信した前記レーダ信号の反射信号に対して、パルス内変調を復調して低レートの信号に変換した後、M種の送信信号に対してパルス列を分離し、送信開口分割単位の位相中心の位相に応じて補正して加算してドップラを抽出し、次に、抽出したドップラで補正したレンジ抽出用の参照信号を用いて、M種の送信信号に対して相関処理した結果を、送信開口分割単位の位相中心の位相に応じて補正して加算してレンジ抽出して、速度とレンジを出力するレーダシステムのレーダ信号処理方法。
In a radar signal processing method of a radar system using a modulated pulse with a coded or random signal.
A pulse train in which the pulse width, pulse interval, and pulse amplitude for range extraction are changed for each pulse and a pulse train in which the pulse interval for Doppler extraction is constant and thinned at a predetermined thinning rate ρ (ρ ≧ 0) are mixed. To generate a mixed pulse train, divide the transmission antenna aperture by M (M ≧ 1), and use M-type signals in which the intra-pulse modulation of the pulse train is changed in the division unit of the transmission aperture, and further if necessary. , Transmit radar signals with different in-pulse modulation for Doppler extraction and range extraction from the transmitting antenna,
After the reflected signal of the radar signal received at the full aperture of the receiving antenna is demodulated by intra-pulse modulation and converted into a low-rate signal, the pulse train is separated for the M type transmission signal, and the transmission aperture is divided. The Doppler was extracted by correcting and adding according to the phase of the phase center of the unit, and then the reference signal for range extraction corrected by the extracted Doppler was used to perform correlation processing on the M type transmission signal. A radar signal processing method of a radar system that outputs the speed and range by correcting the result according to the phase of the phase center of the transmission aperture division unit, adding it, and extracting the range.
JP2018047142A 2018-03-14 2018-03-14 Radar system and its radar signal processing method Active JP6852007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047142A JP6852007B2 (en) 2018-03-14 2018-03-14 Radar system and its radar signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047142A JP6852007B2 (en) 2018-03-14 2018-03-14 Radar system and its radar signal processing method

Publications (2)

Publication Number Publication Date
JP2019158670A JP2019158670A (en) 2019-09-19
JP6852007B2 true JP6852007B2 (en) 2021-03-31

Family

ID=67996794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047142A Active JP6852007B2 (en) 2018-03-14 2018-03-14 Radar system and its radar signal processing method

Country Status (1)

Country Link
JP (1) JP6852007B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221786B (en) * 2021-11-17 2024-03-26 西安空间无线电技术研究所 Novel communication hardware encryption system and method based on pulse compression

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3652354B2 (en) * 2003-01-06 2005-05-25 防衛庁技術研究本部長 Radio wave sensor
JP4861384B2 (en) * 2008-08-25 2012-01-25 株式会社東芝 Radar equipment
FR2987683B1 (en) * 2012-03-02 2016-11-11 Thales Sa RADAR WITH LOW PROBABILITY OF INTERCEPTION
JP5823062B2 (en) * 2012-12-14 2015-11-25 三菱電機株式会社 Radar equipment
JP2014182010A (en) * 2013-03-19 2014-09-29 Toshiba Corp Radar apparatus
JP6546003B2 (en) * 2015-05-25 2019-07-17 株式会社東芝 Radar system and radar signal processing method

Also Published As

Publication number Publication date
JP2019158670A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US11061126B2 (en) Cooperative frequency-modulated continuous-waveform radar systems
JP6818541B2 (en) Radar device and positioning method
US9134405B2 (en) Radar apparatus
JP2016151425A (en) Radar system
JP5871559B2 (en) Radar equipment
EP3208632B1 (en) Radar apparatus and radar method
Rabaste et al. Signal waveforms and range/angle coupling in coherent colocated MIMO radar
JP6755790B2 (en) Radar device and its radar signal processing method
US11125854B2 (en) Time transfer and position determination during simultaneous radar and communications operation
JP6462365B2 (en) Radar apparatus and radar signal processing method thereof
US8018371B1 (en) Passive proximity sensor method and apparatus
EP3399334B1 (en) Object detecting device and sensor device
JP6852007B2 (en) Radar system and its radar signal processing method
JP6889098B2 (en) Radar device and its radar signal processing method
JP4005947B2 (en) Pulse radar apparatus and signal processing method thereof
JP6546109B2 (en) Radar equipment
JP6400494B2 (en) Radar apparatus and radar signal processing method thereof
JP6702557B2 (en) Radar system
JP6851957B2 (en) Radar system and its radar signal processing method
JP2007192783A (en) Pulse compression radar system
JP6629279B2 (en) Radar apparatus and radar signal processing method thereof
JP7182929B2 (en) Radar system and signal processing method
JP2021099245A (en) Radar system and radar signal processing method
JP7123670B2 (en) Radar system and signal processing method
JP2007225319A (en) Pulse radar system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210310

R150 Certificate of patent or registration of utility model

Ref document number: 6852007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150